1 |
F. Gazzola, Existence and uniqueness
results for a generalized stationary Navier-Stokes
equation, Rend. Ist. Lombardo (Scienze) 126, 1992, 181-199 |
2 |
F. Gazzola, On stationary Navier-Stokes equations with a pressure-dependent
viscosity, Rend. Ist. Lombardo (Scienze) 128, 1994, 107-119 |
3 |
F. Gazzola, An attractor for a 3D Navier-Stokes type equation, Zeit.
Anal. Anwend. 14, 1995, 509-522 PS file |
4 |
F. Gazzola, On a decomposition of the
Hilbert space L2 and its
applications to Stokes problem, Ann. Univ. Ferrara 41, 1995,
95-115 PDF file |
5 |
G. Arioli, F. Gazzola,
Existence and numerical approximation of periodic motions of an infinite
lattice of particles, Zeit. Angew.
Math. Pys. 46, 1995, 898-912 PDF file |
6 |
G. Arioli, F. Gazzola,
Periodic motions of an infinite lattice of particles with nearest neighbor interaction, Nonlinear Analysis T.M.A. 26, 1996,
1103-1114 PDF file |
7 |
M. Conti, F. Gazzola, Positive entire
solutions of quasilinear elliptic problems via nonsmooth
critical point theory, Top. Meth. Nonlin. Anal.
8, 1996, 275-294 PDF file |
8 |
G. Arioli, F. Gazzola,
S. Terracini, Multibump
periodic motions of an infinite lattice of particles, Math. Zeit. 223, 1996, 627-642 PDF file |
9 |
F. Gazzola, Periodic motions in lattices
of particles, Proc. Dynamic Systems and Applications Vol. 2, Dynamic
Publishers Inc. 1996, 183-190 PDF file |
10 |
F. Gazzola, V. Pata,
A uniform attractor for a nonautonomous
generalized Navier-Stokes equation, Zeit. Anal. Anwend. 16, 1997, 435-449
PS file |
11 |
F. Gazzola, A note on the evolution Navier-Stokes equations with a pressure-dependent
viscosity, Zeit. Angew.
Math. Phys. 48, 1997, 760-773 PDF file |
12 |
F. Gazzola, B. Ruf,
Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Diff. Eq. 2,
1997, 555-572 PDF file |
13 |
F. Gazzola, Periodic motions of a lattice
of particles with singular forces, Diff. Int. Eq. 10, 1997, 245-264
PDF file |
14 |
G. Arioli, F. Gazzola,
Weak solutions of quasilinear elliptic equations as critical points of nonsmooth functionals, Ann.
Fac. Sci. Toulouse 6, 1997, 573-589 PDF file |
15 |
G. Arioli, F. Gazzola,
Quasilinear elliptic equations at critical growth, Nonlin.
Diff. Eq. Appl. 5, 1998, 83-97 PDF file |
16 |
F. Gazzola, M. Sardella,
Attractors for families of processes in weak topologies of Banach spaces, Disc. Cont. Dynam.
Syst. 4, 1998, 455-466 PDF file |
17 |
F. Gazzola, Critical growth problems for polyharmonic operators, Proc. Roy. Soc. Edinburgh
128A, 1998, 251-263 PDF file |
18 |
G. Arioli, F. Gazzola,
Some results on p-Laplace equations with a critical growth term, Diff.
Int. Eq. 11, 1998, 311-326 PDF file |
19 |
F. Gazzola, P. Secchi,
Some results about stationary Navier-Stokes
equations with a pressure-dependent viscosity, Proc. Internat. Conf. on Navier-Stokes Equations, Theory and Numerical Methods, Varenna 1997, Pitman Res. Notes Math. Ser. 388, 1998,
31-37 PDF file |
20 |
F. Gazzola, G. Prouse,
A note on approximable solutions of 3D Navier-Stokes equations, Proc. Internat. Conf. on Navier-Stokes Equations, Theory and Numerical Methods, Varenna 1997, Pitman Res. Notes Math. Ser. 388, 1998,
174-183 PDF file |
21 |
F. Gazzola, Positive solutions of
critical quasilinear elliptic problems in general domains, Abstract Appl.
Anal. 3, 1998, 65-84 PDF file |
22 |
G. Arioli, F. Gazzola,
On a quasilinear elliptic differential equation in unbounded domains,
Rend. Sem. Mat. Univ. Trieste 30, 1998, 113-128 PDF file |
23 |
F. Gazzola, Existence of minima for
nonconvex functionals in spaces of functions
depending on the distance from the boundary, Arch. Rat. Mech. Anal. 150, 1999,
57-76 PDF file |
24 |
F. Gazzola, V. Radulescu,
A nonsmooth critical point theory approach to
some nonlinear elliptic equations in R^n, Diff.
Int. Eq. 13, 2000, 47-60 PDF file |
25 |
F. Gazzola, M. Lazzarino,
Existence results for general critical growth semilinear
elliptic equations, Comm. Appl. Anal. 4, 2000, 39-50 PDF file |
26 |
F. Gazzola, J. Serrin,
M. Tang, Existence of ground states and free boundary problems for
quasilinear elliptic operators, Adv. Diff. Eq. 5, 2000,
1-30 PDF file |
27 |
G. Arioli, F. Gazzola,
Existence and multiplicity results for quasilinear elliptic differential
systems, Comm. Part. Diff. Eq. 25, 2000, 125-153 PDF file |
28 |
G. Arioli, F. Gazzola,
S. Terracini, Minimization properties of Hill's
orbits and applications to some N-body problems, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 17, 2000, 617-650 PDF file |
29 |
F. Gazzola, H.C. Grunau,
On the role of space dimension n=2+2√2
in the semilinear Brezis-Nirenberg
eigenvalue problem, Analysis 20, 2000, 395-399 PDF file |
30 |
F. Gazzola, Critical growth quasilinear
elliptic problems with shifting subcritical perturbation, Diff. Int. Eq.
14, 2001, 513-528 PDF file |
31 |
F. Gazzola, H.C. Grunau,
Critical dimensions and higher order Sobolev
inequalities with remainder terms, Nonlin.
Diff. Eq. Appl. 8, 2001, 35-44 PDF file |
32 |
F. Gazzola, P. Secchi,
Inflow-outflow problems for Euler equations in a rectangular cylinder,
Nonlin. Diff. Eq. Appl. 8, 2001,
195-217 PDF file |
33 |
F. Gazzola, On radially symmetric minima
of nonconvex functionals, J. Math. Anal. Appl.
258, 2001, 490-511 PDF file |
34 |
A. Ferrero, F. Gazzola, Existence of
solutions for singular critical growth semilinear
elliptic equations, J. Diff. Eq. 177, 2001, 494-522 PDF file |
35 |
G. Crasta, F. Gazzola,
Web functions: survey of results and perspectives, Rend. Ist. Mat. Univ. Trieste 33, 2001,
313-326 PDF file |
36 |
M. Conti, F. Gazzola, Existence of ground
states and free boundary problems for the prescribed mean curvature equation,
Adv. Diff. Eq. 7, 2002, 667-694 PDF file |
37 |
F. Gazzola, A. Malchiodi,
Some remarks on the equation -∆
u=λ (1+u)p for varying
λ, p and varying domains, Comm. Part. Diff. Eq. 27, 2002,
809-845 PDF file |
38 |
F. Gazzola, J. Serrin,
Asymptotic behavior of ground states of
quasilinear elliptic problems with two vanishing parameters, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 19, 2002, 477-504 PDF file |
39 |
G. Crasta, F. Gazzola,
Some estimates of the minimizing properties of web functions, Calculus
of Variations 15, 2002, 45-66 PDF file |
40 |
G. Crasta, I. Fragalà,
F. Gazzola, A sharp upper bound for the
torsional rigidity of rods by means of web functions, Arch. Rat. Mech.
Anal. 164, 2002, 189-211 PDF file |
41 |
F. Gazzola, The sharp exponent for a Liouville-type theorem for an elliptic inequality,
Rend. Ist. Mat. Univ. Trieste 34, 2002,
99-102 PDF file |
42 |
F. Gazzola, Critical exponents which
relate embedding inequalities with quasilinear elliptic problems, Disc.
Cont. Dynam. Syst. Suppl. Vol. 2003, 327-335
PDF file |
43 |
F. Gazzola, L. Pisani,
Remarks on quasilinear elliptic equations as models for elementary
particles, Disc. Cont. Dynam. Syst. Suppl. Vol.
2003, 336-341 PDF file |
44 |
A. Ferrero, F. Gazzola, On subcriticality assumptions for the existence of ground
states of quasilinear elliptic equations, Adv. Diff. Eq. 8, 2003,
1081-1106 PDF file |
45 |
F. Gazzola, L. Peletier,
P. Pucci, J. Serrin, Asymptotic
behavior of ground states of quasilinear elliptic
problems with two vanishing parameters, Part II, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 20, 2003, 947-974 PDF file |
46 |
F. Gazzola, H.C. Grunau,
M. Squassina, Existence and nonexistence results
for critical growth biharmonic elliptic equations,
Calculus of Variations 18, 2003, 117-143 PDF file |
47 |
A. Ferrero, F. Gazzola, Asymptotic behavior of ground states of quasilinear elliptic
problems with two vanishing parameters, Part III, J. Diff. Eq. 198, 2004,
53-90 PDF file |
48 |
F. Gazzola, H.C. Grunau,
E. Mitidieri, Hardy inequalities with optimal
constants and remainder terms, Trans. Amer. Math. Soc. 356, 2004,
2149-2168 PDF file |
49 |
F. Gazzola, Finite time blow-up and
global solutions for some nonlinear parabolic equations, Diff. Int. Eq.
17, 2004, 983-1012 PDF file |
50 |
I. Fragalà, F. Gazzola,
B. Kawohl, Existence and nonexistence results
for anisotropic quasilinear elliptic equations, Ann. Inst. Henri Poincaré, Analyse non Linéaire
21, 2004, 715-734 PDF file |
51 |
G. Arioli, F. Gazzola,
H.C. Grunau, E. Mitidieri,
A semilinear fourth order elliptic problem with
exponential nonlinearity, SIAM J. Math. Anal. 36, 2005, 1226-1258
PDF file |
52 |
E. Berchio, F. Gazzola,
Some remarks on biharmonic elliptic problems
with positive, increasing and convex nonlinearities, Electronic J. Diff.
Eq. 34, 2005, 1-20 PDF file |
53 |
G. Crasta, I. Fragalà,
F. Gazzola, On the role of energy convexity in
the web function approximation, Nonlin. Diff.
Eq. Appl. 12, 2005, 93-109 PDF file |
54 |
F. Gazzola, T. Weth,
Finite time blow-up and global solutions for semilinear
parabolic equations with initial data at high energy level, Diff. Int.
Eq. 18, 2005, 961-990 PDF file |
55 |
G. Crasta, I. Fragalà,
F. Gazzola, On a long-standing conjecture by Polya-Szego and related topics, Zeit.
Angew. Math. Phys. 56, 2005,
763-782 PDF file |
56 |
I. Fragalà, F. Gazzola,
G. Lieberman, Regularity and nonexistence results for anisotropic
quasilinear elliptic equations in convex domains, Disc. Cont. Dynam. Syst. Suppl. Vol. 2005, 280-286
PDF file |
57 |
F. Gazzola, No geometric approach for
general overdetermined elliptic problems with nonconstant
source, Le Matematiche 60, 2005, 259-268
PDF file |
58 |
A. Ferrero, F. Gazzola, T. Weth, On a fourth order Steklov
eigenvalue problem, Analysis 25, 2005, 315-332 PDF file |
59 |
F. Gazzola, H.C. Grunau,
Radial entire solutions for supercritical biharmonic
equations, Math. Annalen 334, 2006,
905-936 PDF file |
60 |
F. Gazzola, M. Squassina,
Global solutions and finite time blow up for damped semilinear
wave equations, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 23, 2006, 185-207 PDF file |
61 |
E. Berchio, F. Gazzola,
Best constants and minimizers for embeddings of
second order Sobolev spaces, J. Math. Anal.
Appl. 320, 2006, 718-735 PDF file |
62 |
I. Fragalà, F. Gazzola,
B. Kawohl, Overdetermined problems with possibly
degenerate ellipticity, a geometric approach,
Math. Zeit.
254, 2006, 117-132 PDF file |
63 |
E. Berchio, F. Gazzola,
E. Mitidieri, Positivity preserving property for
a class of biharmonic elliptic problems, J.
Diff. Eq. 229, 2006, 1-23 PDF file |
64 |
G. Arioli, F. Gazzola,
H.C. Grunau, Entire solutions for a semilinear fourth order elliptic problem with exponential
nonlinearity, J. Diff. Eq. 230, 2006, 743-770 PDF file |
65 |
A. Ferrero, F. Gazzola, T. Weth, Positivity, symmetry and uniqueness for minimizers of second order Sobolev inequalities, Ann. Mat. Pura Appl. 186, 2007, 565-578 PDF file |
66 |
G. Crasta, I. Fragalà,
F. Gazzola, Some estimates for the torsional
rigidity of composite rods, Math. Nachr. 280, 2007, 242-255
PDF file |
67 |
E. Berchio, F. Gazzola,
T. Weth, Critical growth biharmonic
elliptic problems under Steklov-type boundary
conditions, Adv. Diff. Eq. 12, 2007, 381-406 PDF file |
68 |
F. Gazzola, H.C. Grunau,
Global solutions for superlinear parabolic
equations involving the biharmonic operator for
initial data with optimal slow decay, Calculus of Variations 30, 2007,
389-415 PDF file |
69 |
G. Arioli, F. Gazzola,
H.C. Grunau, E. Sassone, The
second bifurcation branch for radial solutions of the Brezis-Nirenberg
problem in dimension four, Nonlin. Diff. Eq.
Appl. 15, 2008, 69-90 PDF file |
70 |
F. Gazzola, H.C. Grunau,
Eventual local positivity for a biharmonic heat
equation in R^n, Disc. Cont. Dynam. Syst. S 1, 2008, 83-87 PDF file |
71 |
E. Berchio, F. Gazzola,
T. Weth, Radial symmetry of positive solutions
to nonlinear polyharmonic Dirichlet
problems, J. Reine Angew.
Math. 620, 2008, 165-183 PDF file |
72 |
A. Ferrero, F. Gazzola, H.C. Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Disc. Cont. Dynam. Syst. 21, 2008, 1129-1157 PDF file |
73 |
F. Gazzola, G. Sweers,
On positivity for the biharmonic operator under Steklov boundary conditions, Arch. Rat. Mech. Anal.
188, 2008, 399-427 PDF file |
74 |
I. Fragalà, F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Diff.
Eq. 245, 2008, 1299-1322 PDF file |
75 |
E. Berchio, F. Gazzola, D. Pierotti, Nodal solutions to critical growth elliptic problems under Steklov boundary conditions, Comm. Pure Appl. Anal. 8, 2009, 533-557 PDF file |
76 |
D. Bucur, A. Ferrero, F. Gazzola,
On the first eigenvalue of a fourth order Steklov
problem, Calculus of Variations 35, 2009, 103-131 PDF file |
77 |
F. Gazzola, D. Pierotti,
Positive solutions to critical growth biharmonic elliptic
problems under Steklov boundary conditions,
Nonlinear Analysis T.M.A. 71, 2009, 232-238 PDF file |
78 |
I. Fragalà, F. Gazzola,
J. Lamboley, M. Pierre, Counterexamples to symmetry
for partially overdetermined elliptic problems, Analysis 29, 2009, 85-93
PDF file |
79 |
F. Gazzola, H.C. Grunau,
Some new properties of biharmonic heat kernels,
Nonlinear Analysis T.M.A. 70, 2009, 2965-2973 PDF file |
80 |
E. Berchio, F. Gazzola,
D. Pierotti, Gelfand
type elliptic problems under Steklov boundary
conditions, Ann. Inst. Henri Poincaré,
Analyse non Linéaire 27, 2010, 315-335 PDF file |
81 |
E. Berchio, D. Cassani,
F. Gazzola, Hardy-Rellich
inequalities with boundary remainder terms and applications, Manuscripta Math. 131, 2010, 427-458 PDF file |
82 |
F. Gazzola, H.C. Grunau, G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary conditions, Ann. Mat. Pura Appl. 189, 2010, 475-486 PDF file |
83 |
F. Gazzola, T. Weth,
Remainder terms in a higher order Sobolev
inequality, Archiv der Mathematik
95, 2010, 381-388 PDF file |
84 |
I. Fragalà, F. Gazzola,
M. Pierre, On an isoperimetric inequality for capacity conjectured by Polya and Szego, J. Diff.
Eq. 250, 2011, 1500-1520
PDF file |
85 |
E. Berchio, F. Gazzola,
Positive solutions to a linearly perturbed critical growth biharmonic problem, Disc. Cont. Dyn. Syst. S 4, 2011, 809-823 PDF file |
86 |
D. Bucur, F. Gazzola,
The first biharmonic
Steklov eigenvalue: positivity preserving and shape
optimization, Milan J. Math. 79, 2011, 247-258 PDF file |
87 |
E. Berchio, A. Ferrero, F. Gazzola, P. Karageorgis, Qualitative behavior
of global solutions to some nonlinear fourth order differential equations,
J. Diff. Eq. 251, 2011, 2696-2727 PDF file |
88 |
F. Gazzola, R. Pavani,
Blow up oscillating solutions to some nonlinear fourth order differential
equations, Nonlinear Analysis T.M.A. 74, 2011, 6696-6711
PDF file |
89 |
E. Berchio, A. Farina, A. Ferrero, F. Gazzola, Existence
and stability of entire solutions to a semilinear
fourth order elliptic problem, J. Diff. Eq. 252, 2012, 2596-2616 PDF file |
90 |
F. Gazzola, R. Pavani,
Blow-up oscillating solutions to some nonlinear fourth order differential
equations describing oscillations of suspension bridges, IABMAS12, 6th
International Conference on Bridge Maintenance, Safety, Management,
Resilience and Sustainability, 3089-3093, Stresa
2012, Biondini & Frangopol
(Editors), Taylor & Francis Group, London (2012) PDF file |
91 |
M. Bonforte, F. Gazzola,
G. Grillo, J.L. Vázquez, Classification of
radial solutions to the Emden-Fowler equation on the hyperbolic space,
Calculus of Variations 46, 2013, 375-401
PDF file |
92 |
P.R.S. Antunes, F. Gazzola,
Convex shape optimization for the least
biharmonic Steklov
eigenvalue, ESAIM COCV 19, 2013, 385-403 PDF file |
93 |
I. Fragalà, F. Gazzola,
J. Lamboley, Sharp
bounds for the p-torsion of convex planar domains, Geometric Properties
for Parabolic and Elliptic PDE's, Springer INdAM
Series Vol. 2, 2013, 97-115 PDF file |
94 |
F. Gazzola, On the moments of solutions
to linear parabolic equations involving the biharmonic
operator, Disc. Cont. Dynam. Syst. A Disc.
Cont. Dyn. Syst. A 33, 2013, 3583-3597
PDF file |
95 |
F. Gazzola, R. Pavani,
Wide oscillations finite time blow up for solutions to nonlinear fourth order
differential equations, Arch. Rat. Mech. Anal. 207, 2013, 717-752
PDF file |
96 |
G. Barbatis, F. Gazzola,
Higher order linear parabolic equations, Contemporary Mathematics 594,
2013, 77-97 PDF file |
97 |
F. Gazzola,
Nonlinearity in suspension bridges, Electron. J. Diff. Equ. no.211, 2013, 1-47 PDF file |
98 |
G. Arioli,
F. Gazzola, Old and new explanations of the
Tacoma Narrows Bridge collapse, Atti XXI Congresso AIMETA, Torino, 2013, 10pp. PDF file |
99 |
E. Barucci, F. Gazzola,
Prices in the utility function and demand monotonicity, Kodai Math. J. 37, 2014, 544-567 PDF file |
100 |
M. Al-Gwaiz, V. Benci,
F. Gazzola, Bending and stretching
energies in a rectangular plate modeling suspension bridges, Nonlinear
Analysis T.M.A. 106, 2014, 18-34 PDF file |
101 |
F. Gazzola, M. Jleli,
B. Samet, On the Melan equation for
suspension bridges, J. Fixed Point Theory Appl. 16, 2014, 159-188
PDF file |
102 |
C. Escudero, F. Gazzola,
I. Peral, Existence versus blow-up
results for a fourth order parabolic PDE involving the Hessian, J. Math. Pures Appl. 103, 2015, 924-957
PDF file |
103 |
F. Gazzola, Hexagonal design for
stiffening trusses, Ann. Mat. Pura Appl. 194, 2015, 87-108
PDF file |
104 |
G. Arioli, F. Gazzola,
A new mathematical explanation of what triggered the catastrophic torsional
mode of the Tacoma Narrows Bridge collapse, Appl. Math. Modelling 39, 2015, 901-912
PDF file |
105 |
F. Gazzola, P. Karageorgis, Refined blow-up results for
nonlinear fourth order differential equations, Comm. Pure Appl. Anal. 12,
2015, 677-693
PDF file |
106 |
E. Berchio, F. Gazzola, A qualitative explanation of
the origin of torsional instability in suspension bridges, Nonlinear
Analysis TMA 121, 2015, 54-72 PDF file |
107 |
A. Ferrero, F. Gazzola, A partially
hinged rectangular plate as a model for suspension bridges, Disc. Cont. Dyn. Syst. A 35, 2015, 5879-5908 PDF file |
108 |
C. Escudero, F. Gazzola,
R. Hakl, I. Peral, P.
Torres, Existence results
for a fourth order partial differential equation arising in condensed matter
physics, Math. Bohemica 140, 2015, 385-393 PDF file |
109 |
F. Gazzola, R. Pavani, The impact of nonlinear
restoring forces acting on hinged elastic beams, Bull. Belgian Math. Soc.
22, 2015, 559-578
PDF file |
110 |
E. Berchio, F. Gazzola,
The role of aerodynamic forces in a
mathematical model for suspension bridges, Dynamical Systems,
Differential Equations and Applications, AIMS Proceedings, 2015, 112-121 PDF file |
111 |
F. Gazzola, Y. Wang, Modeling suspension
bridges through the von Karman quasilinear plate equations, Progress in
Nonlinear Differential Equations and Their Applications, In: Contributions to
Nonlinear Differential Equations and Systems, a tribute to Djairo Guedes de Figueiredo on occasion of his 80th birthday, 2015,
269-297 PDF file |
112 |
G. Arioli, F. Gazzola,
On a nonlinear nonlocal hyperbolic
system modeling suspension bridges, Milan J. Math. 83, 2015, 211-236 PDF file |
113 |
E. Berchio, F. Gazzola,
C. Zanini, Which
residual mode captures the energy of the dominating mode in second order
Hamiltonian systems?, SIAM J. Appl. Dyn. Syst. 15, 2016, 338-355 PDF file |
114 |
E. Berchio, A. Ferrero, F. Gazzola, Structural instability of
nonlinear plates modelling suspension bridges: mathematical answers to some
long-standing questions, Nonlin. Anal. Real World
Appl. 28, 2016, 91-125 PDF file |
115 |
V. Ferreira, F. Gazzola, E. Moreira dos
Santos, Instability of modes in a
partially hinged rectangular plate, J. Diff. Eq. 261, 2016, 6302-6340 PDF file |
116 |
G. Arioli, F. Gazzola,
Torsional instability in suspension
bridges: the Tacoma Narrows Bridge case, Communications Nonlinear Sci.
Numerical Simulation 42, 2017, 342-357 PDF file |
117 |
V. Benci, D. Fortunato, F. Gazzola, Existence of torsional solitons in a beam model of suspension bridge,
Arch. Rat. Mech. Anal. 226, 2017, 559-585PDF file |
118 |
E. Berchio, D. Buoso,
F. Gazzola, A
measure of the torsional performances of partially hinged rectangular plates,
In: Integral Methods in Science and Engineering, Vol.1, Theoretical
Techniques, Eds: C. Constanda,
M. Dalla Riva, P.D. Lamberti,
P. Musolino, Birkhauser
2017, 35-46 PDF file |
119 |
M. Garrione, F. Gazzola, Loss of
concentration on linear modes in nonlinear evolution beam equations, J.
Nonlinear Sci. 27, 2017, 1789-1827 PDF file |
120 |
U. Battisti, E. Berchio,
A. Ferrero, F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J.
Math. Pures Appl. 108, 2017, 885-917 PDF file |
121 |
E. Berchio, D. Buoso,
F. Gazzola, On
the variation of longitudinal and torsional frequencies in a partially hinged
rectangular plate, ESAIM COCV 24, 2018, 63-87 PDF file |
122 |
F. Gazzola, G. Sperone, Thresholds
for hanger slackening and cable shortening in the Melan equation for
suspension bridges, Nonlin. Anal. Real World Appl. 39, 2018, 520-536 PDF file |
123 |
C. Gasparetto, F. Gazzola,
Resonance tongues for the Hill equation
with Duffing coefficients and instabilities in a nonlinear beam equation,
Comm. Contemp. Math. 20, 2018, 1750022 (22 pp.)PDF file |
124 |
F. Gazzola, Y. Wang, R. Pavani, Variational
formulation of the Melan equation, Math. Meth. Appl. Sci. 41,
2018, 943-951 PDF file |
125 |
F. Gazzola, V. Racic, A model of synchronisation in crowd dynamics, Appl. Math.
Modelling 59, 2018, 305-318 PDF file |
126 |
E. Berchio, D. Buoso, F. Gazzola, D. Zucco, A minimaxmax problem for improving the torsional stability
of rectangular plates, J. Optim. Theory Appl.
177, 2018, 64-92 PDF file |
127 |
P. Antunes, F. Gazzola, Some
solutions of minimaxmax problems for the torsional
displacements of rectangular plates, ZAMM 98, 2018, 1974-1991 PDF file |
128 |
D. Bonheure, F. Gazzola,
E. Moreira dos Santos, Periodic solutions and torsional instability in a
nonlinear nonlocal plate equation, SIAM J. Math. Anal. 51, 2019, 3052-3091 PDF file |
129 |
F. Gazzola, G. Sperone, Boundary conditions for the Stokes equations
inducing vortices around concave corners, Milan J. Math. 87, 2019,
169-199 PDF file |
130 |
D. Bonheure, F. Gazzola, G. Sperone, Eight(y)
mathematical questions on fluids and structures, Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 30, 2019, 759-815 PDF file |
131 |
J. Chu, M. Garrione, F. Gazzola,
Stability analysis in some strongly prestressed rectangular plates, Evol.
Eq. Control Theory 9, 2020, 275-299 PDF file |
132 |
M. Garrione, F. Gazzola, Linear theory for beams with intermediate piers, Commun. Contemp.
Math. 22, 2020, 1950081, 41 pp. PDF file |
133 |
G. Crasta, A. Falocchi, F. Gazzola, A new model for
suspension bridges involving the convexification of the cables, Zeit. Angew.
Math. Phys. 71, 2020, no.3, 93 PDF file |
134 |
F. Gazzola, G. Sperone, Steady Navier-Stokes
equations in planar domains with obstacle and explicit bounds for unique
solvability, Arch. Ration. Mech. Anal. 238, 2020, 1283-1347 PDF file |
135 |
I. Fragalà, F. Gazzola, G. Sperone, Solenoidal
extensions in domains with obstacles: explicit bounds and applications to
Navier-Stokes equations, Calculus of Variations 59:196, 2020 PDF file |
136 |
D. Bonheure, G.P. Galdi, F. Gazzola, Equilibrium
configuration of a rectangular obstacle immersed in a channel flow, C.R. Math. Acad. Sci. Paris 358, 2020, 887-896
PDF file |
137 |
F. Gazzola, E.M. Marchini, The moon lander optimal
control problem revisited, Mathematics in Engineering 3(5), 2021, 1-14 PDF file |
138 |
F. Gazzola, G. Sperone, Bounds for Sobolev embedding
constants in non-simply connected planar domains, to appear in Proc.
Italian-Japanese Workshop PDF file |
139 |
G. Catino, F. Gazzola, P. Mastrolia, A conformal
Yamabe problem with potential on the euclidean space, to appear in Ann. Mat. Pura Appl. PDF file |
140 |
G. Arioli, F. Gazzola, H. Koch, Uniqueness and
bifurcation branches for planar steady Navier-Stokes equations under Navier
boundary conditions, to appear in J. Math. Fluid. Mech. PDF file |
141 |
F. Gazzola, A. Soufyane, Long-time behavior of
partially damped systems modeling degenerate plates with piers, preprint PDF file |
142 |
F. Gazzola, C. Patriarca, An explicit threshold for
the appearance of lift on the deck of a bridge, preprint PDF file |
143 |
D. Bonheure, F. Gazzola, I. Lasiecka, J. Webster, Long-time
dynamics of a hinged-free plate driven by a non-conservative force, preprint PDF file |
144 |
F. Gazzola, An optimal control problem for virus propagation and
economic loss, preprint PDF file |
145 |
F. Gazzola, E.M. Marchini, A minimal time optimal control for a drone landing
problem, preprint PDF file |