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Abstract

The lack of a general maximum principle for biharmonic equations suggests to study under which bound-
ary conditions the positivity preserving property holds. We show that this property holds in general domains
for suitable linear combinations of Dirichlet and Navier boundary conditions. The spectrum of this operator
exhibits some unexpected features: radial data may generate nonradial solutions. These boundary condi-
tions are also of some interest in semilinear equations, since they enable us to give explicit radial singular
solutions to fourth order Gelfand-type problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

When dealing with fourth order elliptic equations of the form

�2u = φ in Ω, (1)

where Ω is a smooth bounded domain of Rn (n � 2) and φ ∈ L2(Ω), one must face the lack of
a general maximum or comparison principle (positivity preserving property). More precisely, it
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is not yet clear under which assumptions the following implication holds:

φ � 0 in Ω �⇒ u � 0 in Ω. (2)

It is well known that for higher order problems, and more generally for elliptic systems, the
lack of the maximum principle strongly depends on the kind of boundary conditions imposed
on the solutions and, for systems, on some kind of quasi-monotonicity of the problem under
consideration [20]. For problems of the form (1), the choice of the boundary conditions is usually
related to the physical problem described by the equation, see [25].

In the case of Navier boundary conditions, i.e., u = �u = 0 on ∂Ω , implication (2) holds. In
this case, the positivity property is not sensitive to the geometric or topological properties of the
domain Ω . In fact, smoothness of the domain is here crucial since it has recently been shown by
Nazarov and Sweers [21] that for planar domains with an interior corner, (2) may not hold.

On the other hand, if we consider Dirichlet boundary conditions u = ∂u
∂ν

= 0 on ∂Ω , (2) is
guaranteed only in some special domains. About one century ago, Boggio [5] and Hadamard [16]
believed, by physical intuition, that (2) would hold in convex domains. Their conjecture was also
supported by the validity of (2) in balls, see [6]. Only much later this conjecture was disproved:
for example, it was shown that (2) does not hold for certain ellipses [13,23] and for squares [9].
On the contrary, more recent results show that (2) holds for domains close (in a suitable sense)
to the planar disk, see [15,22]. Furthermore, it has been proved in [12] that (2) may also hold for
some nonconvex domains. See [11,14] for up to date results on this problem.

In this paper we study the positivity problem for (1) trying to give at least an initial answer to
the following question:

which boundary conditions guarantee that (2) holds in a general domain Ω?

Of course, it is not a simple matter to give a complete answer to this question but, as we shall see
during the course, boundary conditions of particular interest seem to be

u = �u − d
∂u

∂ν
= 0 on ∂Ω, (3)

where d ∈ R. These conditions are in some sense intermediate between Dirichlet conditions
(corresponding to d = −∞) and Navier conditions (corresponding to d = 0).

We show that (1), combined with (3) for suitable values of d , enjoys of the positivity pre-
serving property. We also study the “boundary spectrum” of (1)–(3), namely the values of d for
which there exist nontrivial solutions when φ ≡ 0. This spectrum has some unexpected features.
For instance, when Ω is the unit ball and φ is radial, one may find nonradial solutions to (1)–(3),
see Section 3.

Even more involved appear semilinear elliptic problems of the form:

⎧⎨
⎩

�2u = λf (u) in Ω,

u = 0 on ∂Ω,

�u − d ∂u = 0 on ∂Ω,

(4)
∂ν
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where λ > 0 and f ∈ C2(R+,R+) is an increasing and strictly convex function with f (0) = 1 so
that u ≡ 0 is not a solution of (4). For (4) we must face all the typical problems associated with
the corresponding second order equation

−�u = λf (u) in Ω (5)

such as nonuniqueness of solutions, nonexistence, breaking of symmetry, lack of compactness
related to critical growth of the function f , as well as the already mentioned lack of a general
comparison principle. We show that when d is in the range which ensures (2), the results available
for (5) may be extended to (4).

A further argument in favor of the boundary conditions (3) is the possibility of writing explicit
singular solutions of (4) in the unit ball B. We consider just the simplest cases where

f (s) = es or f (s) = (1 + s)p with p >
n

n − 4
. (6)

It is well known [8,17–19] that if Ω = B, then the corresponding second order equation (5)
under Dirichlet boundary conditions admits explicit singular solutions for suitable values of λ.
For nonlinearities as in (6) the equation in (4) still admits explicit singular solutions in B but they
do not satisfy neither the Dirichlet nor the Navier boundary conditions, see [2,4]. For this reason,
these singular solutions were called ghost solutions in [4]. In this work, for the nonlinearities
in (6), we find d (depending on the dimension n and on f ) such that these singular solutions
satisfy the boundary conditions in (4) and the value of d lies precisely in the positivity preserving
range.

This paper is organized as follows: in next section we state our main results. In Section 3
we consider the positivity preserving property of the linear problem (1)–(3) together with the
naturally associated boundary eigenvalue problem. In the same section we state some questions
that remain to be solved and that we think are of particular interest for the continuation of this
work. We also give some hints on how to proceed for general polyharmonic semilinear problems.
Finally, in Sections 4–10 we prove our results.

2. Main results

For a smooth bounded domain Ω ⊂ Rn (n � 2), we define H(Ω) := [H 2 ∩ H 1
0 (Ω)] \H 2

0 (Ω)

and

σ := inf
u∈H(Ω)

∫
Ω

|�u|2∫
∂Ω

∣∣ ∂u
∂ν

∣∣2
. (7)

The minimization problem (7) is related to the following linear equation

⎧⎨
⎩

�2u = φ in Ω,

u = 0 on ∂Ω,

�u − d ∂u = 0 on ∂Ω,

(8)
∂ν
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where φ ∈ L2(Ω) and d ∈ R. By solution of (8) we mean a weak solution, namely u ∈ H 2 ∩
H 1

0 (Ω) such that

∫
Ω

�u�v − d

∫
∂Ω

∂u

∂ν

∂v

∂ν
=

∫
Ω

φv for all v ∈ H 2 ∩ H 1
0 (Ω).

Let us mention that although most of the functions we consider are not continuous, throughout
the paper we omit writing “a.e.” in Ω or on ∂Ω (in the former case with respect to the Lebesgue
measure, in the latter with respect to the (n − 1)-dimensional Hausdorff measure).

In view of the characterization (7), it is not difficult to show that, for d < σ , the map

u 
→
(∫

Ω

|�u|2 − d

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣
2)1/2

=: ‖u‖d

is a norm on H 2 ∩ H 1
0 (Ω) that we shall denote by ‖ · ‖d .

Our first results concern problems (7) and (8).

Theorem 1. Let Ω ⊂ Rn (n � 2) be a smooth connected bounded domain, let σ be as in (7) and
let d < σ . Then:

(i) For any φ ∈ L2(Ω), problem (8) admits a unique solution u ∈ H 4(Ω). Moreover (8) is
satisfied pointwise in Ω . In particular, if φ ∈ Hk(Ω) for some k � 1, then u ∈ Hk+4(Ω).

(ii) If d � 0 and φ � 0 (φ ≡ 0) in Ω , then the solution u of (8) satisfies u > 0 in Ω and ∂u
∂ν

< 0
on ∂Ω .

(iii) The infimum in (7) is achieved and, up to a multiplicative constant, the minimizer ū for (7)
is unique, strictly positive in Ω , satisfies ∂ū

∂ν
< 0 on ∂Ω and it solves (8) when d = σ and

φ ≡ 0. Furthermore, ū ∈ C∞(Ω) and, up to the boundary, ū is as smooth as the boundary
permits.

In Theorem 1 the upper bound d < σ is sharp. Indeed, if we take d = σ , then Theorem 1(iii)
and Fredholm alternative tell us that problem (8) lacks either existence or uniqueness, depending
on φ. On the other hand, we do not know if the positivity preserving property (2) in Theorem 1
continues to hold for d < 0. Let us mention that it does hold in the 1-dimensional case:

Theorem 2. Let δ > 0 and let u ∈ C4(−1,1) ∩ C2[−1,1] be such that u ≡ 0 and

(i) uiv � 0 in (−1,1);
(ii) u(±1) = 0;

(iii) u′′(1) + δu′(1) = u′′(−1) − δu′(−1) = 0.

Then, u > 0 in (−1,1).

In the case Ω = B (the unit ball), we may compute explicitly σ (defined in (7)) and determine
the minimizer.
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Theorem 3. Let B ⊂ Rn (n � 2) be the unit ball centered at zero. Then,

∫
B

|�u|2 � n

∫
∂B

∣∣∣∣∂u

∂ν

∣∣∣∣
2

for all u ∈ H 2 ∩ H 1
0 (B). (9)

Moreover, the constant n is optimal and equality holds in (9) if and only if u(x) = α(1 − |x|2)
for some α ∈ R.

For the linear problem, our last result concerns the first eigenvalue λ1 of the operator �2 under
the boundary conditions in (8), namely

λ1 := inf
u∈H 2∩H 1

0 (Ω)

∫
Ω

|�u|2 − d
∫
∂Ω

∣∣ ∂u
∂ν

∣∣2

∫
Ω

u2
. (10)

We prove:

Theorem 4. Let Ω ⊂ Rn be a smooth bounded connected domain, let σ be as in (7) and let
0 � d < σ . Then the first eigenfunction φ1 (corresponding to λ1 in (10)) is strictly of one sign
in Ω .

We now turn to the nonlinear problem (4). For simplicity, we restrict here to space dimensions
n � 5. So, let Ω ⊂ Rn (n � 5) be a smooth bounded domain and fix q > n

4 such that q � 2. Then,
we set:

Xd(Ω) :=
{
v ∈ W 4,q (Ω); v = �v − d

∂v

∂ν
= 0 on ∂Ω

}
.

Following [2] we consider solutions of (4) according to

Definition 5. We say that u ∈ L2(Ω) is a solution of (4) if f (u) ∈ L1(Ω) and

∫
Ω

u�2v = λ

∫
Ω

f (u)v for all v ∈ Xd(Ω).

Moreover, if u ∈ L∞(Ω) we say that u is regular while if u /∈ L∞(Ω) we say that u is singu-
lar. Finally, we say that a solution uλ of (4) is minimal if uλ � u in Ω , for any other possible
solution u of (4).

For any

f ∈ C2(R+,R+) is increasing and strictly convex with f (0) = 1 (11)

we set αf := max{α > 0: f (s) � αs for all s � 0} > 0. Theorem 1 shows that the positivity
preserving property holds for (8), provided that d < σ . This fact enables us to prove the following
theorem.
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Theorem 6. Assume that f satisfies (11) and let 0 � d < σ . Then, there exists λ∗ with

0 < λ∗ � λ1

αf

,

such that (4) admits a positive minimal solution if 0 < λ < λ∗ and no solutions if λ > λ∗. More-
over, the minimal solutions are pointwise increasing with respect to λ. Finally, if the nonlinearity
f satisfies the additional condition

lim inf
s→+∞

f ′(s)s
f (s)

> 1 (12)

and for every 0 < λ < λ∗ the minimal solution is regular, then (4) admits at least a positive
solution also for λ = λ∗.

At this point one should determine assumptions on f which ensure that minimal solutions are
regular. The next two statements give a partial answer to this question.

Theorem 7. Assume that f satisfies (11) and let 0 � d < σ . If f also satisfies

s 
→ logf (s) is nonconstant increasing and convex, (13)

then, for every 0 < λ < λ∗, the minimal solution of (4) is regular.

Theorem 8. Assume that 0 � d < σ and 1 < p � n+4
n−4 . Then, the solutions of (4) with f (s) =

(1 + s)p are regular. Moreover, if 1 < p < n+4
n−4 , (4) admits at least two positive solutions if

0 < λ < λ∗ and a unique solution if λ = λ∗.

Our last statement concerns problem (4) in the case where f satisfies (6) and Ω = B. A crucial
role will be played by the functions h(s) := f ′(s)

f ′′(s) and g(s) := (h(s))2(f ′(s) − 1) and by the two
values h(0) and g(0). Let us remark that

f (s) = es �⇒ h(0) = 1, g(0) = 0, and

f (s) = (1 + s)p �⇒ h(0) = g(0) = 1

p − 1
. (14)

Setting

λσ := 8h(0)
(
2g(0) + 1

)(
n − 2 − 4g(0)

)(
n − 4 − 4g(0)

)
, (15)

we have

f (s) = es �⇒ λσ = 8(n − 2)(n − 4), and

f (s) = (1 + s)p �⇒ λσ = 8

(p − 1)4

[
(n − 2)(n − 4)(p − 1)3

+ 2
(
n2 − 10n + 20

)
(p − 1)2 − 16(n − 4)(p − 1) + 32

]
.
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Remark 9. Condition p > n
n−4 in (6) ensures that λσ > 0 also in the power case. Let us mention

that if one also allows 1 < p � n
n−4 then, at least formally, one has λσ = 0 if p = n+4−2i

n−2i
for

some i = 1,2. In this case, in view of Theorem 10 below, the singular solution becomes vσ (x) :=
|x|2i−n − 1 which is, up to the addition of a constant, the fundamental solution of (−�)i . This
explains why �2vσ = 0.

Furthermore, if we choose

d := n − 2 − 4g(0), (16)

we have 0 < d < n, so that, in view of Theorems 1 and 3, the problems are well-posed in B
and the positivity preserving property holds. Let us rewrite (4) with the choice of f as in (6), of
Ω = B and d as in (16). When f (u) = eu we obtain

⎧⎨
⎩

�2u = λeu in B,

u = 0 on ∂B,

�u − (n − 2) ∂u
∂ν

= 0 on ∂B,

(17)

while if f (u) = (1 + u)p we have

⎧⎨
⎩

�2u = λ(1 + u)p in B,

u = 0 on ∂B,

�u − (n−2)p−(n+2)
p−1

∂u
∂ν

= 0 on ∂B.

(18)

We can now state our result on singular solutions:

Theorem 10. Let λ = λσ . Then, the function uσ (x) := −4 log |x| (respectively vσ (x) :=
|x|− 4

p−1 − 1) is a singular radial solution of problem (17) (respectively (18) with p > n
n−4 )

in B.

When f (s) = (1 + s)p , the singular solution vσ found in Theorem 10 is a solution of (18),
according to Definition 5, only if p > 8+n

n
. Indeed, if p � 8+n

n
then vσ /∈ L2(B), see Remark 27

at the end of the paper (notice that n
n−4 � 8+n

n
⇔ n � 8).

3. Further results and open problems

3.1. A boundary eigenvalue problem

In view of Theorem 1(iii), minimizers of (7) solve the linear problem

⎧⎨
⎩

�2u = 0 in Ω,

u = 0 on ∂Ω,

�u − d ∂u
∂ν

= 0 on ∂Ω

(19)

when d = σ . Problem (19) may be seen as a boundary eigenvalue problem. Theorem 1(iii) states
that the least eigenvalue is d = σ , that it is simple and that the corresponding eigenfunction is of
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one sign. A natural question is then

what about other eigenvalues?

In the one-dimensional case (19) reads

uiv = 0 in (−1,1), u(±1) = u′′(−1) + du′(−1) = u′′(1) − du′(1) = 0. (20)

Some computations lead to the following statement:

Proposition 11. Problem (20) admits a nontrivial solution if and only if d ∈ {1,3}. When d = 1
an eigenfunction is given by u(x) = 1 − x2, whereas if d = 3 we have u(x) = x3 − x.

Therefore, besides the first (radial) eigenvalue d = 1, there exists just another (nonradial)
eigenvalue d = 3. Then, a second natural question is

if n � 2, is it possible to describe the spectrum for any bounded domain Ω ⊂ Rn?

When Ω is the unit ball, the following holds:

Proposition 12. If Ω = B, problem (19) admits a unique radial eigenvalue given by d = n.

Proof. One solves the corresponding ordinary differential equation (rn−1(�u)′)′ = 0 and finds
u(r) = α + βr2 + γ r4−n + δr2−n. Then δ = 0, since otherwise u /∈ H 1(B). Moreover, γ = 0
because |x|4−n is the fundamental solution which satisfies �2|x|4−n = δ0 (the Dirac mass at the
origin). Finally, forcing u to satisfy the boundary conditions in (19) yields d = n and u(r) =
c(1 − r2) for any c ∈ R. �

Then, a further question is:

when Ω = B, can we characterize nonradial eigenvalues for (19)?

Inspired by the one-dimensional case, we see that d = n+ 2 is an eigenvalue with corresponding
(independent) eigenfunctions ui(x) = (1 − |x|2)xi for i = 1, . . . , n. By continuing the pattern,
we find that d = n + 4 is an eigenvalue with corresponding eigenfunctions vi(x) = (1 − |x|2) ×
(x2

1 − x2
i ) for i = 2, . . . , n. Summarizing, we have:

Proposition 13. When Ω = B, d = n+2 is a nonradial eigenvalue having (at least) multiplicity n

and d = n + 4 is a nonradial eigenvalue having (at least) multiplicity n − 1.

Our final questions then read:

are the multiplicities in Proposition 13 exact? What about multiplicities of other eigenvalues?



E. Berchio et al. / J. Differential Equations 229 (2006) 1–23 9
3.2. The positivity preserving property for the linear problem

We consider a simple example which shows how positivity is lost in (8) as d reaches σ and in
which way it is asymptotically restored when d → ∞. We consider the problem

⎧⎨
⎩

�2u = 1 in B,

u = 0 on ∂B,

�u − d ∂u
∂ν

= 0 on ∂B,

(21)

where B is the unit ball in R3. Some computations show that (21) admits a unique radial solution
for all d = 3 which is given by

ud(x) = |x|4
120

− 5 − d

60(3 − d)
|x|2 + 7 − d

120(3 − d)
.

It is readily seen that ud > 0 in B whenever d < 3. Moreover, ud < 0 for all d ∈ (3,7). For
d = 7, ud(0) = 0 but ud remains strictly negative elsewhere. If d > 7 then ud is sign-changing.
The normal derivative on the boundary is u′

d(1) = 1
15(d−3)

which is positive precisely for d > 3.

Finally, as d → ∞ we have ud(x) → (1−|x|2)2

120 which is positive.
Let us also mention that, in view of Proposition 13, when d = 5 or d = 7, problem (21)

admits infinitely many nonradial solutions: it suffices to add to ud any of the eigenfunctions ui

or vi found in the previous subsection.
More generally, if we replace “1” in (21) with “|x|k” (for some k � 0) then the solutions

become

|x|k+4

(k + 2)(k + 3)(k + 4)(k + 5)
− (k + 5 − d)|x|2

2(k + 2)(k + 3)(k + 5)(3 − d)

+ k2 + 9k + 14 − d(k + 2)

2(k + 2)(k + 3)(k + 4)(k + 5)(3 − d)
.

These functions exhibit the same behavior as ud for varying d .

3.3. Boundary conditions for polyharmonic problems

We explain here how one should proceed in order to determine boundary conditions satisfied
by both the explicit singular solutions uσ and vσ for the polyharmonic problem

⎧⎨
⎩

(−�)mu = λf (u) in B,

u = 0 on ∂B,
∂i+1u

∂νi+1 + ai
∂iu
∂νi = 0 on ∂B, i = 1, . . . , (m − 1),

(22)

where the ai ’s are constants depending on f (which is of the kind (6)). We consider here bound-
ary conditions in the radial setting. In this framework, when m = 2, the boundary conditions in
(17) and (18) become

∂2u

2
+ a

∂u = 0 on ∂B, (23)

∂ν ∂ν
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with a = 1 + 4g(0). For general m � 1, the singular solutions are given by uσ (x) := −2m log |x|
(exponential nonlinearity) and vσ (x) := |x|− 2m

p−1 − 1 (power nonlinearity), see Theorem 24 be-
low. We fix some integer q such that m � q � 2m − 1 and we introduce the column vectors in
Rq+1:

Uσ = [
uσ (1), u′

σ (1), u′′
σ (1), . . . , u(q)

σ (1)
]T and Vσ = [

vσ (1), v′
σ (1), v′′

σ (1), . . . , v(q)
σ (1)

]T
.

(24)

Then, to find boundary conditions satisfied by both vσ and uσ corresponds to determining a
m × (q + 1) matrix M = [bij ] having rank m and such that

MUσ = 0 and MVσ = 0.

Notice that the restriction q � m is necessary. Indeed, if we take q = m − 1 we obtain a square
matrix M . If M is singular it gives rise to an underdetermined boundary value problem, whereas
if M is invertible it gives rise to Dirichlet boundary conditions which we already know must be
avoided.

Clearly, with this lower bound for q the simplest choice is q = m. Moreover, in order to have
a vanishing trace for uσ and vσ we set

b11 = 1, bi1 = 0 for all i = 2, . . . ,m, b1j = 0 for all j = 2, . . . ,m + 1. (25)

In order to simplify further, one should choose most of the remaining bij ’s equal to 0. We decide
to set bij = 0 for j = i, i + 1. Therefore, we are, finally, led to consider a matrix of the form

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0
0 a1 1 0 . . . 0 0
0 0 a2 1 . . . 0 0
...

...
. . .

. . .
...

...

0 0 . . . . . . am−2 1 0
0 0 . . . . . . 0 am−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and we choose the ai ’s as in (45) in order to fulfill the boundary conditions. Clearly, different
choices of q and of the bij ’s can be made.

We conclude this section, by showing that elliptic regularity may be applied to (22).

Proposition 14. Let Ω ⊂ Rn be a smooth domain, not necessarily bounded. For any choice of
the constants ai ’s, the boundary conditions in (22) satisfy the complementing condition.

Proof. We follow the notation of [1, pp. 625–633]. For all ξ ∈ Rn, the principal part of the
characteristic polynomial associated to the operator (−�)m is L′(ξ) = |ξ |2m. If ν denotes the
outward unit normal to ∂Ω and ξ any vector parallel to ∂Ω , we get that τ = i|ξ | is the unique
root with positive imaginary part of L′(ξ + τν), as polynomial in τ , and it has multiplicity m.
Hence,

M+(ξ, τ ) = (
τ − i|ξ |)m =

m∑
γj τ

j , where γj =
(

m

j

)(−i|ξ |)m−j
.

j=0
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We associate to the boundary conditions in (22) the polynomials

B ′
i (ξ + τν) =

{
1 if i = 0,

τ i+2 if i = 1, . . . ,m − 1.

To prove that the complementing condition holds one has to check that, for every ξ = 0, the
B ′

j (ξ + τν) are linearly independent modulo M+(ξ, τ ). This follows by observing that:

B ′
i (ξ + τν) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 mod [M+(ξ, τ )] if i = 0,

τ i+2 mod [M+(ξ, τ )] if i = 1, . . . ,m − 3,

−∑m−1
j=0 γj τ

j mod [M+(ξ, τ )] if i = m − 2,(
γm−1

∑m−1
j=0 γj τ

j − ∑m−1
j=1 γj−1τ

j
)

mod [M+(ξ, τ )] if i = m − 1

which, for every ξ = 0, are linearly independent as polynomials in τ . �
4. Proof of Theorem 1

We first prove that the complementing condition is satisfied.

Lemma 15. The boundary conditions in (8) satisfy the complementing condition.

Proof. We follow again the notation of [1, pp. 625–633]. We have M+(ξ, τ ) = (τ − i|ξ |)2 =
τ 2 − 2i|ξ |τ − |ξ |2, while the polynomials associated to the boundary conditions are
B ′

1(ξ + τν) = 1 and B ′
2(ξ + τν) = τ 2 + |ξ |2. The complementing condition holds if we show

that, for every ξ = 0, B ′
1(ξ + τν) and B ′

2(ξ + τν) are linearly independent modulo M+(ξ, τ ).
This follows by observing that

B ′
1(ξ + τν) = 1 mod

[
M+(ξ, τ )

]
, B ′

2(ξ + τν) = 2i|ξ |τ + 2|ξ |2 mod
[
M+(ξ, τ )

]

which, for every ξ = 0, are linearly independent as polynomials in τ . �
Proof of Theorem 1(i). On the space H 2 ∩ H 1

0 (Ω) we define the bilinear form

A(u,v) :=
∫
Ω

�u�v − d

∫
∂Ω

∂u

∂ν

∂u

∂ν
.

This form is clearly continuous and symmetric. Moreover, by definition of σ , we have

A(u,u) =
∫

|�u|2 − d

∫ ∣∣∣∣∂u

∂ν

∣∣∣∣
2

� σ − d

σ

∫
|�u|2 for all u ∈ H 2 ∩ H 1

0 (Ω)
Ω ∂Ω Ω
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so that the form A is coercive. Since H 2 ∩ H 1
0 (Ω) ⊂ L2(Ω), we have L2(Ω) ⊂ [H 2 ∩ H 1

0 (Ω)]′
(the dual space). Hence, by applying the Lax–Milgram Theorem, we infer that for any φ ∈
L2(Ω), the problem

∫
Ω

�u�v − d

∫
∂Ω

∂u

∂ν

∂v

∂ν
=

∫
Ω

φv for all v ∈ H 2 ∩ H 1
0 (Ω) (26)

admits a unique solution u ∈ H 2 ∩ H 1
0 (Ω). Assume for a moment that u ∈ H 4(Ω), then taking

v ∈ C∞
c (Ω) in (26) and integrating by parts we get

∫
Ω

�2uv =
∫
Ω

φv for all v ∈ C∞
c (Ω)

which proves that

�2u = φ in Ω. (27)

Let v ∈ H 2 ∩ H 1
0 (Ω). Integrating by parts in (26) and using (27) gives

∫
∂Ω

(
�u − d

∂u

∂ν

)
∂v

∂ν
= 0 for all v ∈ H 2 ∩ H 1

0 (Ω)

which, by arbitrariness of v, shows that �u − d ∂u
∂ν

= 0 on ∂Ω . Hence, the second boundary
condition is satisfied under the additional assumption that u ∈ H 4(Ω). Since the complementing
condition is satisfied in view of Lemma 15, regularity theory applies (see [1]) so that we indeed
have u ∈ H 4(Ω) and the proof is complete. �

An alternative proof of existence and uniqueness may be obtained by exploiting the strict
convexity of the functional

I (u) := 1

2

∫
Ω

|�u|2 − d

2

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣
2

−
∫
Ω

φu, u ∈ H 2 ∩ H 1
0 (Ω). (28)

The solution of (8) is the unique minimizer of I .
To conclude we still have to show that if φ ∈ Hk(Ω) for some k � 1, then u ∈ Hk+4(Ω) but,

in view of Lemma 15, this follows directly by elliptic regularity.

Proof of Theorem 1(ii). Assume that d � 0 and φ � 0 (φ ≡ 0). Statement (ii) is a straightfor-
ward consequence of the following lemma. �
Lemma 16. Assume that d � 0. Then for all u ∈ H 2 ∩H 1

0 (Ω)\{0} there exists w ∈ H 2 ∩H 1
0 (Ω)

such that:

( j) w > 0 in Ω, ( jj)
∂w

∂ν
< 0 on ∂Ω, ( jjj) I (w) � I (u).



E. Berchio et al. / J. Differential Equations 229 (2006) 1–23 13
Proof. Given u ∈ H 2 ∩ H 1
0 (Ω) \ {0}, let w ∈ H 2 ∩ H 1

0 (Ω) be the unique solution of

{−�w = |�u| in Ω,

w = 0 on ∂Ω.
(29)

By the maximum principle for superharmonic functions, ( j) and ( jj) follow.
Moreover, both w ± u are superharmonic in Ω and vanish on ∂Ω . This proves that

|u| � w in Ω,

∣∣∣∣∂u

∂ν

∣∣∣∣ �
∣∣∣∣∂w

∂ν

∣∣∣∣ on ∂Ω.

In turn, these inequalities (and −�w = |�u|) prove ( jjj). �
Proof of Theorem 1(iii). For all u ∈ H(Ω) let

σ(u) :=
∫
Ω

|�u|2∫
∂Ω

| ∂u
∂ν

|2 .

Then, we may rewrite (7) as

σ := inf
u∈H(Ω)

σ (u). (30)

In view of the compact embedding H 2(Ω) ⊂ H 1(∂Ω), the infimum in (30) is achieved.
To show that the minimizers are strictly positive, we observe that the functions w, defined in

the proof of Lemma 16, clearly belong to H(Ω). Then it is easy to get, for σ(u), an equivalent
version of Lemma 16 and conclude.

Let us now show that the minimizer ū for (30) solves the Euler equation and it is a smooth
function. Consider the functional I in (28) with φ ≡ 0 and d = σ . Then, by definition of σ , we
have I (u) � 0 for all u ∈ H 2 ∩ H 1

0 (Ω). Since I (ū) = 0, ū is a minimizer for I and it solves the
Euler equation as shown in the above proof of (i). Finally, interior smoothness of ū is a conse-
quence of elliptic regularity, whereas smoothness up to the boundary follows from Lemma 15,
see [1].

In order to conclude the proof of statement (iii) we still have to show that the minimizer ū

is unique. By contradiction; let v ∈ H 2 ∩ H 1
0 (Ω) be another minimizer. We have already shown

that v > 0 in Ω . For every c ∈ R, define vc := v + cū. Exploiting the fact that both v and ū solve
(8) when d = σ and φ ≡ 0, it is easy to verify that also vc is a minimizer. But, unless v is a
multiple of ū, there exists some c such that vc changes sign in Ω . This leads to a contradiction
and completes the proof. �
5. Proof of Theorem 2

We proceed in four steps.
Step 1. We show that u′′ changes sign in [−1,1].
For contradiction, assume first that u′′ � 0 in [−1,1]. Then, u is convex and has a global

minimum at some xm ∈ (−1,1). Moreover, u′(−1) < u′(xm) = 0. Since u′′(−1) � 0, this con-
tradicts (iii). A similar argument (changing all the signs!) enables us to rule out the possibility
that u′′ � 0 in [−1,1].
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Step 2. We show that u′′ cannot have only one zero in (−1,1).
For contradiction, assume that there exists z ∈ (−1,1) such that u′′(z) = 0, u′′ < 0 in (−1, z)

and u′′ > 0 in (z,1). Then, since u′(−1) = δ−1u′′(−1) � 0 in view of (iii), u is strictly negative
in a right neighborhood of x = −1, it has a flex point at x = z and a local minimum at some
xm ∈ (z,1). Moreover, since u′′ > 0 in (z,1), we also have u′(1) > u′(xm) = 0. Since u′′(1) � 0,
this contradicts (iii). Reversing all signs and arguing from x = 1 backwards enables us to show
that there exists no z ∈ (−1,1) such that u′′(z) = 0, u′′ > 0 in (−1, z) and u′′ < 0 in (z,1).

Step 3. We show that u′′ cannot have infinitely many zeros in [−1,1]. Since assumption (i)
tells us that u′′ is a convex function, it may have infinitely many zeros only if u′′ ≡ 0 on some
interval I ⊂ [−1,1]. The case I = [−1,1] is excluded by the assumption u ≡ 0. If I = [−1, z] for
some z ∈ (−1,1), by convexity of u′′ we obtain u′′(1) > 0 and u′(1) > 0 which contradicts (iii).
If I = [z,1] for some z ∈ (−1,1), by convexity of u′′ we obtain u′′(−1) > 0 and u′(−1) < 0
which contradicts (iii). Similarly, we can exclude the case where I = [z1, z2] for some −1 <

z1 < z2 < 1.
Step 4. Conclusion. By combining the statements of steps 1–3 with assumption (i) (convexity

of u′′), we deduce that there exist −1 < z1 < z2 < 1 such that u′′(z1) = u′′(z2) = 0, u′′ > 0 on
[−1, z1) ∪ (z2,1], u′′ � 0 on (z1, z2). The same arguments used in step 2, show that u is strictly
positive in a right neighborhood of x = −1, it has a flex point at x = z1 and a local maximum at
some xM ∈ (z1, z2). For contradiction, assume that u(x̄) = 0 for some x̄ ∈ (xM,1). Then, by (ii),
u admits a local minimum at some xm ∈ [x̄,1) so that necessarily z2 ∈ (xM,xm). Hence, u′′ > 0
in [xm,1] and, in turn, u′(1) > u′(xm) = 0. Since also u′′(1) > 0, this contradicts (iii).

Remark 17. The above proof establishes that under the assumptions of Theorem 2 the function u

is positive and it has exactly two flex points.

6. Proof of Theorem 3

For Ω = B, take a minimizer of (30), namely a function u ∈ H(B) such that

∫
B

|�u|2 = σ

∫
∂B

∣∣∣∣∂u

∂ν

∣∣∣∣
2

. (31)

In view of Theorem 1, we may assume u > 0 and

∫
∂B

∂u

∂ν
< 0. (32)

For all ε > 0 let vε := u + ε(|x|2 − 1). Then,

�vε = �u + 2nε in B,
∂vε

∂ν
= ∂u

∂ν
+ 2ε on ∂B.

Therefore,

∫
|�vε|2 =

∫
|�u|2 + 4nε

∫
�u + 4nωnε

2,

∫ ∣∣∣∣∂vε

∂ν

∣∣∣∣
2

=
∫ ∣∣∣∣∂u

∂ν

∣∣∣∣
2

+ 4ε

∫
∂u

∂ν
+ 4ωnε

2,
B B B ∂B ∂B ∂B
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where ωn denotes the (n − 1)-dimensional Hausdorff measure of ∂B. Hence, recalling (31) and
using the divergence theorem, we get

Iε :=
∫
B

|�vε|2 − σ

∫
∂B

∣∣∣∣∂vε

∂ν

∣∣∣∣
2

= 4ε(n − σ)

∫
∂B

∂u

∂ν
+ 4ωn(n − σ)ε2. (33)

If σ < n, in view of (32), the previous equation gives Iε < 0 for ε sufficiently small, which
contradicts the definition of σ in (30). Hence, σ � n. In order to prove the converse inequality,
consider the function ū(x) := 1 − |x|2. It is readily seen that σ(ū) = n. This proves that σ = n

and that ū is a minimizer for (30).
Finally, from Theorem 1, it follows that nontrivial multiples of ū are the only minimizers

for (30).

7. Proof of Theorem 4

Let λ1 be defined as in (10), from the compactness of the embedding H 2 ∩ H 1
0 (Ω) ⊂ L2(Ω)

we get that the infimum in (10) is achieved so the minimizer φ1 exists. To show that φ1 > 0 in Ω ,
we define

Σ(u) :=
∫
Ω

|�u|2 − d
∫
∂Ω

∣∣ ∂u
∂ν

∣∣2

∫
Ω

u2
.

Then it is not difficult to show that for Σ(u) a similar version of Lemma 16 holds, from which
the strict positivity of φ1 follows.

8. Proof of Theorems 6 and 7

8.1. Preliminary lemmas

The proofs of Theorems 6 and 7 require some technical results. Firstly, we prove a weak form
of (2).

Lemma 18. Let 0 � d < σ and assume that u ∈ L2(Ω) satisfies

∫
Ω

u�2v � 0 for all v ∈ Xd(Ω), v � 0 in Ω. (34)

Then, u � 0 in Ω . Moreover, one has either u ≡ 0 or u > 0 in Ω .

Proof. If d = 0, we have Navier boundary conditions and the result is well known (it follows by
applying twice the maximum principle for −�). So, let us assume that d > 0. Take φ ∈ C∞

c (Ω),
φ � 0 in Ω and let v be the classical solution of

⎧⎨
⎩

�2v = φ in Ω,

v = 0 on ∂Ω,

�v − d ∂v = 0 on ∂Ω.

∂ν
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By Theorem 1, v exists, belongs to Xd(Ω) and v � 0 in Ω . Hence we may use v in (34) as a
test function:

∫
Ω

u�2v =
∫
Ω

uφ � 0

for all φ ∈ C∞
c (Ω), φ � 0 in Ω . Thus u � 0 in Ω .

Let us now show that one has either u ≡ 0 or u > 0 in Ω . Assume that u is not strictly positive
in Ω and let χ be the characteristic function of the set {x ∈ Ω: u(x) = 0}. Clearly χ � 0 in Ω

and χ > 0 on a subset of positive measure. Let v0 be the unique solution of

⎧⎨
⎩

�2v0 = χ in Ω,

v0 = 0 on ∂Ω,

�v0 − d
∂v0
∂ν

= 0 on ∂Ω.

By Theorem 1, v0 > 0 in Ω and ∂v0
∂ν

< 0 on ∂Ω , so �v0 < 0 on ∂Ω (recall that d > 0). The proof
of the lemma may now be completed by arguing as in [2, Lemma 1] with obvious changes. �

Next, we state a result concerning with the existence and uniqueness of weak solutions.

Lemma 19. Let 0 � d < σ . For all f ∈ L1(Ω) such that f � 0 in Ω there exists a unique
u ∈ L1(Ω) such that u � 0 in Ω and

∫
Ω

u�2v =
∫
Ω

f v for all v ∈ C4(Ω) ∩ Xd(Ω). (35)

Moreover, there exists C > 0 such that ‖u‖1 � C‖f ‖1.

Proof. It may be obtained by arguing as in the proof of [7, Lemma 1] with two minor modifica-
tions. First, the standard positivity preserving property for −� used there should here be replaced
by Lemma 18. Second, the existence and uniqueness result for the “truncated problems” here fol-
lows from Theorem 1. �

Finally, we establish a weak form of the super-subsolution method.

Lemma 20. Let 0 � d < σ and λ > 0. Assume that there exists ū ∈ L2(Ω) such that ū � 0 in Ω ,
f (ū) ∈ L1(Ω) and

∫
Ω

ū�2v � λ

∫
Ω

f (ū)v for all v ∈ Xd(Ω), v � 0 in Ω.

Then there exists a solution u of (4) such that 0 � u � ū in Ω .
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Proof. Let u0 = ū and, for all m � 1, define inductively the function um+1 as the unique solution
of

∫
Ω

um+1�
2v = λ

∫
Ω

f (um)v for all v ∈ Xd(Ω), v � 0 in Ω. (36)

By Lemmas 18 and 19 we infer the existence of such functions and that 0 � um+1 � um in Ω ,
um ∈ L2(Ω) and f (um) ∈ L1(Ω). Hence, there exists u ∈ L2(Ω), u � 0 such that um+1 → u

pointwise in Ω and f (u) ∈ L1(Ω). Finally, by Lebesgue’s theorem, we may pass to the limit in
(36) so that u solves (4) in the sense of Definition 5. �
8.2. Proof of Theorem 6

Put

Λ := {
λ � 0: (4) admits a nonnegative solution

}
and λ∗ := supΛ.

Clearly 0 ∈ Λ, so Λ = ∅. On the other hand, by a standard application of the implicit function
theorem, we deduce that λ∗ > 0. Moreover, by Lemmas 18 and 20, we infer that for every λ ∈ Λ

minimal solutions exist. In particular, the family of minimal solutions, parametrized with respect
to λ, is increasing (so that Λ is an interval).

Now we establish that λ∗ is finite. To this end, let λ ∈ Λ and let u be the corresponding
positive solution of (4). By definition of αf it follows that f (u) � αf u in Ω (f (u) ≡ αf u).
Then, by using the characterization of λ1 and φ1 given in Theorem 4 and by Definition 5, we
obtain

λ1

∫
Ω

uφ1 =
∫
Ω

u�2φ1 = λ

∫
Ω

f (u)φ1 > λαf

∫
Ω

uφ1.

This yields

λ∗ � λ1

αf

.

To conclude the proof we still have to study the case λ = λ∗. First we need the following state-
ment concerning the stability of the minimal regular solution.

Lemma 21. Let λ ∈ (0, λ∗) and suppose that the corresponding minimal solution uλ of (4) is
regular. Let μ1 and ψ1 denote, respectively, the least eigenvalue and the corresponding eigen-
function of the linearized operator �2 − λf ′(uλ) under the boundary conditions in (4). Then
μ1 > 0 and ψ1 is strictly of one sign in Ω .

Proof. Consider the variational characterization of μ1:

μ1(λ) = inf
u∈H 2∩H 1(Ω)

∫
Ω

|�u|2 − d
∫
∂Ω

∣∣ ∂u
∂ν

∣∣2 − λ
∫
Ω

f ′(uλ)u
2∫

u2
.

0 Ω
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From the compactness of the embedding H 2 ∩ H 1
0 (Ω) ⊂ L2(Ω) and the regularity of uλ, we

deduce that the infimum is achieved. Hence, the minimizer ψ1 exists. To show that ψ1 > 0 in Ω ,
we fix λ ∈ (0, λ∗) and we define the functional

Γ (u) :=
∫
Ω

|�u|2 − d
∫
∂Ω

∣∣ ∂u
∂ν

∣∣2 − λ
∫
Ω

f ′(uλ)u
2∫

Ω
u2

.

One can then apply the arguments of the proof of Lemma 16 to Γ (u) to obtain ψ1 > 0 in Ω .
Finally, to show that μ1 > 0 one can follow the proof of [2, Proposition 4], see also [4, Proposi-
tion 3.5]. �

Next, we note that by Lemma 20 the map λ 
→ uλ(x) is strictly increasing for all x ∈ Ω so
that we may define

u∗(x) := lim
λ→λ∗ uλ(x), x ∈ Ω. (37)

The following statement completes the proof of Theorem 6.

Lemma 22. Assume that the minimal solution uλ of (4) is regular for all λ ∈ (0, λ∗) and f

satisfies condition (12). Then, the function u∗ defined in (37) satisfies u∗ ∈ H 2 ∩ H 1
0 (Ω) and

solves (4) for λ = λ∗.

Proof. Let uλ be the minimal solution of (4), then
∫
Ω

uλ�
2v = λ

∫
Ω

f (uλ)v for all v ∈ Xd(Ω), (38)

so that by Lemma 21, after an integration by parts, we get

λ

∫
Ω

f ′(uλ)u
2
λ �

∫
Ω

|�uλ|2 − d

∫
∂Ω

∣∣∣∣∂uλ

∂ν

∣∣∣∣
2

=
∫
Ω

uλ�
2uλ = λ

∫
Ω

f (uλ)uλ. (39)

From (12) it follows that there exist ε > 0 and C > 0 such that (1 + ε)f (s)s � f ′(s)s2 + C for
all s � 0. This fact, combined with (39), yields the existence of C1 > 0 such that

∫
Ω

f (uλ)uλ < C1.

Therefore

‖uλ‖2
d =

∫
Ω

|�uλ|2 − d

∫
∂Ω

∣∣∣∣∂uλ

∂ν

∣∣∣∣
2

= λ

∫
Ω

f (uλ)uλ < λ∗C1.

Letting λ → λ∗, in the above inequality we deduce that, up to a subsequence,

uλ ⇀ u∗ in H 2 ∩ H 1
0 (Ω) as λ → λ∗.
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And this allows us to pass to the limit in (38). Therefore, u∗ solves (4) for λ = λ∗. �
8.3. Proof of Theorem 7

Assume that (13) holds and set ϕ(s) := logf (s). Then, (4) may be rewritten as

⎧⎨
⎩

�2u = λeϕ(u) in Ω,

u = 0 on ∂Ω,

�u − d ∂u
∂ν

= 0 on ∂Ω,

(40)

where ϕ ∈ C2(R+), is increasing and convex. Of course, problem (4) and problem (40) have the
same solutions. The regularity of the minimal solution of (40) may be obtained as in the proof of
[4, Lemma 5.2] (see also previous work [2]), where problem (40) is studied in the case d = 0.

9. Proof of Theorem 8

We begin with the regularity result:

Proposition 23. Assume that 1 < p � n+4
n−4 and let u ∈ H 2 ∩ H 1

0 (Ω) be a solution of (4) with
f (u) = (1 + u)p . Then u is regular.

Proof. If we show that u ∈ Lq(Ω) for every q < ∞, the statement follows by elliptic regularity.
Thanks to [4, (6.1)], we have that for every ε > 0 there exist qε ∈ L

n
4 (Ω) and Fε ∈ L∞(Ω)

such that

(
1 + u(x)

)p = qε(x)u(x) + Fε(x) and ‖qε‖ n
4

< ε. (41)

So, for every ε > 0, the equation in (4) can be rewritten as

�2u = λ
(
qε(x)u(x) + Fε(x)

)
in Ω.

In order to complete our argument we may follow steps 2 and 3 in [24]. The only difference
between [24] and this context being the Green function used there; here we have to consider the
Green function of the operator �2 with the boundary conditions in (4) whose existence follows
from Theorem 1(i). �

Assume now that 1 < p < n+4
n−4 and consider the action functional associated to problem (4)

with f (s) = (1 + s)p :

J (u) := 1

2

∫
Ω

|�u|2 − d

2

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣
2

− λ

p + 1

∫
Ω

|1 + u|p+1. (42)

In view of Theorem 6, we know that there exists λ∗ > 0 such that, for every λ < λ∗, we have
at least a solution of (4), the minimal one. Moreover, by Lemma 21, the least eigenvalue of
the linearized operator �2 − λp(1 + uλ)

p−1 is strictly positive. This enables us to argue as in
the proof of [10, Theorem 2.1] with few changes; therefore, the existence of a mountain pass
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critical point vλ for J follows. In order to show that it is positive, we need to recall its variational
characterization in [3]. Take ū ∈ H 2 ∩ H 1

0 (Ω) such that

J (ū) < J (uλ), −�ū > 0 in Ω.

In particular, this implies ū > 0 in Ω . Let Γ := {γ ∈ C0([0,1],H 2 ∩ H 1
0 (Ω)); γ (0) = uλ,

γ (1) = ū}. Then,

c := min
γ∈Γ

max
t∈[0,1]

J
(
γ (t)

)

is the mountain pass level of J corresponding to the solution vλ. Since the Palais–Smale condi-
tion holds, there exists an “optimal path” γ̄ ∈ Γ such that maxt∈[0,1] J (γ̄ (t)) = c.

Lemma 16 defines a continuous map Ψ :H 2 ∩ H 1
0 (Ω) → H 2 ∩ H 1

0 (Ω) such that for any
u ∈ H 2 ∩ H 1

0 (Ω) we have Ψ (u) = w with w solution of (29). Therefore, we have

|�u| = ∣∣�Ψ (u)
∣∣, |1 + u| � 1 + Ψ (u) in Ω,

∣∣∣∣∂u

∂ν

∣∣∣∣ �
∣∣∣∣∂Ψ (u)

∂ν

∣∣∣∣ on ∂Ω. (43)

Note that uλ and ū are fixed points for Ψ so that Ψ ◦ γ̄ ∈ Γ . Moreover, by (43) we
infer that J (Ψ (γ̄ (t))) � J (γ̄ (t)) for all t ∈ [0,1]. Hence, by definition of c, we have
maxt∈[0,1] J (Ψ (γ̄ (t))) = c so that also Ψ ◦ γ̄ is an optimal path and the point which achieves
maxt∈[0,1] J (Ψ (γ̄ (t))) is a positive mountain pass solution of (4).

Finally, to complete the proof of Theorem 8 we have to show that the extremal solution u∗,
which exists by Lemma 22, is unique. To this end, recall that, from Proposition 23, u∗ is a
classical solution. Therefore, it suffices to argue as in the proof of [8, Lemma 2.6].

10. Proof of Theorem 10

In this section, we prove Theorem 10 in its polyharmonic version. We refer to problem (22)
and we first emphasize that the boundary conditions are well-defined. Indeed, if we assume that

u ∈ Hm(B), then ∂iu
∂νj ∈ Hm−i− 1

2 (∂B). However, since for every i = 2, . . . , (m − 1) there exists

bi such that ∂i+2u

∂νi+2 = bi
∂u
∂ν

, we have that ∂i+2u

∂νi+2 ∈ Hm− 3
2 (∂B).

The singular parameter λσ defined in (15) for the biharmonic operator is here defined by

λσ := 2mh(0)

m−1∏
i=0

(
mg(0) + i

) m∏
i=1

(
n − 2i − 2mg(0)

)
. (44)

Therefore, we have

f (s) = es �⇒ λσ = 2mm!
m∏

i=1

(n − 2i),

f (s) = (1 + s)p �⇒ λσ = 2m
m−1∏(

m

p − 1
+ i

) m∏(
n − 2i − 2m

p − 1

)
.

i=0 i=1
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Finally, we choose

ai := 2mg(0) + i, i = 1, . . . , (m − 1). (45)

Then, the polyharmonic version of Theorem 10 reads:

Theorem 24. Let λ = λσ be as in (44) and let the ai ’s be as in (45). Then, the function uσ (x) :=
−2m log |x| (respectively vσ (x) := |x|− 2m

p−1 − 1) is a singular radial solution of problem (22)
with f (u) = eu (respectively f (u) = (1 + u)p with p > n

n−2m
).

We start by showing that uσ and vσ satisfy the corresponding equations.

Lemma 25. Let λ = λσ be as in (44), then uσ (x) := −2m log |x| satisfies (−�)mu = λeu in B.

Proof. For α > 0, we define ũ(r) := −α log r . Using the radial expression of the Laplacian and
arguing by induction on m we obtain

(−�)mũ = α2m−1(m − 1)!
m∏

i=1

(n − 2i)r−2m.

The statement then follows by taking α = 2m. �
Lemma 26. Let λ = λσ be as in (44) and let p > n

n−2m
. Then vσ (x) := |x|− 2m

p−1 − 1 satisfies
(−�)mu = λ(1 + u)p in B.

Proof. For α > 0, we define ṽ(r) := r
− α

p−1 − 1. Arguing by induction on m we obtain

(−�)mṽ = 2m
m−1∏
i=0

(
α

2(p − 1)
+ i

) m∏
i=1

(
n − 2i − α

p − 1

)
r
−( α

p−1 +2m
)
.

The statement then follows by taking α = 2m. �
By induction one can also show that for all k = 1,2, . . . we have

u(k)
σ (r) = (−1)k2m(k − 1)! r−k and v(k)

σ (r) = (−1)k
k−1∏
i=0

(
2m

p − 1
+ i

)
r
−( 2m

p−1 +k
)
. (46)

We may now prove that vσ and uσ satisfy the boundary conditions in (22). To this end, we
observe that the right-hand sides of (46) with r = 1, also read as

(−1)kh(0)2m

k−1∏(
2mg(0) + i

)
,

i=1
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where h(0) and g(0) are defined in (14). Hence,

u(k+1)
σ (1) = (−1)k+1h(0)2m

k∏
i=1

(
2mg(0) + i

) = −(
2mg(0) + k

)
u(k)

σ (1)

and similarly for vσ . This shows that the boundary conditions are satisfied. In view of Lemmas 25
and 26, the proof of Theorem 24 is so complete.

Remark 27. Notice that, vσ ∈ L2(B) if and only if p > 4m+n
n

. Indeed,

∫
B

|vσ |2 dx = Cn

1∫
0

(
r
− 2m

p−1 − 1
)2

rn−1 dr,

which is finite for p > 4m+n
n

. Similarly, using (46) we see that vσ ∈ Hm(B) if and only if p >
n+2m
n−2m

.
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