Quasilinear elliptic equations at critical growth

Gianni ARIOLI ${ }^{*}$, Filippo GAZZOLA ${ }^{\dagger}$
Dipartimento di Scienze T.A. - Via Cavour 84
I-15100 Alessandria, Italy
e-mail: gianni@mfn.al.unipmn.it
gazzola@mfn.al.unipmn.it

Abstract

The existence of nontrivial solutions of quasilinear elliptic equations at critical growth is proved. The solutions are obtained by variational methods: as the corresponding functional is nonsmooth, the analysis of Palais-Smale sequences requires suitable generalizations of the techniques involved in the study of the corresponding semilinear problem with lack of compactness.

1 Introduction

In this paper we study the existence of positive functions $u \in H:=H_{0}^{1}(\Omega)$ solving in distributional sense the quasilinear elliptic equation

$$
\begin{equation*}
-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, u) D_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}(x, u) D_{i} u D_{j} u=g(x, u)+|u|^{2^{*}-2} u \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ is open and bounded, $2^{*}=\frac{2 n}{n-2}$ is the critical Sobolev exponent and g is a subcritical term; this problem is a generalization of some semilinear variational problems in differential geometry and physics, see [5, 15, 21].

We endow the space H with the Dirichlet norm $\left(\|u\|^{2}:=\int_{\Omega}|\nabla u|^{2}\right)$: weak solutions of (1.1) are critical points of the functional $J: H \rightarrow \mathbb{R}$ defined by

$$
\forall u \in H \quad J(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} u-\int_{\Omega} G(x, u)-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}}
$$

where $G(x, s)=\int_{0}^{s} g(x, t) d t$; as noted in [6], under reasonable assumptions on $a_{i j}, g$, the functional J is continuous but not even locally Lipschitz whenever the

[^0]functions $a_{i j}(x, s)$ depend on s. However, J is weakly C_{c}^{∞}-differentiable (see [3, 6]) and the derivative of J exists in any smooth direction: for all $u \in H$ and $\varphi \in C_{c}^{\infty}$ we can evaluate
\[

$$
\begin{aligned}
J^{\prime}(u)[\varphi]= & \int_{\Omega} \sum_{i, j=1}^{n}\left[a_{i j}(x, u) D_{i} u D_{j} \varphi+\frac{1}{2} \frac{\partial a_{i j}}{\partial s}(x, u) D_{i} u D_{j} u \varphi\right]+ \\
& -\int_{\Omega} g(x, u) \varphi-\int_{\Omega}|u|^{2^{*}-2} u \varphi
\end{aligned}
$$
\]

according to the nonsmooth critical point theory of $[10,11]$ it is possible to prove that critical points u of J satisfy $J^{\prime}(u)[\varphi]=0 \forall \varphi \in C_{c}^{\infty}$ and hence solve (1.1) in distributional sense. We refer to the original papers $[6,10,11]$ for the definitions of weak slope, weak C_{c}^{∞}-differentiability, critical point, PS sequence and PS condition in this nonsmooth context; see also the appendix of [9] for a quick overview. The tools provided by this theory have been widely used for the study of problems related to quasilinear elliptic equations of the kind of (1.1), see [3, 6, 7, 9]; we also refer to [2] for a different approach.

In the study of equation (1.1), the lack of compactness of the embedding $H \subset$ $L^{2^{*}}(\Omega)$ yields some difficulties in the analysis of PS sequences: in the fundamental paper by Brezis-Nirenberg [5] (where the case $a_{i j}(x, s) \equiv \delta_{i j}$ is studied) it is shown that the corresponding functional only satisfies the PS condition at certain energy levels. Our problem possesses some analogies with that in [9]: there, the lack of compactness is due to the unboundedness of the domain (a locally compact case), here, it is due to the critical Sobolev exponent (a limit case); to prove the existence of nontrivial solutions, in [9] the quasilinear problem is assumed to "converge" to a semilinear problem as $|x| \rightarrow \infty$, here we require the same convergence when $u \rightarrow+\infty$. Then, under minimal assumptions on the lower order term g (as in [13]) we will prove that (1.1) admits a nontrivial solution. To this aim, a deep analysis of the "obstruction to compactness" of the PS sequences is needed: since $J \notin C^{1}$, a representation result as in [19] is not possible; for this reason, and because our assumptions do not allow to prove that the critical levels of J are positive, we cannot find a "range of compactness" as in [5]. This analysis is then performed by proving that the range of compactness of [5] becomes a "nontrivial energy range" for which the weak limit of the PS sequences cannot be 0 : the solutions are obtained as weak limits of PS sequences; as the derivative J^{\prime} is not weakly continuous, to prove that the weak limit is indeed a solution we apply a result of [4], following an idea of [6].

As we do not require that $g(x, s) \geq 0$, assumptions (2.6) and (2.7) on the subcritical term are somehow weaker than those of Lemma 2.1 in [5]: the estimate of the energy level of the PS sequence considered is obtained as in [13], by a method which does not involve the computation of $\frac{d}{d t} J(t u)$ as in [5]. We also point out that assumption (2.7) in the case $n \geq 5$ seems to be the weakest possible: indeed, by Pohožaev identity [16], it follows that if Ω is strictly starshaped and $g(x, s) \leq 0$ then (1.1) with $a_{i j}(x, s) \equiv \delta_{i j}$ only has the trivial solution. Assumptions (2.6) and
(2.7) only imply the existence of a set of positive measure where $g(x, s)>0$ for some values of s and allow $g(x, s)$ to become negative, if its negative part is not too greater than its positive part, that is if $G(x, s)$ is not too negative, see also Remark 5. For the case $n=4$, we refer to Remark 2 in Section 5 where we discuss a possible weaker assumption. As noted in [5], the case $n=3$ is more difficult and we need to study separately the case where $g(x, s)=\lambda s$: by arguing as in [8], we prove a result similar to that in the semilinear case.

In Section 5, by applying a generalized Pohožaev identity due to Pucci-Serrin [17], we obtain a non-existence result.

2 Existence results

Throughout this paper we require the coefficients $a_{i j}(i, j=1, \ldots, n)$ to satisfy

$$
\begin{gather*}
\left\{\begin{array}{l}
a_{i j} \equiv a_{j i} \\
a_{i j}(x, \cdot) \in C^{1}(\mathbb{R}) \text { for a.e. } x \in \Omega \\
a_{i j}(x, s), \frac{\partial a_{i j}}{\partial s}(x, s) \in L^{\infty}(\Omega \times \mathbb{R})
\end{array}\right. \tag{2.1}\\
\exists \nu \in(0,1], \quad \sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j} \geq \nu|\xi|^{2} \quad \text { for a.e. } x \in \Omega, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^{n}, \\
\left\{\begin{array}{l}
\exists \gamma \in\left(0,2^{*}-2\right), \exists \bar{s}>0 \text { s.t. for a.e. } x \in \Omega, \forall|s|>\bar{s}, \forall \xi \in \mathbb{R}^{n} \\
s \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}(x, s) \xi_{i} \xi_{j} \leq \gamma \sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j}
\end{array}\right. \tag{2.2}
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
\lim _{s \rightarrow+\infty} a_{i j}(x, s)=\delta_{i j}, \quad \lim _{s \rightarrow+\infty} s \frac{\partial a_{i j}}{\partial s}(x, s)=0 \tag{2.5}\\
\forall i, j=1, \ldots, n \quad \text { and uniformly w.r.t. } x \in \Omega
\end{array}\right.
$$

assumption (2.5) implies that (1.1) converges in some sense to a semilinear problem as $u \rightarrow+\infty$.

Let λ_{1} be the first eigenvalue of $-\Delta$ in Ω, let $G(x, s)=\int_{0}^{s} g(x, t) d t$ and assume:

$$
\left\{\begin{array}{l}
g: \Omega \times \mathbb{R} \rightarrow \mathbb{R} \text { is a Carathéodory function } \tag{2.6}\\
\forall \varepsilon>0 \exists f_{\varepsilon} \in L^{\frac{2 n}{n+2}} \text { such that } \\
|g(x, s)| \leq f_{\varepsilon}(x)+\varepsilon|s|^{\frac{n+2}{n-2}} \quad \text { for a.e. } x \in \Omega, \forall s \in \mathbb{R} \\
\limsup _{s \rightarrow 0} \frac{2 G(x, s)}{s^{2}}<\nu \lambda_{1} \quad \text { uniformly w.r.t. } x \in \Omega \\
G(x, s) \geq 0 \quad \text { for a.e. } x \in \Omega, \forall s \in \mathbb{R} .
\end{array}\right.
$$

Moreover, we require that there exists a nonempty open set $\Omega_{0} \subset \Omega$ such that

$$
\begin{aligned}
& \begin{array}{r}
\text { if } n \geq 5 \text { then } \exists b>a>0, \exists \mu>0 \quad \text { such that } \\
G(x, s) \geq \mu \text { for a.e. } x \in \Omega_{0}, \forall s \in[a, b]
\end{array}
\end{aligned}
$$

Note that by (2.6) we have $g(x, 0)=0$, therefore equation (1.1) always admits the trivial solution. We prove the following result:

Theorem 2.1 Assume (2.1)-(2.7); then, there exists at least a nonnegative nontrivial function $u \in H_{0}^{1}(\Omega)$ solving (1.1) in distributional sense.

A case of particular interest for (1.1) is when $g(x, u)=\lambda u$, see $[5,8,15]$: we consider the equation

$$
\begin{equation*}
-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, u) D_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}(x, u) D_{i} u D_{j} u=\lambda u+|u|^{2^{*}-2} u \quad \text { in } \Omega \tag{2.8}
\end{equation*}
$$

by Theorem 2.1 we immediately infer
Corollary 2.1 Assume (2.1)-(2.5), let $n \geq 4$ and $\lambda \in\left(0, \nu \lambda_{1}\right)$; then, there exists at least a nonnegative nontrivial function $u \in H_{0}^{1}(\Omega)$ solving (2.8) in distributional sense.

As for the semilinear problem [5], the case $n=3$ is more difficult. We obtain an existence result by strengthening assumption (2.2) by requiring the quasilinear elliptic operator to be, in a sense, more similar to a semilinear one. More precisely we require

$$
\left\{\begin{array}{l}
\exists \nu \in\left(1-\frac{S|\Omega|^{-2 / 3}}{\lambda_{1}}, 1\right], \quad \sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j} \geq \nu|\xi|^{2} \tag{2.9}\\
\text { for a.e. } x \in \Omega, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^{n},
\end{array}\right.
$$

where S denotes the best Sobolev constant of the embedding $H_{0}^{1} \subset L^{2^{*}}$, see [20]. We prove

Theorem 2.2 Let $n=3$, assume (2.1), (2.3)-(2.5), (2.9); there exists a constant $\lambda^{*} \in\left(0, \lambda_{1}-S|\Omega|^{-2 / 3}\right]$ such that if $\lambda \in\left(\lambda^{*}, \nu \lambda_{1}\right)$ then (2.8) admits at least a nonnegative nontrivial (weak) solution $u \in H_{0}^{1}(\Omega)$.

Note that $S|\Omega|^{-2 / 3}<\lambda_{1}$ and that the lower bound for ν in (2.9) is needed to ensure that the interval $\left(\lambda^{*}, \nu \lambda_{1}\right)$ is nonempty.

3 The analysis of PS sequences

It is a standard result that with the above assumptions on $a_{i j}$ we have

$$
\begin{equation*}
u \in H \Longrightarrow \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}(x, u) D_{i} u D_{j} u u \in L^{1}(\Omega) \tag{3.1}
\end{equation*}
$$

(see e.g. [6]) and therefore $J^{\prime}(u)[u]$ is well defined for all $u \in H$ and can be written in integral form.

Define the cone of positive functions

$$
\begin{equation*}
\mathcal{C}:=\{u \in H ; u(x) \geq 0 \text { for a.e. } x \in \Omega\} \tag{3.2}
\end{equation*}
$$

and the functional

$$
J_{+}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} u-\int_{\Omega} G\left(x, u^{+}\right)-\frac{1}{2^{*}} \int_{\Omega}\left|u^{+}\right|^{2^{*}} .
$$

By the same procedure used in [9], i.e. by evaluating $J_{+}^{\prime}(u)$ on the negative part of u and observing that $J_{+}^{\prime}(v)[\varphi]=J^{\prime}(v)[\varphi]$ for all $\varphi \in C_{c}^{\infty}$ and all $v \in \mathcal{C}$, the following lemma can be proved:

Lemma 3.1 Assume (2.1)-(2.3), (2.6) and let $u \in H$ satisfy $J_{+}^{\prime}(u)[\varphi]=0$ for all $\varphi \in C_{c}^{\infty}$; then u is a weak positive solution of (1.1).

Therefore, without loss of generality we will assume that

$$
g(x, s)=0 \quad \forall s \leq 0, \quad \text { for a.e. } x \in \Omega
$$

and to prove Theorem 2.1 we look for critical points of the functional

$$
J(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} u-\int_{\Omega} G(x, u)-\frac{1}{2^{*}} \int_{\Omega}\left(u^{+}\right)^{2^{*}}:
$$

for simplicity we have dropped the index + on J. By (2.3) and (2.5) we have

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} u \leq \int_{\Omega}|\nabla u|^{2} \quad \forall u \in \mathcal{C} . \tag{3.3}
\end{equation*}
$$

For all $R, \delta>0$ let

$$
\vartheta_{\delta}(s)= \begin{cases}s & \text { if }|s| \leq R \\ R+\delta R-\delta s & \text { if } R<s<\frac{R+\delta R}{\delta} \\ -R-\delta R-\delta s & \text { if }-\frac{R+\delta R}{\delta^{2}} s<-R \\ 0 & \text { if }|s| \geq \frac{R+\delta R}{\delta} ;\end{cases}
$$

the following lemma is a restatement of Theorem 2.2.9 in [7]:

Lemma 3.2 Assume (2.1)-(2.4), (2.6) and let $\left\{u_{m}\right\}$ be a $P S$ sequence for J in H; then, for all $R, \varepsilon>0$ there exists $\delta>0$ such that the following inequality holds as $m \rightarrow \infty$:

$$
\begin{aligned}
& \int_{\left\{\left|u_{m}\right| \leq R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} \leq \\
& \varepsilon \int_{\left\{\left|u_{m}\right|>R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+ \\
& +\int_{\Omega}\left[g\left(x, u_{m}\right)+\left(u_{m}^{+}\right)^{2^{*}-1}\right] \vartheta_{\delta}\left(u_{m}\right)+o(1)
\end{aligned}
$$

In particular, if $u_{m} \rightharpoonup 0$, then

$$
\begin{gathered}
\int_{\left\{\left|u_{m}\right| \leq R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} \leq \\
\varepsilon \int_{\left\{\left|u_{m}\right|>R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+o(1) .
\end{gathered}
$$

The above result is used to prove the following lemma, which implies that the PS sequences are bounded.

Lemma 3.3 Assume (2.1)-(2.4), (2.6); then every sequence $\left\{u_{m}\right\} \subset H$ satisfying

$$
\left|J\left(u_{m}\right)\right| \leq c \quad \text { and } \quad\left|J^{\prime}\left(u_{m}\right)\left[u_{m}\right]\right| \leq c\left\|u_{m}\right\|
$$

is bounded in H.
Proof. Let $s^{+}=\max \{s, 0\}$. By the assumptions on $g(x, s)$ it follows that for all $\beta \in\left[2,2^{*}\right)$ there exists $s_{\beta}>0$ such that

$$
\begin{equation*}
g(x, s) s+\left(s^{+}\right)^{2^{*}} \geq \beta\left(G(x, s)+\frac{\left(s^{+}\right)^{2^{*}}}{2^{*}}\right) \quad \forall s \geq s_{\beta} \tag{3.4}
\end{equation*}
$$

Consider $\left\{u_{m}\right\} \subset H$ satisfying the assumptions, then $\forall \beta \in\left[2,2^{*}\right) \exists c_{\beta}>0$ such that

$$
I_{m}^{\beta}:=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}-\frac{1}{\beta} \int_{\Omega} g\left(x, u_{m}\right) u_{m}-\frac{1}{\beta} \int_{\Omega}\left(u_{m}^{+}\right)^{2^{*}} \leq c_{\beta}
$$

by (3.1) we can compute $J^{\prime}\left(u_{m}\right)\left[u_{m}\right]$ and by the assumptions we have

$$
\begin{gathered}
\left\lvert\, \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m}+\right. \\
-\int_{\Omega} g\left(x, u_{m}\right) u_{m}-\int_{\Omega}\left(u_{m}^{+}\right)^{2^{*}} \mid \leq c\left\|u_{m}\right\|
\end{gathered}
$$

Take $R>\bar{s}\left(\bar{s}\right.$ as in (2.4)); following Lemma 2.3.2 in [7] we choose $\gamma^{\prime} \in\left(\gamma, 2^{*}-2\right)$ and by (2.1) and (2.4) we obtain

$$
\begin{aligned}
K_{m}:= & \int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m} \\
= & \int_{\left\{\left|u_{m}\right| \leq R\right\}} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m}+ \\
& +\int_{\left\{\left|u_{m}\right|>R\right\}} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m} \\
\leq & c R \int_{\left\{\left|u_{m}\right| \leq R\right\}}\left|\nabla u_{m}\right|^{2}+\gamma \int_{\left\{\left|u_{m}\right|>R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}
\end{aligned}
$$

hence, by (2.2) and Lemma 3.2

$$
\begin{aligned}
K_{m} & \leq\left(\frac{c R \varepsilon}{\nu}+\gamma\right) \int_{\left\{\left|u_{m}\right|>R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+c(R, \varepsilon)+o(1) \\
& \leq \gamma^{\prime} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+c(R, \varepsilon)+o(1)
\end{aligned}
$$

if ε is small enough. Now, take $\beta \in\left(\gamma^{\prime}+2,2^{*}\right)$ and compute $I_{m}^{\beta}-\frac{1}{\beta} J^{\prime}\left(u_{m}\right)\left[u_{m}\right]$: by (3.4) we get

$$
\frac{\beta-2-\gamma^{\prime}}{2 \beta} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} \leq c\left(\left\|u_{m}\right\|+1\right)
$$

and the result follows by (2.2).
As J^{\prime} is not weakly continuous, we need to prove the following lemma to obtain a solution as weak limit of a PS sequence.

Lemma 3.4 Assume (2.1)-(2.4), (2.6) and let $\left\{u_{m}\right\} \subset H$ be a $P S$ sequence for J; then, there exists $u \in H$ such that
(i) $u_{m} \rightharpoonup u$ in H, up to a subsequence
(ii) u solves (1.1) in distributional sense.

Proof. (i) follows from Lemma 3.3.
To prove $($ ii $)$, let $\beta_{m}:=g\left(x, u_{m}\right)+\left(u_{m}^{+}\right)^{2^{*}-1}$: then, up to a subsequence, we have $\beta_{m} \rightharpoonup \beta$ in $L^{2 n /(n+2)}(\Omega)$ for some $\beta \in L^{2 n /(n+2)}(\Omega)$; as $\left\{u_{m}\right\}$ is a PS sequence we have

$$
\begin{gathered}
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} \varphi+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} \varphi= \\
\left\langle\beta_{m}+\gamma_{m}, \varphi\right\rangle \quad \forall \varphi \in C_{c}^{\infty}
\end{gathered}
$$

with $\gamma_{m} \rightarrow 0$ in $H^{-1}(\Omega)$. The above equations can also be written as

$$
-\operatorname{div}\left[a_{i j}\left(x, u_{m}\right) D_{i} u_{m}\right]=-\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+\beta_{m}+\gamma_{m} \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

with $\left\{\beta_{m}\right\}$ bounded in $H^{-1}(\Omega) \cap L^{1}(\Omega)$; therefore, the hypotheses of Theorem 2.1 in [4] are satisfied and $\nabla u_{m}(x) \rightarrow \nabla u(x)$ for a.e. $x \in \Omega$, up to a subsequence. Finally, by arguing just as in Lemma 2.3 in [6] we obtain

$$
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} \varphi+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}(x, u) D_{i} u D_{j} u \varphi=\langle\beta, \varphi\rangle \quad \forall \varphi \in C_{c}^{\infty}
$$

indeed, the only difference here is that β_{m} does not necessarily converge strongly in $H^{-1}(\Omega)$ to β but one can still deduce (2.3.5) from (2.3.4) in [6] by using the strong convergence of $\varphi \exp \left\{-M u_{m}^{+}\right\}$in $L^{2^{*}}(\Omega)$.

Let S denote the best constant of the embedding $H_{0}^{1} \subset L^{2^{*}}$; we determine a nontrivial energy range:

Lemma 3.5 Assume (2.1)-(2.4), (2.6), let \mathcal{C} be as in (3.2), let $\left\{u_{m}\right\} \subset \mathcal{C}$ be a PS sequence for J at level $c \in\left(0, \frac{S^{n / 2}}{n}\right)$ and assume that $u_{m} \rightharpoonup u$; then $u \not \equiv 0$.

Proof. Assume $u \equiv 0$: then $u_{m} \rightarrow 0$ in $L^{p}\left(1 \leq p<2^{*}\right)$ and $\int_{\Omega} g\left(x, u_{m}\right) u_{m} \rightarrow 0$; therefore, from $J^{\prime}\left(u_{m}\right)\left[u_{m}\right]=o(1)$ we get

$$
\begin{gather*}
o(1)=\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+ \\
+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m}-\int_{\Omega}\left(u_{m}\right)^{2^{*}} \tag{3.5}
\end{gather*}
$$

By (2.1), (2.2), (2.5) and Lemma 3.2 we have for all $R, \varepsilon>0$ (in particular, for $\varepsilon=R^{-2}$)

$$
\begin{gathered}
\int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m}= \\
\int_{\left\{u_{m} \leq R\right\}} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m}+ \\
+\int_{\left\{u_{m}>R\right\}} \sum_{i, j=1}^{n} \frac{\partial a_{i j}}{\partial s}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m} u_{m} \leq \\
c R \int_{\left\{u_{m} \leq R\right\}} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}+\beta(R) \int_{\Omega}\left|\nabla u_{m}\right|^{2} \leq \\
\left(c^{\prime} R \varepsilon+\beta(R)\right) \int_{\Omega}\left|\nabla u_{m}\right|^{2}+o(1)
\end{gathered}
$$

where $\beta(R)$ is a function independent on ε and vanishing as $R \rightarrow+\infty$, therefore the second integral in (3.5) vanishes by the arbitrariness of R. We now study the first integral and observe that

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, u_{m}\right) D_{i} u_{m} D_{j} u_{m}=\int_{\Omega}\left|\nabla u_{m}\right|^{2}+o(1) \tag{3.6}
\end{equation*}
$$

as $m \rightarrow \infty$; indeed again by (2.2), (2.5) and Lemma 3.2, we have for all $R, \varepsilon>0$

$$
\begin{gathered}
\left|\int_{\Omega} \sum_{i, j=1}^{n}\left(\delta_{i j}-a_{i j}\left(x, u_{m}\right)\right) D_{i} u_{m} D_{j} u_{m}\right| \leq \\
+\left|\int_{\left\{u_{m} \leq R\right\}} \sum_{i, j=1}^{n}\left(\delta_{i j}-a_{i j}\left(x, u_{m}\right)\right) D_{i} u_{m} D_{j} u_{m}\right|+ \\
c \varepsilon+\left|\int_{\left\{u_{m}>R\right\}} \sum_{i, j=1}^{n}\left(\delta_{i j}-a_{i j}\left(x, u_{m}\right)\right) D_{i} u_{m} D_{j} u_{m}\right| \leq \\
\sum_{i, j=1}^{n}\left(\delta_{i j}-a_{i j}\left(x, u_{m}\right)\right) D_{i} u_{m} D_{j} u_{m} \mid+o(1) \leq \\
c \varepsilon+\beta(R)+o(1) .
\end{gathered}
$$

Hence, by (3.5) we get

$$
\begin{equation*}
\left\|u_{m}\right\|^{2}-\left\|u_{m}\right\|_{2^{*}}^{2^{*}}=o(1) \tag{3.7}
\end{equation*}
$$

and we can use the Sobolev inequality $\|u\|^{2} \geq S\|u\|_{2^{*}}^{2}$ to obtain

$$
o(1) \geq\left\|u_{m}\right\|^{2}\left(1-S^{-2^{*} / 2}\left\|u_{m}\right\|^{2^{*}-2}\right):
$$

if $\left\|u_{m}\right\| \rightarrow 0$ we contradict $c>0$; therefore, $\left\|u_{m}\right\|^{2} \geq S^{n / 2}+o(1)$ and by (3.6), (3.7) we get

$$
J\left(u_{m}\right)=\frac{1}{n}\left\|u_{m}\right\|^{2}+\frac{n-2}{2 n}\left(\left\|u_{m}\right\|^{2}-\left\|u_{m}\right\|_{2^{*}}^{2^{*}}\right)+o(1) \geq \frac{1}{n} S^{n / 2}+o(1)
$$

which contradicts $c<\frac{1}{n} S^{n / 2}$.

4 Proof of the results

Proof of Theorem 2.1. Without loss of generality we may assume that the origin $0 \in \Omega_{0}, \Omega_{0}$ being as in (2.7); to achieve the proof, we need to build a PS sequence in the nontrivial range of the functional.

We first prove the existence of a PS sequence in \mathcal{C}, where \mathcal{C} is as in (3.2). For all $e \in \mathcal{C} \backslash\{0\}$ there exists $t_{e}>0$ such that $J\left(t_{e} e\right)<0$: this is a consequence of the fact that the critical term is superquadratic at $+\infty$; define the class

$$
\Gamma:=\{\gamma \in C([0,1] ; H), \gamma(0)=0, \gamma(1)=e\}
$$

and the minimax value

$$
\alpha:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t))
$$

We obtain a PS sequence for J at level α by applying the mountain pass Lemma [1] in the nonsmooth version [11]: indeed, in a standard way one can verify that the functional J has such geometrical structure; hence, $\alpha>0$. Moreover, as $J(u) \geq$ $J(|u|)$ for all $u \in H$, we can assume that the PS sequence is in \mathcal{C}.

To prove that $\alpha<\frac{S^{n / 2}}{n}$ we determine $v \in \mathcal{C}$ such that $\sup _{t \geq 0} J(t v)<\frac{S^{n / 2}}{n}$. We follow the idea of [5] and consider the family of functions

$$
u_{\varepsilon}^{*}(x):=\frac{\left[n(n-2) \varepsilon^{2}\right]^{\frac{n-2}{4}}}{\left[\varepsilon^{2}+|x|^{2}\right]^{\frac{n-2}{2}}}
$$

which solve the equation $-\Delta u=u^{2^{*}-1}$ in \mathbb{R}^{n} and satisfy $\left\|u_{\varepsilon}^{*}\right\|^{2}=\left\|u_{\varepsilon}^{*}\right\|_{2^{*}}^{2^{*}}=S^{n / 2}$. Let η be a positive smooth cut-off function with compact support in $B_{\rho} \subset \Omega_{0}$ and let $u_{\varepsilon}=\eta u_{\varepsilon}^{*}$. In order to prove that if ε is small enough, then

$$
\begin{equation*}
\sup _{t \geq 0} J\left(t u_{\varepsilon}\right)<\frac{1}{n} S^{n / 2} \tag{4.1}
\end{equation*}
$$

we argue by contradiction and assume that for all $\varepsilon>0$ there exists $t_{\varepsilon}>0$ such that

$$
\begin{align*}
J\left(t_{\varepsilon} u_{\varepsilon}\right)= & \frac{t_{\varepsilon}^{2}}{2}\left\|u_{\varepsilon}\right\|^{2}+\frac{t_{\varepsilon}^{2}}{2} \int_{\Omega} \sum_{i, j=1}^{n}\left(a_{i j}\left(x, t_{\varepsilon} u_{\varepsilon}\right)-\delta_{i j}\right) D_{i} u_{\varepsilon} D_{j} u_{\varepsilon}+ \\
& -\int_{\Omega} G\left(x, t_{\varepsilon} u_{\varepsilon}\right)-\frac{t_{\varepsilon}^{2}}{2^{*}}\left\|u_{\varepsilon}\right\|_{2^{*}}^{2^{*}} \tag{4.2}\\
\geq & \frac{1}{n} S^{n / 2}
\end{align*}
$$

Note that the sequence $\left\{t_{\varepsilon}\right\}$ is upper and lower bounded by two positive constants; indeed, if $t_{\varepsilon} \rightarrow+\infty$ then $J\left(t_{\varepsilon} u_{\varepsilon}\right) \rightarrow-\infty$, while if $t_{\varepsilon} \rightarrow 0$ then $J\left(t_{\varepsilon} u_{\varepsilon}\right) \rightarrow 0$ (recall that $\left\{u_{\varepsilon}\right\}$ is uniformly bounded in H): in both cases we contradict (4.2).

Next, we estimate the nonvanishing terms in $J\left(t_{\varepsilon} u_{\varepsilon}\right)$. Recall the following estimates (see [5]) as $\varepsilon \rightarrow 0$:

$$
\left\|u_{\varepsilon}\right\|^{2}=S^{n / 2}+O\left(\varepsilon^{n-2}\right) \quad\left\|u_{\varepsilon}\right\|_{2^{*}}^{2^{*}}=S^{n / 2}+O\left(\varepsilon^{n}\right)
$$

then, by reasoning as in [13], one obtains (as $\varepsilon \rightarrow 0$)

$$
\begin{equation*}
\frac{1}{2}\left\|t_{\varepsilon} u_{\varepsilon}\right\|^{2}-\frac{1}{2^{*}}\left\|t_{\varepsilon} u_{\varepsilon}\right\|_{2^{*}}^{2^{*}} \leq \frac{1}{n} S^{n / 2}+O\left(\varepsilon^{n-2}\right) \tag{4.3}
\end{equation*}
$$

We prove that there exists a function $\tau=\tau(\varepsilon)$ such that $\lim _{\varepsilon \rightarrow 0} \tau(\varepsilon)=+\infty$ and such that for ε small enough we have

$$
\begin{equation*}
\int_{\Omega} G\left(x, t_{\varepsilon} u_{\varepsilon}\right) \geq \tau(\varepsilon) \cdot \varepsilon^{n-2} \tag{4.4}
\end{equation*}
$$

If $n=3$, this can be done exactly as in [13]; if $n=4$, one can follow the proof of Corollary 2.2 in [5] (or again the arguments of [13]). So, let us prove the result in the case $n \geq 5$: by a direct calculation we get

$$
t_{\varepsilon} u_{\varepsilon}^{*}(x)=\gamma \quad \Longleftrightarrow \quad|x|=\Phi(\gamma):=\sqrt{\left(\frac{t_{\varepsilon}}{\gamma}\right)^{2 /(n-2)} \sqrt{n(n-2)} \cdot \varepsilon-\varepsilon^{2}}
$$

note that for all $\gamma>0$ there exist $c_{2}>c_{1}>0$ such that, for ε small enough we have $c_{2} \sqrt{\varepsilon}>\Phi(\gamma)>c_{1} \sqrt{\varepsilon}$. Therefore, by (2.6), (2.7) we have

$$
\begin{equation*}
\int_{\Omega} G\left(x, t_{\varepsilon} u_{\varepsilon}\right) \geq \mu \int_{\Phi(b)}^{\Phi(a)} r^{n-1} d r \geq c \int_{c_{1} \sqrt{\varepsilon}}^{c_{2} \sqrt{\varepsilon}} r^{n-1} d r \geq c \varepsilon^{n / 2} \tag{4.5}
\end{equation*}
$$

and the estimate (4.4) is proved for all $n \geq 3$.
Finally, note that $t_{\varepsilon} u_{\varepsilon} \in \mathcal{C}$ and that by (3.3) we have

$$
\frac{t_{\varepsilon}^{2}}{2} \int_{\Omega} \sum_{i, j=1}^{n}\left(a_{i j}\left(x, t_{\varepsilon} u_{\varepsilon}\right)-\delta_{i j}\right) D_{i} u_{\varepsilon} D_{j} u_{\varepsilon} \leq 0
$$

therefore, if (4.2) held, by (4.3) and (4.4) we would obtain

$$
J\left(t_{\varepsilon} u_{\varepsilon}\right) \leq \frac{1}{n} S^{n / 2}+(c-\tau(\varepsilon)) \cdot \varepsilon^{n-2}
$$

We achieve a contradiction for ε small enough: hence (4.1) holds. So, we obtained a PS sequence (in \mathcal{C}) for J at level $\alpha \in\left(0, \frac{S^{n / 2}}{n}\right)$: its weak limit is positive and nontrivial by Lemmas 3.1 and 3.5 and it solves (1.1) by Lemma 3.4.

Proof of Theorem 2.2. As in the previous proof, we determine a PS sequence in \mathcal{C} in the range of compactness. Following an idea of [8], instead of u_{ε} as in (4.1), to estimate the maximum of the functional J we take the direction of e_{1}, the first (positive) eigenfunction of $-\Delta$ in Ω. Let $u=t e_{1}$ for some $t>0$; by (3.3) and Hölder inequality we obtain

$$
J(u) \leq \frac{1}{2}\|u\|^{2}-\frac{\lambda}{2}\|u\|_{2}^{2}-\frac{1}{6}\|u\|_{6}^{6} \leq \frac{\lambda_{1}-\lambda}{2}\|u\|_{2}^{2}-\frac{1}{6|\Omega|^{2}}\|u\|_{2}^{6} \leq \frac{\left(\lambda_{1}-\lambda\right)^{3 / 2}}{3}|\Omega|
$$

the last inequality being consequence of

$$
\forall a, b>0 \quad \max _{x \geq 0}\left(a x-b x^{3}\right)=\frac{2 a}{3}\left(\frac{a}{3 b}\right)^{1 / 2}
$$

Then, if $\lambda \in\left(\lambda_{1}-S|\Omega|^{-2 / 3}, \nu \lambda_{1}\right)$, we have

$$
\max _{t \geq 0} J\left(t e_{1}\right) \leq \frac{\left(\lambda_{1}-\lambda\right)^{3 / 2}}{3}|\Omega|<\frac{1}{3} S^{3 / 2}
$$

and the existence of a solution follows as for Theorem 2.1: this also implies that $\lambda^{*} \leq \lambda_{1}-S|\Omega|^{-2 / 3}$.

5 Further remarks and a non-existence result

Remark 1 From (3.3) we infer, in particular, that the functional J on the cone \mathcal{C} is not greater than the functional relative to the semilinear equation (i.e. for $\left.a_{i j}(x, s) \equiv \delta_{i j}\right)$. However, as we have seen, this fact does not modify the compactness level $\frac{1}{n} S^{n / 2}$: indeed, (2.5) implies that the difference between the two functionals vanishes on the "bad" sequence $\left\{u_{\varepsilon}\right\}$ which is responsible of the non convergence of PS sequences, see [8, 19].

Remark 2 To prove Theorem 2.1 in the case $n=4$, one may also weaken the second alternative of (2.7) with

$$
\exists b>a>0, \exists \mu>0 \quad \text { such that } G(x, s) \geq \mu \quad \text { for a.e. } x \in \Omega_{0}, \forall s \in[a, b] ;
$$

with this assumption, proceeding as in the case $n \geq 5$ in the proof of Theorem 2.1, we achieve again (4.5), which reads $\int_{\Omega} G\left(x, t_{\varepsilon} u_{\varepsilon}\right) \geq \mu \varepsilon^{2}$ and therefore, for μ is large enough and $\varepsilon \rightarrow 0$ we have

$$
J\left(t_{\varepsilon} u_{\varepsilon}\right) \leq \frac{1}{4} S^{2}+(c-c \mu) \varepsilon^{2}+o\left(\varepsilon^{2}\right)<\frac{1}{4} S^{2}
$$

The requirement that μ is large enough is not only technical: even if $b=+\infty$, the equation may not have solutions if μ is small, see the curious example of Theorem 2.3 in [5].

Remark 3 The inequality $\lambda^{*} \leq \lambda_{1}-S|\Omega|^{-2 / 3}$ in Theorem 2.2 can be strict: as an example, consider the cube $\Gamma:=(0, \pi)^{3}$. The first eigenvector is $e_{1}(x, y, z)=$ $\sin x \sin y \sin z$ and the corresponding eigenvalue is $\lambda_{1}=3$: a direct computation (by means of Hölder and Poincaré inequalities) yields

$$
\max _{t \geq 0} J\left(t e_{1}\right) \leq \pi^{3}(3-\lambda)^{3 / 2} \frac{2^{3 / 2}}{3 \cdot 5^{3 / 2}}
$$

therefore $\lambda^{*} \leq 3-\frac{15}{2^{7 / 3} \cdot \pi^{2 / 3}}<3-S|\Gamma|^{-2 / 3}$.
Remark 4 An equation of the kind of (1.1) has also been studied in [22] by minimization methods and by a generalization of the arguments of [15]: the existence result obtained there does not require the positivity assumption (2.3), but it only holds on strictly star-shaped domains and requires $a_{i j}(x, s)$ to be even with respect to s; moreover, the result of [22] is up to the multiplication of suitable Lagrange multipliers. We also refer to [18] for a similar problem on \mathbb{R}^{n}.

Remark 5 In high dimensions $(n \geq 4)$, the positivity assumption of (2.6) may be relaxed so that also the primitive G of the lower order perturbation g is allowed to change sign. Assume that there exists $\delta>0$ and $\alpha<\frac{n}{n-2}$ such that

$$
G(x, s) \geq-\delta|s|^{\alpha} \quad \text { for a.e. } x \in \Omega \quad \forall s \in \mathbb{R}
$$

then if δ is small enough one can still obtain (4.5) and hence a nontrivial solution of (1.1), see [13]. However, in this case, the inequality $J_{+}(|u|) \leq J_{+}(u)$ does not hold for all u and one may lose the positivity of the solution of (1.1).

By using a generalized Pohožaev identity due to Pucci-Serrin [17] we obtain a non-existence result:

Theorem 5.1 Let $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ be bounded and star-shaped with respect to the origin, assume that the coefficients $a_{i j}$ do not depend on x and that (2.1), (2.2) hold; assume moreover that

$$
\begin{equation*}
s \sum_{i, j=1}^{n} a_{i j}^{\prime}(s) \xi_{i} \xi_{j}<0 \quad \forall s \neq 0 \quad \forall \xi \in \mathbb{R}^{n} \backslash\{0\} \tag{5.1}
\end{equation*}
$$

Then the equation

$$
\begin{equation*}
-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(u) D_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}^{\prime}(u) D_{i} u D_{j} u=|u|^{2^{*}-2} u \tag{5.2}
\end{equation*}
$$

has no nontrivial solutions $u \in H \cap L^{\infty}(\Omega)$.
Proof. By the regularity results of [14], if $u \in H \cap L^{\infty}(\Omega)$ is a solution of (5.2), then $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$. Define $\mathcal{F}: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\mathcal{F}(s, \xi)=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(s) \xi_{i} \xi_{j}-\frac{|s|^{2^{*}}}{2^{*}}
$$

take $a=\frac{n-2}{2}$ and replace in the variational identity (5) of [17]: as Ω is star-shaped w.r.t. 0 we obtain

$$
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{\prime}(u) D_{i} u D_{j} u u \geq 0
$$

which, together with (5.1) implies $u \equiv 0$.
The above statement would be more interesting if the nonexistence result held in the whole H. However, without suitable assumptions on the coefficients $a_{i j}$, a solution of (5.2) may not be bounded, see [12]: a possible assumption to ensure that $u \in L^{\infty}$ is (2.3) (see [7]) but here we have precisely assumed the "contrary" in (5.1); on the other hand, the technique used in [22] to prove the boundedness of u seems to apply only to minimization problems.

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, 349-381 (1973)
[2] D. Arcoya, L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal. 134, 249-274 (1996)
[3] G. Arioli, F. Gazzola, Weak solutions of quasilinear elliptic PDE's at resonance, Ann. Fac. Sci. Toulouse VI (1997)
[4] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal. TMA 19, 581-597 (1992)
[5] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, 437-477 (1983)
[6] A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal. 6, 357-370 (1995)
[7] A. Canino, M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, $1-50$ - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal 1994, NATO ASI Series - Kluwer A.P. 1995
[8] G. Cerami, D. Fortunato, M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré A.N.L. 1, 5, 341-350 (1984)
[9] M. Conti, F. Gazzola, Positive entire solutions of quasilinear elliptic problems via nonsmooth critical point theory, Top. Meth. Nonlin. Anal. 8, 275-294 (1996)
[10] J.N. Corvellec, M. Degiovanni, M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal. 1, 151-171 (1993)
[11] M. Degiovanni, M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. 4, 167, 73-100 (1994)
[12] J. Frehse, A note on the Hölder continuity of solutions of variational problems, Abh. Math. Sem. Univ. Hamburg 43, 59-63 (1975)
[13] F. Gazzola, B. Ruf, Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Diff. Eq. 2, 555-572 (1997)
[14] O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and quasilinear elliptic equations, New York Academic Press, 1968
[15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Parts 1 83 2, Rev. Mat. Iberoamericana 1(1), 145-201 (1985); 1(2), 45-121 (1985)
[16] S.J. Pohožaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Doklady 6, 1408-1411 (1965)
[17] P. Pucci, J. Serrin, A general variational identity, Indiana Univ. Math. J. 35, 681-703 (1986)
[18] Shen Yaotian, Yan Shusen, Existence and boundedness of a minimiser for a constrained minimisation problem on \mathbb{R}^{n} with limiting exponent, Proc. Roy. Soc. Edinburgh 122A, 221-235 (1992)
[19] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, 511-517 (1984)
[20] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110, 353-372 (1976)
[21] H. Yamabe, On the deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12, 21-37 (1960)
[22] Yan Shusen, Li Gongbao, A minimization problem involving a critical exponent and its related Euler-Lagrange equation, Arch. Rat. Mech. Anal. 114, 365-381 (1991)

Received September 20, 1996

[^0]: *This paper was written while the first author was visiting the Department of Mathematics at Stockholm University, supported by a CNR scholarship
 ${ }^{\dagger}$ Partially supported by MURST Gruppi di Ricerca 40%

