NODAL SOLUTIONS TO CRITICAL GROWTH ELLIPTIC PROBLEMS UNDER STEKLOV BOUNDARY CONDITIONS

Elvise Berchio
Dipartimento SEMEQ, Università del Piemonte Orientale
via E. Perrone 18, Novara, 28100, ITALY
Filippo Gazzola and Dario Pierotti
Dipartimento di Matematica del Politecnico
Piazza L. da Vinci 32, Milano, 20133, ITALY
(Communicated by Manuel del Pino)

Abstract

We study elliptic problems at critical growth under Steklov boundary conditions in bounded domains. For a second order problem we prove existence of nontrivial nodal solutions. These are obtained by combining a suitable linking argument with fine estimates on the concentration of Sobolev minimizers on the boundary. When the domain is the unit ball, we obtain a multiplicity result by taking advantage of the explicit form of the Steklov eigenfunctions. We also partially extend the results in the ball to the case of fourth order Steklov boundary value problems.

1. Introduction and results. In a celebrated paper, Pohozaev [26] proved that the semilinear elliptic equation

$$
\begin{equation*}
-\Delta u=|u|^{2^{*}-2} u \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

admits no positive solutions in a bounded smooth starshaped domain $\Omega \subset \mathbb{R}^{n}(n \geq$ 3) under homogeneous Dirichlet boundary conditions. In fact, in these domains, Pohozaev's identity combined with the unique continuation property rules out also the existence of nodal solutions (see [20]) so that (1) admits only the trivial solution $u \equiv 0$. Here $2^{*}=\frac{2 n}{n-2}$ denotes the critical exponent for the embedding $H^{1}(\Omega) \subset$ $L^{2^{*}}(\Omega)$. Since then, in order to obtain existence results for the Dirichlet problem associated to (1), many attempts were made to modify the geometry (topology) of the domain Ω or to perturb the critical nonlinearity $|u|^{2^{*}-2} u$ in (1). It appears an impossible task to exhaust all the related literature. In these papers, existence of nontrivial solutions to (1) was obtained.

Brezis [10, Section 6.4] suggested to study (1) under Neumann boundary conditions:

$$
\begin{equation*}
u_{\nu}=0 \quad \text { on } \partial \Omega \tag{2}
\end{equation*}
$$

where u_{ν} denotes the outer normal derivative of u on $\partial \Omega$. In fact, problem (1)-(2) is a particular case of the following (second order) elliptic problem with purely critical

[^0]growth and Steklov boundary conditions:
\[

$$
\begin{cases}-\Delta u=|u|^{2^{*}-2} u & \text { in } \Omega \tag{3}\\ u_{\nu}=\delta u & \text { on } \partial \Omega .\end{cases}
$$
\]

Here, $\delta \in \mathbb{R}$ and (3) becomes the Neumann problem when $\delta=0$ whereas it tends to the Dirichlet problem as $\delta \rightarrow-\infty$. We say that a function $u \in H^{1}(\Omega)$ is a weak solution of (3) if

$$
\int_{\Omega} \nabla u \nabla v-\delta \int_{\partial \Omega} u v=\int_{\Omega}|u|^{2^{*}-2} u v \quad \text { for all } v \in H^{1}(\Omega)
$$

It can be shown that weak solutions are in fact strong (classical) solutions, see [11]. As far as we are aware, existence results for (3) have been obtained only for $\delta \leq 0$. In this respect, a crucial role is played by the maximal mean curvature of the boundary, namely

$$
\begin{equation*}
H_{\max }:=\max _{x \in \partial \Omega} H(x), \tag{4}
\end{equation*}
$$

where $H(x)$ is the mean curvature of $\partial \Omega$ at x. We collect some known results in the following statement:

Proposition 1. $[1,15,16]$ Let $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ be a smooth bounded domain.
(i) If $\delta \in\left(\frac{2-n}{2} H_{\max }, 0\right)$, then (3) admits a positive solution.
(ii) If $\delta \geq 0$, then (3) admits no positive solutions.
(iii) If $\delta=0$ and $n \geq 4$, then (3) admits a nontrivial nodal solution.
(iv) If $\delta=0, n=3$ and Ω is symmetric with respect to a plane, then (3) admits a nontrivial nodal solution.

One of the purposes of the present paper is to study the case where $\delta>0$. We prove

Theorem 1.1. Let $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ be a smooth bounded domain and let $\left\{\delta_{i}\right\}_{i \geq 0}$ be the sequence of positive Steklov eigenvalues (see Proposition 4). Then problem (3) admits a pair of nontrivial nodal solutions for all $\delta>0$ if $n \geq 4$, and for all $\delta>0$ with $\delta \neq \delta_{i}$ if $n=3$.

We conjecture that if $n=3$ and $\delta=\delta_{i}$ the existence of solutions might depend on the domain and that any possible solution (if ever) should be at high energy level.

The difference between the cases $\delta<0$ and $\delta \geq 0$ relies on the geometric properties of the related action functional. The variational characterization of its critical points is of mountain-pass type in the first case and of linking type in the latter. And, as far as linking arguments are required, it is well-known that in order to lower the energy level of Palais-Smale sequences one needs to estimate "mixed terms" which are difficult to bound, see [14, 18]. To overcome this difficulty, in our proof we adapt ideas from $[2,3,14,18,25]$ and combine a careful estimate of the mixed critical growth term with concentration phenomena of Sobolev minimizers on $\partial \Omega$.

When $\Omega=B$ (the unit ball), the previous results may be improved. The next (known) statement shows that the lower bound $\delta>\frac{2-n}{2} H_{\max }$ in Proposition 1 is not sharp:

Proposition 2. [15, 32] Let $\Omega=B$ (the unit ball of $\mathbb{R}^{n}, n \geq 3$), then:
(i) If $\delta \leq 2-n$, then (3) admits no positive radial solutions.
(ii) If $\delta \in(2-n, 0)$, then (3) admits a unique positive radial solution u_{δ} which is explicitly given by

$$
u_{\delta}(x)=\frac{\left[n(n-2) C_{\delta, n}\right]^{\frac{n-2}{4}}}{\left(C_{\delta, n}+|x|^{2}\right)^{\frac{n-2}{2}}}
$$

where $C_{\delta, n}:=\frac{2-n}{\delta}-1$.
(iii) If $\delta=0$, then (3) admits infinitely many solutions.

In the unit ball, Theorem 1.1 states (in particular) that (3) has nontrivial solutions for all $\delta \in(0,1)$. We improve this statement with a multiplicity result. For all $n \geq 3$, we put

$$
\begin{equation*}
h(n):=(n-2)\left[\frac{n^{2}}{\Gamma(n)}\right]^{2 / n}\left[\frac{\Gamma\left(\frac{n}{2}\right)}{2}\right]^{1+2 / n}\left[\frac{(n+2) \Gamma\left(\frac{n+2}{2(n-2)}\right)}{\sqrt{\pi} \Gamma\left(\frac{n^{2}}{2(n-2)}\right)}\right]^{1-2 / n} \tag{5}
\end{equation*}
$$

and we prove
Theorem 1.2. Assume that $\Omega=B$ (the unit ball of $\mathbb{R}^{n}, n \geq 3$). If $\delta \in(1-h(n), 1)$, then problem (3) admits at least n pairs of nontrivial nodal solutions.

Figure 1 displays the plot of the function $h=h(n)$.

Figure 1: the map $h=h(n)$.
In particular, since $h(n)>1$ for all $n \geq 5$, Theorem 1.2 yields nontrivial nodal solutions also for some values of $\delta<0$. Clearly, nodal solutions cannot be radially symmetric since then they would solve the Dirichlet problem for (1) in the smaller ball defined by the nodal region containing the origin, against Pohozaev nonexistence result.

A further goal of this paper is to highlight the nonstandard variational structure of (3). The space spanned by the eigenfunctions of the linear boundary value problem does not exhaust all the functional space under consideration. Therefore, the linking argument used for its study has a more complicated behaviour. We collect the main properties concerning the linear Steklov (second and fourth order) problem in Section 2.

The last main objective of the present work is the comparison between the variational structure of (3) and that of the corresponding fourth order critical growth problem

$$
\begin{cases}\Delta^{2} u=|u|^{2 *}-2 & \text { in } \Omega \tag{6}\\ u=0, \quad \Delta u=d u_{\nu} & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 5)$ is a smooth bounded domain, $d \in \mathbb{R}$ and $2_{*}=\frac{2 n}{n-4}$ is the critical Sobolev exponent for the embedding $H^{2}(\Omega) \subset L^{2 *}(\Omega)$. We say that a
function $u \in H^{2} \cap H_{0}^{1}(\Omega)$ is a weak solution of (6) if

$$
\int_{\Omega} \Delta u \Delta v-d \int_{\partial \Omega} u_{\nu} v_{\nu}=\int_{\Omega}|u|^{2_{*}-2} u v \quad \text { for all } v \in H^{2} \cap H_{0}^{1}(\Omega)
$$

Also for this fourth order equation, weak solutions are in fact strong (classical) solutions, see [7, Proposition 23]. We refer to [27, 28] for a corresponding nonexistence result based on Pohozaev identity and to $[6,8]$ for a survey of existence results under different kinds of boundary conditions. The boundary conditions in (6) are again named after Steklov; they become the Navier boundary conditions when $d=0$ and tend to Dirichlet boundary conditions as $d \rightarrow-\infty$.

Although (6) has the same variational structure as (3), it exhibits several different features. In particular, one cannot expect to go below the compactness threshold by concentrating Sobolev minimizers on the boundary since $u=0$ on $\partial \Omega$. Therefore, the extension of Theorem 1.1 to (6) seems out of reach. We only consider the case where $\Omega=B$ so that the first two Steklov eigenvalues are $d_{1}=n$ and $d_{2}=n+2$, see [7] and Proposition 7 below. The eigenvalue d_{1} plays the same role as the eigenvalue $\delta_{0}=0$ for (3).

When $d<n$, some results are already known. For $n \geq 5$, let

$$
\sigma_{n}= \begin{cases}n-(n-4)\left(n^{2}-4\right) \frac{\Gamma\left(\frac{n}{2}\right)}{2^{\frac{8}{n}+1}}\left(\frac{n \Gamma\left(\frac{n}{2}\right)}{\Gamma(n)}\right)^{\frac{4}{n}}\left(\frac{\Gamma\left(\frac{2 n}{n-4}\right)}{\Gamma\left(\frac{n^{2}}{2(n-4)}\right)}\right)^{1-\frac{4}{n}} & \text { if } n=5 \text { or } 6 \\ \frac{4(n-3)}{n-4} & \text { if } n \geq 7\end{cases}
$$

In particular, $\sigma_{5} \approx 4.5$ and $\sigma_{6} \approx 5.2$, see [4]. Concerning positive solutions, we have
Proposition 3. [8] Assume that $\Omega=B$ (the unit ball of $\mathbb{R}^{n}, n \geq 5$).
(i) If $d \leq 4$ or $d \geq n$, then (6) admits no positive solution.
(ii) If $d \in\left(\sigma_{n}, n\right)$ problem (6) admits a radial positive solution.
(iii) For every $d \in \mathbb{R}$, problem (6) admits no radial nodal solutions.

Now, for $n \geq 5$, we put

$$
\begin{equation*}
g(n):=\frac{n^{2}(n-2)}{2}\left[\frac{(n-4)(n+2)}{\Gamma(n)}\right]^{4 / n}\left[\frac{\Gamma\left(\frac{n}{2}\right)}{2}\right]^{1+4 / n}\left[\frac{(n+4) \Gamma\left(\frac{2 n}{n-4}\right) \Gamma\left(\frac{n+4}{2(n-4)}\right)}{\sqrt{\pi} \Gamma\left(\frac{n^{2}+2 n}{2(n-4)}\right)}\right]^{1-4 / n} \tag{7}
\end{equation*}
$$

Then, in some dimensions, we can prove existence and multiplicity results for $d \geq n$:
Theorem 1.3. Assume that $\Omega=B$ (the unit ball of \mathbb{R}^{n}) and let $n=5,6,8$. If $d \in(n+2-g(n), n+2)$, then problem (6) admits at least n pairs of nontrivial solutions.

Figure 2 displays the plot of the function $g=g(n)$.

Figure 2: the map $g=g(n)$.

As we explain in Section 6, even if we do not have a complete proof, we believe that Theorem 1.3 holds for every $n \geq 5$. If this is true, since $g(n) \geq 2$ for $n \geq 16$, this means that the existence result, for n large, covers the whole range between $d_{1}=n$ and $d_{2}=n+2$. Hence, in this case it is reasonable to conjecture that (6) admits solutions for any $d>\sigma_{n}$.

We conclude this section by pointing out that all the solutions we find (in Theorems 1.1, 1.2 and 1.3) are at low energy level, below the compactness threshold. This explains why we obtain stronger results in large space dimensions. It remains open and interesting to investigate existence results for high energy solutions and nonexistence results for low energy solutions.
2. Some results about the eigenvalue problems. In this section we collect some facts about the two boundary eigenvalue problems

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \tag{8}\\ u_{\nu}=\delta u & \text { on } \partial \Omega\end{cases}
$$

and

$$
\begin{cases}\Delta^{2} u=0 & \text { in } \Omega \tag{9}\\ u=\Delta u-d u_{\nu}=0 & \text { on } \partial \Omega\end{cases}
$$

Here and in the sequel, we denote by $\|\cdot\|_{p}$ the $L^{p}(\Omega)$-norm $(1 \leq p \leq \infty)$, and we put

$$
\|u\|_{\partial}^{2}=\int_{\partial \Omega} u^{2} \quad \text { for } u \in H^{1}(\Omega), \quad\|u\|_{\partial_{\nu}}^{2}=\int_{\partial \Omega} u_{\nu}^{2} \quad \text { for } u \in H^{2} \cap H_{0}^{1}(\Omega)
$$

Consider first (8); its smallest eigenvalue is $\delta_{0}=0$. This turns (8) into a Neumann problem which is solved by any constant function in Ω. Consider the space $H^{1}(\Omega)$ endowed with the scalar product

$$
\begin{equation*}
(u, v)_{1}:=\int_{\Omega} \nabla u \nabla v+\int_{\partial \Omega} u v \quad \text { for all } u, v \in H^{1}(\Omega) \tag{10}
\end{equation*}
$$

and the induced norm

$$
\begin{equation*}
\|u\|^{2}:=\int_{\Omega}|\nabla u|^{2}+\int_{\partial \Omega}|u|^{2} \quad \text { for all } u \in H^{1}(\Omega) \tag{11}
\end{equation*}
$$

We define

$$
X(\Omega):=\left\{u \in H^{1}(\Omega): \int_{\partial \Omega} u=0\right\} \backslash H_{0}^{1}(\Omega)
$$

and

$$
\delta_{1}:=\inf _{u \in X(\Omega)} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{\partial}^{2}},
$$

so that δ_{1} is the first nontrivial Steklov eigenvalue of $-\Delta$. Consider the space

$$
Z_{1}=\left\{v \in C^{\infty}(\bar{\Omega}): \Delta u=0 \text { in } \Omega\right\}
$$

and denote by V its completion with respect to the norm (11). Then, we have:
Proposition 4. Let $\Omega \subset \mathbb{R}^{n}(n \geq 2)$ be an open bounded domain with smooth boundary. Then:

- Problem (8) admits infinitely many (countable) eigenvalues.
- The first eigenvalue $\delta_{0}=0$ is simple, it is associated to constant eigenfunctions and eigenfunctions of one sign necessarily correspond to δ_{0}.
- The set of eigenfunctions forms a complete orthonormal system in V.
- Any eigenfunction φ of (8) corresponding to a positive eigenvalue satisfies $\int_{\partial \Omega} \varphi=0$.
- The space $H^{1}(\Omega)$ endowed with (10) admits the following orthogonal decomposition

$$
\begin{equation*}
H^{1}(\Omega)=V \oplus H_{0}^{1}(\Omega) \tag{12}
\end{equation*}
$$

- If $v \in H^{1}(\Omega)$ and if $v=v_{1}+v_{2}$ is the corresponding orthogonal decomposition with $v_{1} \in V$ and $v_{2} \in H_{0}^{1}(\Omega)$, then v_{1} and v_{2} are weak solutions of

$$
\left\{\begin{array} { l l l }
{ \Delta v _ { 1 } = 0 } & { \text { in } \Omega } & { \text { and } } \\
{ v _ { 1 } = v } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{ll}
\Delta v_{2}=\Delta v & \text { in } \Omega \\
v_{2}=0 & \text { on } \partial \Omega
\end{array}\right.\right.
$$

Proof. With the scalar product (10) we decompose the space $H^{1}(\Omega)$ as

$$
H^{1}(\Omega)=H_{0}^{1}(\Omega) \oplus H_{0}^{1}(\Omega)^{\perp}
$$

Thus, every $v \in H^{1}(\Omega)$ may be written in a unique way as $v=v_{1}+v_{2}$, where $v_{2} \in H_{0}^{1}(\Omega)$ and v_{1} satisfies

$$
v_{1}=v \quad \text { on } \partial \Omega \quad \text { and } \quad \int_{\Omega} \nabla v_{1} \nabla v_{0}=0 \quad \text { for all } v_{0} \in H_{0}^{1}(\Omega)
$$

Hence, v_{1} weakly solves the problem

$$
\begin{cases}\Delta v_{1}=0 & \text { in } \Omega \\ v_{1}=v & \text { on } \partial \Omega\end{cases}
$$

and $v_{2}=v-v_{1}$ weakly solves

$$
\begin{cases}\Delta v_{2}=\Delta v & \text { in } \Omega \\ v_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

The kernel of the trace operator $\gamma: H^{1}(\Omega) \rightarrow H^{1 / 2}(\partial \Omega)$ is $H_{0}^{1}(\Omega)$ so that γ is an isomorphism between $H_{0}^{1}(\Omega)^{\perp}$ and $H^{1 / 2}(\partial \Omega)$. Therefore, the linear map

$$
\begin{aligned}
I_{1}: H_{0}^{1}(\Omega)^{\perp} & \rightarrow L^{2}(\partial \Omega) \\
u & \mapsto \gamma u
\end{aligned}
$$

is compact. Next, let $I_{2}: L^{2}(\partial \Omega) \rightarrow\left(H_{0}^{1}(\Omega)^{\perp}\right)^{\prime}$ be the linear continuous operator such that

$$
\left\langle I_{2} u, v\right\rangle=\int_{\partial \Omega} u v \quad \text { for all } u \in L^{2}(\partial \Omega), v \in H_{0}^{1}(\Omega)^{\perp}
$$

and let $L: H_{0}^{1}(\Omega)^{\perp} \rightarrow\left(H_{0}^{1}(\Omega)^{\perp}\right)^{\prime}$ be the linear continuous operator defined by:

$$
\langle L u, v\rangle=\int_{\Omega} \nabla u \nabla v+\int_{\partial \Omega} u v \quad \text { for all } u, v \in H_{0}^{1}(\Omega)^{\perp}
$$

Then, L is an isomorphism and the linear operator $K=L^{-1} I_{2} I_{1}: H_{0}^{1}(\Omega)^{\perp} \rightarrow$ $H_{0}^{1}(\Omega)^{\perp}$ is a compact self-adjoint operator with strictly positive eigenvalues, $H_{0}^{1}(\Omega)^{\perp}$ admits an othonormal basis of eigenfunctions of K and the set of eigenvalues of K can be ordered in a strictly decreasing sequence $\left\{\lambda_{i}\right\}_{i \geq 1}$ which converges to zero. Thus, problem (8) admits infinitely many eigenvalues given by $\delta_{i}+1=\frac{1}{\lambda_{i}}$ and the eigenfunctions coincide with the eigenfunctions of K. Hence, $H_{0}^{1}(\Omega)^{\perp} \equiv V$.

By the divergence Theorem, we see that any solution u of (8) with $\delta>0$ satisfies $\int_{\partial \Omega} u=0$. To conclude the proof it remains to show that the unique eigenvalue corresponding to a positive eigenfunction is $\delta_{0}=0$. To see this, let $\delta \geq 0$ be an
eigenvalue corresponding to a positive eigenfunction $\varphi>0$ in Ω. By definition, we know that φ satisfies

$$
\int_{\Omega} \nabla \varphi \nabla v=\delta \int_{\partial \Omega} \varphi v \quad \text { for all } v \in H^{1}(\Omega)
$$

Choosing $v \equiv 1$ and recalling that $\varphi \in V$, the above identity shows that necessarily $\delta=0$.

For $i=0,1, \ldots$, we denote with φ_{i}^{ℓ} the eigenfunctions corresponding to δ_{i}, where $\ell=1,2, \ldots N_{i}$ and N_{i} is the multiplicity of δ_{i}. Now, by the property of the φ_{i}^{ℓ}, we have:

$$
\int_{\Omega} \nabla \varphi_{i}^{\ell} \nabla \varphi_{j}^{k}=\delta_{i} \int_{\partial \Omega} \varphi_{i}^{\ell} \varphi_{j}^{k}=\delta_{j} \int_{\partial \Omega} \varphi_{i}^{\ell} \varphi_{j}^{k}, \quad \text { for } \ell=1,2, \ldots N_{i}, k=1,2, \ldots N_{j} .
$$

On the other hand, by the orthogonality in the scalar product (10) we also have

$$
\int_{\Omega} \nabla \varphi_{i}^{\ell} \nabla \varphi_{j}^{k}=-\int_{\partial \Omega} \varphi_{i}^{\ell} \varphi_{j}^{k}
$$

so that

$$
\begin{equation*}
\int_{\Omega} \nabla \varphi_{i}^{\ell} \nabla \varphi_{j}^{k}=\int_{\partial \Omega} \varphi_{i}^{\ell} \varphi_{j}^{k}=0, \quad \text { for all } i \neq j \tag{13}
\end{equation*}
$$

A similar argument yields

$$
\begin{equation*}
\int_{\Omega} \nabla \varphi_{i}^{\ell} \nabla \varphi_{i}^{k}=\int_{\partial \Omega} \varphi_{i}^{\ell} \varphi_{i}^{k}=0, \quad \text { for all } \ell \neq k \tag{14}
\end{equation*}
$$

It is readily verified that the same relations hold by replacing φ_{i}^{ℓ} with any $u_{0} \in$ $H_{0}^{1}(\Omega)$, namely

$$
\begin{equation*}
\int_{\Omega} \nabla u_{0} \nabla \varphi_{i}^{k}=\int_{\partial \Omega} u_{0} \varphi_{i}^{k}=0, \quad \text { for all } i \text { and all } u_{0} \in H_{0}^{1}(\Omega) \tag{15}
\end{equation*}
$$

This means that the subspaces in the direct sum (12) are also orthogonal with respect to the inner products associated to the Dirichlet norm and to the L^{2} norm on the boundary $\partial \Omega$.

When $\Omega=B$ (the unit ball) we may determine explicitly all the eigenvalues of (8). To this end, consider the spaces of harmonic polynomials [4, Sect. 9.3-9.4]:
$\mathcal{D}_{k}:=\left\{P \in C^{\infty}\left(\mathbb{R}^{n}\right) ; \Delta P=0\right.$ in \mathbb{R}^{n}, P is homogeneous polynomial of degree $\left.k\right\}$.
Also, denote by μ_{k} the dimension of \mathcal{D}_{k} so that [4, p.450]

$$
\mu_{k}=\frac{(2 k+n-2)(k+n-3)!}{k!(n-2)!} .
$$

Then, from [9, p.160] we easily infer
Proposition 5. [9]
If $n \geq 2$ and $\Omega=B$, then for all $k=0,1,2, \ldots$:
(i) the eigenvalues of (8) are $\delta_{k}=k$;
(ii) the multiplicity N_{k} of δ_{k} equals μ_{k};
(iii) any $\varphi_{k}^{\ell} \in \mathcal{D}_{k}$, with $\ell=1,2, \ldots, N_{k}$, is an eigenfunction corresponding to δ_{k}.

We now turn to the fourth order problem (9). Consider the space $H^{2} \cap H_{0}^{1}(\Omega)$ endowed with the scalar product

$$
\begin{equation*}
(u, v)_{2}:=\int_{\Omega} \Delta u \Delta v \quad \text { for all } u, v \in H^{2} \cap H_{0}^{1}(\Omega) \tag{16}
\end{equation*}
$$

and the induced norm

$$
\begin{equation*}
\left|\left\|\left.u\left|\|^{2}:=\int_{\Omega}\right| \Delta u\right|^{2} \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega)\right.\right. \tag{17}
\end{equation*}
$$

Let $\mathcal{H}(\Omega):=\left[H^{2} \cap H_{0}^{1}(\Omega)\right] \backslash H_{0}^{2}(\Omega)$. The smallest (positive) eigenvalue d_{1} of (9) is characterized variationally as

$$
d_{1}:=\inf _{u \in \mathcal{H}(\Omega)} \frac{\|\Delta u\|_{2}^{2}}{\|u\|_{\partial_{\nu}}^{2}}
$$

Hence, d_{1} is the largest constant satisfying

$$
\|\Delta u\|_{2}^{2} \geq d_{1}\|u\|_{\partial_{\nu}}^{2} \quad \text { for all } u \in H^{2} \cap H_{0}^{1}(\Omega)
$$

and $d_{1}^{-1 / 2}$ is the norm of the compact linear operator $H^{2} \cap H_{0}^{1}(\Omega) \rightarrow L^{2}(\partial \Omega), u \mapsto$ u_{ν}.

Consider the space

$$
Z_{2}=\left\{v \in C^{\infty}(\bar{\Omega}): \Delta^{2} u=0, u=0 \text { on } \partial \Omega\right\}
$$

and denote by W its completion with respect to the norm (17). Then, we have
Proposition 6. [17]
Assume that $\Omega \subset \mathbb{R}^{n}(n \geq 2)$ is an open bounded domain with smooth boundary. Then:

- Problem (9) admits infinitely many (countable) eigenvalues.
- The first eigenvalue d_{1} is simple and eigenfunctions of one sign necessarily correspond to d_{1}.
- The set of eigenfunctions forms a complete orthonormal system in W.
- The space $H^{2} \cap H_{0}^{1}(\Omega)$ endowed with (16) admits the following orthogonal decomposition

$$
H^{2} \cap H_{0}^{1}(\Omega)=W \oplus H_{0}^{2}(\Omega)
$$

- If $v \in H^{2} \cap H_{0}^{1}(\Omega)$ and if $v=v_{1}+v_{2}$ is the corresponding orthogonal decomposition with $v_{1} \in W$ and $v_{2} \in H_{0}^{2}(\Omega)$, then v_{1} and v_{2} are weak solutions of

$$
\left\{\begin{array} { l l }
{ \Delta ^ { 2 } v _ { 1 } = 0 } & { \text { in } \Omega } \\
{ v _ { 1 } = 0 } & { \text { on } \partial \Omega } \\
{ (v _ { 1 }) _ { \nu } = v _ { \nu } } & { \text { on } \partial \Omega }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\Delta^{2} v_{2}=\Delta^{2} v & \text { in } \Omega \\
v_{2}=0 & \text { on } \partial \Omega \\
\left(v_{2}\right)_{\nu}=0 & \text { on } \partial \Omega
\end{array}\right.\right.
$$

Again, when $\Omega=B$ (the unit ball) we may determine explicitly all the eigenvalues of (9):

Proposition 7. [17]
If $n \geq 2$ and $\Omega=B$, then for all $k=1,2,3, \ldots$:
(i) the eigenvalues of (9) are $d_{k}=n+2(k-1)$;
(ii) the multiplicity N_{k} of d_{k} equals μ_{k-1};
(iii) for all $\psi_{k}^{\ell} \in \mathcal{D}_{k-1}$, with $\ell=1,2, \ldots, N_{k}$, the function $\phi_{k}^{\ell}(x):=\left(1-|x|^{2}\right) \psi_{k}^{\ell}(x)$ is an eigenfunction corresponding to d_{k}.

Let us mention that the fourth order Steklov eigenvalue problem (9) was first studied in the two dimensional case $[21,24]$ where only partial results about the first eigenvalue were obtained.
3. The Palais-Smale condition. Let

$$
\begin{equation*}
S_{2}=\min _{u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{n}\right) \backslash\{0\}} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2^{*}}^{2}}=\pi n(n-2)\left(\frac{\Gamma(n / 2)}{\Gamma(n)}\right)^{2 / n} \tag{18}
\end{equation*}
$$

where for the last equality we refer to [31]. In order to obtain some compactness for the second order problem (3), a crucial role is played by an inequality due to Li-Zhu [22]: there exists $M=M(\Omega)>0$ such that

$$
\begin{equation*}
\frac{S_{2}}{2^{2 / n}}\|u\|_{2^{*}}^{2} \leq\|\nabla u\|_{2}^{2}+M\|u\|_{\partial}^{2} \quad \text { for all } u \in H^{1}(\Omega) \tag{19}
\end{equation*}
$$

Consider the functional

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{\delta}{2} \int_{\partial \Omega} u^{2}-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} \tag{20}
\end{equation*}
$$

whose critical points are weak solutions of (3). We prove
Lemma 3.1. The functional I satisfies the Palais-Smale condition at levels $c \in$ $\left(-\infty, \frac{S_{2}^{n / 2}}{2 n}\right)$, that is, if $\left\{u_{m}\right\}_{m \geq 0} \subset H^{1}(\Omega)$ is such that

$$
\begin{equation*}
I\left(u_{m}\right) \rightarrow c<\frac{S_{2}^{n / 2}}{2 n}, \quad d I\left(u_{m}\right) \rightarrow 0 \quad \text { in } \quad\left(H^{1}(\Omega)\right)^{\prime} \tag{21}
\end{equation*}
$$

then there exists $u \in H^{1}(\Omega)$ such that $u_{m} \rightarrow u$ in $H^{1}(\Omega)$, up to a subsequence.
Proof. To deduce that $\left\{u_{m}\right\}_{m \geq 0}$ is bounded in $H^{1}(\Omega)$ we follow [29, Theorem 4.12]. Let $\left\{\delta_{j}\right\}_{j \geq 0}$ be the set of Steklov eigenvalues of $-\Delta$ and denote with M_{j} the eigenspace associated to δ_{j}. If $\delta=\delta_{k}$, for some $k \geq 0$, we define:

$$
H_{+}:=\overline{\bigoplus_{j \geq k+1} M_{j}} \bigoplus H_{0}^{1}(\Omega), \quad H_{0}:=M_{k} \quad \text { and } \quad H_{-}:=\bigoplus_{j \leq k-1} M_{j}
$$

and, in view of Proposition 4, we have

$$
H^{1}(\Omega)=H_{+} \oplus H_{0} \oplus H_{-}
$$

Thus we may decompose $u_{m}=u_{m}^{+}+u_{m}^{0}+u_{m}^{-}$, where $u_{m}^{+} \in H_{+}, u_{m}^{0} \in H_{0}$ and $u_{m}^{-} \in H_{-}$. If $\delta_{k}<\delta<\delta_{k+1}$, for $k \geq 0$, we just have the two spaces H_{+}and H_{-}but the decomposition works similarly. By (21) and arguing as in [29], one can prove that each of the components of u_{m}, and in turn u_{m}, is bounded in $H^{1}(\Omega)$. By this we conclude that (up to a subsequence) there exists $u \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
u_{m} \rightharpoonup u \quad \text { in } H^{1}(\Omega) \quad \text { and } \quad u_{m} \rightarrow u \quad \text { a.e. in } \Omega . \tag{22}
\end{equation*}
$$

Hence, by compactness of the map $H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ defined by $\left.u \mapsto u\right|_{\partial \Omega}$, we have:

$$
\begin{equation*}
\left.\left.u_{m}\right|_{\partial \Omega} \rightarrow u\right|_{\partial \Omega} \quad \text { in } \quad L^{2}(\partial \Omega) \tag{23}
\end{equation*}
$$

We apply (19) to the function $u_{m}-u$ and, in view of (23), we get

$$
\begin{equation*}
\frac{S_{2}}{2^{2 / n}}\left\|u_{m}-u\right\|_{2^{*}}^{2} \leq\left\|\nabla\left(u_{m}-u\right)\right\|_{2}^{2}+o(1) \tag{24}
\end{equation*}
$$

On the other hand, by the Brezis-Lieb Lemma [12], we know that

$$
\begin{equation*}
\left\|u_{m}\right\|_{2^{*}}^{2^{*}}-\|u\|_{2^{*}}^{2^{*}}=\left\|u_{m}-u\right\|_{2^{*}}^{2^{*}}+o(1) \tag{25}
\end{equation*}
$$

Exploiting (21), (22), (23) and (25) we have

$$
\begin{aligned}
o(1) & =\left\langle d I\left(u_{m}\right), u_{m}-u\right\rangle \\
& =\int_{\Omega}\left|\nabla u_{m}\right|^{2}-\int_{\Omega} \nabla u_{m} \cdot \nabla u-\delta \int_{\partial \Omega} u_{m}\left(u_{m}-u\right)-\int_{\Omega}\left|u_{m}\right|^{2^{*}-2} u_{m}\left(u_{m}-u\right) \\
& =\int_{\Omega}\left(\left|\nabla u_{m}\right|^{2}-2 \nabla u_{m} \cdot \nabla u+|\nabla u|^{2}\right)-\int_{\Omega}\left|u_{m}\right|^{2^{*}}+\int_{\Omega}|u|^{2^{*}}+o(1) \\
& =\int_{\Omega}\left|\nabla\left(u_{m}-u\right)\right|^{2}-\int_{\Omega}\left|u_{m}-u\right|^{2^{*}}+o(1),
\end{aligned}
$$

so that

$$
\begin{equation*}
\left\|\nabla\left(u_{m}-u\right)\right\|_{2}^{2}=\left\|u_{m}-u\right\|_{2^{*}}^{2^{*}}+o(1) \tag{26}
\end{equation*}
$$

By (21) we also get that

$$
o(1)=\left\langle d I\left(u_{m}\right), u_{m}\right\rangle=\left\|\nabla u_{m}\right\|_{2}^{2}-\delta\left\|u_{m}\right\|_{\partial}^{2}-\left\|u_{m}\right\|_{2^{*}}^{2^{*}}
$$

that is,

$$
\begin{equation*}
\left\|u_{m}\right\|_{2^{*}}^{2^{*}}=\left\|\nabla u_{m}\right\|_{2}^{2}-\delta\left\|u_{m}\right\|_{\partial}^{2}+o(1) \tag{27}
\end{equation*}
$$

Inserting (27) into (21) we obtain

$$
\frac{1}{n}\left\|\nabla u_{m}\right\|_{2}^{2}-\frac{\delta}{n}\left\|u_{m}\right\|_{\partial}^{2}=c+o(1)
$$

and therefore

$$
\begin{equation*}
\|\nabla u\|_{2}^{2}-\delta\|u\|_{\partial}^{2}+\left\|\nabla\left(u_{m}-u\right)\right\|_{2}^{2}=n c+o(1) \tag{28}
\end{equation*}
$$

On the other hand, exploiting the convergence $\left\langle d I\left(u_{m}\right), v\right\rangle \rightarrow\langle d I(u), v\rangle$ for any fixed $v \in H^{1}(\Omega)$, we deduce that u solves (3) (that is, $d I(u)=0$) so that

$$
\|\nabla u\|_{2}^{2}-\delta\|u\|_{\partial}^{2}=\|u\|_{2^{*}}^{2^{*}} \geq 0
$$

The last inequality combined with (28) gives

$$
\begin{equation*}
\left\|\nabla\left(u_{m}-u\right)\right\|_{2}^{2} \leq n c+o(1)<\frac{S_{2}^{n / 2}}{2}+o(1) \tag{29}
\end{equation*}
$$

Furthermore (24) and (26) give

$$
\left\|\nabla\left(u_{m}-u\right)\right\|_{2}^{2-\frac{4}{n}}\left(\frac{S_{2}}{2^{2 / n}}-\left\|\nabla\left(u_{m}-u\right)\right\|_{2}^{\frac{4}{n}}\right) \leq o(1)
$$

This, combined with (29), shows that $\left\|\nabla\left(u_{m}-u\right)\right\|_{2}=o(1)$. And this, together with (23), proves that $u_{m} \rightarrow u$ in $H^{1}(\Omega)$.

We now turn to the fourth order problem. Let

$$
\begin{equation*}
S_{4}=\min _{u \in \mathcal{D}^{2,2}\left(\mathbb{R}^{n}\right) \backslash\{0\}} \frac{\|\Delta u\|_{2}^{2}}{\|u\|_{2_{*}}^{2}}=\pi^{2}(n+2) n(n-2)(n-4)\left(\frac{\Gamma(n / 2)}{\Gamma(n)}\right)^{4 / n} \tag{30}
\end{equation*}
$$

(see again [31]) and consider the functional

$$
\begin{equation*}
J(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{d}{2} \int_{\partial \Omega} u_{\nu}^{2}-\frac{1}{2_{*}} \int_{\Omega}|u|^{2_{*}} \tag{31}
\end{equation*}
$$

whose critical points are weak solutions of (6). We have

Lemma 3.2. The functional J satisfies the Palais-Smale condition at levels $c \in$ $\left(-\infty, \frac{2 S_{4}^{n / 4}}{n}\right)$, that is, if $\left\{u_{m}\right\}_{m \geq 0} \subset H^{2} \cap H_{0}^{1}(\Omega)$ is such that

$$
\begin{equation*}
J\left(u_{m}\right) \rightarrow c<\frac{2}{n} S_{4}^{n / 4}, \quad d J\left(u_{m}\right) \rightarrow 0 \quad \text { in } \quad\left(H^{2} \cap H_{0}^{1}(\Omega)\right)^{\prime} \tag{32}
\end{equation*}
$$

then there exists $u \in H^{2} \cap H_{0}^{1}(\Omega)$ such that $u_{m} \rightarrow u$ in $H^{2} \cap H_{0}^{1}(\Omega)$, up to a subsequence.

Proof. The first step consists in showing that $\left\{u_{m}\right\}_{m \geq 0}$ is bounded in $H^{2} \cap H_{0}^{1}(\Omega)$. As in Lemma 3.1, this follows by arguing as in Theorem 4.12 in [29], suitably adapted to this case. For the rest of the proof one can follow the same lines as the proof of Lemma 3.1 except that, now, one has to exploit the compactness of the linear map $\left.H^{2} \cap H_{0}^{1}(\Omega) \ni u \mapsto u_{\nu}\right|_{\partial \Omega} \in L^{2}(\partial \Omega)$ and the inequality (19) must be replaced by the Sobolev inequality: $S_{4}\|u\|_{2_{*}}^{2} \leq\|\Delta u\|_{2}^{2}$, for all $u \in H^{2} \cap H_{0}^{1}(\Omega)$.
4. Proof of Theorem 1.1. We prove Theorem 1.1 by showing that there exists a critical level for the functional (20) below the compactness threshold found in Lemma 3.1. In order to do this, we need some asymptotic estimates and a suitable linking geometry.
4.1. Some asymptotic estimates. In this section, we prove some asymptotic estimates of the norms of the Sobolev minimizers which concentrate on $\partial \Omega$. We take into account the effect of the curvature of the boundary $\partial \Omega$, following an idea from [1]. Since Ω is smooth and bounded, there exists $\bar{x} \in \partial \Omega$ such that in a neighborhood of \bar{x}, Ω lies on one side of the tangent hyperplane at \bar{x} and the mean curvature with respect to the unit outward normal at \bar{x} is positive. Furthermore, there exists a ball of radius $R_{0}>0$ such that $\Omega \subset B_{R_{0}}$. With a change of coordinates, we may assume that $\bar{x}=0$ (the origin), that the tangent hyperplane coincides with $x_{n}=0$ and that Ω lies in $\mathbb{R}_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\}$. More precisely, there exists $R>0$ and a smooth function $\rho: \omega \rightarrow \mathbb{R}_{+}$(where $\left.\omega=\left\{x^{\prime} \in \mathbb{R}^{n-1} ;\left|x^{\prime}\right|<R\right\}\right)$ such that

$$
\left(x^{\prime}, x_{n}\right) \in \Omega \cap B_{R} \Leftrightarrow x_{n}>\rho\left(x^{\prime}\right), \quad\left(x^{\prime}, x_{n}\right) \in \partial \Omega \cap B_{R} \Leftrightarrow x_{n}=\rho\left(x^{\prime}\right) .
$$

Furthermore, since the curvature is positive at 0 , there exist $\lambda_{i}(i=1, \ldots, n-1)$ such that

$$
\begin{equation*}
\Lambda:=\sum_{i=1}^{n-1} \lambda_{i}>0 \quad \text { and } \quad \rho\left(x^{\prime}\right)=\sum_{i=1}^{n-1} \lambda_{i} x_{i}^{2}+O\left(\left|x^{\prime}\right|^{3}\right) \quad \text { as } x^{\prime} \rightarrow 0 \tag{33}
\end{equation*}
$$

Let $\Sigma:=\left\{x \in B_{R} ; 0<x_{n}<\rho\left(x^{\prime}\right)\right\}$. Finally we set

$$
\begin{equation*}
U_{\epsilon}(x):=\frac{\epsilon^{\frac{n-2}{2}}}{\left(\epsilon^{2}+|x|^{2}\right)^{\frac{n-2}{2}}} \tag{34}
\end{equation*}
$$

and

$$
K^{\prime}:=\int_{\mathbb{R}^{n}}\left|\nabla U_{\epsilon}(x)\right|^{2} d x, \quad K^{\prime \prime}:=\int_{\mathbb{R}^{n}}\left|U_{\epsilon}(x)\right|^{2^{*}} d x
$$

Recall that $S_{2}=K^{\prime} /\left(K^{\prime \prime}\right)^{2 / 2^{*}}\left(\right.$ see (18)). Now let $\omega_{n}:=|\partial B|=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$, we prove that, as $\varepsilon \rightarrow 0$, the following asymptotic estimates hold:

$$
\int_{\Omega}\left|\nabla U_{\epsilon}(x)\right|^{2} d x=\frac{K^{\prime}}{2}-\Lambda \frac{\omega_{n-1}(n-2)^{2}}{2(n-1)} \begin{cases}\epsilon|\log \epsilon|+o(\epsilon|\log \epsilon|) & \text { if } n=3 \tag{35}\\ \frac{\Gamma((n+3) / 2) \Gamma((n-3) / 2)}{\Gamma(n)} \epsilon+o(\epsilon) & \text { if } n \geq 4\end{cases}
$$

$$
\begin{gather*}
\int_{\Omega}\left|\nabla U_{\epsilon}(x)\right| d x=O\left(\epsilon^{\frac{n-2}{2}}\right) \quad \text { for any } n \geq 3, \tag{36}\\
\int_{\Omega}\left|U_{\epsilon}(x)\right|^{2^{*}} d x=\frac{K^{\prime \prime}}{2}-\Lambda \frac{\omega_{n-1}}{2(n-1)} \begin{cases}O(\epsilon) & \text { if } \quad n=3, \\
\frac{\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{n-1}{2}\right)}{\Gamma(n)} \epsilon+o(\epsilon) & \text { if } n \geq 4,\end{cases} \tag{37}\\
\int_{\partial \Omega} U_{\epsilon}(x) d \sigma=O\left(\epsilon^{\left.\frac{n-2}{2}\right)} \quad \text { for any } n \geq 3,\right. \tag{38}\\
\int_{\partial \Omega}\left|U_{\epsilon}(x)\right|^{2} d \sigma=b(n) \begin{cases}\epsilon|\log \epsilon|+o(\epsilon|\log \epsilon|) & \text { if } n=3, \\
\epsilon+o(\epsilon) \quad \text { if } \quad n \geq 4,\end{cases} \tag{39}
\end{gather*}
$$

where $b(n)$ is defined as in $[1,(3.9)]$:

$$
b(n):= \begin{cases}\omega_{2} / 2 & \text { if } n=3 \\ \omega_{n-1} \int_{0}^{+\infty} \frac{r^{n-2}}{\left(1+r^{2}\right)^{n-2}} d r & \text { if } n \geq 4\end{cases}
$$

Proof of (35). A direct computation shows that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla U_{\epsilon}(x)\right|^{2} d x & =\frac{1}{2} \int_{B_{R}}\left|\nabla U_{\epsilon}(x)\right|^{2} d x-\int_{\Sigma}\left|\nabla U_{\epsilon}(x)\right|^{2} d x+\int_{\Omega \backslash B_{R}}\left|\nabla U_{\epsilon}(x)\right|^{2} d x \\
& =\frac{K^{\prime}}{2}-O\left(\epsilon^{n-2}\right)-\int_{\Sigma}\left|\nabla U_{\epsilon}(x)\right|^{2} d x+\int_{\Omega \backslash B_{R}}\left|\nabla U_{\epsilon}(x)\right|^{2} d x
\end{aligned}
$$

Furthermore, since $\nabla U_{\epsilon}(x)=-\frac{(n-2) x \epsilon^{\frac{n-2}{2}}}{\left(\epsilon^{2}+|x|^{2}\right)^{\frac{n}{2}}}$,

$$
\int_{\Omega \backslash B_{R}}\left|\nabla U_{\epsilon}(x)\right|^{2} d x \leq \int_{B_{R_{0} \backslash B_{R}}}\left|\nabla U_{\epsilon}(x)\right|^{2} d x=O\left(\epsilon^{n-2}\right)
$$

while we may also exploit $[1,(2.17)]$ (with minor changes) to deduce

$$
\int_{\Sigma}\left|\nabla U_{\epsilon}(x)\right|^{2} d x=\Lambda \frac{\omega_{n-1}(n-2)^{2}}{2(n-1)} \begin{cases}\epsilon|\log \epsilon|+o(\epsilon|\log \epsilon|) & \text { if } \quad n=3 \\ \frac{\Gamma((n+3) / 2) \Gamma((n-3) / 2)}{\Gamma(n)} \epsilon+o(\epsilon) & \text { if } \quad n \geq 4\end{cases}
$$

and (35) follows.
Proof of (36). In view of the explicit form of ∇U_{ϵ} (see above), we have

$$
\int_{\Omega}\left|\nabla U_{\epsilon}(x)\right| d x=c \epsilon^{\frac{n-2}{2}} \int_{\Omega} \frac{|x|}{\left(\epsilon^{2}+|x|^{2}\right)^{\frac{n}{2}}} d x \leq c \epsilon^{\frac{n-2}{2}} \int_{\Omega} \frac{d x}{|x|^{n-1}}=c \epsilon^{\frac{n-2}{2}}
$$

and (36) is proved.
Proof of (37). We have

$$
\begin{aligned}
\int_{\Omega}\left|U_{\epsilon}(x)\right|^{2^{*}} d x & =\frac{1}{2} \int_{B_{R}}\left|U_{\epsilon}(x)\right|^{2^{*}} d x-\int_{\Sigma}\left|U_{\epsilon}(x)\right|^{2^{*}} d x+\int_{\Omega \backslash B_{R}}\left|U_{\epsilon}(x)\right|^{2^{*}} d x \\
& =\frac{K^{\prime \prime}}{2}-O\left(\epsilon^{n}\right)-\int_{\Sigma}\left|U_{\epsilon}(x)\right|^{2^{*}} d x+\int_{\Omega \backslash B_{R}}\left|U_{\epsilon}(x)\right|^{2^{*}} d x
\end{aligned}
$$

Furthermore

$$
\int_{\Omega \backslash B_{R}}\left|U_{\epsilon}(x)\right|^{2^{*}} d x \leq \int_{B_{R_{0} \backslash B_{R}}}\left|U_{\epsilon}(x)\right|^{2^{*}} d x=O\left(\epsilon^{n}\right)
$$

and the integral over Σ can be estimated as in $[1,(2.18)]$:

$$
\int_{\Sigma}\left|U_{\epsilon}(x)\right|^{2^{*}} d x=\Lambda \frac{\omega_{n-1}}{2(n-1)} \begin{cases}O(\epsilon) & \text { if } \quad n=3 \\ \frac{\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{n-1}{2}\right)}{\Gamma(n)} \epsilon+o(\epsilon) & \text { if } \quad n \geq 4\end{cases}
$$

Proof of (38). This follows as for (36), namely

$$
\int_{\partial \Omega} U_{\epsilon}(x) d \sigma \leq c \epsilon^{\frac{n-2}{2}} \int_{\partial \Omega} \frac{d x}{|x|^{n-2}}=c \epsilon^{\frac{n-2}{2}}
$$

Proof of (39). We have

$$
\begin{aligned}
\int_{\partial \Omega}\left|U_{\epsilon}(x)\right|^{2} d \sigma & =\int_{\partial \Omega \cap B_{R}}\left|U_{\epsilon}(x)\right|^{2} d \sigma+\int_{\partial \Omega \backslash B_{R}}\left|U_{\epsilon}(x)\right|^{2} d \sigma \\
& =\int_{\partial \Omega \cap B_{R}}\left|U_{\epsilon}(x)\right|^{2} d \sigma+O\left(\epsilon^{n-2}\right)
\end{aligned}
$$

The first term of the above sum can be estimated as in $[1,(3.10)]$:

$$
\int_{\partial \Omega \cap B_{R}}\left|U_{\epsilon}(x)\right|^{2} d \sigma=b(n)\left\{\begin{array}{lll}
\epsilon|\log \epsilon|+o(\epsilon|\log \epsilon|) & \text { if } & n=3 \\
\epsilon+o(\epsilon) & \text { if } & n \geq 4
\end{array}\right.
$$

We conclude with the following estimates:

$$
\begin{aligned}
I_{\alpha} & \equiv \int_{\Omega}\left|U_{\epsilon}(x)\right|^{\alpha} d x=\int_{\Omega \cap B_{R}}\left|U_{\epsilon}(y)\right|^{\alpha} d y+\int_{\Omega \backslash B_{R}}\left|U_{\epsilon}(y)\right|^{\alpha} d y \\
& \leq C \epsilon^{\alpha \frac{n-2}{2}} \int_{B_{R}} \frac{d y}{\left(\epsilon^{2}+|y|^{2}\right)^{\alpha \frac{n-2}{2}}}+O\left(\epsilon^{\alpha \frac{n-2}{2}}\right)=\quad(y=\epsilon z,|z|=\rho) \\
& =C \epsilon^{n-\alpha \frac{n-2}{2}} \int_{0}^{R / \epsilon} \frac{\rho^{n-1}}{\left(1+\rho^{2}\right)^{\alpha \frac{n-2}{2}}} d \rho+O\left(\epsilon^{\alpha \frac{n-2}{2}}\right) \\
& \leq C \epsilon^{n-\alpha \frac{n-2}{2}}\left(C_{0}+\int_{1}^{R / \epsilon} \rho^{n-1-\alpha(n-2)} d \rho\right)+O\left(\epsilon^{\alpha \frac{n-2}{2}}\right) \\
& \leq \begin{cases}C_{1} \epsilon^{n-\alpha \frac{n-2}{2}}+C_{2} \epsilon^{\alpha \frac{n-2}{2}} \quad \text { for } \quad \alpha \neq \frac{n}{n-2} \\
\epsilon^{n / 2}\left(C_{1}+C_{2}|\ln \epsilon|\right) & \text { for } \quad \alpha=\frac{n}{n-2} .\end{cases}
\end{aligned}
$$

In particular, we get

$$
\begin{gather*}
I_{\left(2^{*}-1\right)}=I_{\frac{n+2}{n-2}}=O\left(\epsilon^{(n-2) / 2}\right), \quad I_{1}=O\left(\epsilon^{(n-2) / 2}\right) \tag{40}\\
I_{\left(2^{*}-2\right)}=\left\{\begin{array}{lll}
I_{4}=O(\epsilon) & \text { if } n=3 \\
I_{2}=O\left(\epsilon^{2} \ln \epsilon\right) & \text { if } & n=4 \\
I_{\frac{4}{n-2}}=O\left(\epsilon^{2}\right) & \text { if } & n \geq 5
\end{array}\right. \tag{41}
\end{gather*}
$$

4.2. Linking argument. Assume first that $\delta_{k}<\delta<\delta_{k+1}$, for some $k \geq 0$, and consider the orthogonal decomposition of $H^{1}(\Omega)$ relative to the scalar product (10):

$$
\begin{equation*}
H^{1}(\Omega)=H_{k_{-}} \oplus H_{k_{+}} \tag{42}
\end{equation*}
$$

where $H_{k_{-}}$is the subspace spanned by an orthonormal (with respect to (10)-(11)) set of eigenfunctions $\varphi_{i}^{\ell}, \ell=1,2, \ldots, N_{i}, i=0,1, \ldots, k$, with eigenvalues $0=\delta_{0}<$ $\delta_{1}<\ldots<\delta_{k}$, see Proposition 4. Let U_{ϵ} be as in (34), and define

$$
\bar{U}_{\epsilon}=U_{\epsilon}-z_{\epsilon}
$$

where $z_{\epsilon}=P_{H_{k_{-}}} U_{\epsilon}$ is the projection of the function U_{ϵ} on the subspace $H_{k_{-}}$. Then,

$$
z_{\epsilon}=\sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left(\varphi_{i}^{\ell}, U_{\epsilon}\right)_{1} \varphi_{i}^{\ell}
$$

and, by the property of the eigenfunctions φ_{i}^{ℓ}, we get

$$
\begin{align*}
\left|\left(\varphi_{i}^{\ell}, U_{\epsilon}\right)_{1}\right| & =\left|\int_{\Omega} \nabla \varphi_{i}^{\ell} \nabla U_{\epsilon} d x+\int_{\partial \Omega} \varphi_{i}^{\ell} U_{\epsilon} d \sigma\right| \leq\left(\delta_{i}+1\right) \int_{\partial \Omega}\left|\varphi_{i}^{\ell} U_{\epsilon}\right| d \sigma \\
& \leq C_{i} \int_{\partial \Omega} U_{\epsilon} d \sigma=O\left(\epsilon^{\frac{n-2}{2}}\right) \tag{43}
\end{align*}
$$

where the last equality follows by (38). Therefore, we also have

$$
\begin{equation*}
\left\|z_{\epsilon}\right\|_{\infty}=O\left(\epsilon^{\frac{n-2}{2}}\right) \tag{44}
\end{equation*}
$$

In turn, by (40) and (44) we obtain

$$
\begin{aligned}
\int_{\Omega}\left|\bar{U}_{\epsilon}\right|^{2^{*}} d x & =\int_{\Omega}\left|U_{\epsilon}\right|^{2^{*}} d x-2^{*} \int_{0}^{1} d t \int_{\Omega}\left|U_{\epsilon}-t z_{\epsilon}\right|^{2^{*}-2}\left(U_{\epsilon}-t z_{\epsilon}\right) z_{\epsilon} d x \\
& =\int_{\Omega}\left|U_{\epsilon}\right|^{2^{*}} d x+O\left(\epsilon^{n-2}\right)
\end{aligned}
$$

which, together with (37), gives

$$
\int_{\Omega}\left|\bar{U}_{\epsilon}(x)\right|^{2^{*}} d x=\frac{K^{\prime \prime}}{2}-\Lambda \frac{\omega_{n-1}}{2(n-1)} \begin{cases}O(\epsilon) & \text { if } \quad n=3 \tag{45}\\ \frac{\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{n-1}{2}\right)}{\Gamma(n)} \epsilon+o(\epsilon) & \text { if } \quad n \geq 4\end{cases}
$$

Moreover, by (13) we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \bar{U}_{\epsilon}\right|^{2} d x= & \int_{\Omega}\left|\nabla U_{\epsilon}\right|^{2} d x-2 \sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left(\varphi_{i}^{\ell}, U_{\epsilon}\right)_{1} \int_{\Omega} \nabla U_{\epsilon} \nabla \varphi_{i}^{\ell} d x \\
& +\sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left(\varphi_{i}^{\ell}, U_{\epsilon}\right)_{1}^{2} \int_{\Omega}\left|\nabla \varphi_{i}^{\ell}\right|^{2} d x
\end{aligned}
$$

Further, by Hölder inequality and (36) we get

$$
\left|\int_{\Omega} \nabla U_{\epsilon} \nabla \varphi_{i}^{\ell} d x\right| \leq\left\|\nabla U_{\epsilon}\right\|_{1} \cdot\left\|\nabla \varphi_{i}^{\ell}\right\|_{\infty}=O\left(\epsilon^{\frac{n-2}{2}}\right)
$$

By combining this with (35) and (43), we infer

$$
\int_{\Omega}\left|\nabla \bar{U}_{\epsilon}\right|^{2} d x=\frac{K^{\prime}}{2}-\Lambda \frac{\omega_{n-1}(n-2)^{2}}{2(n-1)} \begin{cases}\epsilon|\log \epsilon|+o(\epsilon|\log \epsilon|) & \text { if } n=3 \tag{46}\\ \frac{\Gamma((n+3) / 2) \Gamma((n-3) / 2)}{\Gamma(n)} \epsilon+o(\epsilon) & \text { if } n \geq 4\end{cases}
$$

Finally, by using again (13) we obtain

$$
\begin{aligned}
\int_{\partial \Omega}\left|\bar{U}_{\epsilon}\right|^{2} d \sigma= & \int_{\partial \Omega}\left|U_{\epsilon}\right|^{2} d \sigma-2 \sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left(\varphi_{i}^{\ell}, U_{\epsilon}\right)_{1} \int_{\partial \Omega} U_{\epsilon} \varphi_{i}^{\ell} d \sigma \\
& +\sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left(\varphi_{i}^{\ell}, U_{\epsilon}\right)_{1}^{2} \int_{\partial \Omega}\left(\varphi_{i}^{\ell}\right)^{2} d \sigma
\end{aligned}
$$

Arguing as above and using (38), (39) and (43), we infer

$$
\int_{\partial \Omega}\left|\bar{U}_{\epsilon}\right|^{2} d \sigma=b(n)\left\{\begin{array}{lll}
\epsilon|\log \epsilon|+o(\epsilon|\log \epsilon|) & \text { if } \quad n=3 \tag{47}\\
\epsilon+o(\epsilon) & \text { if } \quad n \geq 4
\end{array}\right.
$$

Let I be the functional defined in (20) and let

$$
\Sigma_{k}=\left\{u \in H_{k_{+}}:\|u\|=\rho\right\}
$$

where $\rho>0$ is chosen small so that one has $\inf _{v \in \Sigma_{k}} I(v)=\alpha_{k}>0$. Now let

$$
Q_{k}=\left\{s \bar{U}_{\epsilon}+u_{-}, \quad 0 \leq s \leq R_{1}, \quad u_{-} \in H_{k_{-}} \quad\left\|u_{-}\right\| \leq R_{2}\right\}
$$

where $R_{1}>\rho$ and $R_{2}>0$ are independent from ϵ. More precisely, R_{1} is chosen sufficiently large to satisfy $I\left(R_{1} \bar{U}_{\epsilon}\right)<0$ and so that Σ_{k} and ∂Q_{k} link, see [30, Example 8.3]. The choice of R_{2} is explained below.

By writing $u_{-}=\sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}} c_{i}^{\ell} \varphi_{i}^{\ell}$ and using (13), we have

$$
\begin{align*}
& I\left(s \bar{U}_{\epsilon}+u_{-}\right)=\frac{s^{2}}{2}\left[\int_{\Omega}\left|\nabla \bar{U}_{\epsilon}\right|^{2} d x-\delta \int_{\partial \Omega}\left|\bar{U}_{\epsilon}\right|^{2} d \sigma\right]+\frac{1}{2} \int_{\Omega}\left|\nabla u_{-}\right|^{2} d x \\
& -\frac{\delta}{2} \int_{\partial \Omega}\left|u_{-}\right|^{2} d \sigma-\frac{1}{2^{*}} \int_{\Omega}\left|s \bar{U}_{\epsilon}+u_{-}\right|^{2^{*}} d x=\frac{s^{2}}{2}\left[\int_{\Omega}\left|\nabla \bar{U}_{\epsilon}\right|^{2} d x-\delta \int_{\partial \Omega}\left|\bar{U}_{\epsilon}\right|^{2} d \sigma\right] \\
& \\
& -\sum_{i=0}^{k} \frac{\delta-\delta_{i}}{2} \sum_{\ell=1}^{N_{i}}\left(c_{i}^{\ell}\right)^{2} \int_{\partial \Omega}\left|\varphi_{i}^{\ell}\right|^{2} d \sigma-\frac{1}{2^{*}} \int_{\Omega}\left|s \bar{U}_{\epsilon}+u_{-}\right|^{2^{*}} d x \\
& \leq \frac{s^{2}}{2}\left[\int_{\Omega}\left|\nabla \bar{U}_{\epsilon}\right|^{2} d x-\delta \int_{\partial \Omega}\left|\bar{U}_{\epsilon}\right|^{2} d \sigma\right]-\frac{s^{2^{*}}}{2^{*}} \int_{\Omega}\left|\bar{U}_{\epsilon}\right|^{2^{*}} d x-D\left(\delta-\delta_{k}\right) c^{2} \tag{48}\\
& \quad-\int_{0}^{1} d t \int_{\Omega} u_{-}\left|s \bar{U}_{\epsilon}+t u_{-}\right|^{2^{*}-2}\left(s \bar{U}_{\epsilon}+t u_{-}\right) d x
\end{align*}
$$

where

$$
D=\frac{1}{2} \min _{i, \ell}\left\|\varphi_{i}^{\ell}\right\|_{\partial}^{2} \quad \text { and } \quad c^{2}:=\sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left(c_{i}^{\ell}\right)^{2}, \quad \text { with } \quad c>0
$$

By using the inequality $(\alpha+\beta+\gamma)^{2^{*}-2} \leq K\left(\alpha^{2^{*}-2}+\beta^{2^{*}-2}+\gamma^{2^{*}-2}\right)$, for $\alpha, \beta, \gamma \geq$ 0, we estimate :

$$
\begin{aligned}
& \left|\int_{\Omega} u_{-}\right| s \bar{U}_{\epsilon}+\left.t u_{-}\right|^{2^{*}-2} \bar{U}_{\epsilon} d x \mid \\
\leq & \int_{\Omega}\left|u_{-}\right|\left|s U_{\epsilon}-s z_{\epsilon}+t u_{-}\right|^{2^{*}-2} U_{\epsilon} d x+\int_{\Omega}\left|u_{-}\right|\left|s U_{\epsilon}-s z_{\epsilon}+t u_{-}\right|^{2^{*}-2}\left|z_{\epsilon}\right| d x \\
\leq & K\left\{s ^ { 2 ^ { * } - 2 } \left[\int_{\Omega}\left|u_{-}\right|\left|U_{\epsilon}\right|^{2^{*}-1} d x+\int_{\Omega}\left|u_{-}\right|\left|z_{\epsilon}\right|^{2^{*}-2} U_{\epsilon} d x+\int_{\Omega}\left|u_{-}\right|\left|z_{\epsilon}\right|\left|U_{\epsilon}\right|^{2^{*}-2} d x\right.\right. \\
& \left.\left.+\int_{\Omega}\left|z_{\epsilon}\right|^{2^{*}-1}\left|u_{-}\right| d x\right]+t^{2^{*}-2}\left[\int_{\Omega}\left|u_{-}\right|^{2^{*}-1} U_{\epsilon} d x+\int_{\Omega}\left|u_{-}\right|^{2^{*}-1}\left|z_{\epsilon}\right| d x\right]\right\}
\end{aligned}
$$

Then, by (40), (41), (44), by the bound $\left\|u_{-}\right\|_{\infty} \leq c \sum_{i=0}^{k} \sum_{\ell=1}^{N_{i}}\left\|\varphi_{i}^{\ell}\right\|_{\infty}$ and recalling that $s \leq R_{1}$, we can estimate the last term in (48):

$$
\left|\int_{0}^{1} d t \int_{\Omega} u_{-}\right| s \bar{U}_{\epsilon}+\left.t u_{-}\right|^{2^{*}-2} s \bar{U}_{\epsilon} d x \mid \leq \Psi(\epsilon)\left(c+c^{2^{*}-1}\right)
$$

where $\Psi(\epsilon)=O\left(\epsilon^{(n-2) / 2}\right)$. Thus we can write:
$I\left(s \bar{U}_{\epsilon}+u_{-}\right) \leq I\left(s \bar{U}_{\epsilon}\right)-\int_{0}^{1} t d t \int_{\Omega} u_{-}^{2}\left|s \bar{U}_{\epsilon}+t u_{-}\right|^{2^{*}-2} d x+\Psi(\epsilon)\left(c+c^{2^{*}-1}\right)-D\left(\delta-\delta_{k}\right) c^{2}$,
with $\max _{c \geq 0}\left[\Psi(\epsilon)\left(c+c^{2^{*}-1}\right)-D\left(\delta-\delta_{k}\right) c^{2}\right]=O\left(\epsilon^{n-2}\right)$. Taking into account that

$$
\begin{equation*}
\max _{t \geq 0}\left(a t-b t^{\frac{n}{n-2}}\right)=\left(\frac{n-2}{n}\right)^{\frac{n-2}{2}} \frac{2}{n} \frac{a^{n / 2}}{b^{(n-2) / 2}}, \quad \text { for all } \quad a, b>0 \tag{50}
\end{equation*}
$$

we finally obtain from (49)
$I\left(s \bar{U}_{\epsilon}+u_{-}\right) \leq \frac{1}{n}\left(\frac{\left\|\nabla \bar{U}_{\epsilon}\right\|_{2}^{2}-\delta\left\|\bar{U}_{\epsilon}\right\|_{\partial}^{2}}{\left\|\bar{U}_{\epsilon}\right\|_{2^{*}}^{2}}\right)^{\frac{n}{2}}-\int_{0}^{1} t d t \int_{\Omega} u_{-}^{2}\left|s \bar{U}_{\epsilon}+t u_{-}\right|^{2^{*}-2} d x+O\left(\epsilon^{n-2}\right)$
Now we can fix $R_{2} \gg R_{1}$ such that if $\left\|u_{-}\right\|=R_{2}$ then
$\frac{1}{n}\left(\frac{\left\|\nabla \bar{U}_{\epsilon}\right\|_{2}^{2}-\delta\left\|\bar{U}_{\epsilon}\right\|_{\partial}^{2}}{\left\|\bar{U}_{\epsilon}\right\|_{2^{*}}^{2}}\right)^{n / 2}-\int_{0}^{1} t d t \int_{\Omega} u_{-}^{2}\left|s \bar{U}_{\epsilon}+t u_{-}\right|^{2^{*}-2} d x<0 \quad$ for all $s \in\left[0, R_{1}\right]$
uniformly with respect to ϵ. Subsequently, we take ϵ sufficiently small (say $\epsilon<\bar{\epsilon}$) so that

$$
I\left(s \bar{U}_{\epsilon} \pm u_{-}\right) \leq 0 \quad \text { for }\left\|u_{-}\right\|=R_{2} \quad \text { and for all } s \in\left[0, R_{1}\right]
$$

Moreover, by the definition of I and $H_{k_{-}}$we have $I\left(u_{-}\right) \leq 0$ for every $u_{-} \in H_{k_{-}}$ whereas by definition of R_{1} we have that $I\left(R_{1} \bar{U}_{\epsilon}\right)<0$; this, combined with (49), allows to conclude that $I\left(R_{1} \bar{U}_{\epsilon}+u_{-}\right) \leq 0$ for every $\left\|u_{-}\right\| \leq R_{2}$, provided ϵ is sufficiently small. We have so proved that

$$
\alpha_{k}=\inf _{v \in \Sigma_{k}} I(v)>\sup _{v \in \partial Q_{k}} I(v)=0 .
$$

Now, by defining

$$
\Gamma_{k}=\left\{h \in C^{0}\left(H^{1}, H^{1}\right) ;\left.h\right|_{\partial Q_{k}}=I\right\}
$$

it follows, from [30, Theorem 8.4], that the number

$$
\beta_{k}=\inf _{h \in \Gamma_{k}} \sup _{v \in Q_{k}} I(h(v))
$$

is a critical value of I, whenever $\beta_{k}<S_{2}^{n / 2} / 2 n$. Since $\beta_{k} \leq \sup _{v \in Q_{k}} I(v) \equiv \bar{\beta}_{k}$, it is sufficient to prove that $\bar{\beta}_{k}<S_{2}^{n / 2} / 2 n$. To this end, we remark that the estimates (45)-(46)-(47) and (51) yield

$$
\begin{align*}
I\left(s \bar{U}_{\epsilon}+u_{-}\right) & \leq \frac{1}{n}\left(\frac{\left\|\nabla \bar{U}_{\epsilon}\right\|_{2}^{2}-\delta\left\|\bar{U}_{\epsilon}\right\|_{\partial}^{2}}{\left\|\bar{U}_{\epsilon}\right\|_{2^{*}}^{2}}\right)^{n / 2}+O\left(\epsilon^{n-2}\right) \\
& \leq \frac{1}{n}\left[\frac{S_{2}}{2^{2 / n}}-\left\{\begin{array}{ccc}
\epsilon|\log \epsilon| K^{\prime}+o(\epsilon|\log \epsilon|) & \text { if } & n=3 \\
\epsilon k\left(\delta+\gamma \frac{n-2}{2}\right)+o(\epsilon) & \text { if } & n \geq 4
\end{array}\right]^{n / 2}+O\left(\epsilon^{n-2}\right),\right. \tag{52}
\end{align*}
$$

where $k>0$. We find that indeed $\bar{\beta}_{k}<S_{2}^{n / 2} / 2 n$ provided ϵ is small enough. This completes the proof of Theorem 1.1 when $\delta_{k}<\delta<\delta_{k+1}$.

Assume now that $n \geq 4$ and $\delta=\delta_{k}$ for some $k \geq 1$. We consider first the case $n \geq 5$. In the estimate (49) the term $-D\left(\delta-\delta_{k}\right) c^{2}$ is no longer there so that (52) becomes

$$
I\left(s \bar{U}_{\epsilon}+u_{-}\right) \leq \frac{1}{n}\left[\frac{S_{2}}{2^{2 / n}}-\epsilon k\left(\delta+\gamma \frac{n-2}{2}\right)+o(\epsilon)\right]^{n / 2}+O\left(\epsilon^{\frac{n-2}{2}}\right)
$$

proving again that $\bar{\beta}_{k}<S_{2}^{n / 2} / 2 n$ for ϵ sufficiently small.
Let now $n=4$. Here $2^{*}=4$ and by arguing as in [14, Lemma 2.2] we deduce that

$$
\left|\left\|u_{-}+s \bar{U}_{\epsilon}\right\|_{4}^{4}-\left\|s \bar{U}_{\epsilon}\right\|_{4}^{4}-\left\|u_{-}\right\|_{4}^{4}\right| \leq c^{\prime}\left[\left\|s \bar{U}_{\epsilon}\right\|_{3}^{3}\left\|u_{-}\right\|_{2}+\left\|s \bar{U}_{\epsilon}\right\|_{1}\left\|u_{-}\right\|_{4}^{3}\right]
$$

which, together with (40) and (44), yields

$$
\left\|u_{-}+s \bar{U}_{\epsilon}\right\|_{4}^{4} \geq\left\|s \bar{U}_{\epsilon}\right\|_{4}^{4}+\frac{1}{2}\left\|u_{-}\right\|_{4}^{4}-c s^{4} \epsilon^{\frac{4}{3}}, \quad \text { for every } s>0
$$

Recalling that $s \leq R_{1}$ and inserting this into (48), we conclude that

$$
\begin{aligned}
& I\left(s \bar{U}_{\epsilon}+u_{-}\right) \leq \frac{s^{2}}{2}\left[\left\|\nabla \bar{U}_{\epsilon}\right\|_{2}^{2}-\delta\left\|\bar{U}_{\epsilon}\right\|_{\partial}^{2}\right]-\frac{s^{4}}{4}\left\|\bar{U}_{\epsilon}\right\|_{4}^{4}-\frac{1}{8}\left\|u_{-}\right\|_{4}^{4}+c^{\prime} \epsilon^{\frac{4}{3}} \\
\leq & \frac{1}{4}\left(\frac{\left\|\nabla \bar{U}_{\epsilon}\right\|_{2}^{2}-\delta\left\|\bar{U}_{\epsilon}\right\|_{\partial}^{2}}{\left\|\bar{U}_{\epsilon}\right\|_{4}^{2}}\right)^{2}+c^{\prime} \epsilon^{\frac{4}{3}} \leq \frac{1}{4}\left[\frac{S_{2}}{2^{1 / 2}}-\epsilon k(\delta+\gamma)+o(\epsilon)\right]^{2}+c^{\prime} \epsilon^{\frac{4}{3}} .
\end{aligned}
$$

Hence, if ϵ is sufficiently small, we obtain $\bar{\beta}_{k}<S_{2}^{2} / 8$. The proof of Theorem 1.1 is so complete also in the resonance case $\delta=\delta_{k}$, provided $n \geq 4$.
5. Proof of Theorem 1.2. In this section and in the next one, an important role is played by the explicit value of the measure of ∂B, namely

$$
\begin{equation*}
\omega_{n}:=|\partial B|=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \tag{53}
\end{equation*}
$$

For $j \geq 0$, we denote by M_{j} the eigenspace associated to δ_{j} (the Steklov eigenvalues of $-\Delta$ in B) and we define

$$
M_{+}:=\overline{\bigoplus_{j \geq 1} M_{j}} \quad \text { and } \quad M_{-}:=M_{0} \bigoplus M_{1}
$$

By Proposition 5 we have

$$
M_{0}=\operatorname{span}\left\{\varphi_{0}\right\} \quad \text { and } \quad M_{1}=\operatorname{span}\left\{\varphi_{1}^{i}\right\}_{1 \leq i \leq n},
$$

where $\varphi_{0}(x)=1$ and $\varphi_{1}^{i}(x)=x_{i}$ for $i=1, \ldots, n$ (notice that $N_{0}=1$ and $N_{1}=n$). We set

$$
\begin{equation*}
Q(u):=\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2^{*}}^{2}}, \quad K_{2}:=\sup _{M_{-}} Q(u) \tag{54}
\end{equation*}
$$

and we prove
Lemma 5.1. For any $n \geq 3, K_{2}=Q\left(\varphi_{1}^{1}\right)=\frac{\omega_{n}}{n}\left[\frac{\omega_{n-1}}{n-1} \beta\left(\frac{3 n-2}{2(n-2)}, \frac{n+1}{2}\right)\right]^{(2 / n)-1}$.
Proof. First we note that

$$
\begin{equation*}
\left\|\nabla \varphi_{1}^{i}\right\|_{2}^{2}=|B|=\frac{\omega_{n}}{n} \quad \text { for all } \quad i=1, \ldots, n, \quad\left\|\nabla \varphi_{0}\right\|_{2}^{2}=0 \tag{55}
\end{equation*}
$$

Next, take $u \in M_{1}$ so that $u(x)=\sum_{1}^{n} \alpha_{i} \varphi_{1}^{i}(x)$, where the α_{i} are the components of a real vector $\alpha \in \mathbb{R}^{n}$. We denote by $\left\{y_{i}\right\}_{1 \leq i \leq n}$ a complete orthonormal system of coordinates in \mathbb{R}^{n}, obtained as image of $\left\{x_{i}\right\}_{1 \leq i \leq n}$ through a rotation R such that $R\left(\frac{\alpha}{|\alpha|}\right)=(1,0, \ldots, 0)$. Then, in view of (13), we get

$$
Q(u)=\frac{\sum_{1}^{n} \alpha_{i}^{2}\left\|\nabla \varphi_{1}^{i}\right\|_{2}^{2}}{\left(\int_{B}\left|\sum_{1}^{n} \alpha_{i} x_{i}\right|^{2^{*}} d x\right)^{2 / 2^{*}}}=\frac{\omega_{n}|\alpha|^{2}}{n\left(\int_{B}|\alpha|^{2^{*}}\left|y_{1}\right|^{2^{*}} d y\right)^{2 / 2^{*}}}=Q\left(\varphi_{1}^{1}\right)
$$

for all $u \in M_{1}$. Similarly, one can prove that $\left\|u+t \varphi_{0}\right\|_{2^{*}}^{2^{*}}=\left\|\varphi_{1}^{1}+t \varphi_{0}\right\|_{2^{*}}^{2^{*}}$, for all $t \geq 0$ and all $u \in M_{1}$ such that $|\alpha|=1$. This, combined with (55), shows that it suffices to study the real function

$$
t \mapsto Q\left(\varphi_{1}^{1}+t \varphi_{0}\right)=\frac{1}{\left\|\varphi_{1}^{1}+t \varphi_{0}\right\|_{2^{*}}^{2}}, \quad t \geq 0
$$

and prove that it attains its maximum at $t=0$. In turn, we may consider the function

$$
g(t):=\left\|\varphi_{1}^{1}+t \varphi_{0}\right\|_{2^{*}}^{2^{*}}, \quad t \geq 0
$$

and show that

$$
\begin{equation*}
\min _{t \geq 0} g(t)=g(0) \tag{56}
\end{equation*}
$$

Writing $x=\left(x_{1}, x^{\prime}\right)$, where $x^{\prime} \in \mathbb{R}^{n-1}$, and denoting with B_{r} the ball in \mathbb{R}^{n-1} of radius r and center 0 , we deduce:

$$
\begin{aligned}
g(t) & =\int_{B}\left|x_{1}+t\right|^{2^{*}} d x=\int_{-1}^{1} \int_{B_{\left(1-x_{1}^{2}\right)^{1 / 2}}}\left|x_{1}+t\right|^{2^{*}} d x^{\prime} d x_{1} \\
& =\frac{\omega_{n-1}}{n-1} \int_{-1}^{1}\left|x_{1}+t\right|^{2^{*}}\left(1-x_{1}^{2}\right)^{\frac{n-1}{2}} d x_{1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& g^{\prime}(t)=\frac{2^{*} \omega_{n-1}}{n-1} \int_{-1}^{1}\left|x_{1}+t\right|^{2^{*}-2}\left(x_{1}+t\right)\left(1-x_{1}^{2}\right)^{\frac{n-1}{2}} d x_{1} \\
& g^{\prime \prime}(t)=\frac{2^{*}\left(2^{*}-1\right) \omega_{n-1}}{n-1} \int_{-1}^{1}\left|x_{1}+t\right|^{2^{*}-2}\left(1-x_{1}^{2}\right)^{\frac{n-1}{2}} d x_{1}
\end{aligned}
$$

This readily shows that $g^{\prime}(0)=0$ and $g^{\prime \prime}(t)>0$ for all $t \geq 0$; and this proves that $g^{\prime}(t)>0$ for all $t>0$ so that (56) follows.
Lemma 5.2. Let K_{2} be as in (54). If

$$
\begin{equation*}
\delta>1-\frac{S_{2}}{2^{2 / n} K_{2}}, \tag{57}
\end{equation*}
$$

then

$$
\mu:=\sup _{u \in M_{-}} I(u)<\frac{S_{2}^{n / 2}}{2 n}
$$

Moreover, there exist $\rho, \eta>0$ such that

$$
I(u) \geq \eta, \quad \text { for all } \quad u \in M_{+} \oplus H_{0}^{1}(B): \quad\|u\|=\rho
$$

Proof. Let $u \in M_{-}$and let K_{2} be as in (54). Since $\delta_{1}=1$ (see Proposition 5), we have

$$
\begin{aligned}
I(u) & =\frac{1}{2}\left(\|\nabla u\|_{2}^{2}-\delta\|u\|_{\partial}^{2}\right)-\frac{1}{2^{*}}\|u\|_{2^{*}}^{2^{*}} \leq \frac{1-\delta}{2}\|\nabla u\|_{2}^{2}-\frac{1}{2^{*}}\|u\|_{2^{*}}^{2^{*}} \\
& \leq \frac{1-\delta}{2} K_{2}\|u\|_{2^{*}}^{2}-\frac{1}{2^{*}}\|u\|_{2^{*}}^{2^{*}} \leq \frac{(1-\delta)^{n / 2} K_{2}^{n / 2}}{n}
\end{aligned}
$$

where the last inequality follows from (50). Therefore,

$$
\mu \leq \frac{(1-\delta)^{n / 2} K_{2}^{n / 2}}{n}<\frac{S_{2}^{n / 2}}{2 n}
$$

where the second inequality is ensured by (57).

Next, notice that for all $u \in M_{+} \oplus H_{0}^{1}(B)$ we have

$$
I(u)=\frac{1-\delta}{4}\|u\|^{2}+\frac{1+\delta}{4}\left(\|\nabla u\|_{2}^{2}-\|u\|_{\partial}^{2}\right)-\frac{1}{2^{*}}\|u\|_{2^{*}}^{2^{*}} \geq \frac{1-\delta}{4}\|u\|^{2}-C\|u\|^{2^{*}},
$$

for some $C>0$, according to (19). Therefore, the existence of $\rho, \eta>0$ as in the statement follows.

Let K_{2} be as in (54). By Lemma 5.1, we have

$$
K_{2}=Q\left(\varphi_{1}^{1}\right)=\frac{\omega_{n}}{n\left(\int_{B}\left|y_{1}\right|^{2^{*}} d y\right)^{2 / 2^{*}}}
$$

Notice that

$$
\int_{B}\left|y_{1}\right|^{2^{*}} d y=\int_{-1}^{1} \int_{B_{\left(1-y_{1}^{2}\right)^{1 / 2}}}\left|y_{1}\right|^{2^{*}} d y^{\prime} d y_{1}=\frac{\omega_{n-1}}{n-1} \beta\left(\frac{3 n-2}{2(n-2)}, \frac{n+1}{2}\right)
$$

so, by using (53) and exploiting the properties of the beta functions, we deduce that

$$
K_{2}=\frac{2 \pi}{n \Gamma\left(\frac{n}{2}\right)}\left[\frac{n^{2} \sqrt{\pi} \Gamma\left(\frac{n^{2}}{2(n-2)}\right)}{(n+2) \Gamma\left(\frac{n+2}{2(n-2)}\right)}\right]^{1-2 / n}
$$

Lemma 5.2 allows us to apply a result by Bartolo-Benci-Fortunato [5, Theorem 2.4] from which we deduce that, if $1-\delta<S_{2} /\left(2^{2 / n} K_{2}\right)$, then I admits at least n (the multiplicity of δ_{1}) pairs of critical points at levels below $S_{2}^{n / 2} / 2 n$. Set $h(n):=$ $S_{2} /\left(2^{2 / n} K_{2}\right)$ and compute, using (18), to obtain (5).
6. Proof of Theorem 1.3. For $j \geq 1$, we denote by M_{j} the eigenspace associated to d_{j}, where the d_{j} 's are the positive Steklov eigenvalues of Δ^{2} in the ball and we define

$$
M_{+}:=\overline{\bigoplus_{j \geq 2} M_{j}} \quad \text { and } \quad M_{-}:=M_{1} \bigoplus M_{2}
$$

By Proposition 7 we have

$$
M_{1}=\operatorname{span}\left\{\phi_{1}\right\} \quad \text { and } \quad M_{2}=\operatorname{span}\left\{\phi_{2}^{i}\right\}_{1 \leq i \leq n}
$$

where $\phi_{1}(x)=\left(1-|x|^{2}\right)$ and $\phi_{2}^{i}(x)=x_{i}\left(1-|x|^{2}\right)$ for $i=1, \ldots, n$. We set

$$
\begin{equation*}
Q(u):=\frac{\|\Delta u\|_{2}^{2}}{\|u\|_{2_{*}}^{2}}, \quad K_{4}:=\sup _{M_{-}} Q(u) \tag{58}
\end{equation*}
$$

and we prove
Lemma 6.1. If $n=5,6,8$, then $K_{4}=Q\left(\phi_{2}^{1}\right)$ and

$$
K_{4}=\frac{4(n+2) \omega_{n}}{n}\left[\frac{\omega_{n-2}}{2} \beta\left(\frac{n-1}{2}, \frac{3 n-4}{n-4}\right) \beta\left(\frac{3 n-4}{2(n-4)}, \frac{n^{2}+n-4}{2(n-4)}\right)\right]^{(4 / n)-1} .
$$

Proof. First we note that

$$
\begin{equation*}
\left\|\Delta \phi_{2}^{i}\right\|_{2}^{2}=4 \frac{n+2}{n} \omega_{n} \quad \text { for all } \quad i=1, \ldots, n, \quad\left\|\Delta \phi_{1}\right\|_{2}^{2}=4 n \omega_{n} \tag{59}
\end{equation*}
$$

Next, let $u \in M_{2}$ so that $u(x)=\sum_{1}^{n} \alpha_{i} \phi_{2}^{i}(x)$, where the α_{i} are the components of a real vector $\alpha \in \mathbb{R}^{n}$. We denote by $\left\{y_{i}\right\}_{1 \leq i \leq n}$ a complete orthonormal system of
coordinates in \mathbb{R}^{n}, obtained as image of $\left\{x_{i}\right\}_{1 \leq i \leq n}$ through a rotation R such that $R\left(\frac{\alpha}{|\alpha|}\right)=(1,0, \ldots, 0)$. Then, we get

$$
Q(u)=\frac{\sum_{1}^{n} \alpha_{i}^{2}\left\|\Delta \phi_{2}^{i}\right\|_{2}^{2}}{\left(\int_{B}\left|\sum_{1}^{n} \alpha_{i} x_{i}\right|^{2_{*}}\left(1-|x|^{2}\right)^{2_{*}}\right)^{2 / 2_{*}}}=\frac{4 \frac{n+2}{n} \omega_{n}|\alpha|^{2}}{\left(\int_{B}\left|\alpha y_{1}\right|^{2_{*}}\left(1-|y|^{2}\right)^{2_{*}}\right)^{2 / 2_{*}}}=Q\left(\phi_{2}^{1}\right)
$$

for all $u \in M_{2}$. Similarly, one can prove that $\left\|u+t \phi_{1}\right\|_{2_{*}}^{2_{*}}=\left\|\phi_{2}^{1}+t \phi_{1}\right\|_{2_{*}^{*}}^{2_{*}}$, for all $t \geq 0$ and all $u \in M_{2}$ such that $|\alpha|=1$. This, combined with (59), shows that it suffices to study the real function

$$
f(t)=Q\left(\phi_{2}^{1}+t \phi_{1}\right)=\frac{\left\|\Delta \phi_{2}^{1}\right\|_{2}^{2}+t^{2}\left\|\Delta \phi_{1}\right\|_{2}^{2}}{\left\|\phi_{2}^{1}+t \phi_{1}\right\|_{2_{*}}^{2}}, \quad t \geq 0
$$

and prove that

$$
\begin{equation*}
\max _{t \geq 0} f(t)=f(0) \tag{60}
\end{equation*}
$$

Let us simplify (60). Writing $x=\left(x_{1}, x^{\prime}\right)$, where $x^{\prime} \in \mathbb{R}^{n-1}$, and denoting with B_{r} the ball in \mathbb{R}^{n-1} of radius r and center 0 , we deduce:

$$
\begin{aligned}
& \left\|\phi_{2}^{1}+t \phi_{1}\right\|_{2_{*}}^{2_{*}}=\int_{B}\left(1-|x|^{2}\right)^{2_{*}}\left|x_{1}+t\right|^{2_{*}} d x \\
= & \int_{-1}^{1} \int_{B_{\left(1-x_{1}^{2}\right)^{1 / 2}}}\left(1-x_{1}^{2}-\left|x^{\prime}\right|^{2}\right)^{2_{*}}\left|x_{1}+t\right|^{2_{*}} d x^{\prime} d x_{1} \\
= & \omega_{n-1}\left(\int_{-1}^{1}\left|x_{1}+t\right|^{2_{*}} \int_{0}^{\left(1-x_{1}^{2}\right)^{1 / 2}}\left(1-x_{1}^{2}-\rho^{2}\right)^{2_{*}} \rho^{n-2} d \rho d x_{1}\right)\left[\rho=\left(1-x_{1}^{2}\right)^{1 / 2} r\right] \\
= & \omega_{n-1}\left(\int_{-1}^{1}\left|x_{1}+t\right|^{2 *}\left(1-x_{1}^{2}\right)^{2_{*}+(n-1) / 2} d x_{1}\right)\left(\int_{0}^{1}\left(1-r^{2}\right)^{2_{*}} r^{n-2} d r\right) \\
= & \frac{\omega_{n-1}}{2} \beta\left(\frac{n-1}{2}, \frac{3 n-4}{n-4}\right)\left(\int_{-1}^{1}|s+t|^{2_{*}}\left(1-s^{2}\right)^{\frac{n^{2}-n+4}{2(n-4)}} d s\right) \\
= & : \frac{\omega_{n-1}}{2} \beta\left(\frac{n-1}{2}, \frac{3 n-4}{n-4}\right) \varphi(t) .
\end{aligned}
$$

We have so found that $f(t)=C_{n} F(t)$, where $C_{n}=\frac{8 \omega_{n}}{n 2^{4 / n}\left(\omega_{n-1} \beta\left(\frac{n-1}{2}, \frac{3 n-4}{n-4}\right)\right)^{2 / 2 *}}$ and

$$
F(t)=\frac{n+2+n^{2} t^{2}}{(\varphi(t))^{2 / 2_{*}}}
$$

The claim 60 becomes

$$
\begin{equation*}
\max _{t \geq 0} F(t)=F(0) \tag{61}
\end{equation*}
$$

When $n=5,6,8$, the number 2_{*} is an even integer so that we may expand the term $|s+t|^{2_{*}}$ and write φ as a polynomial.

Case $n=5$. Here, $2_{*}=10$ and

$$
\begin{aligned}
\varphi(t) & =\int_{-1}^{1}(s+t)^{10}\left(1-s^{2}\right)^{12} d s=\sum_{k=0}^{10}\binom{10}{k} t^{k} \int_{-1}^{1} s^{10-k}\left(1-s^{2}\right)^{12} d s \\
& =\frac{\beta\left(\frac{1}{2}, 13\right)}{29667}\left(1+175 t^{2}+3850 t^{4}+23870 t^{6}+49445 t^{8}+29667 t^{10}\right)
\end{aligned}
$$

so that

$$
F(t)=C_{5} \frac{7+25 t^{2}}{\left(1+175 t^{2}+3850 t^{4}+23870 t^{6}+49445 t^{8}+29667 t^{10}\right)^{\frac{1}{5}}},
$$

where $C_{5}:=\left(\frac{29667}{\beta\left(\frac{1}{2}, 13\right)}\right)^{\frac{1}{5}}$. Let now

$$
\widetilde{F}(t):=\frac{F(\sqrt{t})}{C_{5}}=\frac{7+25 t}{\left(1+175 t+3850 t^{2}+23870 t^{3}+49445 t^{4}+29667 t^{5}\right)^{\frac{1}{5}}}
$$

so that by direct computations we get

$$
\widetilde{F}^{\prime}(t)=4 \frac{9889 t^{4}-9548 t^{3}-10626 t^{2}-1820 t-55}{\left(1+175 t+3850 t^{2}+23870 t^{3}+49445 t^{4}+29667 t^{5}\right)^{\frac{6}{5}}}
$$

Consider the function

$$
g(t):=9889 t^{4}-9548 t^{3}-10626 t^{2}-1820 t-55, \quad t \geq 0
$$

we have $g^{\prime}(t)=4\left(9889 t^{3}-7161 t^{2}-5313 t-455\right)$ and $g^{\prime \prime}(t)=132\left(161 t^{2}-434 t\right.$ -899). Therefore there exists a unique $\bar{t}>0$ such that

$$
g^{\prime \prime}(t)<0 \quad \text { if } \quad t<\bar{t}, \quad g^{\prime \prime}(\bar{t})=0, \quad g^{\prime \prime}(t)>0 \quad \text { if } \quad t>\bar{t}
$$

This, together with $g^{\prime}(0)<0$ and $\lim _{t \rightarrow+\infty} g^{\prime}(t)=+\infty$, shows that g^{\prime} has a global minimum at \bar{t} and $g^{\prime}(\bar{t})<0$. Hence, there exists a unique $\sigma>\bar{t}$ such that

$$
g^{\prime}(t)<0 \quad \text { if } \quad t<\sigma, \quad g^{\prime}(\sigma)=0, \quad g^{\prime}(t)>0 \quad \text { if } \quad t>\sigma
$$

Similarly, since $g(0)<0$ and $\lim _{t \rightarrow+\infty} g(t)=+\infty$, we know that g has a global minimum at σ and $g(\sigma)<0$. This proves that there exists a unique $\tau>\sigma$ such that

$$
g(t)<0 \quad \text { if } \quad t<\tau, \quad g(\tau)=0, \quad g(t)>0 \quad \text { if } \quad t>\tau
$$

Finally, this shows that \widetilde{F} has a global minimum at τ, whereas F has a global minimum at $\sqrt{\tau}$. Since $F(0)=7 C_{5}>\lim _{t \rightarrow+\infty} F(t)=25 C_{5}(29667)^{-1 / 5}$, this proves that (61) holds when $n=5$.

Case $n=6$. Here $2_{*}=6$,

$$
\varphi(t)=\int_{-1}^{1}(s+t)^{6}\left(1-s^{2}\right)^{\frac{17}{2}} d s=\frac{\beta\left(\frac{1}{2}, \frac{19}{2}\right)}{704}\left(1+72 t^{2}+528 t^{4}+704 t^{6}\right)
$$

and

$$
F(t)=C_{6} \frac{8+36 t^{2}}{\left(1+72 t^{2}+528 t^{4}+704 t^{6}\right)^{\frac{1}{3}}}
$$

where $C_{6}:=\left(\frac{704}{\beta\left(\frac{1}{2}, \frac{19}{2}\right)}\right)^{\frac{1}{3}}$. To simplify further, we set

$$
\widetilde{F}(t):=\frac{F(\sqrt{t} / 2)}{C_{6}}=\frac{8+9 t}{\left(1+18 t+33 t^{2}+11 t^{3}\right)^{\frac{1}{3}}}
$$

and we compute

$$
\widetilde{F}^{\prime}(t)=\frac{11 t^{2}-68 t-39}{\left(1+18 t+33 t^{2}+11 t^{3}\right)^{\frac{4}{3}}} .
$$

This shows that F has a global minimum for $t=\bar{t}>0$ and no local maximum for $t>0$. Hence, since $F(0)=8 C_{6}>\lim _{t \rightarrow+\infty} F(t)=36 C_{6}(704)^{-1 / 3}$, we conclude that (61) holds when $n=6$.

Case $n=8$. Here $2_{*}=4$,

$$
\varphi(t)=\int_{-1}^{1}(s+t)^{4}\left(1-s^{2}\right)^{\frac{15}{2}} d s=\frac{\beta\left(\frac{1}{2}, \frac{17}{2}\right)}{120}\left(1+40 t^{2}+120 t^{4}\right)
$$

and

$$
F(t)=C_{8} \frac{10+64 t^{2}}{\left(1+40 t^{2}+120 t^{4}\right)^{\frac{1}{2}}},
$$

where $C_{8}:=\left(\frac{120}{\beta\left(\frac{1}{2}, \frac{17}{2}\right)}\right)^{\frac{1}{2}}$. Consider

$$
\widetilde{F}(t)=: \frac{F(\sqrt{t / 2})}{2 C_{8}}=\frac{5+16 t}{\left(1+20 t+30 t^{2}\right)^{\frac{1}{2}}}
$$

we have

$$
\widetilde{F}^{\prime}(t)=2 \frac{5 t-17}{\left(1+20 t+30 t^{2}\right)^{\frac{3}{2}}}
$$

Coming back to the function F, this means that F has a global minimum for $t=\bar{t}>0$ and no local maximum for $t>0$. Thus, since $F(0)=10 C_{8}>\lim _{t \rightarrow+\infty} F(t)=$ $64 C_{8}(120)^{-1 / 2}$, we conclude that (61) holds also when $n=8$.
Lemma 6.2. Let K_{4} be as in (58). If

$$
d>n+2-\frac{n+2}{K_{4}} S_{4}
$$

then

$$
\mu:=\sup _{u \in M_{-}} J(u)<\frac{2}{n} S_{4}^{n / 4}
$$

Moreover, there exist $\rho, \eta>0$ such that

$$
J(u) \geq \eta, \quad \text { for all } \quad u \in M_{+} \oplus H_{0}^{2}(B): \quad\|\Delta u\|_{2}=\rho
$$

Proof. Let $u \in M_{-}$. Since $d_{2}=n+2$ (see Proposition 7), we have

$$
\begin{aligned}
J(u) & =\frac{1}{2}\left(\|\Delta u\|_{2}^{2}-d\|u\|_{\partial_{\nu}}^{2}\right)-\frac{1}{2_{*}}\|u\|_{2_{*}}^{2_{*}} \leq \frac{1}{2}\left(\frac{n+2-d}{n+2}\right)\|\Delta u\|_{2}^{2}-\frac{1}{2_{*}}\|u\|_{2_{*}}^{2_{*}} \\
& \leq \frac{1}{2}\left(\frac{n+2-d}{n+2}\right) K_{4}\|u\|_{2_{*}}^{2}-\frac{1}{2_{*}}\|u\|_{2_{*}}^{2_{*}} \leq \frac{2}{n}\left(\frac{n+2-d}{n+2} K_{4}\right)^{\frac{n}{4}},
\end{aligned}
$$

where the last inequality follows from

$$
\max _{s \geq 0}\left(a s-b s^{\frac{n}{n-4}}\right)=\left(\frac{n-4}{n}\right)^{\frac{n-4}{4}} \frac{4}{n} \frac{a^{n / 4}}{b^{(n-4) / 4}}, \quad \text { for all } \quad a, b>0
$$

Therefore,

$$
\mu \leq \frac{2}{n}\left(\frac{n+2-d}{n+2} K_{4}\right)^{\frac{n}{4}}
$$

To conclude we observe that $\mu<\frac{2}{n} S_{4}^{\frac{n}{4}}$ for $n+2-d<\frac{S_{4}(n+2)}{K_{4}}$. Let now $u \in$ $M_{+} \oplus H_{0}^{2}(B)$ and $\rho=S_{4}^{\frac{n}{8}}\left(\frac{n+2-d}{n+2}\right)^{\frac{n-4}{8}}$, for $\|\Delta u\|_{2}=\rho$ we have

$$
J(u) \geq \frac{1}{2}\left(\frac{n+2-d}{n+2}\right)\|\Delta u\|_{2}^{2}-\frac{1}{2_{*} S_{4}^{n /(n-4)}}\|\Delta u\|_{2}^{2 *}=\frac{2}{n}\left(\frac{n+2-d}{n+2} S_{4}\right)^{\frac{n}{4}}=: \eta
$$

The proof is now complete.

Lemma 6.2 allows us to apply [5, Theorem 2.4] from which we deduce that, if $n+2-d<S_{4}(n+2) / K_{4}$, then J admits at least n (the multiplicity of d_{2}) pairs of critical points at levels below $(2 / n) S_{4}^{n / 4}$. Set $g(n):=\frac{S_{4}(n+2)}{K_{4}}$ and, using (30) and (53), compute to obtain (7).
7. Remarks on Theorem 1.3 in general dimensions. As already mentioned, we do not have a proof of Theorem 1.3 in general dimensions $n \geq 5$. However, we make the following

Conjecture 1. Assume that $\Omega=B$, the unit ball of \mathbb{R}^{n} with $n \geq 5$. If $d \in$ ($n+2-g(n), n+2$), problem (6) admits at least n pairs of nontrivial solutions.

Let us explain the three main reasons why we believe this conjecture to be true. First, we notice that what is missing for the proof of this conjecture is Lemma 6.1. In turn, this reduces to show that $F(0) \geq F(t)$, for every $t \geq 0$, or that $G(t) \geq 0$, where
$G(t):=(n+2)^{\frac{n}{n-4}} \varphi(t)-\varphi(0)\left(n+2+n^{2} t^{2}\right)^{\frac{n}{n-4}}=(n+2)^{\frac{n}{n-4}} \varphi(t)-b\left(n+2+n^{2} t^{2}\right)^{\frac{n}{n-4}}$
and $b:=\beta\left(\frac{3 n-4}{2(n-4)}, \frac{n^{2}+n-4}{2(n-4)}\right)$.
We can prove this property only locally:
Lemma 7.1. For any $n \geq 5$, we have $G(0)=G^{\prime}(0)=0$ and $G^{\prime \prime}(0)>0$.
Proof. Consider first the function φ. We have

$$
\begin{gathered}
\varphi^{\prime}(t)=2_{*} \int_{-1}^{1}|s+t|^{2_{*}-2}(s+t)\left(1-s^{2}\right)^{a} d s>0 \quad \text { for } t>0 \quad \text { and } \varphi^{\prime}(0)=0 \\
\varphi^{\prime \prime}(t)=2_{*}\left(2_{*}-1\right) \int_{-1}^{1}|s+t|^{2_{*}-2}\left(1-s^{2}\right)^{a} d s>0 \quad \text { for } t \geq 0
\end{gathered}
$$

where $a:=\frac{n^{2}-n+4}{2(n-4)}$. Thus φ is an increasing and convex function. Since

$$
G^{\prime}(t)=(n+2)^{\frac{n}{n-4}} \varphi^{\prime}(t)-b 2_{*} n^{2} t\left(n+2+n^{2} t^{2}\right)^{\frac{4}{n-4}}
$$

we have $G(0)=G^{\prime}(0)=0$. On the other hand,

$$
G^{\prime \prime}(t)=(n+2)^{\frac{n}{n-4}} \varphi^{\prime \prime}(t)-b 2_{*} n^{2}\left(n+2+n^{2} t^{2}\right)^{\frac{8-n}{n-4}}\left(n+2+n^{2} t^{2}+4 n 2_{*} t^{2}\right)
$$

so that

$$
G^{\prime \prime}(0)=(n+2)^{\frac{n}{n-4}} \varphi^{\prime \prime}(0)-b 2_{*} n^{2}(n+2)^{\frac{4}{n-4}}=\frac{8 n^{2}(n+2)^{\frac{4}{n-4}}(2 n+1)}{(n-4)^{2}} b>0
$$

where in the last step we exploited the property $\beta(p+1, q)=\frac{p}{p+q} \beta(p, q)$ to deduce that

$$
\varphi^{\prime \prime}(0)=2_{*}\left(2_{*}-1\right) \beta\left(\frac{n+4}{2(n-4)}, \frac{n^{2}+n-4}{2(n-4)}\right)=2_{*}\left(2_{*}-1\right) \frac{n(n+2)}{n+4} b .
$$

The second argument which brings some evidence in favor of Conjecture 1 is that, although we cannot prove (61), we have

Lemma 7.2. There exists $n_{0} \in \mathbb{N}$ such that $F(0)>\lim _{t \rightarrow+\infty} F(t)$, for all $n \geq n_{0}$.

Proof. As $n \rightarrow+\infty$ we have

$$
\begin{aligned}
& F(0)=\frac{n+2}{\left[2 \int_{0}^{1} s^{2 *}\left(1-s^{2}\right)^{\frac{n^{2}-n+4}{2(n-4)}} d s\right]^{2 / 2_{*}}} \sim \frac{n}{2 \int_{0}^{1} s^{2}\left(1-s^{2}\right)^{n / 2} d s} \\
& \lim _{t \rightarrow+\infty} F(t)=\frac{n^{2}}{\left[2 \int_{0}^{1}\left(1-s^{2}\right)^{\frac{n^{2}-n+4}{2(n-4)}} d s\right]^{2 / 2_{*}}} \sim \frac{n^{2}}{2 \int_{0}^{1}\left(1-s^{2}\right)^{n / 2} d s}
\end{aligned}
$$

An integration by parts shows that

$$
\int_{0}^{1} s^{2}\left(1-s^{2}\right)^{n / 2} d s=\frac{1}{n+2} \int_{0}^{1}\left(1-s^{2}\right)^{n / 2+1} d s<\frac{1}{n} \int_{0}^{1}\left(1-s^{2}\right)^{n / 2} d s
$$

and the statement follows.
The last argument which brings some evidence to Conjecture 1 are the numerical plots (obtained with Mathematica) of the functions G defined in (62) when $n=$ $7,9,10, \ldots, 20$. Not only it seems that $G(t) \geq 0$ for all $t \geq 0$ but also that G is increasing and convex.

REFERENCES

[1] Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, Quaderni Sc. Norm. Sup. Pisa, (1991), 9-25.
[2] Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in $\mathbb{R}^{n}(n \geq 4)$ with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), 275-284.
[3] Adimurthi and S. L. Yadava, Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents, Arch. Ration. Mech. Anal., 115 (1991), 275296.
[4] G. E. Andrews, R. Askey and R. Roy, "Special Functions," Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, 1999.
[5] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
[6] E. Berchio and F. Gazzola, Best constants and minimizers for embeddings of second order Sobolev spaces, J. Math. Anal. Appl., 320 (2006), 718-735.
[7] E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Diff. Eq., 229 (2006), 1-23.
[8] E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Diff. Eq., 12 (2007), 381-406.
[9] M. Berger, P. Gauduchon and E. Mazet, "hLe spectre d'une variété Riemannienne," Lecture Notes Math. Springer, 194 (1971).
[10] H. Brezis, Nonlinear elliptic equations involving the critical Sobolev exponent - Survey and perspectives, Directions in "Partial Differential Equations" (Madison, WI), (1985), 17-36, Publ. Math. Res. Center Univ. Wisconsin, 54 (1987).
[11] H. Brezis and T. Kato, Remarks on the Schrodinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.
[12] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
[13] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
[14] A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré A.N.L., 6 (1985), 463-470.
[15] M. Comte and M. C. Knaap, Solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary conditions, Manuscripta Math., 69 (1990), 43-70.
[16] M. Comte and M. C. Knaap, Existence of solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary condition in general domains, Diff. Int. Eq., 4 (1991), 1133-1146.
[17] A. Ferrero, F. Gazzola and T. Weth, On a fourth order Steklov eigenvalue problem, Analysis, 25 (2005), 315-332.
[18] F. Gazzola and B. Ruf, Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Diff. Eq., 2 (1997), 555-572.
[19] Y. Kabeya, E. Yanagida and S. Yotsutani, Global structure of solutions for equations of Brezis-Nirenberg type on the unit ball, Proc. Roy. Soc. Edinburgh Sect., 131 (2001), 647-665.
[20] C. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, in "Harmonic Analysis and Partial Differential Equations" (El Escorial, 1987), 69-90, Lect. Notes Math. 1384, Springer, (1989).
[21] J. R. Kuttler, Remarks on a Stekloff eigenvalue problem, SIAM J. Numer. Anal., 9 (1972), 1-5.
[22] Y. Y. Li and M. Zhu, Sharp Sobolev trace inequality on Riemannian manifolds with boundary, Comm. Pure Appl. Math., 50 (1997), 449-487.
[23] E. Mitidieri, A Rellich type identity and applications, Comm. Part. Diff. Eq., 18 (1993), 125-151.
[24] L. E. Payne, Some isoperimetric inequalities for harmonic functions, SIAM J. Math. Anal., 1 (1970), 354-359.
[25] D. Pierotti and S. Terracini, On a Neumann problem with critical exponent and critical nonlinearity on the boundary, Comm. Part. Diff. Eq., 20 (1995), 1155-1187.
[26] S. J. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Doklady, 6 (1965), 1408-1411.
[27] S. J. Pohozaev, On the eigenfunctions of quasilinear elliptic problems, Math. Sbornik, 82 (1970), 171-188 (first published in russian on Math. USSR Sbornik 11, 1970).
[28] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 1681-703.
[29] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS-AMS, 65 (1986).
[30] M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems," Springer-Verlag, Berlin-Heidelberg, 1990.
[31] C. A. Swanson, The best Sobolev constan, Appl. Anal., 47 (1992), 227-239.
[32] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponent, J. Diff. Eq., 93 (1991), 283-310.

Received January 2008; revised July 2008.
E-mail address: elvise.berchio@eco.unipmn.it
E-mail address: filippo.gazzola@polimi.it
E-mail address: dario.pierotti@polimi.it

[^0]: 2000 Mathematics Subject Classification. Primary: 35J20, 35J35; Secondary: 35J40.
 Key words and phrases. Critical growth, nodal solutions, Steklov.

