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Abstract. We study elliptic problems at critical growth under Steklov bound-
ary conditions in bounded domains. For a second order problem we prove
existence of nontrivial nodal solutions. These are obtained by combining a
suitable linking argument with fine estimates on the concentration of Sobolev
minimizers on the boundary. When the domain is the unit ball, we obtain
a multiplicity result by taking advantage of the explicit form of the Steklov
eigenfunctions. We also partially extend the results in the ball to the case of
fourth order Steklov boundary value problems.

1. Introduction and results. In a celebrated paper, Pohozaev [26] proved that
the semilinear elliptic equation

− ∆u = |u|2∗−2u in Ω (1)

admits no positive solutions in a bounded smooth starshaped domain Ω ⊂ R
n (n ≥

3) under homogeneous Dirichlet boundary conditions. In fact, in these domains,
Pohozaev’s identity combined with the unique continuation property rules out also
the existence of nodal solutions (see [20]) so that (1) admits only the trivial solution
u ≡ 0. Here 2∗ = 2n

n−2 denotes the critical exponent for the embedding H1(Ω) ⊂
L2∗

(Ω). Since then, in order to obtain existence results for the Dirichlet problem
associated to (1), many attempts were made to modify the geometry (topology) of

the domain Ω or to perturb the critical nonlinearity |u|2∗−2u in (1). It appears an
impossible task to exhaust all the related literature. In these papers, existence of
nontrivial solutions to (1) was obtained.

Brezis [10, Section 6.4] suggested to study (1) under Neumann boundary condi-
tions:

uν = 0 on ∂Ω (2)

where uν denotes the outer normal derivative of u on ∂Ω. In fact, problem (1)-(2) is
a particular case of the following (second order) elliptic problem with purely critical
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growth and Steklov boundary conditions:
{

−∆u = |u|2∗−2u in Ω
uν = δu on ∂Ω.

(3)

Here, δ ∈ R and (3) becomes the Neumann problem when δ = 0 whereas it tends
to the Dirichlet problem as δ → −∞. We say that a function u ∈ H1(Ω) is a weak
solution of (3) if

∫

Ω

∇u∇v − δ

∫

∂Ω

uv =

∫

Ω

|u|2∗−2uv for all v ∈ H1(Ω) .

It can be shown that weak solutions are in fact strong (classical) solutions, see
[11]. As far as we are aware, existence results for (3) have been obtained only for
δ ≤ 0. In this respect, a crucial role is played by the maximal mean curvature of
the boundary, namely

Hmax := max
x∈∂Ω

H(x), (4)

where H(x) is the mean curvature of ∂Ω at x. We collect some known results in
the following statement:

Proposition 1. [1, 15, 16] Let Ω ⊂ R
n (n ≥ 3) be a smooth bounded domain.

(i) If δ ∈
(

2−n
2 Hmax, 0

)
, then (3) admits a positive solution.

(ii) If δ ≥ 0, then (3) admits no positive solutions.
(iii) If δ = 0 and n ≥ 4, then (3) admits a nontrivial nodal solution.
(iv) If δ = 0, n = 3 and Ω is symmetric with respect to a plane, then (3) admits

a nontrivial nodal solution.

One of the purposes of the present paper is to study the case where δ > 0. We
prove

Theorem 1.1. Let Ω ⊂ R
n (n ≥ 3) be a smooth bounded domain and let {δi}i≥0

be the sequence of positive Steklov eigenvalues (see Proposition 4). Then problem
(3) admits a pair of nontrivial nodal solutions for all δ > 0 if n ≥ 4, and for all
δ > 0 with δ 6= δi if n = 3.

We conjecture that if n = 3 and δ = δi the existence of solutions might depend
on the domain and that any possible solution (if ever) should be at high energy
level.

The difference between the cases δ < 0 and δ ≥ 0 relies on the geometric proper-
ties of the related action functional. The variational characterization of its critical
points is of mountain-pass type in the first case and of linking type in the lat-
ter. And, as far as linking arguments are required, it is well-known that in order
to lower the energy level of Palais-Smale sequences one needs to estimate “mixed
terms” which are difficult to bound, see [14, 18]. To overcome this difficulty, in our
proof we adapt ideas from [2, 3, 14, 18, 25] and combine a careful estimate of the
mixed critical growth term with concentration phenomena of Sobolev minimizers
on ∂Ω.

When Ω = B (the unit ball), the previous results may be improved. The next
(known) statement shows that the lower bound δ > 2−n

2 Hmax in Proposition 1 is
not sharp:

Proposition 2. [15, 32] Let Ω = B (the unit ball of R
n, n ≥ 3), then:

(i) If δ ≤ 2 − n, then (3) admits no positive radial solutions.
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(ii) If δ ∈ (2 − n, 0), then (3) admits a unique positive radial solution uδ which
is explicitly given by

uδ(x) =
[n(n− 2)Cδ,n]

n−2
4

(Cδ,n + |x|2)n−2
2

,

where Cδ,n := 2−n
δ − 1.

(iii) If δ = 0, then (3) admits infinitely many solutions.

In the unit ball, Theorem 1.1 states (in particular) that (3) has nontrivial solu-
tions for all δ ∈ (0, 1). We improve this statement with a multiplicity result. For
all n ≥ 3, we put

h(n) := (n− 2)

[
n2

Γ(n)

]2/n [
Γ(n

2 )

2

]1+2/n
[

(n+ 2)Γ( n+2
2(n−2) )√

π Γ( n2

2(n−2) )

]1−2/n

, (5)

and we prove

Theorem 1.2. Assume that Ω = B (the unit ball of R
n, n ≥ 3). If δ ∈ (1−h(n), 1),

then problem (3) admits at least n pairs of nontrivial nodal solutions.

Figure 1 displays the plot of the function h = h(n).
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Figure 1: the map h = h(n).

In particular, since h(n) > 1 for all n ≥ 5, Theorem 1.2 yields nontrivial nodal
solutions also for some values of δ < 0. Clearly, nodal solutions cannot be radi-
ally symmetric since then they would solve the Dirichlet problem for (1) in the
smaller ball defined by the nodal region containing the origin, against Pohozaev
nonexistence result.

A further goal of this paper is to highlight the nonstandard variational structure
of (3). The space spanned by the eigenfunctions of the linear boundary value
problem does not exhaust all the functional space under consideration. Therefore,
the linking argument used for its study has a more complicated behaviour. We
collect the main properties concerning the linear Steklov (second and fourth order)
problem in Section 2.

The last main objective of the present work is the comparison between the vari-
ational structure of (3) and that of the corresponding fourth order critical growth
problem {

∆2u = |u|2∗−2u in Ω
u = 0, ∆u = duν on ∂Ω

(6)

where Ω ⊂ R
n (n ≥ 5) is a smooth bounded domain, d ∈ R and 2∗ = 2n

n−4 is

the critical Sobolev exponent for the embedding H2(Ω) ⊂ L2∗(Ω). We say that a
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function u ∈ H2 ∩H1
0 (Ω) is a weak solution of (6) if

∫

Ω

∆u∆v − d

∫

∂Ω

uνvν =

∫

Ω

|u|2∗−2uv for all v ∈ H2 ∩H1
0 (Ω) .

Also for this fourth order equation, weak solutions are in fact strong (classical) solu-
tions, see [7, Proposition 23]. We refer to [27, 28] for a corresponding nonexistence
result based on Pohozaev identity and to [6, 8] for a survey of existence results under
different kinds of boundary conditions. The boundary conditions in (6) are again
named after Steklov; they become the Navier boundary conditions when d = 0 and
tend to Dirichlet boundary conditions as d→ −∞.

Although (6) has the same variational structure as (3), it exhibits several different
features. In particular, one cannot expect to go below the compactness threshold by
concentrating Sobolev minimizers on the boundary since u = 0 on ∂Ω. Therefore,
the extension of Theorem 1.1 to (6) seems out of reach. We only consider the case
where Ω = B so that the first two Steklov eigenvalues are d1 = n and d2 = n+2, see
[7] and Proposition 7 below. The eigenvalue d1 plays the same role as the eigenvalue
δ0 = 0 for (3).

When d < n, some results are already known. For n ≥ 5, let

σn =





n− (n− 4)(n2 − 4)
Γ( n

2 )

2
8
n

+1

(
nΓ( n

2 )

Γ(n)

) 4
n

(
Γ( 2n

n−4 )

Γ( n2

2(n−4)
)

)1− 4
n

if n = 5 or 6

4(n−3)
n−4 if n ≥ 7 .

In particular, σ5 ≈ 4.5 and σ6 ≈ 5.2, see [4]. Concerning positive solutions, we have

Proposition 3. [8] Assume that Ω = B (the unit ball of R
n, n ≥ 5).

(i) If d ≤ 4 or d ≥ n, then (6) admits no positive solution.
(ii) If d ∈ (σn, n) problem (6) admits a radial positive solution.
(iii) For every d ∈ R, problem (6) admits no radial nodal solutions.

Now, for n ≥ 5, we put

g(n) :=
n2(n−2)

2

[
(n−4)(n+2)

Γ(n)

]4/n [Γ(n
2 )

2

]1+4/n
[

(n+4)Γ( 2n
n−4)Γ( n+4

2(n−4) )√
πΓ( n2+2n

2(n−4) )

]1−4/n

(7)
Then, in some dimensions, we can prove existence and multiplicity results for d ≥ n:

Theorem 1.3. Assume that Ω = B (the unit ball of R
n) and let n = 5, 6, 8. If

d ∈ (n + 2 − g(n), n + 2), then problem (6) admits at least n pairs of nontrivial
solutions.

Figure 2 displays the plot of the function g = g(n).
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Figure 2: the map g = g(n).
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As we explain in Section 6, even if we do not have a complete proof, we believe
that Theorem 1.3 holds for every n ≥ 5. If this is true, since g(n) ≥ 2 for n ≥ 16,
this means that the existence result, for n large, covers the whole range between
d1 = n and d2 = n + 2. Hence, in this case it is reasonable to conjecture that (6)
admits solutions for any d > σn.

We conclude this section by pointing out that all the solutions we find (in The-
orems 1.1, 1.2 and 1.3) are at low energy level, below the compactness threshold.
This explains why we obtain stronger results in large space dimensions. It remains
open and interesting to investigate existence results for high energy solutions and
nonexistence results for low energy solutions.

2. Some results about the eigenvalue problems. In this section we collect
some facts about the two boundary eigenvalue problems

{
∆u = 0 in Ω
uν = δu on ∂Ω

(8)

and {
∆2u = 0 in Ω
u = ∆u− duν = 0 on ∂Ω .

(9)

Here and in the sequel, we denote by ‖ · ‖p the Lp(Ω)-norm (1 ≤ p ≤ ∞), and we
put

‖u‖2
∂ =

∫

∂Ω

u2 for u ∈ H1(Ω) , ‖u‖2
∂ν

=

∫

∂Ω

u2
ν for u ∈ H2 ∩H1

0 (Ω).

Consider first (8); its smallest eigenvalue is δ0 = 0. This turns (8) into a Neumann
problem which is solved by any constant function in Ω. Consider the space H1(Ω)
endowed with the scalar product

(u, v)1 :=

∫

Ω

∇u∇v +

∫

∂Ω

uv for all u, v ∈ H1(Ω) (10)

and the induced norm

‖u‖2 :=

∫

Ω

|∇u|2 +

∫

∂Ω

|u|2 for all u ∈ H1(Ω). (11)

We define

X(Ω) :=

{
u ∈ H1(Ω) :

∫

∂Ω

u = 0

}
\H1

0 (Ω)

and

δ1 := inf
u∈X(Ω)

‖∇u‖2
2

‖u‖2
∂

,

so that δ1 is the first nontrivial Steklov eigenvalue of −∆. Consider the space

Z1 = {v ∈ C∞(Ω) : ∆u = 0 in Ω}
and denote by V its completion with respect to the norm (11). Then, we have:

Proposition 4. Let Ω ⊂ R
n (n ≥ 2) be an open bounded domain with smooth

boundary. Then:
– Problem (8) admits infinitely many (countable) eigenvalues.
– The first eigenvalue δ0 = 0 is simple, it is associated to constant eigenfunctions

and eigenfunctions of one sign necessarily correspond to δ0.
– The set of eigenfunctions forms a complete orthonormal system in V .
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– Any eigenfunction ϕ of (8) corresponding to a positive eigenvalue satisfies∫
∂Ω
ϕ = 0.

– The space H1(Ω) endowed with (10) admits the following orthogonal decompo-
sition

H1(Ω) = V ⊕H1
0 (Ω). (12)

– If v ∈ H1(Ω) and if v = v1 + v2 is the corresponding orthogonal decomposition
with v1 ∈ V and v2 ∈ H1

0 (Ω), then v1 and v2 are weak solutions of
{

∆v1 = 0 in Ω
v1 = v on ∂Ω

and

{
∆v2 = ∆v in Ω
v2 = 0 on ∂Ω .

Proof. With the scalar product (10) we decompose the space H1(Ω) as

H1(Ω) = H1
0 (Ω) ⊕H1

0 (Ω)⊥.

Thus, every v ∈ H1(Ω) may be written in a unique way as v = v1 + v2, where
v2 ∈ H1

0 (Ω) and v1 satisfies

v1 = v on ∂Ω and

∫

Ω

∇v1∇v0 = 0 for all v0 ∈ H1
0 (Ω).

Hence, v1 weakly solves the problem
{

∆v1 = 0 in Ω
v1 = v on ∂Ω

and v2 = v − v1 weakly solves
{

∆v2 = ∆v in Ω
v2 = 0 on ∂Ω .

The kernel of the trace operator γ : H1(Ω) → H1/2(∂Ω) is H1
0 (Ω) so that γ is an

isomorphism between H1
0 (Ω)⊥ and H1/2(∂Ω). Therefore, the linear map

I1 : H1
0 (Ω)⊥ → L2(∂Ω)

u 7→ γu

is compact. Next, let I2 : L2(∂Ω) → (H1
0 (Ω)⊥)′ be the linear continuous operator

such that

〈I2u, v〉 =

∫

∂Ω

uv for all u ∈ L2(∂Ω), v ∈ H1
0 (Ω)⊥

and let L : H1
0 (Ω)⊥ → (H1

0 (Ω)⊥)′ be the linear continuous operator defined by:

〈Lu, v〉 =

∫

Ω

∇u∇v +

∫

∂Ω

uv for all u, v ∈ H1
0 (Ω)⊥.

Then, L is an isomorphism and the linear operator K = L−1I2I1 : H1
0 (Ω)⊥ →

H1
0 (Ω)⊥ is a compact self-adjoint operator with strictly positive eigenvalues,H1

0 (Ω)⊥

admits an othonormal basis of eigenfunctions of K and the set of eigenvalues of K
can be ordered in a strictly decreasing sequence {λi}i≥1 which converges to zero.
Thus, problem (8) admits infinitely many eigenvalues given by δi + 1 = 1

λi
and the

eigenfunctions coincide with the eigenfunctions of K. Hence, H1
0 (Ω)⊥ ≡ V .

By the divergence Theorem, we see that any solution u of (8) with δ > 0 satisfies∫
∂Ω
u = 0. To conclude the proof it remains to show that the unique eigenvalue

corresponding to a positive eigenfunction is δ0 = 0. To see this, let δ ≥ 0 be an
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eigenvalue corresponding to a positive eigenfunction ϕ > 0 in Ω. By definition, we
know that ϕ satisfies

∫

Ω

∇ϕ∇v = δ

∫

∂Ω

ϕv for all v ∈ H1(Ω).

Choosing v ≡ 1 and recalling that ϕ ∈ V , the above identity shows that necessarily
δ = 0.

For i = 0, 1, ..., we denote with ϕℓ
i the eigenfunctions corresponding to δi, where

ℓ = 1, 2, ...Ni and Ni is the multiplicity of δi. Now, by the property of the ϕℓ
i , we

have:∫

Ω

∇ϕℓ
i∇ϕk

j = δi

∫

∂Ω

ϕℓ
iϕ

k
j = δj

∫

∂Ω

ϕℓ
iϕ

k
j , for ℓ = 1, 2, ...Ni, k = 1, 2, ...Nj.

On the other hand, by the orthogonality in the scalar product (10) we also have
∫

Ω

∇ϕℓ
i∇ϕk

j = −
∫

∂Ω

ϕℓ
iϕ

k
j ,

so that ∫

Ω

∇ϕℓ
i∇ϕk

j =

∫

∂Ω

ϕℓ
iϕ

k
j = 0, for all i 6= j. (13)

A similar argument yields
∫

Ω

∇ϕℓ
i∇ϕk

i =

∫

∂Ω

ϕℓ
iϕ

k
i = 0, for all ℓ 6= k. (14)

It is readily verified that the same relations hold by replacing ϕℓ
i with any u0 ∈

H1
0 (Ω), namely

∫

Ω

∇u0∇ϕk
i =

∫

∂Ω

u0ϕ
k
i = 0, for all i and all u0 ∈ H1

0 (Ω). (15)

This means that the subspaces in the direct sum (12) are also orthogonal with
respect to the inner products associated to the Dirichlet norm and to the L2 norm
on the boundary ∂Ω.

When Ω = B (the unit ball) we may determine explicitly all the eigenvalues of
(8). To this end, consider the spaces of harmonic polynomials [4, Sect. 9.3-9.4]:

Dk := {P ∈ C∞(Rn); ∆P = 0 in R
n, P is homogeneous polynomial of degree k}.

Also, denote by µk the dimension of Dk so that [4, p.450]

µk =
(2k + n− 2)(k + n− 3)!

k!(n− 2)!
.

Then, from [9, p.160] we easily infer

Proposition 5. [9]
If n ≥ 2 and Ω = B, then for all k = 0, 1, 2, ...:

(i) the eigenvalues of (8) are δk = k;
(ii) the multiplicity Nk of δk equals µk;
(iii) any ϕℓ

k ∈ Dk, with ℓ = 1, 2, ..., Nk, is an eigenfunction corresponding to δk.

We now turn to the fourth order problem (9). Consider the space H2 ∩H1
0 (Ω)

endowed with the scalar product

(u, v)2 :=

∫

Ω

∆u∆v for all u, v ∈ H2 ∩H1
0 (Ω) (16)
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and the induced norm

|||u|||2 :=

∫

Ω

|∆u|2 for all u ∈ H2 ∩H1
0 (Ω). (17)

Let H(Ω) := [H2 ∩H1
0 (Ω)] \H2

0 (Ω). The smallest (positive) eigenvalue d1 of (9) is
characterized variationally as

d1 := inf
u∈H(Ω)

‖∆u‖2
2

‖u‖2
∂ν

.

Hence, d1 is the largest constant satisfying

‖∆u‖2
2 ≥ d1‖u‖2

∂ν
for all u ∈ H2 ∩H1

0 (Ω)

and d
−1/2
1 is the norm of the compact linear operator H2 ∩H1

0 (Ω) → L2(∂Ω), u 7→
uν.

Consider the space

Z2 =
{
v ∈ C∞(Ω) : ∆2u = 0, u = 0 on ∂Ω

}

and denote by W its completion with respect to the norm (17). Then, we have

Proposition 6. [17]
Assume that Ω ⊂ R

n (n ≥ 2) is an open bounded domain with smooth boundary.
Then:

– Problem (9) admits infinitely many (countable) eigenvalues.
– The first eigenvalue d1 is simple and eigenfunctions of one sign necessarily

correspond to d1.
– The set of eigenfunctions forms a complete orthonormal system in W .
– The space H2 ∩ H1

0 (Ω) endowed with (16) admits the following orthogonal
decomposition

H2 ∩H1
0 (Ω) = W ⊕H2

0 (Ω).

– If v ∈ H2∩H1
0 (Ω) and if v = v1+v2 is the corresponding orthogonal decomposition

with v1 ∈ W and v2 ∈ H2
0 (Ω), then v1 and v2 are weak solutions of





∆2v1 = 0 in Ω
v1 = 0 on ∂Ω
(v1)ν = vν on ∂Ω

and





∆2v2 = ∆2v in Ω
v2 = 0 on ∂Ω
(v2)ν = 0 on ∂Ω .

Again, when Ω = B (the unit ball) we may determine explicitly all the eigenvalues
of (9):

Proposition 7. [17]
If n ≥ 2 and Ω = B, then for all k = 1, 2, 3, ...:

(i) the eigenvalues of (9) are dk = n+ 2(k − 1);
(ii) the multiplicity Nk of dk equals µk−1;
(iii) for all ψℓ

k ∈ Dk−1, with ℓ = 1, 2, ..., Nk, the function φℓ
k(x) := (1 − |x|2)ψℓ

k(x)
is an eigenfunction corresponding to dk.

Let us mention that the fourth order Steklov eigenvalue problem (9) was first
studied in the two dimensional case [21, 24] where only partial results about the
first eigenvalue were obtained.
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3. The Palais-Smale condition. Let

S2 = min
u∈D1,2(Rn)\{0}

‖∇u‖2
2

‖u‖2
2∗

= πn(n− 2)

(
Γ(n/2)

Γ(n)

)2/n

, (18)

where for the last equality we refer to [31]. In order to obtain some compactness
for the second order problem (3), a crucial role is played by an inequality due to
Li-Zhu [22]: there exists M = M(Ω) > 0 such that

S2

22/n
‖u‖2

2∗ ≤ ‖∇u‖2
2 +M‖u‖2

∂ for all u ∈ H1(Ω). (19)

Consider the functional

I(u) =
1

2

∫

Ω

|∇u|2 − δ

2

∫

∂Ω

u2 − 1

2∗

∫

Ω

|u|2∗

(20)

whose critical points are weak solutions of (3). We prove

Lemma 3.1. The functional I satisfies the Palais-Smale condition at levels c ∈
(−∞,

S
n/2
2

2n ), that is, if {um}m≥0 ⊂ H1(Ω) is such that

I(um) → c <
S

n/2
2

2n
, dI(um) → 0 in (H1(Ω))′, (21)

then there exists u ∈ H1(Ω) such that um → u in H1(Ω), up to a subsequence.

Proof. To deduce that {um}m≥0 is bounded in H1(Ω) we follow [29, Theorem 4.12].
Let {δj}j≥0 be the set of Steklov eigenvalues of −∆ and denote with Mj the eigen-
space associated to δj . If δ = δk, for some k ≥ 0, we define:

H+ :=
⊕

j≥k+1

Mj

⊕
H1

0 (Ω), H0 := Mk and H− :=
⊕

j≤k−1

Mj

and, in view of Proposition 4, we have

H1(Ω) = H+ ⊕H0 ⊕H−.

Thus we may decompose um = u+
m + u0

m + u−m, where u+
m ∈ H+, u0

m ∈ H0 and
u−m ∈ H−. If δk < δ < δk+1, for k ≥ 0, we just have the two spaces H+ and H− but
the decomposition works similarly. By (21) and arguing as in [29], one can prove
that each of the components of um, and in turn um, is bounded in H1(Ω). By this
we conclude that (up to a subsequence) there exists u ∈ H1(Ω) such that

um ⇀ u in H1(Ω) and um → u a.e. in Ω. (22)

Hence, by compactness of the map H1(Ω) → L2(∂Ω) defined by u 7→ u|∂Ω, we have:

um |∂Ω→ u |∂Ω in L2(∂Ω). (23)

We apply (19) to the function um − u and, in view of (23), we get

S2

22/n
‖um − u‖2

2∗ ≤ ‖∇(um − u)‖2
2 + o(1). (24)

On the other hand, by the Brezis-Lieb Lemma [12], we know that

‖um‖2∗

2∗ − ‖u‖2∗

2∗ = ‖um − u‖2∗

2∗ + o(1). (25)
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Exploiting (21), (22), (23) and (25) we have

o(1) = 〈dI(um), um − u〉

=

∫

Ω

|∇um|2 −
∫

Ω

∇um · ∇u − δ

∫

∂Ω

um(um − u) −
∫

Ω

|um|2∗−2um(um − u)

=

∫

Ω

(|∇um|2 − 2∇um · ∇u+ |∇u|2) −
∫

Ω

|um|2∗

+

∫

Ω

|u|2∗

+ o(1)

=

∫

Ω

|∇(um − u)|2 −
∫

Ω

|um − u|2∗

+ o(1),

so that

‖∇(um − u)‖2
2 = ‖um − u‖2∗

2∗ + o(1). (26)

By (21) we also get that

o(1) = 〈dI(um), um〉 = ‖∇um‖2
2 − δ‖um‖2

∂ − ‖um‖2∗

2∗ ,

that is,

‖um‖2∗

2∗ = ‖∇um‖2
2 − δ‖um‖2

∂ + o(1). (27)

Inserting (27) into (21) we obtain

1

n
‖∇um‖2

2 −
δ

n
‖um‖2

∂ = c+ o(1)

and therefore

‖∇u‖2
2 − δ‖u‖2

∂ + ‖∇(um − u)‖2
2 = nc+ o(1). (28)

On the other hand, exploiting the convergence 〈dI(um), v〉 → 〈dI(u), v〉 for any
fixed v ∈ H1(Ω), we deduce that u solves (3) (that is, dI(u) = 0) so that

‖∇u‖2
2 − δ‖u‖2

∂ = ‖u‖2∗

2∗ ≥ 0.

The last inequality combined with (28) gives

‖∇(um − u)‖2
2 ≤ nc+ o(1) <

S
n/2
2

2
+ o(1). (29)

Furthermore (24) and (26) give

‖∇(um − u)‖2− 4
n

2

(
S2

22/n
− ‖∇(um − u)‖

4
n
2

)
≤ o(1).

This, combined with (29), shows that ‖∇(um − u)‖2 = o(1). And this, together
with (23), proves that um → u in H1(Ω).

We now turn to the fourth order problem. Let

S4 = min
u∈D2,2(Rn)\{0}

‖∆u‖2
2

‖u‖2
2∗

= π2(n+ 2)n(n− 2)(n− 4)

(
Γ(n/2)

Γ(n)

)4/n

, (30)

(see again [31]) and consider the functional

J(u) =
1

2

∫

Ω

|∆u|2 − d

2

∫

∂Ω

u2
ν − 1

2∗

∫

Ω

|u|2∗ (31)

whose critical points are weak solutions of (6). We have
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Lemma 3.2. The functional J satisfies the Palais-Smale condition at levels c ∈
(−∞,

2S
n/4
4

n ), that is, if {um}m≥0 ⊂ H2 ∩H1
0 (Ω) is such that

J(um) → c <
2

n
S

n/4
4 , dJ(um) → 0 in (H2 ∩H1

0 (Ω))′, (32)

then there exists u ∈ H2 ∩ H1
0 (Ω) such that um → u in H2 ∩ H1

0 (Ω), up to a
subsequence.

Proof. The first step consists in showing that {um}m≥0 is bounded in H2 ∩H1
0 (Ω).

As in Lemma 3.1, this follows by arguing as in Theorem 4.12 in [29], suitably
adapted to this case. For the rest of the proof one can follow the same lines as the
proof of Lemma 3.1 except that, now, one has to exploit the compactness of the
linear map H2 ∩ H1

0 (Ω) ∋ u 7→ uν |∂Ω ∈ L2(∂Ω) and the inequality (19) must be
replaced by the Sobolev inequality: S4‖u‖2

2∗

≤ ‖∆u‖2
2, for all u ∈ H2 ∩H1

0 (Ω).

4. Proof of Theorem 1.1. We prove Theorem 1.1 by showing that there exists
a critical level for the functional (20) below the compactness threshold found in
Lemma 3.1. In order to do this, we need some asymptotic estimates and a suitable
linking geometry.

4.1. Some asymptotic estimates. In this section, we prove some asymptotic
estimates of the norms of the Sobolev minimizers which concentrate on ∂Ω. We take
into account the effect of the curvature of the boundary ∂Ω, following an idea from
[1]. Since Ω is smooth and bounded, there exists x ∈ ∂Ω such that in a neighborhood
of x, Ω lies on one side of the tangent hyperplane at x and the mean curvature with
respect to the unit outward normal at x is positive. Furthermore, there exists a
ball of radius R0 > 0 such that Ω ⊂ BR0 . With a change of coordinates, we may
assume that x = 0 (the origin), that the tangent hyperplane coincides with xn = 0
and that Ω lies in R

n
+ = {x = (x′, xn); xn > 0}. More precisely, there exists R > 0

and a smooth function ρ : ω → R+ (where ω = {x′ ∈ R
n−1; |x′| < R}) such that

(x′, xn) ∈ Ω ∩BR ⇔ xn > ρ(x′) , (x′, xn) ∈ ∂Ω ∩BR ⇔ xn = ρ(x′).

Furthermore, since the curvature is positive at 0, there exist λi (i = 1, ..., n − 1)
such that

Λ :=

n−1∑

i=1

λi > 0 and ρ(x′) =

n−1∑

i=1

λix
2
i +O(|x′|3) as x′ → 0. (33)

Let Σ := {x ∈ BR; 0 < xn < ρ(x′)}. Finally we set

Uǫ(x) :=
ǫ

n−2
2

(ǫ2 + |x|2)n−2
2

(34)

and

K ′ :=

∫

Rn

|∇Uǫ(x)|2 dx, K ′′ :=

∫

Rn

|Uǫ(x)|2
∗

dx.

Recall that S2 = K ′/(K ′′)2/2∗

(see (18)). Now let ωn := |∂B| = 2πn/2

Γ(n/2) , we prove

that, as ε→ 0, the following asymptotic estimates hold:
∫

Ω

|∇Uǫ(x)|2 dx =
K ′

2
− Λ

ωn−1(n− 2)2

2(n− 1)

{
ǫ | log ǫ| + o(ǫ | log ǫ|) ifn = 3,
Γ((n+3)/2)Γ((n−3)/2)

Γ(n) ǫ+ o(ǫ) ifn ≥ 4,

(35)
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∫

Ω

|∇Uǫ(x)| dx = O(ǫ
n−2

2 ) for any n ≥ 3, (36)

∫

Ω

|Uǫ(x)|2
∗

dx =
K ′′

2
− Λ

ωn−1

2(n− 1)

{
O(ǫ) if n = 3,
Γ( n+1

2 )Γ( n−1
2 )

Γ(n) ǫ+ o(ǫ) if n ≥ 4,
(37)

∫

∂Ω

Uǫ(x) dσ = O(ǫ
n−2

2 ) for any n ≥ 3, (38)

∫

∂Ω

|Uǫ(x)|2 dσ = b(n)

{
ǫ | log ǫ| + o(ǫ | log ǫ|) if n = 3,
ǫ+ o(ǫ) if n ≥ 4,

(39)

where b(n) is defined as in [1, (3.9)]:

b(n) :=






ω2/2 if n = 3,

ωn−1

∫ +∞

0

rn−2

(1 + r2)n−2
dr if n ≥ 4

Proof of (35). A direct computation shows that
∫

Ω

|∇Uǫ(x)|2 dx =
1

2

∫

BR

|∇Uǫ(x)|2 dx−
∫

Σ

|∇Uǫ(x)|2 dx+

∫

Ω\BR

|∇Uǫ(x)|2 dx

=
K ′

2
−O(ǫn−2) −

∫

Σ

|∇Uǫ(x)|2 dx+

∫

Ω\BR

|∇Uǫ(x)|2 dx.

Furthermore, since ∇Uǫ(x) = − (n−2) x ǫ
n−2

2

(ǫ2+|x|2)
n
2

,

∫

Ω\BR

|∇Uǫ(x)|2 dx ≤
∫

BR0\BR

|∇Uǫ(x)|2 dx = O(ǫn−2),

while we may also exploit [1, (2.17)] (with minor changes) to deduce

∫

Σ

|∇Uǫ(x)|2 dx = Λ
ωn−1(n− 2)2

2(n− 1)

{
ǫ | log ǫ| + o(ǫ| log ǫ|) if n = 3,
Γ((n+3)/2)Γ((n−3)/2)

Γ(n) ǫ+ o(ǫ) if n ≥ 4,

and (35) follows.

Proof of (36). In view of the explicit form of ∇Uǫ (see above), we have
∫

Ω

|∇Uǫ(x)| dx = cǫ
n−2

2

∫

Ω

|x|
(ǫ2 + |x|2)n

2
dx ≤ cǫ

n−2
2

∫

Ω

dx

|x|n−1
= cǫ

n−2
2

and (36) is proved.

Proof of (37). We have
∫

Ω

|Uǫ(x)|2
∗

dx =
1

2

∫

BR

|Uǫ(x)|2
∗

dx−
∫

Σ

|Uǫ(x)|2
∗

dx+

∫

Ω\BR

|Uǫ(x)|2
∗

dx

=
K ′′

2
−O(ǫn) −

∫

Σ

|Uǫ(x)|2
∗

dx+

∫

Ω\BR

|Uǫ(x)|2
∗

dx.

Furthermore ∫

Ω\BR

|Uǫ(x)|2
∗

dx ≤
∫

BR0\BR

|Uǫ(x)|2
∗

dx = O(ǫn)
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and the integral over Σ can be estimated as in [1, (2.18)]:

∫

Σ

|Uǫ(x)|2
∗

dx = Λ
ωn−1

2(n− 1)

{
O(ǫ) if n = 3,
Γ( n+1

2 )Γ( n−1
2 )

Γ(n) ǫ+ o(ǫ) if n ≥ 4.

Proof of (38). This follows as for (36), namely
∫

∂Ω

Uǫ(x) dσ ≤ cǫ
n−2

2

∫

∂Ω

dx

|x|n−2
= cǫ

n−2
2 .

Proof of (39). We have
∫

∂Ω

|Uǫ(x)|2 dσ =

∫

∂Ω∩BR

|Uǫ(x)|2 dσ +

∫

∂Ω\BR

|Uǫ(x)|2 dσ

=

∫

∂Ω∩BR

|Uǫ(x)|2 dσ +O(ǫn−2).

The first term of the above sum can be estimated as in [1, (3.10)]:
∫

∂Ω∩BR

|Uǫ(x)|2 dσ = b(n)

{
ǫ | log ǫ| + o(ǫ| log ǫ|) if n = 3,
ǫ+ o(ǫ) if n ≥ 4.

We conclude with the following estimates:

Iα ≡
∫

Ω

|Uǫ(x)|αdx =

∫

Ω∩BR

|Uǫ(y)|αdy +

∫

Ω\BR

|Uǫ(y)|αdy

≤ Cǫα
n−2

2

∫

BR

dy

(ǫ2 + |y|2)α n−2
2

+O(ǫα
n−2

2 ) = (y = ǫz, |z| = ρ)

= Cǫn−α n−2
2

∫ R/ǫ

0

ρn−1

(1 + ρ2)α n−2
2

dρ+O(ǫα
n−2

2 )

≤ Cǫn−α n−2
2

(
C0 +

∫ R/ǫ

1

ρn−1−α(n−2)dρ
)

+O(ǫα
n−2

2 )

≤
{
C1ǫ

n−α n−2
2 + C2ǫ

α n−2
2 for α 6= n

n−2

ǫn/2(C1 + C2| ln ǫ|) for α = n
n−2 .

In particular, we get

I(2∗−1) = In+2
n−2

= O(ǫ(n−2)/2), I1 = O(ǫ(n−2)/2). (40)

I(2∗−2) =





I4 = O(ǫ) if n = 3
I2 = O(ǫ2 ln ǫ) if n = 4
I 4

n−2
= O(ǫ2) if n ≥ 5.

(41)

4.2. Linking argument. Assume first that δk < δ < δk+1, for some k ≥ 0, and
consider the orthogonal decomposition of H1(Ω) relative to the scalar product (10):

H1(Ω) = Hk−
⊕Hk+ , (42)

where Hk−
is the subspace spanned by an orthonormal (with respect to (10)-(11))

set of eigenfunctions ϕℓ
i , ℓ = 1, 2, ..., Ni, i = 0, 1, ..., k, with eigenvalues 0 = δ0 <

δ1 < ... < δk, see Proposition 4. Let Uǫ be as in (34), and define

Ūǫ = Uǫ − zǫ
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where zǫ = PHk
−

Uǫ is the projection of the function Uǫ on the subspace Hk−
. Then,

zǫ =

k∑

i=0

Ni∑

ℓ=1

(ϕℓ
i , Uǫ)1 ϕ

ℓ
i ,

and, by the property of the eigenfunctions ϕℓ
i , we get

|(ϕℓ
i , Uǫ)1| =

∣∣∣
∫

Ω

∇ϕℓ
i∇Uǫ dx+

∫

∂Ω

ϕℓ
iUǫ dσ

∣∣∣ ≤ (δi + 1)

∫

∂Ω

|ϕℓ
iUǫ| dσ

≤ Ci

∫

∂Ω

Uǫ dσ = O(ǫ
n−2

2 ), (43)

where the last equality follows by (38). Therefore, we also have

‖zǫ‖∞ = O(ǫ
n−2

2 ). (44)

In turn, by (40) and (44) we obtain
∫

Ω

|Ūǫ|2
∗

dx =

∫

Ω

|Uǫ|2
∗

dx− 2∗
∫ 1

0

dt

∫

Ω

|Uǫ − tzǫ|2
∗−2(Uǫ − tzǫ)zǫ dx

=

∫

Ω

|Uǫ|2
∗

dx+O(ǫn−2),

which, together with (37), gives

∫

Ω

|Ūǫ(x)|2
∗

dx =
K ′′

2
− Λ

ωn−1

2(n− 1)

{
O(ǫ) if n = 3,
Γ( n+1

2 )Γ( n−1
2 )

Γ(n) ǫ+ o(ǫ) if n ≥ 4.
(45)

Moreover, by (13) we have

∫

Ω

|∇Ūǫ|2 dx =

∫

Ω

|∇Uǫ|2 dx− 2
k∑

i=0

Ni∑

ℓ=1

(ϕℓ
i , Uǫ)1

∫

Ω

∇Uǫ∇ϕℓ
i dx

+

k∑

i=0

Ni∑

ℓ=1

(ϕℓ
i , Uǫ)

2
1

∫

Ω

|∇ϕℓ
i |2 dx .

Further, by Hölder inequality and (36) we get
∣∣∣∣
∫

Ω

∇Uǫ∇ϕℓ
i dx

∣∣∣∣ ≤ ‖∇Uǫ‖1 · ‖∇ϕℓ
i‖∞ = O(ǫ

n−2
2 ) .

By combining this with (35) and (43), we infer

∫

Ω

|∇Ūǫ|2 dx =
K ′

2
− Λ

ωn−1(n− 2)2

2(n− 1)

{
ǫ | log ǫ| + o(ǫ | log ǫ|) if n = 3,
Γ((n+3)/2)Γ((n−3)/2)

Γ(n) ǫ+ o(ǫ) if n ≥ 4.

(46)
Finally, by using again (13) we obtain

∫

∂Ω

|Ūǫ|2 dσ =

∫

∂Ω

|Uǫ|2 dσ − 2

k∑

i=0

Ni∑

ℓ=1

(ϕℓ
i , Uǫ)1

∫

∂Ω

Uǫϕ
ℓ
i dσ

+

k∑

i=0

Ni∑

ℓ=1

(ϕℓ
i , Uǫ)

2
1

∫

∂Ω

(ϕℓ
i)

2 dσ .
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Arguing as above and using (38), (39) and (43), we infer
∫

∂Ω

|Ūǫ|2 dσ = b(n)

{
ǫ | log ǫ| + o(ǫ | log ǫ|) if n = 3,
ǫ+ o(ǫ) if n ≥ 4.

(47)

Let I be the functional defined in (20) and let

Σk =
{
u ∈ Hk+ : ‖u‖ = ρ

}
,

where ρ > 0 is chosen small so that one has infv∈Σk
I(v) = αk > 0. Now let

Qk =
{
sŪǫ + u−, 0 ≤ s ≤ R1, u− ∈ Hk−

‖u−‖ ≤ R2

}
,

where R1 > ρ and R2 > 0 are independent from ǫ. More precisely, R1 is chosen
sufficiently large to satisfy I(R1Ūǫ) < 0 and so that Σk and ∂Qk link, see [30,
Example 8.3]. The choice of R2 is explained below.

By writing u− =
∑k

i=0

∑Ni

ℓ=1 c
ℓ
iϕ

ℓ
i and using (13), we have

I(sŪǫ + u−) =
s2

2

[∫

Ω

|∇Ūǫ|2dx− δ

∫

∂Ω

|Ūǫ|2dσ
]

+
1

2

∫

Ω

|∇u−|2 dx

− δ

2

∫

∂Ω

|u−|2 dσ − 1

2∗

∫

Ω

|sŪǫ + u−|2
∗

dx =
s2

2

[∫

Ω

|∇Ūǫ|2dx− δ

∫

∂Ω

|Ūǫ|2dσ
]

−
k∑

i=0

δ − δi
2

Ni∑

ℓ=1

(cℓi)
2

∫

∂Ω

|ϕℓ
i |2 dσ − 1

2∗

∫

Ω

|sŪǫ + u−|2
∗

dx

≤s
2

2

[∫

Ω

|∇Ūǫ|2dx− δ

∫

∂Ω

|Ūǫ|2dσ
]
− s2

∗

2∗

∫

Ω

|Ūǫ|2
∗

dx−D(δ − δk) c2

−
∫ 1

0

dt

∫

Ω

u−|sŪǫ + tu−|2
∗−2(sŪǫ + tu−)dx, (48)

where

D =
1

2
min
i, ℓ

‖ϕℓ
i‖2

∂ and c2 :=

k∑

i=0

Ni∑

ℓ=1

(cℓi)
2, with c > 0.

By using the inequality (α+β+γ)2
∗−2 ≤ K(α2∗−2+β2∗−2+γ2∗−2), for α, β, γ ≥

0, we estimate :
∣∣∣
∫

Ω

u−|sŪǫ + tu−|2
∗−2Ūǫdx

∣∣∣

≤
∫

Ω

|u−||sUǫ − szǫ + tu−|2
∗−2Uǫdx+

∫

Ω

|u−||sUǫ − szǫ + tu−|2
∗−2|zǫ|dx

≤K
{
s2

∗−2
[∫

Ω

|u−||Uǫ|2
∗−1dx+

∫

Ω

|u−||zǫ|2
∗−2Uǫ dx+

∫

Ω

|u−||zǫ||Uǫ|2
∗−2dx

+

∫

Ω

|zǫ|2
∗−1|u−| dx

]
+ t2

∗−2
[∫

Ω

|u−|2
∗−1Uǫ dx+

∫

Ω

|u−|2
∗−1|zǫ| dx

]}
.

Then, by (40), (41), (44), by the bound ‖u−‖∞ ≤ c
∑k

i=0

∑Ni

ℓ=1 ‖ϕℓ
i‖∞ and recalling

that s ≤ R1, we can estimate the last term in (48):

∣∣∣
∫ 1

0

dt

∫

Ω

u−|sŪǫ + tu−|2
∗−2sŪǫ dx

∣∣∣ ≤ Ψ(ǫ)
(
c+ c2

∗−1
)
,
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where Ψ(ǫ) = O(ǫ(n−2)/2). Thus we can write:

I(sŪǫ+u−) ≤ I(sŪǫ)−
∫ 1

0

t dt

∫

Ω

u2
−|sŪǫ+tu−|2

∗−2dx+Ψ(ǫ)(c+c2
∗−1)−D(δ−δk) c2 ,

(49)
with maxc≥0[Ψ(ǫ)(c+ c2

∗−1) −D(δ − δk) c2] = O(ǫn−2). Taking into account that

max
t≥0

(
at− bt

n
n−2

)
=

(
n− 2

n

)n−2
2 2

n

an/2

b(n−2)/2
, for all a, b > 0, (50)

we finally obtain from (49)

I(sŪǫ+u−) ≤ 1

n

(‖∇Ūǫ‖2
2 − δ‖Ūǫ‖2

∂

‖Ūǫ‖2
2∗

)n
2

−
∫ 1

0

t dt

∫

Ω

u2
−|sŪǫ+tu−|2

∗−2dx+O(ǫn−2)

(51)
Now we can fix R2 ≫ R1 such that if ‖u−‖ = R2 then

1

n

(‖∇Ūǫ‖2
2 − δ‖Ūǫ‖2

∂

‖Ūǫ‖2
2∗

)n/2

−
∫ 1

0

t dt

∫

Ω

u2
−|sŪǫ+tu−|2

∗−2dx < 0 for all s ∈ [0, R1]

uniformly with respect to ǫ. Subsequently, we take ǫ sufficiently small (say ǫ < ǫ)
so that

I(sŪǫ ± u−) ≤ 0 for ‖u−‖ = R2 and for all s ∈ [0, R1].

Moreover, by the definition of I and Hk−
we have I(u−) ≤ 0 for every u− ∈ Hk−

whereas by definition of R1 we have that I(R1Ūǫ) < 0; this, combined with (49),
allows to conclude that I(R1Ūǫ + u−) ≤ 0 for every ‖u−‖ ≤ R2, provided ǫ is
sufficiently small. We have so proved that

αk = inf
v∈Σk

I(v) > sup
v∈∂Qk

I(v) = 0.

Now, by defining
Γk = {h ∈ C0(H1, H1) ; h|∂Qk

= I},
it follows, from [30, Theorem 8.4], that the number

βk = inf
h∈Γk

sup
v∈Qk

I(h(v))

is a critical value of I, whenever βk < S
n/2
2 /2n. Since βk ≤ supv∈Qk

I(v) ≡ βk, it is

sufficient to prove that βk < S
n/2
2 /2n. To this end, we remark that the estimates

(45)-(46)-(47) and (51) yield

I(sŪǫ + u−) ≤ 1

n

(‖∇Ūǫ‖2
2 − δ‖Ūǫ‖2

∂

‖Ūǫ‖2
2∗

)n/2

+O(ǫn−2)

≤ 1

n

[ S2

22/n
−
{
ǫ| log ǫ|K ′ + o(ǫ| log ǫ|) if n = 3
ǫk
(
δ + γ n−2

2

)
+ o(ǫ) if n ≥ 4

]n/2

+O(ǫn−2),

(52)

where k > 0. We find that indeed βk < S
n/2
2 /2n provided ǫ is small enough. This

completes the proof of Theorem 1.1 when δk < δ < δk+1.
Assume now that n ≥ 4 and δ = δk for some k ≥ 1. We consider first the case

n ≥ 5. In the estimate (49) the term −D(δ − δk)c2 is no longer there so that (52)
becomes

I(sŪǫ + u−) ≤ 1

n

[ S2

22/n
− ǫk

(
δ + γ

n− 2

2

)
+ o(ǫ)

]n/2

+O(ǫ
n−2

2 ),
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proving again that βk < S
n/2
2 /2n for ǫ sufficiently small.

Let now n = 4. Here 2∗ = 4 and by arguing as in [14, Lemma 2.2] we deduce
that ∣∣∣‖u− + sŪǫ‖4

4 − ‖sŪǫ‖4
4 − ‖u−‖4

4

∣∣∣ ≤ c′
[
‖sŪǫ‖3

3‖u−‖2 + ‖sŪǫ‖1‖u−‖3
4

]

which, together with (40) and (44), yields

‖u− + sŪǫ‖4
4 ≥ ‖sŪǫ‖4

4 +
1

2
‖u−‖4

4 − c s4ǫ
4
3 , for every s > 0.

Recalling that s ≤ R1 and inserting this into (48), we conclude that

I(sŪǫ + u−) ≤ s2

2

[
‖∇Ūǫ‖2

2 − δ‖Ūǫ‖2
∂

]
− s4

4
‖Ūǫ‖4

4 −
1

8
‖u−‖4

4 + c′ ǫ
4
3

≤ 1

4

(‖∇Ūǫ‖2
2 − δ‖Ūǫ‖2

∂

‖Ūǫ‖2
4

)2

+ c′ ǫ
4
3 ≤ 1

4

[ S2

21/2
− ǫk

(
δ + γ

)
+ o(ǫ)

]2
+ c′ ǫ

4
3 .

Hence, if ǫ is sufficiently small, we obtain βk < S2
2/8. The proof of Theorem 1.1 is

so complete also in the resonance case δ = δk, provided n ≥ 4.

5. Proof of Theorem 1.2. In this section and in the next one, an important role
is played by the explicit value of the measure of ∂B, namely

ωn := |∂B| =
2πn/2

Γ(n/2)
. (53)

For j ≥ 0, we denote by Mj the eigenspace associated to δj (the Steklov eigenvalues
of −∆ in B) and we define

M+ :=
⊕

j≥1

Mj and M− := M0

⊕
M1.

By Proposition 5 we have

M0 = span{ϕ0} and M1 = span{ϕi
1}1≤i≤n,

where ϕ0(x) = 1 and ϕi
1(x) = xi for i = 1, ..., n (notice that N0 = 1 and N1 = n).

We set

Q(u) :=
‖∇u‖2

2

‖u‖2
2∗

, K2 := sup
M−

Q(u) , (54)

and we prove

Lemma 5.1. For any n ≥ 3, K2 = Q(ϕ1
1) = ωn

n

[
ωn−1

n−1 β( 3n−2
2(n−2) ,

n+1
2 )
](2/n)−1

.

Proof. First we note that

‖∇ϕi
1‖2

2 = |B| =
ωn

n
for all i = 1, ..., n, ‖∇ϕ0‖2

2 = 0. (55)

Next, take u ∈M1 so that u(x) =
∑n

1 αiϕ
i
1(x), where the αi are the components of

a real vector α ∈ R
n. We denote by {yi}1≤i≤n a complete orthonormal system of

coordinates in R
n, obtained as image of {xi}1≤i≤n through a rotation R such that

R( α
|α|) = (1, 0, ..., 0). Then, in view of (13), we get

Q(u) =

∑n
1 α

2
i ‖∇ϕi

1‖2
2(∫

B
|∑n

1 αixi|2∗ dx
)2/2∗

=
ωn|α|2

n
(∫

B
|α|2∗ |y1|2∗ dy

)2/2∗
= Q(ϕ1

1),
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for all u ∈ M1. Similarly, one can prove that ‖u + tϕ0‖2∗

2∗ = ‖ϕ1
1 + tϕ0‖2∗

2∗ , for all
t ≥ 0 and all u ∈ M1 such that |α| = 1. This, combined with (55), shows that it
suffices to study the real function

t 7→ Q(ϕ1
1 + tϕ0) =

1

‖ϕ1
1 + tϕ0‖2

2∗

, t ≥ 0

and prove that it attains its maximum at t = 0. In turn, we may consider the
function

g(t) := ‖ϕ1
1 + tϕ0‖2∗

2∗ , t ≥ 0

and show that

min
t≥0

g(t) = g(0). (56)

Writing x = (x1, x
′), where x′ ∈ R

n−1, and denoting with Br the ball in R
n−1 of

radius r and center 0, we deduce:

g(t) =

∫

B

|x1 + t|2∗

dx =

∫ 1

−1

∫

B
(1−x2

1)1/2

|x1 + t|2∗

dx′ dx1

=
ωn−1

n− 1

∫ 1

−1

|x1 + t|2∗

(1 − x2
1)

n−1
2 dx1 .

Therefore,

g′(t) =
2∗ωn−1

n− 1

∫ 1

−1

|x1 + t|2∗−2(x1 + t)(1 − x2
1)

n−1
2 dx1 ,

g′′(t) =
2∗(2∗ − 1)ωn−1

n− 1

∫ 1

−1

|x1 + t|2∗−2(1 − x2
1)

n−1
2 dx1 .

This readily shows that g′(0) = 0 and g′′(t) > 0 for all t ≥ 0; and this proves that
g′(t) > 0 for all t > 0 so that (56) follows.

Lemma 5.2. Let K2 be as in (54). If

δ > 1 − S2

22/nK2
, (57)

then

µ := sup
u∈M−

I(u) <
S

n/2
2

2n
.

Moreover, there exist ρ, η > 0 such that

I(u) ≥ η, for all u ∈M+ ⊕H1
0 (B) : ‖u‖ = ρ.

Proof. Let u ∈ M− and let K2 be as in (54). Since δ1 = 1 (see Proposition 5), we
have

I(u) =
1

2

(
‖∇u‖2

2 − δ‖u‖2
∂

)
− 1

2∗
‖u‖2∗

2∗ ≤ 1 − δ

2
‖∇u‖2

2 −
1

2∗
‖u‖2∗

2∗

≤ 1 − δ

2
K2 ‖u‖2

2∗ − 1

2∗
‖u‖2∗

2∗ ≤ (1 − δ)n/2K
n/2
2

n
,

where the last inequality follows from (50). Therefore,

µ ≤ (1 − δ)n/2K
n/2
2

n
<
S

n/2
2

2n
,

where the second inequality is ensured by (57).
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Next, notice that for all u ∈M+ ⊕H1
0 (B) we have

I(u) =
1 − δ

4
‖u‖2 +

1 + δ

4
(‖∇u‖2

2 − ‖u‖2
∂) − 1

2∗
‖u‖2∗

2∗ ≥ 1 − δ

4
‖u‖2 − C‖u‖2∗

,

for some C > 0, according to (19). Therefore, the existence of ρ, η > 0 as in the
statement follows.

Let K2 be as in (54). By Lemma 5.1, we have

K2 = Q(ϕ1
1) =

ωn

n
(∫

B
|y1|2∗ dy

)2/2∗
.

Notice that
∫

B

|y1|2
∗

dy =

∫ 1

−1

∫

B
(1−y2

1
)1/2

|y1|2
∗

dy′ dy1 =
ωn−1

n− 1
β

(
3n− 2

2(n− 2)
,
n+ 1

2

)

so, by using (53) and exploiting the properties of the beta functions, we deduce that

K2 =
2 π

nΓ
(

n
2

)


 n2

√
π Γ( n2

2(n−2) )

(n+ 2)Γ( n+2
2(n−2) )




1−2/n

.

Lemma 5.2 allows us to apply a result by Bartolo-Benci-Fortunato [5, Theorem

2.4] from which we deduce that, if 1 − δ < S2/(2
2/nK2), then I admits at least n

(the multiplicity of δ1) pairs of critical points at levels below S
n/2
2 /2n. Set h(n) :=

S2/(2
2/nK2) and compute, using (18), to obtain (5).

6. Proof of Theorem 1.3. For j ≥ 1, we denote by Mj the eigenspace associated
to dj , where the dj ’s are the positive Steklov eigenvalues of ∆2 in the ball and we
define

M+ :=
⊕

j≥2

Mj and M− := M1

⊕
M2.

By Proposition 7 we have

M1 = span{φ1} and M2 = span{φi
2}1≤i≤n,

where φ1(x) = (1 − |x|2) and φi
2(x) = xi(1 − |x|2) for i = 1, ..., n. We set

Q(u) :=
‖∆u‖2

2

‖u‖2
2∗

, K4 := sup
M−

Q(u) (58)

and we prove

Lemma 6.1. If n = 5, 6, 8, then K4 = Q(φ1
2) and

K4 =
4(n+ 2)ωn

n

[
ωn−2

2
β(
n− 1

2
,
3n− 4

n− 4
)β(

3n− 4

2(n− 4)
,
n2 + n− 4

2(n− 4)
)

](4/n)−1

.

Proof. First we note that

‖∆φi
2‖2

2 = 4
n+ 2

n
ωn for all i = 1, ..., n, ‖∆φ1‖2

2 = 4nωn. (59)

Next, let u ∈ M2 so that u(x) =
∑n

1 αiφ
i
2(x), where the αi are the components of

a real vector α ∈ R
n. We denote by {yi}1≤i≤n a complete orthonormal system of
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coordinates in R
n, obtained as image of {xi}1≤i≤n through a rotation R such that

R( α
|α|) = (1, 0, ..., 0). Then, we get

Q(u) =

∑n
1 α

2
i ‖∆φi

2‖2
2(∫

B |
∑n

1 αixi|2∗(1 − |x|2)2∗

)2/2∗

=
4n+2

n ωn|α|2
(∫

B |αy1|2∗(1 − |y|2)2∗

)2/2∗

= Q(φ1
2),

for all u ∈ M2. Similarly, one can prove that ‖u + tφ1‖2∗

2∗

= ‖φ1
2 + tφ1‖2∗

2∗

, for all
t ≥ 0 and all u ∈ M2 such that |α| = 1. This, combined with (59), shows that it
suffices to study the real function

f(t) = Q(φ1
2 + tφ1) =

‖∆φ1
2‖2

2 + t2‖∆φ1‖2
2

‖φ1
2 + tφ1‖2

2∗

, t ≥ 0

and prove that

max
t≥0

f(t) = f(0). (60)

Let us simplify (60). Writing x = (x1, x
′), where x′ ∈ R

n−1, and denoting with Br

the ball in R
n−1 of radius r and center 0, we deduce:

‖φ1
2 + tφ1‖2∗

2∗

=

∫

B

(1 − |x|2)2∗ |x1 + t|2∗ dx

=

∫ 1

−1

∫

B
(1−x2

1)1/2

(1 − x2
1 − |x′|2)2∗ |x1 + t|2∗ dx′ dx1

= ωn−1

(∫ 1

−1

|x1 + t|2∗

∫ (1−x2
1)

1/2

0

(1 − x2
1 − ρ2)2∗ρn−2 dρ dx1

)
[ρ = (1 − x2

1)
1/2r]

= ωn−1

(∫ 1

−1

|x1 + t|2∗(1 − x2
1)

2∗+(n−1)/2 dx1

)(∫ 1

0

(1 − r2)2∗rn−2 dr

)

=
ωn−1

2
β

(
n− 1

2
,
3n− 4

n− 4

)(∫ 1

−1

|s+ t|2∗(1 − s2)
n2

−n+4
2(n−4) ds

)

=:
ωn−1

2
β

(
n− 1

2
,
3n− 4

n− 4

)
ϕ(t).

We have so found that f(t) = CnF (t), where Cn = 8ωn

n24/n(ωn−1β(n−1
2 , 3n−4

n−4 ))
2/2∗

and

F (t) =
n+ 2 + n2t2

(ϕ(t))2/2∗

.

The claim 60 becomes

max
t≥0

F (t) = F (0). (61)

When n = 5, 6, 8, the number 2∗ is an even integer so that we may expand the term
|s+ t|2∗ and write ϕ as a polynomial.

Case n = 5. Here, 2∗ = 10 and

ϕ(t) =

∫ 1

−1

(s+ t)10(1 − s2)12 ds =
10∑

k=0

(
10
k

)
tk
∫ 1

−1

s10−k(1 − s2)12 ds

=
β(1

2 , 13)

29667

(
1 + 175t2 + 3850t4 + 23870t6 + 49445t8 + 29667t10

)
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so that

F (t) = C5
7 + 25t2

(1 + 175t2 + 3850t4 + 23870t6 + 49445t8 + 29667t10)
1
5

,

where C5 :=
(

29667
β( 1

2 ,13)

) 1
5

. Let now

F̃ (t) :=
F (

√
t)

C5
=

7 + 25t

(1 + 175t+ 3850t2 + 23870t3 + 49445t4 + 29667t5)
1
5

,

so that by direct computations we get

F̃ ′(t) = 4
9889t4 − 9548t3 − 10626t2 − 1820t− 55

(1 + 175t+ 3850t2 + 23870t3 + 49445t4 + 29667t5)
6
5

.

Consider the function

g(t) := 9889t4 − 9548t3 − 10626t2 − 1820t− 55, t ≥ 0,

we have g′(t) = 4
(
9889t3 − 7161t2 − 5313t− 455

)
and g′′(t) = 132(161t2 − 434t

−899). Therefore there exists a unique t > 0 such that

g′′(t) < 0 if t < t, g′′(t) = 0, g′′(t) > 0 if t > t.

This, together with g′(0) < 0 and lim
t→+∞

g′(t) = +∞, shows that g′ has a global

minimum at t and g′(t) < 0. Hence, there exists a unique σ > t such that

g′(t) < 0 if t < σ, g′(σ) = 0, g′(t) > 0 if t > σ.

Similarly, since g(0) < 0 and lim
t→+∞

g(t) = +∞, we know that g has a global mini-

mum at σ and g(σ) < 0. This proves that there exists a unique τ > σ such that

g(t) < 0 if t < τ, g(τ) = 0, g(t) > 0 if t > τ.

Finally, this shows that F̃ has a global minimum at τ , whereas F has a global
minimum at

√
τ . Since F (0) = 7C5 > lim

t→+∞
F (t) = 25C5(29667)−1/5, this proves

that (61) holds when n = 5.
Case n = 6. Here 2∗ = 6,

ϕ(t) =

∫ 1

−1

(s+ t)6(1 − s2)
17
2 ds =

β(1
2 ,

19
2 )

704

(
1 + 72t2 + 528t4 + 704t6

)

and

F (t) = C6
8 + 36t2

(1 + 72t2 + 528t4 + 704t6)
1
3

,

where C6 :=
(

704
β( 1

2 , 19
2 )

) 1
3

. To simplify further, we set

F̃ (t) :=
F (

√
t/2)

C6
=

8 + 9t

(1 + 18t+ 33t2 + 11t3)
1
3

and we compute

F̃ ′(t) =
11t2 − 68t− 39

(1 + 18t+ 33t2 + 11t3)
4
3

.

This shows that F has a global minimum for t = t > 0 and no local maximum for
t > 0. Hence, since F (0) = 8C6 > lim

t→+∞
F (t) = 36C6(704)−1/3, we conclude that

(61) holds when n = 6.
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Case n = 8. Here 2∗ = 4,

ϕ(t) =

∫ 1

−1

(s+ t)4(1 − s2)
15
2 ds =

β(1
2 ,

17
2 )

120

(
1 + 40t2 + 120t4

)

and

F (t) = C8
10 + 64t2

(1 + 40t2 + 120t4)
1
2

,

where C8 :=
(

120
β( 1

2 , 17
2 )

) 1
2

. Consider

F̃ (t) =:
F (
√
t/2)

2C8
=

5 + 16t

(1 + 20t+ 30t2)
1
2

,

we have

F̃ ′(t) = 2
5t− 17

(1 + 20t+ 30t2)
3
2

.

Coming back to the function F , this means that F has a global minimum for
t = t > 0 and no local maximum for t > 0. Thus, since F (0) = 10C8 > lim

t→+∞
F (t) =

64C8(120)−1/2, we conclude that (61) holds also when n = 8.

Lemma 6.2. Let K4 be as in (58). If

d > n+ 2 − n+ 2

K4
S4,

then

µ := sup
u∈M−

J(u) <
2

n
S

n/4
4 .

Moreover, there exist ρ, η > 0 such that

J(u) ≥ η, for all u ∈M+ ⊕H2
0 (B) : ‖∆u‖2 = ρ.

Proof. Let u ∈M−. Since d2 = n+ 2 (see Proposition 7), we have

J(u) =
1

2

(
‖∆u‖2

2 − d‖u‖2
∂ν

)
− 1

2∗
‖u‖2∗

2∗

≤ 1

2

(
n+ 2 − d

n+ 2

)
‖∆u‖2

2 −
1

2∗
‖u‖2∗

2∗

≤ 1

2

(
n+ 2 − d

n+ 2

)
K4 ‖u‖2

2∗

− 1

2∗
‖u‖2∗

2∗

≤ 2

n

(
n+ 2 − d

n+ 2
K4

)n
4

,

where the last inequality follows from

max
s≥0

(
as− bs

n
n−4

)
=

(
n− 4

n

)n−4
4 4

n

an/4

b(n−4)/4
, for all a, b > 0.

Therefore,

µ ≤ 2

n

(
n+ 2 − d

n+ 2
K4

)n
4

.

To conclude we observe that µ < 2
nS

n
4
4 for n + 2 − d < S4(n+2)

K4
. Let now u ∈

M+ ⊕H2
0 (B) and ρ = S

n
8
4

(
n+2−d

n+2

)n−4
8

, for ‖∆u‖2 = ρ we have

J(u) ≥ 1

2

(
n+ 2 − d

n+ 2

)
‖∆u‖2

2 −
1

2∗S
n/(n−4)
4

‖∆u‖2∗

2 =
2

n

(
n+ 2 − d

n+ 2
S4

)n
4

=: η.

The proof is now complete.
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Lemma 6.2 allows us to apply [5, Theorem 2.4] from which we deduce that, if
n+ 2− d < S4(n+ 2)/K4, then J admits at least n (the multiplicity of d2) pairs of

critical points at levels below (2/n)S
n/4
4 . Set g(n) := S4(n+2)

K4
and, using (30) and

(53), compute to obtain (7).

7. Remarks on Theorem 1.3 in general dimensions. As already mentioned,
we do not have a proof of Theorem 1.3 in general dimensions n ≥ 5. However, we
make the following

Conjecture 1. Assume that Ω = B, the unit ball of R
n with n ≥ 5. If d ∈

(n+ 2 − g(n), n+ 2), problem (6) admits at least n pairs of nontrivial solutions.

Let us explain the three main reasons why we believe this conjecture to be true.
First, we notice that what is missing for the proof of this conjecture is Lemma 6.1.
In turn, this reduces to show that F (0) ≥ F (t), for every t ≥ 0, or that G(t) ≥ 0,
where

G(t) := (n+2)
n

n−4ϕ(t)−ϕ(0)(n+2+n2t2)
n

n−4 = (n+2)
n

n−4ϕ(t)−b(n+2+n2t2)
n

n−4

(62)

and b := β
(

3n−4
2(n−4) ,

n2+n−4
2(n−4)

)
.

We can prove this property only locally:

Lemma 7.1. For any n ≥ 5, we have G(0) = G′(0) = 0 and G′′(0) > 0.

Proof. Consider first the function ϕ. We have

ϕ′(t) = 2∗

∫ 1

−1

|s+ t|2∗−2(s+ t)(1 − s2)a ds > 0 for t > 0 and ϕ′(0) = 0,

ϕ′′(t) = 2∗(2∗ − 1)

∫ 1

−1

|s+ t|2∗−2(1 − s2)a ds > 0 for t ≥ 0,

where a := n2−n+4
2(n−4) . Thus ϕ is an increasing and convex function. Since

G′(t) = (n+ 2)
n

n−4ϕ′(t) − b 2∗n
2t(n+ 2 + n2t2)

4
n−4 ,

we have G(0) = G′(0) = 0. On the other hand,

G′′(t) = (n+ 2)
n

n−4ϕ′′(t) − b 2∗n
2(n+ 2 + n2t2)

8−n
n−4 (n+ 2 + n2t2 + 4n2∗t

2),

so that

G′′(0) = (n+ 2)
n

n−4ϕ′′(0) − b 2∗n
2(n+ 2)

4
n−4 =

8n2(n+ 2)
4

n−4 (2n+ 1)

(n− 4)2
b > 0,

where in the last step we exploited the property β(p+ 1, q) = p
p+qβ(p, q) to deduce

that

ϕ′′(0) = 2∗(2∗ − 1)β

(
n+ 4

2(n− 4)
,
n2 + n− 4

2(n− 4)

)
= 2∗(2∗ − 1)

n(n+ 2)

n+ 4
b.

The second argument which brings some evidence in favor of Conjecture 1 is
that, although we cannot prove (61), we have

Lemma 7.2. There exists n0 ∈ N such that F (0) > lim
t→+∞

F (t), for all n ≥ n0.
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Proof. As n→ +∞ we have

F (0) =
n+ 2

[
2
∫ 1

0
s2∗(1 − s2)

n2
−n+4

2(n−4) ds

]2/2∗

∼ n

2
∫ 1

0 s
2(1 − s2)n/2 ds

,

lim
t→+∞

F (t) =
n2

[
2
∫ 1

0
(1 − s2)

n2
−n+4

2(n−4) ds

]2/2∗

∼ n2

2
∫ 1

0 (1 − s2)n/2 ds
.

An integration by parts shows that
∫ 1

0

s2(1 − s2)n/2 ds =
1

n+ 2

∫ 1

0

(1 − s2)n/2+1 ds <
1

n

∫ 1

0

(1 − s2)n/2 ds

and the statement follows.

The last argument which brings some evidence to Conjecture 1 are the numerical
plots (obtained with Mathematica) of the functions G defined in (62) when n =
7, 9, 10, ..., 20. Not only it seems that G(t) ≥ 0 for all t ≥ 0 but also that G is
increasing and convex.
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