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Abstract Given an open bounded connected subset €2 of R”, we consider the over-
determined boundary value problem obtained by adding both zero Dirichlet and
constant Neumann boundary data to the elliptic equation —div(A(|Vu|)Vu) = 1
in . We prove that, if this problem admits a solution in a suitable weak sense,
then €2 is a ball. This is obtained under fairly general assumptions on 2 and A. In
particular, A may be degenerate and no growth condition is required. Our method
of proof is quite simple. It relies on a maximum principle for a suitable P-function,
combined with some geometric arguments involving the mean curvature of 9<2.
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1 Introduction

For a bounded, connected, open set £ C R” and for a parameter ¢ > 0, consider
the elliptic boundary value problem

—div(A(|Vu|)Vu) =1 in
u=20 on IQ2 (D)
|Vu| =c on d€2.
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Imposing boundary conditions for both # and Vu on 92 makes problem (1) over-
determined, so that in general it has no solution. On the other hand, it is not difficult
to verify that, under reasonable assumptions on A, if €2 is a ball then problem (1)
admits a unique solution, which is radially symmetric (see Proposition 2.2 below).
A natural question which arises is to determine if this condition is also necessary,
namely whether the following statement holds true:

if (1) admits a solution, then €2 is a ball. 2)

In the linear case, when A = 1 and the equation becomes —Au = 1, (1) may
be used to describe both the motion of a viscous incompressible fluid moving in
straight parallel streamlines through a pipe with planar section €2 or the torsion of a
solid straight bar of given cross section 2. For these models, (2) has the following
meaning, which we quote from [34]: “the tangential stress on the pipe wall is the
same at all points of the wall if and only if the pipe has a circular cross section”
and “when a solid straight bar is subject to torsion, the magnitude of the resulting
traction which occurs at the surface of the bar is independent of position if and
only if the bar has a circular cross section”.

When A(r) = (1+1%)~1/2 the solution of (1) describes the shape of a capillary
surface in absence of gravity, adhering to a given plane with constant contact angle.
In this case, (2) means that the wetted area on the plane is necessarily spherical,
see [34,38].

For degenerate elliptic operators, further physical applications may be pointed
out. For instance, when A(t) = t”~% for some p > 1, problem (1) models torsional
creep with constant stress on the boundary [21]. When A(t) = 1 4 at? =2 (with
a > 0, p > 1), equation (1) has applications in Born-Infeld theory for electrostatic
fields [14], and its solutions are static critical points of an action functional with
Lorentz-invariant Lagrangian density proposed by Derrick [12] as a model for ele-
mentary particles. We also refer to [3,4] for more general applications to quantum
physics.

Indeed, the problem of proving (2) has raised a good deal of attention in the last
decades. The first fundamental contribution is due to Serrin. In his celebrated paper
[34], (2) is obtained in the uniformly elliptic case, when solutions of (1) are classi-
cal. Serrin’s proof is based on what is now known as the “moving planes method”.
This method has subsequently been used in many further symmetry results for
elliptic equations, see [17,26,32]. In its original version, the method applies under
the requirement that 9Q € C2. Later this assumption was weakened; we refer to
[5] and [31] for the case of domains with Lipschitz boundary and with one possible
corner or cusp.

In the special (and simplest) case where A = 1, a different method to obtain (2)
was discovered by Weinberger [37] whose proof is the first successful attempt to
use an associated ““ P-function”. By using some integral identities and the maximum
principle, he shows that a certain function of u is constant in all of Q2 (see Remark
5.4 below). As a consequence the Hessian matrix of u is a multiple of the identity,
which gives (2). This approach requires very weak assumptions on the regularity
of the boundary. Let us also mention that for smooth domains, an alternative proof
still valid only for the case A = 1 has been obtained by Choulli-Henrot [10] via
shape derivatives.
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All these methods, including the original one of moving planes, fail when A
is a general elliptic operator, possibly degenerate. In this case, solutions of (1)
may lose regularity and must be intended in some weak sense. For instance, when
A(t) = tP~2 for some p > 1 (which corresponds to the p-Laplacian operator),
solutions are generally of class C Lo hut not C2. In fact, as far as we are aware,
the existing results about (1) in the degenerate case cover just “p-Laplacian type”
equations. More precisely, assuming that A(f) ~ =2 as t — oo for some p > 1
(see Remark 5.1 below), in [15] Garofalo-Lewis deal with solutions of (1) which
belong to W!7(2) and satisfy the boundary conditions in a fairly weak sense. In
their ingenious proof of (2), inspired by Weinberger’s approach, the asymptotic
behaviour of A is used to obtain gradient bounds and to apply elliptic regularity.
Later, under the same assumptions on A but only for p > 2, (2) was derived via
continuous Steiner symmetrization by Brock-Henrot [6], assuming initially that
Q is convex and that solutions are in C!(). Finally let us mention the paper by
Damascelli-Pacella [13], where (2) is proved when A(¢) = t? 2 and pe(l,2).In
this special case the authors are able to adapt the moving planes method because,
at critical points of solutions, the operator is more likely to be singular rather than
degenerate.

The scope of the present paper is to provide a new simple unifying proof of
(2) for very general problems, possibly degenerate. Dealing with C! () solutions,
we make fairly weak assumptions (in particular, no growth restrictions) on the
function A. The price that we must pay for these general assumptions are some
geometric restrictions on the admissible domains €2, i.e. simple connectedness for
planar domains (see Theorem 2.4) and star-shapedness in higher space dimensions
n > 3 (see Theorem 2.3). If we make no geometric assumptions on 2, we may
only prove a much weaker version of (2), namely that €2 coincides with its Cheeger
set, see Theorem 2.5.

Our approach combines analytical and geometrical arguments. It is based on
Alexandrov characterization of spheres [1,2]. In order to apply his principle, we
use a suitable P-function, which enables us to obtain a uniform upper bound for
the mean curvature of d€2. Then we employ two crucial tools from geometry, a
sharp estimate for the radius of the maximal inscribed disk in dimension n = 2
(see Lemma 3.4 below) and a so-called Minkowski identity in any space dimension
(see the first identity in formula (21) below).

The outline of the paper is as follows. The main results are stated in Section 2
and proved in Section 4. Section 3 contains some crucial preliminary lemmata. In
Section 5 we gather some concluding remarks.

2 Main results

Throughout the paper we assume that Q € C>®. This ensures that solutions of
(l)are C 2%4ina neighbourhood of 9€2, see Lemma 3.1. In particular, the Neumann
condition reads

—Uy, =c¢ on 0%2,

where v denotes the exterior unit normal to 92. We remark that less regularity
on 02 could be required thanks to the results in [36], but it is not our purpose
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to discuss here the optimal assumptions on the boundary. Our attention is mainly
focused on the operator A. We ask it to satisfy the regularity requirement

A € C*(0, +00) 3)
and the (possibly degenerate) ellipticity conditions

lim tA() =0, (tA®) >0 fort>0. (4)
t—0t

Note that the first condition in (4) is necessary for the existence of a cl(Q)
solution of (1). To see this, let 7 — 07 in (18) in the proof of Proposition 2.2
below. Note also that, in view of Theorem 2.5, the second condition in (4) could
be assumed to hold only for 7 € (0, ¢).

Under assumptions (3)-(4) on A, we consider C! distributional solutions of (1).
More precisely we give the following:

Definition 2.1 We say that u is a solution of (1) if u € C}(Q), u, = —c on 9
and

/ A(|Vu|)VuVe =/ ¢ forallgp € CXX(Q).
Q Q

To investigate the existence of a solution of (1), one starts in a natural way from the
easiest case when 2 is, by assumption, a ball. In such case, the radius of the ball and
the corresponding solution can be uniquely and explicitly determined according to
the following simple proposition, that is proved for completeness in Section 4.

Proposition 2.2 Ler A satisfy (3) and (4) and assume that Q2 = Bpg is a ball of
radius R in R". Then problem (1) admits a solution u if and only if R = ncA(c). In
this case, u is radially symmetric and decreasing in Bg and, when Bp is centered
at the origin, u can be written as

R
u(x) =/| A(%) ds,

x|
where A is the inverse of the map t — tA(t).

The delicate matter is to prove the converse statement of Proposition 2.2, namely
that (2) holds. We are able to prove this implication under the initial assumption
that € is a star-shaped domain, i.e. that there exists a point xo € €2 such that
(x —xgp)-v>0o0n0d.

Theorem 2.3 Let A satisfy (3) and (4) and assume that Q C R" is star-shaped
with C*>% boundary. If problem (1) admits a solution, then Q is a ball of radius
R =ncA(c).

In dimension n = 2 the result remains valid if €2 is merely assumed to be
simply connected.

Theorem 2.4 Let A satisfy (3) and (4) and assume that Q C R? is simply con-
nected with C*>% boundary. If problem (1) admits a solution, then Q is a disk of
radius R = 2cA(c).
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In arbitrary dimension, if 2 is not assumed to be star-shaped, we can prove a
result weaker than Theorem 2.3. According to [24] and [25] we say that 2 coincides
with its Cheeger set if

10€2 . |aD|
—— = min ——
12| D |D|
where the minimum is taken over all open, nonempty, simply connected subdo-
mains D of Q. h(2) is named after [9] and called the Cheeger constant of 2.

Theorem 2.5 Let A satisfy (3) and (4) and assume that Q@ C R" has a_ cxe
boundary. If problem (1) admits a solution u, then |Vu(x)| < c forall x € 2, and
Q coincides with its Cheeger set.

= h(RQ)

In [25] it was shown that convex plane domains satisfy 4 (2) = |0€2|/|€2| if and
only if the curvature of their boundary is bounded from above by |d2|/|€2]|. For
instance, ellipses and other domains coincide with their Cheeger sets. But not all
domains coinciding with their Cheeger sets are star-shaped. Annuli or rounded L-
shaped domains can serve as counterexamples. Thus, combining Theorems 2.3 and
2.5 is unfortunately not sufficient to conclude that the star-shapedness assumption
in Theorem 2.3 may be removed.

3 Preliminary results

Throughout this section we assume without further mention that 9 € C>% and
that A satisfies (3)-(4). We first show that, if a solution of (1) exists, it is unique
and it gains regularity.

Lemma 3.1 There exists at most one solution u of (1) in the sense of Definition
2.1. If it exists, it satisfies
ueC>(Q\ {x : Vulx) #0}). (5)

Proof To prove uniqueness, observe that any solution of (1) is a critical point of
the integral functional

J(u):/ [B(|vu|)—u], uecl@ . (6)
Q

where B(s) := fos tA(t)dt. Due to (4), the map s — B(s) is strictly convex, then
sois J, and u must coincide with its unique minimizer. Condition (5) follows from
standard elliptic regularity theory. O

Now we put O (¢) :=2 fé (A(s)+sA’(s))s ds and we assume that u solves (1)
in the sense of Definition 2.1. Then, we consider the P-function defined by

2 _
P(x) := ®(|Vulx)|) + ;u(x) (x € Q). (7)

Clearly, P is continuous in Q and, by Lemma 3.1, it is of class C lina neighbour-
hood of dQ2. The next lemma is an extension of a known result on P-functions to
possibly degenerate equations. Let us stress that it does not exclude that P might
attain its maximum also in critical points of # (which are in the interior of 2).



122 I. Fragala et al.

Lemma 3.2 (P-function)
If u solves (1) in the sense of Definition 2.1, then the P-function defined by (7) is
either constant in 2 or it satisfies P, > 0 on 0€2.

Proof Throughout the proof we assume that P is not constant in 2. We first claim
that P attains its maximum on d<2 and that if P also attains its maximum in a point
X € 2 then necessarily Vu(x) = 0. We divide the proof of this claim into two
steps. In the former we assume that A is uniformly elliptic, in the latter we proceed
by approximation.

Step 1. In this step we follow essentially [28] and [35] and prove the statement
when A satisfies the uniform ellipticity conditions (which imply (3) and (4))

A€ C0,+00), (tA®) >0 fort>0. (8)
We set
A(|V
LP:= AP+ ﬂvzpw Vu .
[VulA(|Vul)

By some long but straightforward computations, one may obtain the explicit expres-
sion of L£P and write it down as

LP+L-VP=yg 9)

where L = L(u) is a suitable vector-valued function, and g = g(u) contains all the
“remainder terms”, see [35, Section 7]. Via an application of Schwarz’s inequality,
one gets that the function g is nonnegative on 2, so that P turns out to satisfy the
second order differential inequality

LP+L-VP>0 inQ. (10)

Clearly, since (8) holds, the operator £ has bounded coefficients, and also the vector
field L = L(u) remains bounded, see e.g. [35, Theorem 7.3]. Moreover, thanks to
(8), the operator L is strongly elliptic, because there exists u > 0 such that
A'(IVul)
[VulA(IVul)

Indeed, for those x € Q such that A’(|Vu(x)|) > 0, (11) is satisfied with u = 1.
Otherwise, we may apply Schwarz’s inequality to obtain

. A(Val) L A(Vul) + AV Val
S Naagvap V= A(Val)

Hence, (11) holds for all x € Q with

u =inf (tA—(t))/ 1 te |:0, max|Vu(x)|:| >0.
A(1) xeQ

€17 + (Vu-8)% > plgl> forallé eR", xe Q. (11)

HE

Thus, under assumption (8), (10) is an elliptic inequality of second order with
bounded differentiable coefficients. Hence, the second order operator may be writ-
ten in divergence form. Then, the classical maximum principle (see e.g. [18, The-
orem 8.1]) proves that P attains its maximum over  on 2. Notice that in this
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case, since P is assumed nonconstant, the maximum of P over €2 is attained only
on 02.

Step 2. Let us turn to the case when A is possibly degenerate. If (8) is weakened to
(3) and (4), the coefficients of the inequality (10) may become singular on the set
C:={x € Q : Vu(x) = 0}, and also (11) may fail. Thus, we proceed through a
careful perturbation argument. We set

A'(|Vu| +¢)

LoP:=AP+ V2PVu-Vu,
(IVul + &)A(|Vu| + ¢)

and we choose a sequence {L.} in C 0(Q2; R™) which converges to L locally uni-
formly in 2\ C as ¢ — 0. For every ¢ > 0 we consider now the solution P; to the
boundary value problem

LePe+L,-VP=g inQ

P.=P = ®(c) on a2,
with g defined by (9). By construction, for every ¢ the operator £, has bounded

coefficients, and also the vector field L, = L.(u«) remains bounded. Moreover,
arguing as in Step 1, we find an ellipticity constant given by

e = inf I (t::((tt))) ctefee —|—r;1€aé|Vu(x)I]] >0.

Thus, by the maximum principle, P; attains its maximum on 9<2. In particular, for
every neighbourhood U of C, there holds

max P, = max P, = max P, .
Q 0% Q\U

Now, since CN a2 = ¢, and since Py converges to P uniformly on compact subsets
of @\ C, we deduce that

max P = limmax P, = limmax P, = max P = max P ,
Y & 9 & o\ Q\U Q\C

where the last equality follows from the arbitrariness of /. We infer that, if P (x*) >
maxyq P for some x* € €2, then x* belongs to the interior of C. But such interior is
empty, as otherwise integrating the first equation in (1) on a ball B C C would give
a contradiction via the divergence theorem. Hence P assumes its maximum on 9€2.
Moreover, the above approximation method shows that any maximum point for P
in 2 belongs necessarily to C. This completes the proof of the claim.

In order to complete the proof of the lemma, note that since u solves (1), we
have |Vu| # 0 in a (closed) neighbourhood D C Q of 3. By the just proved
claim, P attains its maximum in D only on d€2. Moreover, the equation (9) is uni-
formly elliptic in D and therefore P satisfies the classical boundary point principle.
This shows that P, > 0 on 9€2. O

As a consequence of Lemma 3.2, we obtain a uniform upper bound for the
mean curvature of 02 for those domains where (1) admits a solution.
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Lemma 3.3 (Upper bound for the mean curvature)
If problem (1) admits a solution, then the mean curvature H (x) of 02 satisfies

1
eitherr H(x) < ————  forallx € 0Q2 or HHx)= ——.
nc A(c) ncAc)

Proof Since ¢ # 0, the first equation in (1) is nondegenerate in a neighbourhood
of 92, and by (5) it may be rewritten pointwise on d<2 as

[A(e) + cA'(©)]uyy — (n — DcA()H(x) = —1. (12)

Consider now the P-function associated with # defined in (7). According to Lemma
3.2, two cases may occur. Let us first consider the case where

2
P, =[A(c) + cA'(©)] 2uyupy + =uy, >0 ondQ. (13)
n
Since u#, < 0 on 0€2, we can divide by 2u,, and obtain
1
[A©) +cA(©)]uw +—- <0 ondQ. (14)
n

By combining (12) and (14) we readily obtain H (x) < [n ¢ A(c)] forallx € 392

The second case of Lemma 3.2 turns (13) into an equality. Then, arguing as
above, also (14) becomes an equality so that H(x) = [nc¢ A(c)]™! forall x € 9Q.
This proves the lemma. O

Lemma 3.3 states that in any case

Hx) < forall x € 9% . (15)

ncA()

For planar domains, inequality (15) has the following intuitive geometrical conse-
quence.

Lemma 3.4 (Maximal inscribed ball)
Assume that n = 2 and that Q2 is a simply connected domain. If (15) holds, then 2
contains a ball of radius R = 2cA(c).

Proof See [8, Section 30.4.1] and also the previous papers [29,19] for a complete
proof. O

Remark 3.5 In dimension n > 3 the analogue of Lemma 3.4 is false. For a (sharp)
lower bound on the radius of the maximal inscribed ball in arbitrary dimension,
see [8, Section 30.4.2].

Lemma 3.4 will be exploited for the proof of Theorem 2.4, by inscribing a ball
of radius R = 2cA(c) inside 2 and using comparison principles which we prove
below. Here and in the sequel, we use the notation

Ou = —div(A(|Vu|)Vu) .
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Definition 3.6 Let u, u» € C'(Q). We say that Qu; = Qu» in Q if

/A(|Vu1|)Vu1Vgo=/ A([Vu2)Vua Vo Vo € CZ(Q).
Q Q
We say that Qu; < Quj in Q if

[ [A0vinhvin = 40V vua|ve <0 vp e @, gz 0.
Q

(16)
With this definition, we may state our first comparison result:

Lemma 3.7 (Weak comparlson principle)
Assume that uy, ur € CH(Q) satisfy

<QM1 < Qup in Q2

up < up on 0Q2.
Then uy < up in Q.

Proof Let v := (u; — up)™. By assumption, v € W(;’OO(SZ) so that by a density
argument it can be used as a test function in (16). By subtracting, we infer that

/{ : [A(IVu1)Vur — A(IVuza|)Vuz] - (Vuy — Vup) < 0. (17)
ur>un

Thanks to Schwarz’s inequality and assumption (4), there holds

[A(|Vu1|)Vuy — (A(|Vua|)Vua]l - (Vuy — Vi)
> A(Vur)|Vuy > + A(Vuz)) | Vua|* — [A(Vur ) + A(Vua 1|V || Vs
= [A(Vu1])|Vur| — A(IVua ) [ Vua [I(|Vur| — [Vual) > 0,

the latter inequality being strict for |Vu1| #% |Vuz|. This combined with (17) gives
a contradiction unless v = 0. O

Let us now prove a boundary point principle. We are grateful to J. Serrin for
making us aware that, in the same spirit of his paper [33], the following statement
holds under the mere assumption A € C'(0, +00) instead of A € C 2(0, +00).
Therefore, also Theorem 2.4 remains valid under this weaker regularity assumption
on A.

Lemma 3.8 (BOUNDARY POINT PRINCIPLE)

Let B be a ball with center 0 and let uy € C(B) N CZ(B \ {0}), wzth [Vui| #0
on 3 B. Assume that there exists a function uy € C'(B) and a point x* € 9B such
that

Qui <Quy inB
Uy < up in B
up(x*) = up(x*) .

Then Vu(x*) # Vuy(x™).
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Proof Assume without loss of generality that B is the unitball Bj and |[Vu(x)| # 0
for |x| € [1/2, 1]. For « > 0, set

7a\x|2 o

_e7
2

e
v(x) =
o
Clearly, for sufficiently large o we have uy + v < u on d(By \ By,2). We claim
that (still for sufficiently large «) there holds Q(u1 +v) < Quo in By \ By/2. Were
this claim proved, the statement would follow at once. Indeed, since

O +v) < Qua in By \ B2
up+v <u on d(By \ Bi2) ,

Lemma 3.7 ensures that uy + v < us in By \ By, and the claim follows.

Since u; € C*(B; \ Bj1,2), we may argue pointwise. With some tedious but
straightforward computations we obtain Q(u; + v) = —I — II, where, in the
asymptotic expansion as &« — +00,

I:=A(|V(u1 +v)|[)Adu; +v)
= A(IVur]) Auy + 4xPA(Vur e + o(e™)

and
(VG + ) ,
_ Allval) (1Vu11) V(IVur?) - Vuy +4(x - Vul)z—A (|VM1|)670[|X|2 +o(e™®).

2|Vu| [V
We point out that, in order to perform the above asymptotic expansion, one needs
the fact that Vuy # 0in By \ By,2. Hence

O 4+ v) — O(uy) = e | |xPA(Vur]) + (x - Vuy)?
V|

+o(e™) .

We claim that the term inside square brackets in the above expansion is pos-
itive. This is trivially true when A’(|Vu1|) > 0 (recall Vu; # 0). Otherwise, by
Schwarz’s inequality and assumption (4), we obtain as well

(IVu1l)

I 2A(Vu vup 2 /
) - Vi S = P [AGV]) + Vi (Vi )| > 0.

This shows that for « sufficiently large we have Q(u; + v) < Qu; pointwise in
B \ Bi,2 and, a fortiori, the same inequality holds in the weak sense of (16).
Hence, in the same weak sense, Q(u1 +v) < Quo in By \ Bj2, which concludes
the proof. O
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4 Proofs of the main results

Proof of Proposition 2.2 If (1) admits a solution u, then by Lemma 3.1 it is unique
and coincides with the minimizer of the functional J in (6). Standard symmetri-
zation arguments (see e.g. [7] or [20]) then show that such a minimizer is radially
symmetric and radially decreasing. Now, any radial C!-solution # = u(r) must
satisfy the ordinary differential equation

(r"_lA(lurDur)r = ! on [0, R],

whose first integral is easily computed as
r
Allurr)) ur(r) = —— on[0, R].
This tells us that u, < 0, and that the above equation may be rewritten as

r

A(lur(r)D) luy(r)| = —on [0, R]. (18)
Hence, if A is the inverse function of ¢ > rA(z), we have u, (r) = —A(%) and,
subsequently,
R s
u(r) :/ A(—) ds .
- n
Finally, writing (18) for r = R we obtain R = ncA(c). O

Proof of Theorem 2.3 The claim of Theorem 2.3 follows from Alexandrov’s char-
acterization of spheres [1,2] once we show that

Hx)= — ond%2. (19)
c
Assume for contradiction that (19) is false. In view of Lemma 3.3, this means that

H(x) < on d<2 . (20)

ncA()
Up to a translation, we may assume that €2 is star-shaped with respect to the origin.
Inspired by [16], we now point out that

/H(x)x-v:|8§2|, /x~v=n|§2|, 1)
Q2 a2

where the first identity is a so-called Minkowski formula (see for instance Section
2A in [27]), and the second one is immediate from the divergence theorem. In par-
ticular, (21) and starshapedness with respect to the origin tell us that x - v > 0 on
02 with x - v > 0 on a subset of positive (n — 1) measure. Therefore, multiplying
inequality (20) by x - v and integrating over 92 yields

/ H(x)x-v</ v (22)
P19 aancA()
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By (21) and (22) we get
cA(0)|02] < || . (23)

On the other hand, integrating the differential equation in (1) and using again the
divergence theorem gives

Q| = —/ div(A(|Vu|)Vu) = cA(0)|39] . 24)
Q

This contradicts (23) and completes the proof. O

Proof of Theorem 2.4 By Lemmata 3.3 and 3.4, Q2 contains a disk B of radius
R = 2cA(c) and center, say, 0. Without loss of generality we may assume that B
touches 0€2 tangentially in a point x*, so that they have the same outward normal
v*. Otherwise we shift B. By Proposition 2.2 the boundary value problem (1) on
B admits a unique solution v € Cé (B)NC?*(B \ {0}). In particular, this solution
v satisfies

Vo(x*) = —cv* = Vu(x¥), (25)

and Qv = Qu in B. Moreover, v < u on dB, because by Lemma 3.7 we know
that u > 0 in 2. Hence, again by Lemma 3.7 applied now to B, we deduce that
v < u in B. After setting E := {x € B : v(x) = u(x)}, three cases may occur:
E =0, #E # B, and E = B. Let us exclude the first two cases.

In the first case, we have

Qv = Qu in B
v<u in B
v(x*) = u(x*),

and then by Lemma 3.8 we infer that Vu(x*) £ Vv (x*). This contradicts (25).
In the second case, we can find a disk By C B (not containing the origin) and
a point xg € B N d By such that

Qv = Qu in By
v<u in By

v(xg) = u(xo) ,

but then Lemma 3.8, now applied on By, gives Vv(xg) # Vu(xp). This contradicts
the fact that x( is a minimum point for # — v in B.

Hence, the third case E = B necessarily holds, and so v = u in B. In particular,
the conditions u = v = 0 and u, = v, < O hold on dB. If B C €, this would
imply that u is negative somewhere in €2, while we know from Lemma 3.7 that
u > 0in Q. Therefore, 2 = B and the proof is complete. O

Proof of Theorem 2.5 By Lemma 3.7 we know that u(x) > 0 for all x € Q. This,
together with Lemma 3.2, shows that

O(|Vux)) < ®(|Vu(x)]) + %u(x) <®() forallx e Q.
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Since t = ®(¢) is strictly increasing in view of (4), we deduce that the first state-
ment in Theorem 2.5 holds, namely |Vu(x)| < ¢ for all x € Q. Hence, for any
subdomain D C 2 an integration of the differential equation (1) over D and an
integration by parts yields

|D| = —/ A(IVul)u, 5/ A(IVu|Vu| < cA(c)|dD|.
aD aD

This, combined with (24), shows that

9@l _ 1 _ 18D
|2 cA(c) — |D|

forall D C Q

and proves the second statement in Theorem 2.5. O

5 Concluding remarks

Remark 5.1 The assumptions made on the operator A in [15] (and in [6]) were
that A(t) = f'(r)/t, where f is a positive convex function of class C 2(0, +00)
satisfying

a =1 <tf'(t) <"+ 1), 1 <tf"@0)/f'(1) <2

forallr > 0, some r € (1, +00) and some positive constants ¢y and c¢». It is imme-
diate to check that these hypotheses imply the validity of (4), while the converse is
clearly false. In terms of f, we require no growth conditions besides the ellipticity
inequality f”(r) > 0 on (0, +00). For instance, given real exponents p > 1 and
q > 0, consider an operator A of the kind

p—2
(1422

As special cases, A becomes the p-Laplacian when g = 0, and the mean curvature
operator when p = 2 and g = 1. It is easy to check that (3)-(4) are satisfied as
soonas p > land p — 1 —¢g > 0, while the case p — 1 — ¢ = 0 (including
the mean curvature operator) is not covered by the setting of Garofalo-Lewis and
Brock-Henrot. On the other hand, if p # 2 the operator is degenerate and it is not
covered by the setting of Serrin.

A(t) ==

Remark 5.2 In some sense, our proof of Theorem 2.3 is reminiscent of Pohozaev’s
identity [30]. In its proof, PohoZaev multiplies the PDE with x - Vu and integrates
over 2. In our proof we multiply with essentially the same thing, namely x - v,
but in contrast we multiply the curvature bound and integrate over 92 (where
Vu = —cv).

Remark 5.3 Solutions of (1) are minimizers for the functional J defined in (6).
Under very weak assumptions on A and €2, it has recently been shown by Crasta
[11] that if the minimizer is a web function (in other words, if it only depends on
the distance to the boundary), then €2 is a ball. Of course, requiring the minimizer
of J to be a web function is much more stringent than just requiring the additional
boundary condition u, = —c.
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Remark 5.4 In the linear case where A = 1, Weinberger [37] proved that, if (1)
admits a solution, then the P-function P (x) given by Lemma 3.2 satisfies P(x) =
®(c) on all of 2. To that aim, since P (x) assumes its maximum on d£2 and it is
constantly equal to @ (c) there, he managed to bring the integral inequality

/ P(x) < ®(0)[€ (26)
Q

to a contradiction. We tried to follow the same approach, but it does not work for
general A satisfying just (3)-(4). Since it seems instructive to see where the proof
breaks down, for the benefit of the reader let us present the line of argument in the
case of the p-Laplacian, for which

Pe) = 227V gumrr + 2uw),
p n

Testing (1) with u, it is easy to see that (26) can be rewritten as

(n—}-L)/ udx <ncl|Q|. (27)
p—1/)Ja

Now one would like to relate fQ u to |€2]. To this end, set r := |x|. Since A(r?) =
2n, via integration by parts we obtain

) ou
—2n/u(x)=/V(r)Vu=2/r—. (28)
Q Q Q or

On the other hand, since A(r g—f) = —2, by Green’s formula and using (1) we have

il d d
/ 2u—rot =/ —un (r +r—udiv(|Vu|p_2Vu)
Q ar Q ar ar
a ou ou ou
=d —U— JE—— — |V p—227
+/39|: ”av (rar)+r8r| ul Bv:|

]
=d+cp/ ra—r=d+ncp|9|, (29)
aQ oV

where

d :=/ VuVv (ra—“) [-1+Vu@)|P?] dx .
Q ar

Now, only for p = 2 the extra term d vanishes and then (28) and (29) contradict
(27).

Let us also mention that a symmetry proof showing that the P-function is
constant on all of € cannot extend to general semilinear equations of the type
Au = f(u) either. This was explained in [22].
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Remark 5.5 Once it is known that the P-function satisfies P(x) = ®(c) in €2, the
function u satisfies the system of two autonomous equations

div(A(Vul)) =1  and |Vu|(I>_l((I>(c)—%u) — o).

The first equation is of second order and the second one of first order and both
equations hold in €2, an extremely overdetermined situation. Therefore the level
surfaces {x € Q : u(x) = c} must be isoparametric, i.e. their nonzero principal
curvatures are all equal. They can be spheres, cylinders or planes, but for positive
solutions to homogeneous Dirichlet problems they can only be spheres. This obser-
vation was pointed out in [23] in the context of Weinberger’s proof of Serrin’s result
and for two other symmetry problems.
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Note added in proof:

After completing this paper we learned from G.Philippin about his paper [Zbl
0658.35012 Philippin, G.A.: Applications of the maximum principle to a vari-
ety of problems involving elliptic differential equations. Maximum principles and
eigenvalue problems in partial differential equations, Proc. Conf., Knoxville/Tenn.
1987, Pitman Res. Notes Math. Ser. 175, 34-48 (1998).] Combining Step 2 in our
Lemma 3.2 with his use of P-function, at least in the regular case one can remove
the starshapedness assumption in Thm 2.3



