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Abstract. We first highlight the main differences between second order and
higher order linear parabolic equations. Then we survey existing results for
the latter, in particular by analyzing the behavior of the convolution kernels.
We illustrate the updated state of art and we suggest several open problems.

1. Introduction

The Cauchy problem in R
n (n ≥ 1) for higher order (m ≥ 2) linear parabolic

equations

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + (−1)m

∑
|α|≤m
|β|≤m

Dα{aα,βDβ}u = 0 in Rn × R+ ,

u (x, 0) = u0(x) in Rn ,

has recently attracted some interest, due to its somehow surprising and unexpected
properties, strikingly different when compared with the corresponding second order
parabolic equation, that is, when m = 1. The purpose of the present paper is to
survey existing results about problem (1) and to suggest several open problems
whose solution would contribute towards the formation of a complete theory.

Even in the simplest situation when (1) becomes the polyharmonic heat equa-
tion

(2)

{
ut + (−Δ)mu = 0 in Rn × R+ ,
u (x, 0) = u0(x) in Rn ,

important differences appear and many questions are still open. As was first ob-
served by Evgrafov-Postnikov [21], the kernels of the heat operators in (2) depend
on the space dimension, contrary to the classical second order heat operator; this
apparently harmless fact, already claims a lot of work in order to obtain fine qual-
itative properties of the solution to (2). When u0 ∈ C0 ∩ L∞ (Rn), problem (2)
admits a unique global in time bounded solution explicitly given by

(3) u(x, t) = αt−n/2m

∫
Rn

u0(x− y)fm,n

( |y|
t1/2m

)
dy , (x, t) ∈ R

n × R+ ,
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where α = αm,n > 0 is a suitable normalization constant and

(4) fm,n(η) = η1−n

∫ ∞

0

e−s2m(ηs)n/2J(n−2)/2(ηs) ds ,

see [12]. Here and below, Jν denotes the ν-th Bessel function. So, not only the
kernels fm,n depend on n, but also they are not available in a simple form. Due
to the presence of Bessels functions in (3), the solution to (2) exhibits oscillations
and this fact has two main consequences. First, the positivity preserving property
fails; it is in general false that positivity of the initial datum u0 yields positivity of
the solution u. Second, in order to prove global existence or finite time blow-up for
corresponding semilinear equations, comparison principles cannot be used; for this
reason, Galaktionov-Pohožaev [23] introduced a new method based on majorizing
order-preserving operators which, basically, consists in taking the convolution of
the initial datum u0 with the absolute value of the kernel fm,n.

The asymptotic behavior of the solution to the second order heat equation
can be described with some precision also thanks to the so-called Fokker-Plank
equation obtained by exploiting the self-similar structure of the fundamental so-
lution. But the Fokker-Plank operator corresponding to (2) is not self-adjoint if
m ≥ 2 and this brings several difficulties to the analysis of its spectral proper-
ties; these difficulties were partially overcome in a fundamental paper by Egorov-
Galaktionov-Kondratiev-Pohožaev [19]. However, most of the classical methods
usually exploited for the second order heat equation do not apply. For instance,
any reasonable Lyapunov functional becomes very complicated due to the presence
of higher order derivatives, too many terms appear and the study of their signs
is out of reach. Also standard entropy methods fail, due to the change of sign of
the kernels fm,n: the second order entropy is

∫
u log u and cannot be considered

because the solution u to (2) changes sign also for positive data. The sign change
of the kernels also forbids to analyze the behavior of suitable scaled ratios such as
u/fm,n in order to obtain Ornstein-Uhlenbeck-type equations.

The fact that the functions fm,n exhibit oscillations also implies that the semi-
group associated to (1) is not Markovian if m ≥ 2; this yields important compli-
cations in extending the L2 theory to an Lp theory. In the second order case one
uses the Markovian properties of the L2 semigroup to prove that it extends to a
contraction semigroup in Lp. This then leads to heat kernel estimates, a topic ex-
tensively studied in the past 25 years. For m ≥ 2 and L∞ coefficients the situation
is reversed: one first obtains heat kernel estimates and then applies them in order
to develop the Lp theory. The heat kernel estimates depend essentially upon the
validity of the Sobolev embedding Hm(Rn) ⊂ C0(Rn), hence an important distinc-
tion arises depending on the dimension n. This is in contrast to the second order
case where the theory does not depend on such an embedding.

The problem of obtaining sharp heat kernel estimates is itself very interesting.
To put it into context, one needs to go back to short time asymptotic estimates,
first proved by Evgrafov-Postnikov [21] for constant coefficient equations and later
extended by Tintarev [31] for variable smooth coefficients. Progress has been made
in the past years in obtaining sharp heat kernel bounds, but several important
questions remain open.

Further recent results are available for (2). In [10] the positivity preserving
property is studied in presence of a source f(x, t). In [13] the solvability of the
Cauchy problem (2) (with m = 2) in presence of an irregular datum u0 is studied
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and the presence of a strongly continuous analytic semigroup is proved. Finally,
we mention that more general linear problems were considered in [30] whereas the
stability method for higher order equations was studied in [24, Chapter 12].

For the above reasons, many natural questions arise. In this paper, we mainly
focus our interest on the fundamental solution (heat kernel) of (1) and on positiv-
ity preserving property (ppp from now on) for (2). As already mentioned, these
problems are by now very well understood in the second order case where heat
kernels have been extensively studied in very general frameworks, while ppp holds
as consequence of the positivity of the Gaussian heat kernel (maximum principle).
In the higher order case the situation is considerably more complicated and it is
precisely our purpose to give an updated state of art as well as a number of open
problems still to be solved in order to reach a satisfactory theory.

In Section 2 we study various properties of the heat kernel of the general prob-
lem (1). We avoid any local regularity assumptions on the coefficients, and we start
with Davies’ results [14–17] on operators with L∞ coefficients, omitting reference
to earlier work where local regularity assumptions were imposed. We then tackle
the Lp theory, emphasizing the dimensional dependence. We proceed to present the
short time asymptotics of Evgrafov-Postnikov and Tintarev and sharp heat kernel
estimates, including results on non-uniformly elliptic operators. In the last part of
Section 2 we restrict our attention to constant coefficients case, namely equation
(2). In this simplified situation, especially if m = 2, much more can be said on the
behavior of the kernels; in particular, we exhibit fine properties of their moments.

In Section 3 we transform (2) into a Fokker-Planck-type equation and we recall
an important result by Egorov-Galaktionov-Kondratiev-Pohožaev [19] about the
spectrum of the corresponding (non self-adjoint) operator. In Section 4 we deter-
mine the behavior of the moments of the solution to the Fokker-Planck equation in
the fourth order case m = 2.

In Section 5 we recall the results which describe the way how the ppp may fail
and we discuss the possibility of finding a limit decay of the datum u0 for which
ppp may still hold.

2. Heat kernel estimates

In this section we survey some properties of the heat kernel of problem (1). We
first discuss the case where the operator has L∞ coefficients, then we extend some
results to the “singular case” where the coefficients are merely assumed to be in
L∞
loc, finally we specialize to the the simplest case of constant coefficients for fourth

order equations: the biharmonic heat kernel.

2.1. Semigroup generation. Problem (1) is to be understood in the L2-
sense, and for this we need to properly define the elliptic operator

(Hu)(x) = (−1)m
∑

|α|≤m
|β|≤m

Dα{aα,β(x)Dβu}

as a self-adjoint operator in L2(Rn). For this we start with real-valued functions
aα,β(x) = aβ,α(x), |α|, |β| ≤ m, in L∞(Rn) and we define the quadratic form

Q(u) =

∫
Rn

∑
|α|≤m
|β|≤m

aα,β(x)D
αuDβ ū dx
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on Dom(Q) = Hm(Rn). Our main ellipticity assumption is that G̊arding’s inequal-
ity

(5) Q(u) ≥ c1‖u‖2Hm(Rn) − c2‖u‖2L2(Rn) , u ∈ Hm(Rn),

is satisfied for some c1, c2 > 0. It then follows that the form Q is closed; the operator
H is defined as the self-adjoint operator on L2(Rn) associated to the quadratic form
Q. It is well-known [1, Theorem 7.12] that inequality (5) implies that the principal
symbol of H satisfies∑

|α|=m
|β|=m

aα,β(x)ξ
α+β ≥ c1|ξ|2m, ξ ∈ R

n, x ∈ R
n

and that the converse implication is true for uniformly continuous coefficients.
We first consider the question of existence of a heat kernel together with point-

wise estimates. The heat kernel K(t, x, y) of H is, by definition, the integral kernel
of the semigroup e−Ht, provided such kernel exists. Hence it represents the solution
u(x, t) of (1) in the sense that

u(x, t) =

∫
Rn

K(t, x, y)u0(y)dy , ∀(x, t) ∈ R
n × R+ .

The results depend on whether the order 2m of H exceeds or not the dimension n.

Theorem 1 ([14, Lemma 19],[20, Theorem 1.1], [4, Proposition 28]). If 2m ≥
n then the semigroup e−Ht has a continuous integral kernel K(t, x, y). Moreover
there exist positive constants ci, i = 1, 2, 3, such that

(6) |K(t, x, y)| < c1t
− n

2m exp

{
−c2

|x− y| 2m
2m−1

t
1

2m−1

+ c3t

}
,

for all t ∈ R+ and x, y ∈ R
n.

One application of this theorem is the extension of the L2-theory to Lp(Rn).
The fact that the semigroup e−Ht is not Markovian makes this problem quite dif-
ferent from the second order case m = 1.

Theorem 2 ([14, Theorems 20 and 21]). Assume that 2m ≥ n. The semigroup
e−Hz, Re z > 0, extends from L2(Rn)∩Lp(Rn) to a bounded holomorphic semigroup
Tp(z) on Lp(Rn) for all 1 ≤ p ≤ ∞. Moreover, for 1 ≤ p < ∞ the semigroup Tp(z)
is strongly continuous and its generator −Hp has spectrum which is independent of
p.

In the case 2m < n critical Sobolev embedding into Lp spaces appear and the
situation is different.

Theorem 3 ([15, Theorem 10]). Assume that 2m < n. Let pc = 2n/(n− 2m)
be the Sobolev exponent and let qc = 2n/(n+ 2m) denote its conjugate.

(i) The semigroup e−Hz extends to a strongly continuous bounded holomorphic
semigroup Tp(z) on Lp(Rn) for all qc ≤ p ≤ pc. Moreover the spectrum of the
generator −Hp of Tp(z) is independent of p.

(ii) Assume that m is even. For p 
∈ [qc, pc] there exists an operator H of the
above type for which the operator e−Ht does not extend from L2(Rn)∩Lp(Rn) to a
bounded operator on Lp(Rn), for any t > 0. In particular the semigroup e−Ht does
not have an integral kernel satisfying ( 6).
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We note that whenm is odd a result analogous to (ii) is valid for elliptic systems
[15]. We also note that if the coefficients are sufficiently regular then a Gaussian
heat kernel estimate is valid without any restriction on the dimension; see [16] and
references therein for more details.

2.2. Short time asymptotic estimates. In this subsection we make the
additional assumption that the coefficients {aα,β(x)} are smooth. We consider the
problem (1) and denote by

A(x, ξ) =
∑

|α|=m
|β|=m

aα,β(x)ξ
α+β ,

the corresponding principal symbol, which satisfies

c−1|ξ|2m ≤ A(x, ξ) ≤ c|ξ|2m , ξ ∈ R
n, x ∈ R

n,

for some c > 0. The following notion of strong convexity was first introduced by
Evgrafov-Postnikov [21]. For a multi-index γ with |γ| = 2m we denote c2mγ =
(2m)!/(γ1! . . . γn!). We define the functions bγ(x), |γ| = 2m, by requiring that

A(x, ξ) =
∑

|γ|=2m

c2mγ bγ(x)ξ
γ , ξ ∈ R

n, x ∈ R
n.

Definition. The symbol A(x, ξ) is strongly convex if the quadratic form

Γ(x, v) =
∑

|α|=m
|β|=m

bα+β(x)vαv̄β , v = (vα) ∈ C
ν ,

is positive semi-definite for all x ∈ Rn. It is known [21, Section 1] that strong
convexity implies that the matrix {Aξiξj (x, ξ)}i,j is positive definite for all x ∈ Rn

and ξ ∈ Rn \ {0}.
We first consider operators with constant coefficients so that K(t, x, y) =

K(t, x− y, 0). We set

(7) σm = (2m− 1)(2m)−
2m

2m−1 sin
( π

4m− 2

)
.

Theorem 4 ([21, Theorem 4.1]). Assume that H is homogeneous of order 2m
with constant coefficients and that the symbol A(ξ) is strongly convex. Let

(8) p(ξ) = max
η∈R

n

η �=0

ξ · η
A(η)1/2m

, ξ ∈ R
n.

There exists a positive function S(x) such that for any x ∈ Rn, x 
= 0, we have

K(t, x, 0) = S(x)t−
n

2(2m−1) cos
(
σm

p(x)
2m

2m−1

t
1

2m−1

cot
( π

4m− 2

)
− n(m− 1)

4m− 2
+ o(1)

)
× exp

{
−σm

p(x)
2m

2m−1

t
1

2m−1

}
as t → 0.
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In order not to become too technical we refer to [21] for the precise definition of
S(x); we note however that it is positively homogeneous of degree −n(m−1)/(2m−
1) in x ∈ R

n \ {0}.
To extend Theorem 4 to the case of variable smooth coefficients we need some

elementary notions of Finsler geometry. Very roughly, one can say that a Finsler
metric is the assignment of a norm at each tangent space of a manifold. In our
context, extending (8) we define

p(x, ξ) = max
η∈R

n

η �=0

ξ · η
A(x, η)1/2m

, x ∈ R
n, ξ ∈ R

n.

This defines a Finsler metric on Rn in the sense that

(9) p(x, ξ) = 0 if and only if ξ = 0 and p(x, λξ) = |λ|p(x, ξ), λ ∈ R.

In Finsler geometry the definition is typically complemented by
(10)

the matrix {gij} := 1
2
∂2p(x,ξ)2

∂ξi∂ξj
is positive definite for all x ∈ Rn and ξ ∈ Rn \ {0}.

For our purposes we shall not assume (10) except in Theorem 8 below. We note
however that if (9)-(10) are valid then the map ξ �→ p(x, ξ) is indeed a norm for all
x ∈ Rn. The length of an absolutely continuous path, γ = γ(t), 0 ≤ t ≤ 1, is then
defined as

(11) l(γ) =

∫ 1

0

p(γ(t), γ̇(t))dt ,

and the Finsler distance between two points x, y ∈ Rn is given by

d(x, y) = inf{l(γ) : γ has endpoints x and y}.

Theorem 5 ([31, Theorem 1.1]). Assume that the operator H is homogeneous
of order 2m with smooth coefficients and that the principal symbol A(x, ξ) is strongly
convex. Assume further that the matrices {aα,β(x)}|α|=|β|=m and {Aξiξj (x, ξ)}1≤i,j≤n

are both positive definite uniformly in x ∈ R
n and ξ ∈ Sn−1. Then there exist func-

tions vk(t, x, y), k = 0, 1, . . ., such that the following is true: for any x ∈ Rn there
exists δ > 0 such that for 0 < |x − y| < δ the following asymptotic expansion is
valid as t → 0:

(12) K(t, x, y) ∼
∞∑
k=0

t
k− n

2
2m−1 vk(t, x, y) exp

{
−σm

d(x, y)
2m

2m−1

t
1

2m−1

}
.

The functions vk(t, x, y) oscillate and are bounded and smooth with respect to t.

Estimate (12) is meant in the sense that for each N ≥ 1 and for small enough
t > 0 there holds∣∣∣∣K(t, x, y)−

N∑
k=0

t
j−n

2
2m−1 vk(t, x, y) exp

{
−σm

d(x, y)
2m

2m−1

t
1

2m−1

}∣∣∣∣
≤ cN t

N+1−n
2

2m−1 exp

{
−σm

d(x, y)
2m

2m−1

t
1

2m−1

}
.



HIGHER ORDER LINEAR PARABOLIC EQUATIONS 7

2.3. Sharp heat kernel bounds. We now return to the general framework of
operators with L∞ coefficients satisfying G̊arding’s inequality (5). We assume that
2m > n so that the heat kernel estimate (6) is valid and we present certain theorems
that provide additional information on the constant c2 in (5). The sharpness of
these estimates is measured by comparison against the short time asymptotics of
Theorem 5.

Theorem 6 ([9, Theorem 4.5]). Let H be an operator of order 2m > n
with real-valued coefficients in L∞(Rn). Assume that the principal coefficients
{aα,β(x)}|α|=|β|=m satisfy∑

|α|=m
|β|=m

a0α,βvαvβ ≤
∑

|α|=m
|β|=m

aα,β(x)vαvβ ≤ μ
∑

|α|=m
|β|=m

a0α,βvαvβ , v ∈ C
ν , x ∈ R

n,

for some μ ≥ 1, where {a0α,β} is a coefficient matrix for (−Δ)m. Then for any
ε > 0 there exists cε such that the heat kernel of H satisfies

|K(t, x, y)| < cεt
− n

2m exp

{
−(ρ(m,μ)− ε)

|x− y| 2m
2m−1

t
1

2m−1

+ cεt

}
,

for all t ∈ R+ and x, y ∈ Rn, where

ρ(m,μ) =
2m− 1

(2m)2m/(2m−1)
μ1/(2m−1)

[
sin

( π

4m− 2

)−2m+1

+ Cμm(μ− 1)
]− 1

2m−1

,

and the constant C depends only on m and n. In particular ρ(m,μ) = σm+O(μ−1)
as μ → 1+.

While Theorem 6 provides useful information when H is close to (−Δ)m, it is
clearly not very effective when H is an arbitrary elliptic operator. In such a case,
the Finsler distance should play a role. Since definition (11) is meaningless when H
has measurable coefficients, an alternative definition is required, as was the case for
second order operators. Denoting by A(x, ξ) the principal symbol of H we define

E = {φ ∈ C1(Rn) : A(x,∇φ(x)) ≤ 1 for almost all x ∈ R
n}.

For operators with smooth coefficients the Finsler distance d(x, y) is then also given
by

(13) d(x, y) = sup{φ(y)− φ(x) : φ ∈ E} ;

see [2, Lemma 1.3]. Hence we use (13) to define the Finsler distance when H has
measurable coefficients. We note that a simple approximation argument shows that
in the definition of E we could have required that φ ∈ C∞(Rn). Given M > 0 we
also define

EM = {φ ∈ Cm(Rn) : A(x,∇φ(x)) ≤ 1 , |∇kφ(x)| ≤ M , a.e. x ∈ R
n, 2 ≤ k ≤ m}

and the Finsler-type distance

(14) dM (x, y) = sup{φ(y)− φ(x) : φ ∈ EM}.
So d∞(x, y) = d(x, y), but for finite M we have dM (x, y) ≤ d(x, y) in general.

We finally define the following measure of regularity of the principal coefficients
of H,

qA = max
|α|=m
|β|=m

distL∞(Rn)(aα,β,W
m−1,∞(Rn)).
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In particular qA = 0 if the principal coefficients are uniformly continuous.

Theorem 7 ([7, Theorem 1]). Let 2m > n. Assume that the principal symbol
A(x, ξ) is strongly convex. For any M > 0 and ε > 0 there exists a constant Γε,M

such that the heat kernel of H satisfies

(15) |K(t, x, y)| < Γε,M t−
n

2m exp

{
−(σm − CqA − ε)

dM (x, y)
2m

2m−1

t
1

2m−1

+ Γε,M t

}
,

for all t ∈ R+ and x, y ∈ Rn.

The constant C in (15) depends only on m, n and the constants in G̊arding’s
inequality (5). In relation to the last theorem we mention the following open prob-
lems:

Problem 1. Is the term CqA necessary in (15)? Under what assumptions can
it be removed?

Problem 2. Is it possible to replace dM (x, y) by d(x, y) in (15)? Under what
assumptions?

Problem 3. What is the role of strong convexity in the above theorems? What
are the best possible results if we do not assume the strong convexity?

Problem 4. For operators with regular coefficients obtain sharp heat kernel
estimates when 2m ≤ n.

A partial answer to Problems 1 and 2 is provided in the next theorem under
additional assumptions on the principal coefficients. Of course, the questions remain
as to what is the best possible result for measurable coefficients. The proof of
the theorem is geometric and consists in showing that dM/d → 1 as M → +∞,
uniformly in x and y.

Theorem 8 ([6, Corollary 3]). Let H be an elliptic operator of order 2m > n
whose principal symbol A(x, ξ) is strongly convex, is Cm+1 with respect to x and
satisfies |∇k

xA(x, ξ)| ≤ c|ξ|2m, 0 ≤ k ≤ m+ 1. Assume further that the map

(x, ξ) �→ A(x, ξ)
1

2m

defines a Finsler metric on Rn in the sense that ( 9)-( 10) are satisfied. Then the
heat kernel of H satisfies the estimate

(16) |K(t, x, y)| < cεt
− n

2m exp

{
−(σm − ε)

d(x, y)
2m

2m−1

t
1

2m−1

+ cεt

}
,

for any ε > 0 and all t ∈ R+ and x, y ∈ R
n.

We next consider singular operators with unbounded coefficients. Let aα,β(x) =
aβ,α(x), |α| = |β| = m, be real-valued functions in L∞

loc(R
n). We fix s > 0 and

assume that the weight a(x) = 1+ |x|s controls the size of the matrix {aα,β} in the
sense that

c−1a(x)|v|2 ≤
∑

|α|=m
|β|=m

aα,β(x)vαvβ ≤ ca(x)|v|2, v ∈ C
ν , x ∈ R

n.
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We consider the elliptic operator

Hu = (−1)m
∑

|α|=m
|β|=m

Dα{aα,βDβu}

on L2(Rn), defined by means of a quadratic form similarly to the uniformly elliptic
case; see [5] for details. For M > 0 we then define the set

EM =

{
φ ∈ Cm(Rn) : A(x,∇φ(x)) ≤ 1, |∇kφ| ≤ M

a(x)
k

2m

, a.e.x ∈ R
n, 2 ≤ k ≤ m

}
and the Finsler-type distance (14). The weight a(x) induces the weighted L∞-norm
‖u‖L∞

a (Rn) = sup
Rn(|u|/a) and more generally the weighted Sobolev spaces

W k,∞
a (Rn) = {u ∈ W k,∞

loc (Rn) : |∇ju(x)| ≤ ca(x)
2m−j
2m , a.e.x ∈ R

n, 0 ≤ j ≤ m− 1}
We set

qA = max
|α|=m
|β|=m

distL∞
a (Rn)(aα,β,W

m−1,∞
a (Rn)).

Theorem 9 ([5, Section 2] and [8, Theorem 2.2]). Assume that n is odd, that
0 < s < 2m − n and that the principal symbol of H is strongly convex. Then for
any M > 0 and ε > 0 there exists a constant Γε,M such that the heat kernel of H
satisfies

(17) |K(t, x, y)| < Γε,M t−s exp

{
−(σm − cqA − ε)

dM (x, y)
2m

2m−1

t
1

2m−1

+ Γε,M t

}
,

for all t ∈ R+ and x, y ∈ R
n.

Problem 5. Find out what happens when n is even.

We end this section presenting a theorem of Dungey [18] for powers of opera-
tors. Let (X, d) be a metric space and μ be a positive Borel measure on X. Assume
that X is of uniform polynomial growth, that is there exists c > 0 and D,D∗ ∈ N

such that the volume V (x, r) of any ball B(x, r) satisfies

c−1rD ≤ V (x, r) ≤ crD, if r ≤ 1,

c−1rD
∗ ≤ V (x, r) ≤ crD

∗
, if r ≥ 1.

Accordingly let

V (r) =

{
rD, r ≤ 1,

rD
∗
, r ≥ 1.

Theorem 10 ([18, Theorem 1]). Let H be a non-negative self-adjoint operator
on L2(X, dμ). Assume that the semigroup e−Ht has an integral kernel K(t, x, y)
which is continuous in (x, y) for all t ∈ R+ and satisfies the Gaussian estimate

|K(t, x, y)| < cεV (t)−
1
2 exp

{
−
(1
4
− ε

)d(x, y)2
t

}
,

for any ε > 0 and all t ∈ R+ and x, y ∈ X. Then for any integer m ≥ 2 the
semigroup generated by −Hm has an integral kernel Km(t, x, y) which satisfies the
Gaussian estimate

|Km(t, x, y)| < cεV (t)−
1

2m exp

{
−(σm − ε)

d(x, y)
2m

2m−1

t
1

2m−1

}
,
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for any ε > 0 and all t ∈ R+ and x, y ∈ X.

2.4. More on the heat kernel of the biharmonic operator. In partic-
ular situations, much more can be said about the kernels relative to (1). In this
subsection we collect a number of properties related to the heat kernel of the poly-
harmonic operator (−Δ)m. All the information about the heat kernel of (−Δ)m is
contained in the functions fm,n, since (cf. (3))

K(t, x, y) = αm,nt
−n/2mfm,n

( |x− y|
t1/2m

)
.

We specialize to the case m = 2 and we give some hints on how to obtain the
corresponding results in the higher order case m ≥ 3. For simplicity, we denote
fn = f2,n.

When m = 2, (2) becomes the Cauchy problem

(18)

{
ut +Δ2u = 0 in R

n × R+ ,
u(x, 0) = u0(x) in Rn ,

whereas the kernels defined in (4) read

(19) fn(η) = η1−n

∫ ∞

0

e−s4(ηs)n/2J(n−2)/2(ηs) ds .

These kernels obey the following recurrence formula, see [22]:

(20) f ′
n(η) = −η fn+2(η) for all n ≥ 1.

Moreover, thanks to Evgrafov-Postnikov [21] (see also [29, (1.10)]), we know that
the kernels have exponential decay at infinity. More precisely, define the constants

σ =
3 3
√
2

16
, Kn =

1

(2π)n/2
1√

3 · 2(n−3)/3
,

then, in any space dimension n ≥ 1, we have
(21)

fn(η) =
Kn

α2,nηn/3

{
cos

(√
3σ η4/3 − nπ

6

)
+O(η−4/3)

}
e−ση4/3

as η → ∞ .

In [3] one can find the definition of the Gamma function and the power series
expansion of the Bessel function:

Γ(y) =

∫ ∞

0

e−s sy−1 ds (y > 0) , Jν(y) =

∞∑
k=0

(−1)k(y/2)2k+ν

k! Γ(k + ν + 1)
(ν > −1) ,

as well as further properties of Γ and Jν . This allows to obtain the representation
of fn through power series:

Theorem 11 ([22, Theorem 2.1]). For any integer j ≥ 1, we have

(22) f2j(η) =
∞∑
k=0

(−1)k
Γ
(

k+j
2

)
22k+j+1 k! (k + j − 1)!

η2k .

For any nonnegative integer j, we have

(23) f2j+1(η) =
2j√
8π

∞∑
k=0

(−1)k
(k + j)! Γ

(
2k+2j+1

4

)
k! (2k + 2j)!

η2k .
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In particular, fn(0) > 0 for all n and

f1(η) =
1√
8π

∞∑
k=0

(−1)k
Γ
(
2k+1

4

)
(2k)!

η2k , f2(η) =
1

4

∞∑
k=0

(−1)k
Γ
(
k+1
2

)
[2k k!]2

η2k .

Using the properties of the Bessel functions, the following third order ODE for
the function fn was derived in [22, Theorem 2.2] for any integer n ≥ 1:

(24) f ′′′
n (η) +

n− 1

η
f ′′
n (η)−

n− 1

η2
f ′
n(η)−

η

4
fn(η) = 0

or, equivalently,

(25) (Δfn)
′ (η) =

η

4
fn(η) .

According to (21) the kernel fn(η), and hence the biharmonic heat kernel, has
infinitely many sign changes as η → ∞, see also previous work by Bernstein [11]
when n = 1. We refer to [28] for further (minor) properties concerning the behavior
of the kernels at some special points.

We now rescale the kernel fn and define the function:
(26)

v∞(y) = 2n/2αnfn(
√
2 |y|) = 2(n+2)/4αn|y|1−n/2

∫ ∞

0

e−s4sn/2J(n−2)/2(
√
2|y|s) ds

∀y ∈ Rn

where αn is given by

α−1
n = ωn

∫ ∞

0

rn−1fn(r) dr =

∫
Rn

fn(|x|) dx ;

here ωn denotes the surface measure of the n-dimensional unit ball (so that ω1 = 2).
Note that

∫
Rn v∞(y)dy = 1. Although the functions v∞ and fn are strictly related

we maintain the double notation since, in our setting, they play quite different
roles; the former is a stationary solution to (34) below, the latter is the biharmonic
heat kernel. We aim to study the moments of the function v∞ defined in (26). The
prototype monomial in Rn is given by

(27) P�(y) = y� :=

n∏
i=1

y�ii for � = (�1, ..., �n) ∈ N
n

and its degree is |�| =
∑

i �i. Then we define the P�-moment of v∞ by

(28) MP�
:=

∫
Rn

P�(y) v∞(y) dy

and we have

Theorem 12 ([25, Theorem 2]). For any � = (�1, ..., �n) ∈ N
n the following

facts hold:

(1) MΔ2P�
= − |�|MP�

,
(2) if |�| 
∈ 4N or if at least one of the �i’s is odd, then MP�

= 0,
(3) if |�| ∈ 8N and all the �i’s are even, then MP�

> 0,
(4) if |�| ∈ 8N+ 4 and all the �i’s are even, then MP�

< 0.
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We have so far considered moments having polynomials of y as weights; we now
consider powers of |y| which are polynomials only for even integer powers. For any
b > −n we define

(29) Mb :=

∫
Rn

|y|b v∞(y) dy .

Note that for b > −n the above integral is finite since |y|b v∞(y) ∼ v∞(0) |y|b as
y → 0 and v∞ has exponential decay at infinity according to (21) and (26). If
P�(y) = |y|� for some � ∈ 2N, then M� coincides with MP�

as defined in (28). We
are again interested in the sign of these moments. The following result holds:

Theorem 13 ([25, Theorem 4]). Assume that n ≥ 1 and that b > −n. Then

Mb > 0 , for all b ∈ (−n, 2)
⋃( ∞⋃

k=0

(8k + 6, 8k + 10)
)
,

Mb = 0 , for all b ∈ 4N+ 2 ,

Mb < 0 , for all b ∈
∞⋃
k=0

(8k + 2, 8k + 6) .

When b ∈ (−n, 0], Theorem 13 was first proved in [22, Proposition 3.2]. Theo-
rems 12 and 13 give further information about the sign-changing properties of the
kernels fn (recall (26)), and they better describe how these infinitely many sign
changes occur. They also show that the sign of the moments of fn do not depend
on n.

We conclude this section by explaining how the just described properties of the
biharmonic heat kernels can possibly be extended to higher order polyharmonic
kernels. First of all, we recall that [21, Theorem 4.1] (see also [29, (1.10)]) gives
the following generalization to (21) in any space dimension n ≥ 1:

(30) fm,n(η) =
Km,n

η
n(m−1)
2m−1

{
cos

(
amη

2m
2m−1 − bm,n

)
+O(η−

2m
2m−1 )

}
e−σmη2m/(2m−1)

as η → ∞ for some (explicit) positive constants Km,n and bm,n depending on m
and n, and some (explicit) positive constants σm and am depending only on m.

Next, we suggest the following

Problem 6. Determine a power series representation of the kind of Theorem
11 for the higher order kernels fm,n (m ≥ 3) defined in (4).

To this end, by arguing as in [22] and using [3, Section 4.62], it may be useful to
notice that (20) still holds, independently of m. Moreover, the following (2m− 1)-
order differential equation holds:

(31)
(
Δm−1fm,n

)′
(η) =

(−1)m

2m
η fm,n(η) for all n ≥ 1.

It is straightforward that (31) coincides with (25) if m = 2, whereas it reduces to
f ′(η) = − 1

2ηf(η) whenever m = 1 (recall that in the latter case, the kernel f is
independent of n).
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With these two identities, one obtains results similar to Theorem 13. In par-
ticular, one has
(32)

Cm,n,β := ωn

∫ ∞

0

ηn−1−βfm,n(η) dη > 0 for all integers n ≥ 1 and all β ∈ [0, n)

where ωn denotes the measure of the unit ball in Rn. The proof of (32) can be
obtained following the same lines as [22, Proposition 3.2], see [28].

Problem 7. Prove the full extension of Theorem 13 to the case of general
m ≥ 2. What are the signs of Cm,n,β for all β ∈ (−∞, n)? How do they depend on
m?

3. The Fokker-Planck equation

In some situations it is convenient to transform (2) into a Fokker-Planck-type
equation. Let

R(t) := (2mt+ 1)1/2m

so that R(t)2m−1R′(t) ≡ 1. Also put

(33) u(x, t) := R(t)−n v

(
x

R(t)
, logR(t)

)
.

Then take τ = logR(t) and y = x/R(t). Some lengthy but straightforward compu-
tations show that v = v(y, τ ) solves

(34)

{
vτ + L v = 0 in R

n × R+ ,
v(y, 0) = u0(y) in Rn ,

where

(35) L v := (−Δ)mv −∇ · (y v) .

We recall here some properties of the operator L defined in (35). The most relevant
one is that, contrary to the second order heat equation, the operator L is not self-
adjoint: we refer to [19, Section 3] for some properties of the adjoint operator L ∗.
Let σm > 0 be as in (7)-(30) and, for any a ∈ [0, σm), consider the function

(36) ρa(x) = ea |x|2m/(2m−1)

, x ∈ R
n

so that, in particular, ρa ≡ 1 if a = 0. For any such function ρa consider the space
L2
a(R

n), the weighted L2-space endowed with the scalar product and norm

(37) (u, v)L2
a(R

n) =

∫
Rn

ρa(x) u(x) v̄(x) dx , ‖u‖2L2
a(R

n) = (u, u)L2
a(R

n) .

Clearly, if a = 0 we have L2
a(R

n) = L2(Rn). Together with the space L2
a(R

n), we
consider the weighted Sobolev space H2m

a (Rn) endowed with the scalar product

〈u, v〉H2m
a (Rn) =

∫
Rn

ρa(x)
∑

|α|≤2m

Dαu(x)Dαv̄(x) dx .

By [19, Proposition 2.1] we know that L is a bounded linear operator fromH2m
a (Rn)

onto L2
a(R

n).
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We now wish to characterize the spectrum of L . In particular, the kernel of
L is nontrivial; any function in the kernel is a stationary solution to (34). As for
(26), we rescale the kernels fm,n by setting

(38) v∞(y) = Cm,n fm,n

(
(2m)1/2m |y|

)
, ∀y ∈ R

n

where Cm,n > 0 is a normalization constant chosen in such a way that
∫
Rn v∞(y) dy

= 1; note that v∞ ∈ S, where S is the space of smooth fast decaying functions:

(39) S := {w ∈ C∞(Rn) : |x|a Dαw(x) → 0 as |x| → ∞ for all a ≥ 0 , α ∈ N
n} .

In fact, there exists a unique stationary solution to (34) which belongs to S:

Theorem 14 ([19, Theorem 2.1]). Up to a multiplication by a constant, there
exists a unique nontrivial stationary solution to ( 34) which belongs to S. This
solution v is radially symmetric and, if we further assume that

∫
Rn v(y) dy = 1, it

is explicitly given by v∞ in ( 38).
Moreover, the spectrum of L coincides with the set of nonnegative integers,

σ(L ) = N. Each eigenvalue λ ∈ σ(L ) has finite multiplicity and the corresponding
eigenfunctions are given by

Dαv∞ for |α| = λ ∈ N .

The set of eigenfunctions is complete in L2
a(R

n) for any a ∈ [0, σm).

This fundamental (and elegant) result certainly deserves more investigation.
Consider the (normalized) projection operator Pa defined by

(40) Pa w :=

(∫
Rn

ρaw v∞ dx

)
v∞

‖v∞‖2L2
a(R

n)

for all w ∈ L2
a(R

n) .

We recall two problems suggested in [25].

Problem 8. Prove the generalized Poincaré-type inequality

‖u− Pau‖2L2
a(R

n) ≤ (u,L u)L2
a(R

n) for all u ∈ H2m
a (Rn) .

Although from Theorem 14 we know that the least nontrivial eigenvalue of L is 1,
since L is not self-adjoint the above inequality is by far nontrivial. In particular,
prove (or disprove) the following:

(u,L u)L2
a(R

n) =

∫
Rn

ρa(x) ū(x)L u(x) dx ≥ ‖u‖2L2
a(R

n) for all u ∈ [kerL ]⊥ .

Problem 9. Determine the convergence rate in Lp (for 1 ≤ p < ∞) of the
solution to (34) towards its projection onto the kernel, that is, onto the space
spanned by v∞.

4. Asymptotic behavior of the solution

In this section we shed some light on the long-time behavior of solutions to
(18). The asymptotic behavior is better seen in the Fokker-Planck equation. When
m = 2, (34) reads

(41)

{
vτ +Δ2v −∇ · (y v)v = 0 in R

n × R+ ,
v(y, 0) = u0(y) in Rn .
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We now study the moments of the solution v to (41). Let S be as in (39), let
u0 ∈ S and consider the solution v to (41). Let P� be as in (27) and consider the
(time-dependent) map

MP�,u0
(τ ) :=

∫
Rn

P�(y) v(y, τ ) dy =

∫
Rn

y� v(y, τ ) dy .

Let v∞ be as in (26) and let MP�
be as in (28). We have

Theorem 15 ([25, Theorem 3]). Assume that u0 ∈ S is normalized in such a
way that

(42)

∫
Rn

u0(y) dy =

∫
Rn

v∞(y) dy = 1

and let v denote the solution to ( 41). For any τ ≥ 0, the following facts hold:

(i) M ′
P�,u0

(τ ) = −MΔ2P�,u0
(τ )− |�|MP�,u0

(τ ) for all � ∈ Nn,

(ii) MP�,u0
(τ ) = e−|�| τ ∫

Rn P�(x) u0(x) dx for all |�| ≤ 3,

(iii) limτ→∞ MP�,u0
(τ ) = MP�

for all � ∈ Nn.

By combining Theorems 12 and 15, we infer

Corollary 1. Assume that u0 ∈ S is normalized in such a way that ( 42)
holds and let v denote the solution to ( 41). Then

lim
τ→∞

MP�,u0
(τ )

⎧⎨⎩
= 0 if |�| 
∈ 4N or if at least one of the �i’s is odd,
> 0 if |�| ∈ 8N and all the �i’s are even,
< 0 if |�| ∈ 8N+ 4 and all the �i’s are even.

In the particular case where |�| = 2k and P�(y) = |y|2k we may give a simple
characterization of the moments of a solution to (41). Consider a solution v to (41)
with initial data u0 ∈ S. For all b ≥ 0 let Mb be as in (29) and put

Mb,u0
(τ ) :=

∫
Rn

|y|b v(y, τ ) dy .

We then have

Theorem 16 ([25, Theorem 5]). Assume that u0 ∈ S is normalized in such a
way that ( 42) holds and let v denote the solution to ( 41). Then for any k ∈ N,
k ≥ 2, the above defined functions satisfy the following ODE

(43) M ′
2k,u0

(τ )+2kM2k,u0
(τ ) = − 2k (2k−2) (2k+n−2) (2k+n−4)M2k−4,u0

(τ ) .

Moreover, for any k ∈ N, we have

(44) lim
τ→+∞

M2k,u0
(τ ) = M2k

and the following explicit representation

(45) M2k,u0
(τ ) =

k∑
j=0

akj e
−2jτ ,
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where ak0 = M2k and

(i) akk = M2k,u0
(0) + 2k (k − 1) (2k + n− 2) (2k + n− 4)

k−2∑
j=0

ak−2
j

k − j
,

(ii) akk−1 = 0 if k ≥ 1 ,

(iii) akj = − 2k (k−1) (2k+n−2) (2k+n−4)
k−j ak−2

j if k ≥ 2 and j = 0, ..., k − 2 .

In (i) we use the convention that
∑k−2

j=0 = 0 if k ≤ 1.

Formula (45) shows, for instance, that

M0,u0
(τ ) ≡

∫
Rn

u0(y) dy , M2,u0
(τ ) = e−2τ

∫
Rn

|y|2 u0(y) dy ,

M4,u0
(τ ) = − 2n (n+ 2)

∫
Rn

u0(y) dy + e−4τ

∫
Rn

[
|y|4 + 2n (n+ 2)

]
u0(y) dy ,

M6,u0
(τ ) = − 6 (n+ 4) (n+ 2) e−2τ

∫
Rn

|y|2 u0(y) dy

+e−6τ

(∫
Rn

|y|6 u0(y) dy + 6 (n+ 4) (n+ 2)

∫
Rn

|y|2 u0(y) dy

)
.

If b 
∈ 2N (so that |y|b is not a polynomial) we may still define the map Mb,u0

and, for all b ∈ [4,∞), we obtain

M ′
b,u0

(τ ) + bMb,u0
(τ ) = − b (b− 2) (b+ n− 2) (b+ n− 4)Mb−4,u0

(τ ) .

Note that Theorems 15 and 16 also hold in a weaker form if u0 ∈ L1(Rn) and
|y|a u0 ∈ L1(Rn) for some a ≥ 4. In this case, the statements hold true under the
additional restriction that |�| ≤ a. In particular, we have the following

Corollary 2. Assume that (1 + |y|4) u0 ∈ L1(Rn) and that ( 42) holds. If v
denotes the solution to ( 41), then

lim
τ→+∞

∫
Rn

|y|4 v(y, τ ) dy = M4 < 0 .

5. Positivity preserving property

Contrary to the second order heat equation, no general positivity preserving
property (ppp in the sequel) holds for the Cauchy problem (1). By ppp, we mean
here that positivity of the initial datum u0 implies positivity (in space and time)
for the solution u = u(x, t) of (1); this is of course equivalent to the kernel K(t, x, y)
being non-negative.

Nevertheless, by exploiting the properties of the kernels, some restricted and
somehow hidden versions of ppp can be observed for the fourth order parabolic
equation

(46)

{
ut +Δ2u = 0 in Rn × R+ ,
u (x, 0) = u0(x) in Rn ,

where n ≥ 1 and u0 ∈ C0 ∩ L∞ (Rn). In this section we recall several weakened
versions of ppp for the problem (46). We start however with a theorem about the
general problem (1) which provides quantative information on the positivity of the
heat kernel near the diagonal {x = y}.
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Theorem 17 ([17, Theorem 6]). Let H be an homogeneous elliptic operator of
order 2m > n acting on L2(Rn). There exists constants c1, c2 > 0 such that

(47) K(t, x, y) ≥ c1t
− n

2m

for all t ∈ R+ and x, y ∈ Rn such that |x− y|2m ≤ c2t.

Theorem 17 states that the solution u = u(x, t) to (1) when u0(x) = δ{x=z} (the

Dirac delta distribution at some z ∈ Rn) satisfies u(x, t) > 0 whenever |x− z|2m ≤
c2t. Therefore, one expects that if the mass of u0 is “concentrated” in some small
region of Rn then ppp holds, at least in some part of that region. This can be made
precise for the simplified problem (46) on which we focus our attention for the rest
of this section.

Theorem 18 ([27, Theorem 1]). Assume that 0 
≡ u0 ≥ 0 is continuous and
has compact support in Rn. Let u = u(x, t) denote the corresponding bounded strong
solution of ( 46). Then,

(i) for any compact set K ⊂ R
n there exists TK = TK(u0) > 0 such that

u(x, t) > 0 for all x ∈ K and t ≥ TK ;
(ii) there exists τ = τ (u0) > 0 such that for all t > τ there exists xt ∈ Rn such

that u(xt, t) < 0.

The trivial example u0 ≡ 1 shows that, at least for statement (ii), the compact
support assumption cannot be dropped. By Theorem 18 we see that negativity for
( 46) exists in general and goes to infinity. Fine results concerning the validity of
the eventual positivity property in presence of a source, may be found in [10].

It appears instructive to combine Theorem 18 with the following energy conser-
vation laws obtained in [25, Corollary 1]: let u0 ∈ L1(Rn) and let u be the solution
to (46); then, for all t > 0 we have

(48)

∫
Rn

u(x, t) dx =

∫
Rn

u0(x) dx ,

(49)
d

dt

∫
Rn

u(x, t)2 dx = − 2

∫
Rn

|Δu(x, t)|2 dx .

Denote by u+ = max{u, 0} and u− = −min{u, 0} the positive and negative parts
of a function u, so that u = u+ − u−. Theorem 18 states that if u0 ∈ C0(Rn) has
compact support and 0 
≡ u0 ≥ 0 in Rn, then u−(x, t) 
≡ 0 for all t > 0. Moreover,
(48) states that the map

t �→
∫
Rn

u(x, t) dx (t ≥ 0)

is constant and equals a strictly positive number. Hence,∫
Rn

u−(x, t) dx >

∫
Rn

u−(x, 0) dx = 0 for all t > 0 ,∫
Rn

u+(x, t) dx >

∫
Rn

u+(x, 0) dx =

∫
Rn

u0(x) dx for all t > 0 ;

here we use redundant notations (u+(x, 0) = u+
0 (x) = u0(x) and u−(x, 0) =

u−
0 (x) = 0) in order to emphasize the strict inequalities between the mass of the

positive (respectively, negative) part of the solution u = u(x, t) and the the mass
of the positive (respectively, negative) part of initial datum u0.
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On the other hand, (49) states that

t �→
∫
Rn

u(x, t)2 dx (τ ≥ 0)

decreases and, in particular, that∫
Rn

u+(x, t)2 dx <

∫
Rn

u0(x)
2 dx =

∫
Rn

u+
0 (x)

2 dx (t > 0) .

Summarizing, the L2-norm of the positive part of the solution u is smaller than
the L2-norm of the positive part of the initial datum u0, whereas the L1-norm of
the positive part of the solution u is larger than the L1-norm of the positive part
of the initial datum u0.

Problem 10. Prove the counterpart of Theorem 18 for (2) (for any m ≥ 2)
when 0 
≡ u0 ≥ 0 is continuous and has compact support in Rn.

Next, we consider initial data u0 which are not compactly supported and which
display a given decay behavior as |x| → ∞. We fix some arbitrary β ≥ 0 and
consider the functional set

Cβ := {g ∈ C0(Rn;R+) : g(0) > 0 , g(x) = o(|x|β) as |x| → ∞} .

In a suitable class of initial data, a positivity result for the linear Cauchy
problem (46) holds:

Theorem 19 ([22, Theorem 1.1]). Let β ≥ 0 and let g ∈ Cβ. Let

(50) u0(x) =
1

g(x) + |x|β .

Let u = u(x, t) be the corresponding solution of ( 46) and K ⊂ Rn be a compact set.

(i) If β < n, then there exists C̃n,β > 0 such that

lim
t→+∞

tβ/4u(x, t) = C̃n,β ,

uniformly with respect to x ∈ K.

(ii) If β ≥ n and g(x) ≡ 1, then there exists D̃n,β > 0 such that

(51)
lim

t→+∞
tn/4(log t)−1 u(x, t) = D̃n,n if β = n

lim
t→+∞

tn/4 u(x, t) = D̃n,β if β > n ,

uniformly with respect to x ∈ K.

Problem 11. By using (32), prove the counterpart of Theorem 19 for (2) when
u0 is as in (50).

The constants C̃n,β and D̃n,β in Theorem 19 do not depend on K. What does

depend on K is the “speed of convergence”, namely how fast tβ/4u(x, t) − C̃n,β

converges to 0 (and similarly for D̃n,β). Let us also mention that if β ≥ n, then for

any g ∈ Cβ (not necessarily constant) one still has that limt→+∞ tβ/4u(x, t) = +∞
uniformly with respect to x ∈ K.

Remark 1. The quantitative positivity result of Theorem 19 provides strong
enough information to be applied also to semilinear problems, see [22,26]. At a
first glance, this appears somehow unexpected, since the techniques connected with
the proof of Theorem 19 seem to be purely linear.
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Theorem 19 does not clarify whether the eventual positivity for solutions of
(46) is global or only local. Theorem 18 suggests that negativity for the solution of
(46) always exists and shifts to infinity, provided β is sufficiently large.

Problem 12. Prove Theorem 18 (ii) for any u0 as in (50) for β large enough.

On the other hand, if u0 ≡ 1 then the solution of (46) is u (x, t) ≡ 1. This
trivial example shows that if β = 0, presumably one has global eventual positivity
for (46). At least in the case n = 1, this is also true if β is positive but sufficiently
small:

Theorem 20 ([22, Proposition A.6]). We assume that n = 1 and u0(x) =
|x|−β. For β > 0 sufficiently small, the corresponding solution of ( 46) given by

u(x, t) = αn

∫
Rn

fn(|z|)
|x− t1/4z|β dz

is positive in R× R+.

Problem 13. Prove Theorem 20 in any space dimension n ≥ 1.

By combining (48) with Corollary 2 and with Theorem 20, we obtain

Corollary 3. Assume that u0 > 0 a.e. in R
n.

(i) If (1 + |x|4) u0 ∈ L1(Rn), then the solution u to ( 18) changes sign.
(ii) If n = 1, there exists β0 > 0 such that if β ∈ (0, β0) and u0(x) = |x|−β,

then the solution u to ( 18) is a.e. positive in R× R+.

Corollary 3 can be interpreted as follows. From Theorem 18 we know that
solutions u to (18) with compactly supported nonnegative initial data u0 display
the eventual local positivity property, that is, u(x, t) becomes eventually positive
on any compact subset of Rn but it is always strictly negative somewhere in a
neighborhood of |x| = ∞. This happens because the biharmonic heat kernels
exhibit oscillations and, outside the support of u0, they “push below zero” the
initial datum. The same happens if u0 > 0 but u0 is “very close to zero”, see
statement (i). On the other hand, if u0 > 0 and u0 is “far away from zero” then
the kernels do not have enough negative strength to push the solution below zero,
see statement (ii). The trivial case u0 ≡ 1 (which is a stationary solution to (18)!)
well explains this situation.

Finally, the following result shows that in general, we cannot expect neither
global positivity nor uniform bounds for eventual positivity.

Theorem 21 ([22, Theorem 1.2]). Let β ∈ (0, n) . For any T > 1 there exists
g ∈ Cβ such that if

u0(x) =
1

g(x) + |x|β
then, the corresponding solution u = u (x, t) of ( 46) satisfies u (xT , T ) < 0 for some
xT ∈ R

n.

Problem 14. Extend Theorems 20 and 21 to (2) for any m ≥ 2.
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