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ABSTRACT. We consider a partial differential equation that arises in the coarse-
grained description of epitaxial growth processes. This is a parabolic equation
whose evolution is dictated by the competition among the determinant of the
Hessian matrix of the solution and the biharmonic operator. This model might
present a gradient flow structure depending on the boundary conditions. We first
extend previous results on the existence of stationary solutions to this model for
Dirichet boundary conditions. For the evolution problem we prove local exis-
tence of solutions for arbitrary data and global existence of solutions for small
data. Depending on the boundary conditions and the concomitant presence of a
variational structure in the equation as well as on the size of the data we prove
blow-up of the solution in finite time and convergence to a stationary solution in
the long time limit.

1. INTRODUCTION

Epitaxial growth is a technique by means of which the deposition of new mate-
rial on existing layers of the same material takes place under high vacuum condi-
tions. It is used in the semiconductor industry for the growth of crystalline struc-
tures that might be composed of pure chemical elements like silicon or germanium,
or it could instead be formed by alloys like gallium arsenide or indium phosphide.
In the case of molecular beam epitaxy the deposition is a very slow process and
happens almost atom by atom.

Throughout this paper we assume that Ω ⊂ R2 is an open, bounded smooth
domain which is the place where the deposition takes place. Although this kind
of mathematical model can be studied in any spatial dimension N , we will con-
centrate here on the physical situation N = 2. The macroscopic evolution of the
growth process can be modeled with a partial differential equation that is frequently
proposed invoking phenomenological and symmetry arguments [4, 26]. The solu-
tion of such a differential equation is the function

u : Ω× R+ → R,

describing the height of the growing interface at the spatial location x ∈ Ω at the
temporal instant t ∈ R+ := [0,∞). A fundamental modeling assumption in this
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field is considering that the physical interface can be described as the graph of u,
and this is a valid hypothesis in an important number of cases [4].

One of the most widespread examples of this type of theory is the Kardar-Parisi-
Zhang equation [20]

ut = ν∆u+ γ|∇u|2 + η(x, t),

which has been extensively studied in the physical literature and it is currently
being investigated for its interesting mathematical properties [1, 2]. On the other
hand, it has been argued that epitaxial growth processes should be described by
a different equation coming from a conservation law and, in particular, the term
|∇u|2 should not be present in such a model [4]. An equation fulfilling these
properties is the conservative counterpart of the Kardar-Parisi-Zhang equation [23,
34, 36]

(1) ut = −µ∆2u+ κ∆|∇u|2 + ζ(x, t).

This equation is conservative in the sense that the mean value
∫

Ω u dx is constant
if boundary conditions that isolate the system are used. It can also be considered
as a higher order counterpart of the Kardar-Parisi-Zhang equation. In recent years,
much attention has been devoted to other models of epitaxial growth, see [18, 21,
22, 25] and references therein.

Herein we will consider a different model obtained by means of the variational
formulation developed in [26] and aimed at unifying previous approaches. We skip
the detailed derivation of our model, that can be found in [8], and move to the
resulting equation, that reads

ut = 2K1 det
(
D2u

)
−K2 ∆2u+ ξ(x, t).

This partial differential equation can be thought of as an analogue of equation (1);
in fact, they are identical from a strict dimensional analysis viewpoint. Let us also
note that this model has been shown to constitute a suitable description of epitax-
ial growth in the same sense as equation (1), and it even displays more intuitive
geometric properties [7, 10]. The constants K1 and K2 will be rescaled in the
following.

In this work we are interested in the following initial-boundary value problem:

(2)

 ut + ∆2u = det(D2u) + λf x ∈ Ω , t > 0 ,
u(x, 0) = u0(x), x ∈ Ω ,
boundary conditions x ∈ ∂Ω , t > 0 ,

where f is some function possibly depending on both space and time coordinates
and belonging to some Lebesgue space, λ ∈ R. The initial condition u0(x) is also
assumed to belong to some Sobolev space. We will consider the following sets of
boundary conditions

u = uν = 0, x ∈ ∂Ω,

which we will refer to as Dirichlet boundary conditions, and

u = ∆u = 0, x ∈ ∂Ω,
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which we will refer to as Navier boundary conditions. We note that the stationary
solutions to this model were studied before [8, 9, 11].

For the evolution problem (2) we prove existence of a solution, both for arbitrary
time intervals and small data, and for arbitrary data and small time intervals. Then
using several tools from both critical point theory and potential well techniques,
we prove the existence of finite time blow up solutions as well as the existence of
global in time solutions, in suitable functional spaces. The use of these tools is
by far nontrivial both because the nonlinearity occurs in the second order deriva-
tives and because more regularity is necessary to overcome some delicate technical
points.

This paper is organized as follows. In Section 2 we extend previous results
in [11] concerning the stationary problem with Dirichlet boundary conditions and
characterize the geometry of the functional that allows the variational treatment of
this problem. In Section 3 we build the existence theory for the parabolic problem
with both sets of boundary conditions and the presence of a source term. Section 4
is devoted to the analysis of the long time behavior and the blow-up in finite time of
the solutions to the Dirichlet problem in the absence of a source term; this analysis
is carried out taking advantage of the gradient flow structure of the equation in this
case and of the so-called potential well techniques. Finally, in Section 5 we present
some further results, including the proof of finite time blow-up of the solutions
to the Navier problem for large enough initial conditions, and propose some open
questions.

2. THE STATIONARY PROBLEM

2.1. Existence of solutions with Dirichlet conditions. In the sequel, we need
several different norms. All the norms in W s,p-spaces will be reported explicitly
(that is, ‖ · ‖W s,p(Ω)) except for the Lp-norm and the W 2,2

0 -norm, respectively
denoted by

(1 ≤ p <∞) ‖u‖pp =

∫
Ω
|u|p , ‖u‖∞ = ess sup

x∈Ω
|u(x)| ,

‖u‖2 = ‖∆u‖22 =

∫
Ω
|∆u|2 ,

We start by focusing on the following nonhomogeneous problem

(3)

 ∆2u = det(D2u) + f in Ω
u = g on ∂Ω
uν = h on ∂Ω

,

where f ∈ L1(Ω), g ∈W 3/2,2(∂Ω), h ∈ H1/2,2(∂Ω). The following result holds.

Theorem 2.1. There exists γ > 0 such that if

(4) ‖f‖1 + ‖g‖W 3/2,2(∂Ω) + ‖h‖W 1/2,2(∂Ω) < γ

then (3) admits at least two weak solutions in W 2,2(Ω), a stable solution and a
mountain pass solution.
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Proof. Consider the auxiliary linear problem

(5)

 ∆2v = f in Ω
v = g on ∂Ω
vν = h on ∂Ω

.

In view of the embedding L1(Ω) ⊂W−2,2(Ω), [16, Theorem 2.16] tells us that (5)
admits a unique weak solution v ∈W 2,2(Ω) which satisfies

(6) ‖D2v‖2 ≤ C
(
‖f‖1 + ‖g‖W 3/2,2(∂Ω) + ‖h‖W 1/2,2(∂Ω)

)
for some C > 0 independent of f , g, h. Subtracting (5) from (3) and putting
w = u− v we get {

∆2w = det[D2(w + v)] in Ω
w = wν = 0 on ∂Ω

.

This problem can be written as

(7)
{

∆2w=det(D2w)+det(D2v)+vxxwyy+wxxvyy−2wxyvxy in Ω
w = wν = 0 on ∂Ω

.

By combining results from [5, 6, 27], Escudero-Peral [11] proved that for all
u ∈W 2,2

0 (Ω) one has that det(D2u) belongs to the Hardy space and that

det(D2u) =
(
uxuyy

)
x
−
(
uxuxy

)
y

=
(
uxuy

)
xy
− 1

2

(
u2
y

)
xx
− 1

2

(
u2
x

)
yy

in D′(Ω). Moreover,

(8)
∫

Ω
u det(D2u) = 3

∫
Ω
uxuyuxy ∀u ∈W 2,2

0 (Ω).

These facts show that (7) admits a variational formulation. The corresponding
functional reads

K(w) =

∫
Ω

[
|∆w|2

2
−wxwywxy−det(D2v)w+

w2
yvxx

2
+
w2
xvyy
2
−wxwyvxy

]
.

Note that, by the embedding W 2,2
0 (Ω) ⊂W 1,4

0 (Ω), we have

K(w) ≥ −
∫

Ω

[
wxwywxy + det(D2v)w

]
+

1

2
‖∆w‖22 − C‖D2v‖2‖∆w‖22,

so a mountain pass geometry [3] is ensured for small enough ‖D2v‖2. In view of
(6), the mountain pass geometry is ensured if γ in (4) is sufficiently small. This
geometry yields the existence of a locally minimum solution and of a mountain
pass solution. �

Theorem 2.1 generalizes the following statement proved in [11]:

Corollary 2.2. The Dirichlet problem

(9)
{

∆2u = det(D2u) in Ω
u = uν = 0 on ∂Ω

admits a nontrivial weak solution u ∈W 2,2
0 (Ω).
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Concerning the regularity of solutions, we have the following statement.

Theorem 2.3. Assume that, for some integer k ≥ 0 we have: ∂Ω ∈ Ck+4, f ∈
W k,2(Ω), g ∈ W k+7/2,2(∂Ω), h ∈ W k+5/2,2(∂Ω). Then any solution to (3)
satisfies

u ∈W k+4,2(Ω) .

In particular, any solution to (9) is as smooth as the boundary permits.

Proof. By duality, from the embedding W s,2
0 (Ω) ⊂ L∞(Ω) we infer that L1(Ω) ⊂

[L∞(Ω)]′ ⊂ W−s,2(Ω) for all s > 1. Therefore, for any solution u ∈ W 2,2(Ω)
to (3) we have det(D2u) ∈ W−s,2(Ω) for all s > 1. Therefore, even if k = 0,
we have ∆2u ∈ W−s,2(Ω) and, in turn, u ∈ W r,2(Ω) for any r < 3. A bootstrap
argument and elliptic regularity then allow to conclude. �

Remark 2.4. If we stop the previous proof at the first step, we see that, in a C3

domain, any solution to{
∆2u = det(D2u) + f in Ω
u = uν = 0 on ∂Ω

with f ∈ L1(Ω) belongs to W r,2(Ω) for any r < 3, which slightly improves the
result in [11]. Note also that these arguments take strong advantage of being in
planar domains.

2.2. The Nehari manifold and the mountain pass level. The energy functional
for the stationary problem (9) is

(10) J(v) =
1

2

∫
Ω
|∆v|2 −

∫
Ω
vxvyvxy ∀v ∈W 2,2

0 (Ω).

It is shown in [11] that J has a mountain pass geometry and that the corresponding
mountain pass level is given by

(11) d = inf
γ∈Γ

max
0≤s≤1

J(γ(s))

where Γ := {γ ∈ C([0, 1],W 2,2
0 (Ω)); γ(0) = 0, J(γ(1)) < 0}. We aim to

characterize differently d and to relate it with the so-called Nehari manifold defined
by

N :=
{
v ∈W 2,2

0 (Ω) \ {0}; 〈J ′(v), v〉 = ‖v‖2 − 3

∫
Ω
vxvyvxy = 0

}
where 〈·, ·〉 denotes the duality pairing between W 2,−2(Ω) and W 2,2

0 (Ω). To this
end, we introduce the set

(12) B := {v ∈W 2,2
0 (Ω);

∫
Ω
vxvyvxy = 1} .

It is clear that v ∈ N if and only if αv ∈ B for some α > 0. In particular, not on
all the straight directions starting from 0 in the phase space W 2,2

0 (Ω) there exists
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an intersection with N . Hence, N is an unbounded manifold (of codimension 1)
which separates the two regions

N+ =
{
v ∈W 2,2

0 (Ω); ‖v‖2 > 3

∫
Ω
vxvyvxy

}
and

N− =
{
v ∈W 2,2

0 (Ω); ‖v‖2 < 3

∫
Ω
vxvyvxy

}
.

The next result states some properties of N±.

Theorem 2.5. Let v ∈W 2,2
0 (Ω), then the following implications hold:

(i) 0 < ‖v‖2 < 6d =⇒ v ∈ N+;
(ii) v ∈ N+, J(v) < d =⇒ 0 < ‖v‖2 < 6d;
(iii) v ∈ N− =⇒ ‖v‖2 > 6d.

Proof. It is well-known [3] that the mountain pass level d may also be defined by

(13) d = min
v∈N

J(v) .

Using (13) and the definition of N we obtain

d = min
v∈N

J(v) = min
v∈N

(
‖v‖2

2
−
∫

Ω
vxvyvxy

)
= min

v∈N

‖v‖2

6

which proves (i) since N separates N+ and N−.
If v ∈ N+, then −

∫
Ω vxvyvxy > −‖v‖2/3. If J(v) < d, then ‖v‖2 −

2
∫

Ω vxvyvxy < 2d. By combining these two inequalities we obtain (ii).
Finally, recalling the definitions of N±, (iii) follows directly from (i). �

A further functional needed in the sequel is given by

(14) I(v) =

∫
Ω
vxvyvxy .

We provide a different characterization of the mountain pass level.

Theorem 2.6. The mountain pass level d for J is also determined by

(15) d = min
v∈B

‖v‖6

54
.

Moreover, d can be lower bounded in terms of the best constant for the (compact)
embedding W 2,2

0 (Ω) ⊂W 1,4
0 (Ω), namely

d ≥ 8

27
min

W 2,2
0 (Ω)

(
∫

Ω |∆v|
2)2∫

Ω |∇v|4
.

Proof. For all v ∈W 2,2
0 (Ω) consider the map fv : [0,+∞)→ R defined by

fv(s) = J(sv) =
s2

2

∫
Ω
|∆v|2 − s3

∫
Ω
vxvyvxy .

If I(v) ≤ 0, the map s 7→ fv(s) is strictly increasing and strictly convex, attaining
its global minimum at s = 0; in this case, fv has no critical points apart from s = 0.
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So, the mountain pass level is achieved for some function v satisfying I(v) > 0.
For any v ∈ B, see (12), we have

fv(s) =
‖v‖2

2
s2 − s3 .

It is straightforward to verify that the map s 7→ fv(s) is initially increasing and
then strictly decreasing. It attains the global maximum for s = ‖v‖2

3 and

max
s≥0

fv(s) =
‖v‖6

54
.

Hence,

max
s≥0

J(sv) =
‖v‖6

54
∀v ∈ B .

By the minimax characterization of the mountain pass level we see that (15) holds.
Next, note that integrating by parts we obtain

I(v) =
1

2

∫
Ω
vx(v2

y)x = −1

2

∫
Ω
vxx v

2
y = −1

2

∫
Ω

∆v v2
y +

1

6

∫
Ω

(v3
y)y ,

I(v) =
1

2

∫
Ω
vy(v

2
x)y = −1

2

∫
Ω
vyy v

2
x = −1

2

∫
Ω

∆v v2
x +

1

6

∫
Ω

(v3
x)x ,

∀v ∈W 2,2
0 (Ω) .

Hence, by adding and by the divergence Theorem,

I(v) = −1

4

∫
Ω

∆v |∇v|2 +
1

12

∫
Ω

[(v3
x)x + (v3

y)y] = −1

4

∫
Ω

∆v |∇v|2

(16) ∀v ∈W 2,2
0 (Ω) .

Therefore, by Hölder inequality,

(17) I(v) ≤ 1

4

(∫
Ω
|∆v|2

)1/2(∫
Ω
|∇v|4

)1/2

∀v ∈W 2,2
0 (Ω)

and, according to (15), we infer

d =
1

54
min
X

(
∫

Ω |∆v|
2)3

I(v)2
≥ 8

27
min

W 2,2
0 (Ω)

(
∫

Ω |∆v|
2)2∫

Ω |∇v|4

where X := {v ∈W 2,2
0 (Ω); I(v) > 0}. �

In Figure 2.1 we sketch a geometric representation of the Nehari manifold N
which summarizes the results obtained in the present section.
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FIGURE 2.1. The phase space W 2,2
0 (Ω) with: N = Nehari mani-

fold, M = mountain pass point, and I given by (14).

3. THE PARABOLIC PROBLEM WITH SOURCE

This section is devoted to the study of the evolution problem

(18) ut + ∆2u = det(D2u) + λf in Ω× (0, T )

for some T > 0. We consider both the sets of boundary conditions u|∂Ω =
uν |∂Ω = 0 (Dirichlet) and u|∂Ω = ∆u|∂Ω = 0 (Navier). Here and in the sequel we
will be always considering weak solutions.

We start by proving a result concerning an associated linear problem.

Theorem 3.1. Let 0 < T ≤ ∞ and let f ∈ L2(0, T ;L2(Ω)). The Dirichlet
problem for the linear fourth order parabolic equation

(19) ut + ∆2u = f in Ω× (0, T ),

with initial datum u0 ∈W 2,2
0 (Ω) admits a unique weak solution in the space

C(0, T ;W 2,2
0 (Ω)) ∩ L2(0, T ;W 4,2(Ω)) ∩W 1,2(0, T ;L2(Ω)).

The corresponding Navier problem with initial datum u0 ∈ W 2,2(Ω) ∩W 1,2
0 (Ω)

admits a unique weak solution in the space

C(0, T ;W 2,2(Ω) ∩W 1,2
0 (Ω)) ∩ L2(0, T ;W 4,2(Ω)) ∩W 1,2(0, T ;L2(Ω)).

Furthermore, both cases admit the estimate

max
0≤t≤T

‖∆u‖22 +

∫ T

0
‖∆2u‖22 +

∫ T

0
‖ut‖22 ≤ C

(
‖∆u0‖22 +

∫ T

0
‖f‖22

)
.

Proof. STEP 1. EXISTENCE VIA GALERKIN METHOD. We will focus herein on
Dirichlet boundary conditions; the proof for the Navier problem follows with ob-
vious modifications. Let u0 ∈W 2,2

0 (Ω) and consider the following linear problem

(20)

 ut + ∆2u = f in Ω× (0, T )
u = uν = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω .

Let {wk}k≥1 ⊂ W 2,2
0 (Ω) be an orthogonal complete system of eigenfunctions

of ∆2 under Dirichlet boundary conditions normalized by ‖wk‖2 = 1. Denote by
{λk} the unbounded sequence of corresponding eigenvalues and by

Wk := span{w1, . . . , wk} ∀k ≥ 1.
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Denote by (·, ·)2 and (·, ·) the scalar products in L2(Ω) and W 2,2
0 (Ω). For any

k ≥ 1 let

uk0 :=
k∑
i=1

(u0, wi)2wi =
k∑
i=1

λ−1
i (u0, wi)wi

so that uk0 → u0 in W 2,2
0 (Ω) as k → +∞. For any k ≥ 1 we seek a solution

uk ∈W 1,2(0, T ;Wk) of the variational problem

(21)


(u′(t), v)2 + (u(t), v) = (f(t), v)2

for any v ∈Wk for a.e. t ∈ (0, T )
u(0) = uk0 .

We seek solutions in the form

uk(t) =

k∑
i=1

gki (t)wi

so that for any 1 ≤ i ≤ k the function gki solves the Cauchy problem

(22)
{

(gki (t))′ + λig
k
i (t) = (f(t), wi)L2(Ω)

gki (0) = (uk0, wi)L2(Ω) .

The linear ordinary differential equation (22) admits a unique solution gki such that
gki ∈ W 1,2(0, T ), and hence also (21) admits uk ∈ W 1,2(0, T ;Wk) as a unique
solution.

Note that

∆2uk(t) =

k∑
i=1

gki (t)λiwi ∈Wk for a.e. t ∈ (0, T )

so that by testing equation (21) with v = ∆2uk(t) we obtain that for a.e. t ∈ (0, T ):

1

2

d

dt
‖uk(t)‖2 +

1

2
‖uk(t)‖2W 4,2(Ω) = (f(t),∆2uk(t))2.

After integration over (0, t) we obtain

‖uk(t)‖2−‖uk0‖2+‖uk‖2L2(0,t;W 4,2(Ω))≤
∫ T

0

(
C‖f(s)‖22 +

1

2
‖uk(s)‖2W 4,2(Ω)

)
ds

and therefore

‖uk‖2L∞(0,T ;W 2,2
0 (Ω))

+
1

2
‖uk‖2L2(0,T ;W 4,2(Ω)) ≤ ‖u

k
0‖2 + C‖f‖2L2(0,T ;L2(Ω)).

Since the sequence {uk0} is bounded in W 2,2
0 (Ω), we infer that

{uk} is bounded in L∞(0, T ;W 2,2
0 (Ω)) ∩ L2(0, T ;W 4,2(Ω)).

Whence, we may extract a subsequence, still denoted by {uk} such that

uk ⇀
∗ u in L∞(0, T ;W 2,2

0 (Ω)) and uk ⇀ u in L2(0, T ;W 4,2(Ω)) .
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Moreover, since u′k = −∆2uk + f in the weak sense, we also have that u′k ∈
L2(0, T ;L2(Ω)) and that

u′k ⇀ u′ in L2(0, T ;L2(Ω)).

Hence, by letting k →∞ in (21), we see that

u ∈ L∞(0, T ;W 2,2
0 (Ω)) ∩ L2(0, T ;W 4,2(Ω)) ∩W 1,2(0, T ;L2(Ω))

solves the problem

(23)


(u′(t), v)2 + (u(t), v) = (f(t), v)2

for any v ∈W 2,2
0 (Ω) for a.e. t ∈ (0, T )

u(0) = u0 .

By interpolation between L2(0, T ;W 4,2(Ω)) and W 1,2(0, T ;L2(Ω)) we obtain
u ∈ C(0, T ;W 2,2

0 (Ω)).
STEP 2. ESTIMATES. The existence result justifies the following calculations

performed in order to obtain the desired estimate. We multiply equation (19) by
∆2u and integrate by parts over Ω the result to find

1

2

d

dt
‖∆u‖22 + ‖∆2u‖22 = (∆2u, f)2 ≤

ε

2
‖∆2u‖22 +

1

2ε
‖f‖22 for a.e. t ∈ (0, T )

for any ε > 0. Upon integration in time we obtain

max
0≤t≤T

‖∆u‖22 +

∫ T

0
‖∆2u‖22 ≤ C

(
‖∆u0‖22 +

∫ T

0
‖f‖22

)
.

To conclude multiply equation (19) by an arbitrary function v ∈ L2(Ω) to get

(v, ut)2 + (v,∆2u)2 = (v, f)2 for a.e. t ∈ (0, T ).

This equality implies the inequality

(v, ut)2 ≤ ‖f‖2‖v‖2 + ‖∆2v‖2‖v‖2.

Now taking the supremum over all v ∈ L2(Ω) such that ‖v‖2 = 1 and the fact

sup
v

(v, ut)2 = ‖ut‖2,

we find ∫ T

0
‖ut‖22 ≤ C

(∫ T

0
‖∆2u‖22 +

∫ T

0
‖f‖22

)
,

and the desired inequality follows immediately.
Finally, uniqueness follows by a standard contradiction argument. �

Now we state the main result of this section.

Theorem 3.2. The problem

(24)

 ut + ∆2u = det(D2u) + λf in Ω× (0, T )
u(x, 0) = u0(x) in Ω
u(x, t) = uν(x, t) = 0 on ∂Ω× (0, T )
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admits a unique solution in

XT := C(0, T ;W 2,2
0 (Ω)) ∩ L2(0, T ;W 4,2(Ω)) ∩W 1,2(0, T ;L2(Ω)),

provided one of the following set of conditions holds
(i) u0 ∈W 2,2

0 (Ω), f ∈ L2(0, T ;L2(Ω)), λ ∈ R, and T > 0 is sufficiently small;
(ii) T ∈ (0,∞], f ∈ L2(0, T ;L2(Ω)), and ‖u0‖ and |λ| are sufficiently small.

Moreover, if [0, T ∗) denotes the maximal interval of continuation of u and if T ∗ <
∞ then ‖u(t)‖ → ∞ as t→ T ∗.

An identical result holds for the Navier problem but this time the solution be-
longs to the space

YT := C(0, T ;W 2,2(Ω) ∩W 1,2
0 (Ω)) ∩ L2(0, T ;W 4,2(Ω)) ∩W 1,2(0, T ;L2(Ω)),

assuming that the initial condition u0 ∈W 2,2(Ω) ∩W 1,2
0 (Ω).

Proof. For all u ∈W 4,2(Ω) we have

‖ det(D2u)‖22 =

∫
Ω
| det(D2u)|2 ≤ C

∫
Ω
|D2u|4 ≤ C‖D2u‖2∞

∫
Ω
|D2u|2

≤ C‖∆u‖2∞ ‖∆u‖22 ≤ C‖∆2u‖22 ‖∆u‖22.
Hence, if u ∈ C(0, T ;W 2,2(Ω)) ∩ L2(0, T ;W 4,2(Ω)), we may directly estimate

‖ det(D2u)‖2L2(0,T ;L2(Ω)) =

∫ T

0
‖ det(D2u)‖22 ≤ C

∫ T

0
‖∆2u‖22 ‖∆u‖22

≤ C max
0≤t≤T

‖∆u‖22
∫ T

0
‖∆2u‖22 <∞

which proves that

u∈C(0, T ;W 2,2(Ω))∩L2(0, T ;W 4,2(Ω)) =⇒ det(D2u)∈L2(0, T ;L2(Ω)).

In what follows we focus on the Dirichlet case since the proof for the Navier
one follows similarly. We introduce the initial-Dirichlet linear problems

(25)
{

(u1)t + ∆2u1 = det(D2v1) + λf , u1(x, 0) = u0(x) ,
(u2)t + ∆2u2 = det(D2v2) + λf , u2(x, 0) = u0(x) ,

where v1, v2 ∈ XT . The just proved inclusion and Theorem 3.1 show that u1, u2 ∈
XT . Subtracting the equations in (25) we get

(u1 − u2)t + ∆2(u1 − u2) = det(D2v1)− det(D2v2) , (u1 − u2)(x, 0) = 0 ,

and upon multiplying by ∆2(u1 − u2) and integrating we find

(∆2(u1 − u2), (u1 − u2)t)2 + (∆2(u1 − u2),∆2(u1 − u2))2 =

(∆2(u1 − u2),det(D2v1)− det(D2v2))2.

This leads to the inequalities
1

2

d

dt
‖∆(u1 − u2)‖22 + ‖∆2(u1 − u2)‖22 ≤

1

2
‖∆2(u1 − u2)‖22 +

1

2
‖det(D2v1)− det(D2v2)‖22
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and, in turn,

(26)
d

dt
‖∆(u1 − u2)‖22 + ‖∆2(u1 − u2)‖22 ≤ ‖det(D2v1)− det(D2v2)‖22.

We split the remaining part of the proof into three steps.
STEP 1. EXISTENCE FOR ARBITRARY TEMPORAL LAPSES.
We start focussing on the case T < ∞ and estimating the term containing the

determinants

(27) ‖det(D2v1)−det(D2v2)‖22≤C
∫

Ω
|D2(v1 − v2)|2(|D2v1|+|D2v2|)2≤

C(‖∆v1‖2∞+‖∆v2‖2∞)‖∆(v1−v2)‖22 ≤ C(‖∆2v1‖22 +‖∆2v2‖22)‖∆(v1−v2)‖22,
to infer from (26)
d

dt
‖∆(u1 − u2)‖22 + ‖∆2(u1 − u2)‖22 ≤ C(‖∆2v1‖22 + ‖∆2v2‖22)‖∆(v1 − v2)‖22.

Integrating with respect to time we obtain

(28) max
0≤t≤T

‖∆(u1 − u2)‖22 +

∫ T

0
‖∆2(u1 − u2)‖22 ≤

C max
0≤t≤T

‖∆(v1 − v2)‖22
∫ T

0
(‖∆2v1‖22 + ‖∆2v2‖22).

Now consider a function w ∈ L2(Ω) and the scalar product

(w, (u1 − u2)t)2 + (w,∆2(u1 − u2))2 = (w,det(D2v1)− det(D2v2))2.

We have the estimate
(w, (u1 − u2)t)2 ≤

‖w‖2‖∆2(u1 − u2)‖2 + ‖w‖2‖det(D2v1)− det(D2v2)‖2,
and taking the supremum of all w ∈ L2(Ω) such that ‖w‖2 = 1 we get

sup
w

(w, (u1 − u2)t)2 ≤ ‖∆2(u1 − u2)‖2 + ‖ det(D2v1)− det(D2v2)‖2.

Therefore, from (27) we infer that

‖(u1 − u2)t‖22 ≤

C
[
‖∆2(u1 − u2)‖22 + (‖∆2v1‖22 + ‖∆2v2‖22)‖∆(v1 − v2)‖22

]
,

and consequently, by using (28),

(29) max
0≤t≤T

‖∆(u1 − u2)‖22 +

∫ T

0
‖∆2(u1 − u2)‖22 +

∫ T

0
‖(u1 − u2)t‖22 ≤

C max
0≤t≤T

‖∆(v1 − v2)‖22
∫ T

0
(‖∆2v1‖22 + ‖∆2v2‖22).

On the space XT we define the norm

‖u‖2XT
:= max

0≤t≤T
‖∆u‖22 +

∫ T

0
‖∆2u‖22 +

∫ T

0
‖ut‖22,
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so that (29) reads

(30) ‖u1 − u2‖XT
≤ C

[∫ T

0
(‖∆2v1‖22 + ‖∆2v2‖22)

]1/2

‖v1 − v2‖XT
.

Now consider the unique solution u` (see Theorem 3.1) to the linear problem

(u`)t + ∆2u` = λf,

with the same boundary and initial conditions as (25). Then define the ball

(31) Bρ = {u ∈ XT : ‖u− u`‖XT
≤ ρ}.

Using estimate (30) we find

(32) ‖ui − u`‖XT
≤ C

(∫ T

0
‖∆2vi‖22

)1/2

‖vi‖XT
≤ C‖vi‖2XT

,

for i = 1, 2. We use the triangle inequality

(33) ‖vi‖XT
≤ ‖vi − u`‖XT

+ ‖u`‖XT

together with (see Theorem 3.1)

(34) ‖u`‖2XT
≤ C

(
‖∆u0‖22 + λ2

∫ T

0
‖f‖22

)
=: C Γ(ρ, u0, λ, f).

to infer from (32)-(33)-(34) that

‖ui − u`‖XT
≤ C

(
ρ2 + ‖∆u0‖22 + λ2

∫ T

0
‖f‖22

)
,

and thus
‖ui − u`‖XT

≤ ρ,
for small enough ρ, |λ| and ‖∆u0‖2.

By using (32)-(33)-(34) and reasoning as before we can transform (30) into

‖u1 − u2‖XT
≤ C Γ(ρ, u0, λ, f)1/2‖v1 − v2‖XT

.

Again, for ρ, |λ| and ‖∆u0‖2 small enough we have

‖u1 − u2‖XT
≤ 1

2
‖v1 − v2‖XT

.

The existence of a unique solution follows from the application of Banach fixed
point theorem to the map

A : Bρ → Bρ

vi 7→ ui,

for i = 1, 2. The case T = ∞ follows similarly since Γ(ρ, u0, λ, f) does not
depend on how large is T .

STEP 2. LOCAL EXISTENCE IN TIME.
By the Gagliardo-Nirenberg inequality [13, 29],

‖∆vi‖∞ ≤ C‖∆vi‖1/42 ‖∇∆vi‖3/43 , (i = 1, 2),
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we may go back to (26) and we improve (27) with

‖det(D2v1)− det(D2v2)‖22 ≤ C(‖∆v1‖2∞ + ‖∆v2‖2∞)‖v1 − v2‖2 ≤

C(‖∆v1‖1/22 ‖∇∆v1‖3/23 + ‖∆v2‖1/22 ‖∇∆v2‖3/23 )‖v1 − v2‖2.
This, together with a Sobolev embedding, leads to

d

dt
‖u1 − u2‖2 + ‖∆2(u1 − u2)‖22 ≤

C(‖∆v1‖1/22 ‖∆
2v1‖3/22 + ‖∆v2‖1/22 ‖∆

2v2‖3/22 )‖v1 − v2‖2.
An integration with respect to time then yields

max
0≤t≤T

‖u1 − u2‖2 +

∫ T

0
‖∆2(u1 − u2)‖22 ≤ C max

0≤t≤T
‖v1 − v2‖2×

C

(
max

0≤t≤T
‖v1‖1/2

∫ T

0
‖∆2v1‖3/22 + max

0≤t≤T
‖v2‖1/2

∫ T

0
‖∆2v2‖3/22

)
.

We proceed making use of Hölder inequality to find

max
0≤t≤T

‖u1 − u2‖2 +

∫ T

0
‖∆2(u1 − u2)‖22 ≤ C T 1/4 max

0≤t≤T
‖v1 − v2‖2×[

max
0≤t≤T

‖v1‖1/2
(∫ T

0
‖∆2v1‖22

)3/4

+ max
0≤t≤T

‖v2‖1/2
(∫ T

0
‖∆2v2‖22

)3/4
]
.

Combining the estimates above with the arguments in Step 1 yields

‖u1 − u2‖XT
≤ C T 1/4‖v1 − v2‖XT

×[
max

0≤t≤T
‖v1‖1/2

(∫ T

0
‖∆2v1‖22

)3/4

+ max
0≤t≤T

‖v2‖1/2
(∫ T

0
‖∆2v2‖22

)3/4
]1/2

.

Consider again the ball Bρ defined in (31). In this case we have

‖ui − u`‖XT
≤ C T 1/4 max

0≤t≤T
‖vi‖1/4

(∫ T

0
‖∆2vi‖22

)3/8

‖vi‖XT

≤ C T 1/4‖vi‖2XT
,

for i = 1, 2. Arguing as in Step 1 of the present proof we get

‖ui − u`‖XT
≤ C T 1/4Γ(ρ, u0, λ, f),

and thus
‖ui − u`‖XT

≤ ρ,
for small enough T . Additionally we have

‖u1 − u2‖XT
≤ C T 1/4Γ(ρ, u0, λ, f)1/2‖v1 − v2‖XT

.

Again, for T small enough we find

‖u1 − u2‖XT
≤ 1

2
‖v1 − v2‖XT

.
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The existence of a unique solution to (24) follows from the application of Banach
fixed point theorem to the map

A : Bσ → Bσ

vi 7→ ui (i = 1, 2).

We have so found T = T (λ, ‖u0‖) such that (24) admits a unique solution over
[0, T ] for all T < T .

STEP 3. BLOW-UP.
We argue by contradiction. Assume that [0, T ∗), with T ∗ < ∞, is the maximal

interval of continuation of the solution, and that lim inft→T ∗ ‖u(t)‖ = γ < ∞.
Then there exists a sequence {tn} such that tn → T ∗ and ‖u(tn)‖ < 2γ for n
large enough. Take n sufficiently large so that tn + T (λ, 2γ) > T ∗, where T is
defined at the end of Step 2. Consider u(tn) as initial condition to (24). Then Step
2 tells us that the solution may be continued beyond T ∗, contradiction. �

Corollary 3.3. Let u be a solution as described in Theorem 3.2 during the time
interval (0, T ]. Then there exists a real number ε > 0 such that the solution can be
prolonged to the interval (0, T + ε].

Proof. This result is a consequence of Step 3 in the proof of Theorem 3.2. �

It is possible to prove higher regularity of the solution if we neglect the source
term.

Corollary 3.4. Let u be a solution as described in Theorem 3.2 to equation (18)
with λ = 0. Then u2 ∈ C1(0, T ;L1(Ω)).

Proof. The regularity proven in Theorem 3.2 for the solution u to (18) implies that
det(D2u) ∈ C(0, T ;L1(Ω)) and ∆2u ∈ C(0, T ;W−2,2(Ω)) so that

ut = −∆2u+ det(D2u) ∈ C(0, T ;W−2,2(Ω))

and, in turn, u ∈ C1(0, T ;W−2,2(Ω)). Combined with u ∈ C(0, T ;W 2,2
0 (Ω)) this

yields uut ∈ C(0, T ;L1(Ω)) and, additionally, u2 ∈ C1(0, T ;L1(Ω)). �

The following result bounds the growth of the norm of solutions.

Theorem 3.5. If u ∈ XT solves (24) then,

∀M, ε > 0 ∃ τ = τ(M, ε) > 0 :(35) (
‖u0‖ < M , t < τ

)
=⇒ ‖u(t)‖ < M + ε .

A similar statement holds for the corresponding Navier problem.

Proof. We focus on the Dirichlet problem as the proof for the Navier case follows
identically. We compute

1

2

d

dt
‖∆u‖22 = 〈∆ut,∆u〉 =

(
∆2u, ut

)
2

=

−‖∆2u‖22 +
(
∆2u,det(D2u)

)
2

+
(
∆2u, λf

)
2
≤

−‖∆2u‖22 + ‖∆2u‖2‖det(D2u)‖2 + |λ| ‖∆2u‖2‖f‖2,
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by means of the application of the boundary conditions, the application of the equa-
tion and Hölder inequality. Young inequality leads to

d

dt
‖u‖2 ≤ ‖det(D2u)‖22 + λ2‖f‖22;

now choosing 0 < τ < T and integrating in time along the interval (0, τ) we find

‖u(τ)‖2 ≤ ‖u0‖2 +

∫ τ

0
‖det(D2u)‖22 + λ2

∫ τ

0
‖f‖22 <

M2 +

∫ τ

0
‖ det(D2u)‖22 + λ2

∫ τ

0
‖f‖22.

Arguing as in Step 2 of the proof of Theorem 3.2 we transform this inequality into

‖u(τ)‖2 < M2 + C max
0≤t≤T

‖u‖5/2
(∫ T

0
‖∆2u‖22

)3/4

τ1/4 + λ2

∫ τ

0
‖f‖22.

Using the concavity of the square root we conclude

‖u(τ)‖ < M + C max
0≤t≤T

‖u‖5/4
(∫ T

0
‖∆2u‖22

)3/8

τ1/8 + |λ|
(∫ τ

0
‖f‖22

)1/2

and the statement follows by choosing a small enough τ . �

4. THE PARABOLIC PROBLEM WITHOUT SOURCE

In this section we consider the parabolic problem

(36)

 ut + ∆2u = det(D2u) (x, t) ∈ Ω× (0, T ),
u(x, 0) = u0(x) x ∈ Ω
u = uν = 0 (x, t) ∈ ∂Ω× (0, T ).

4.1. Preliminary lemmas. We start with the following result.

Lemma 4.1. If u = u(t) solves (36) then its energy

J(u(t)) =
1

2

∫
Ω
|∆u(t)|2 −

∫
Ω
ux(t)uy(t)uxy(t)

satisfies
d

dt
J(u(t)) = −

∫
Ω
ut(t)

2 ≤ 0 .

Proof. Two integrations by parts show that
d

dt

∫
Ω
|∆u|2 = 2〈∆ut,∆u〉 = 2

∫
Ω
ut∆

2u .

Note that for any smooth function v ∈ XT ,
d

dt

∫
Ω
vxvyvxy =

∫
Ω

(vxtvyvxy + vxvytvxy + vxvyvxyt)

and, since vt = 0 on ∂Ω, integrating by parts we obtain∫
Ω
vxtvyvxy = −

∫
Ω
vt

(
vyvxy

)
x
,

∫
Ω
vxvytvxy = −

∫
Ω
vt

(
vxvxy

)
y
,
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Ω
vxvyvxyt =

∫
Ω
vt

(
vxvy

)
xy
,

where, in the latter, we also used the condition that |∇v| = 0 on ∂Ω. By collecting
terms, this proves that

d

dt

∫
Ω
vxvyvxy =

∫
Ω

det(D2v) vt .

By a density argument, the same holds true for the solution u ∈ XT to (36). Hence,

d

dt
J(u(t)) =

∫
Ω

(
∆2u− det(D2u)

)
ut = −

∫
Ω
u2
t ,

which proves the statement. �

Lemma 4.2. Let u0 ∈W 2,2
0 (Ω) be such that J(u0) < d. Then:

(i) if u0 ∈ N− the solution u = u(t) to (36) satisfies J(u(t)) < d and u(t) ∈
N− for all t ∈ (0, T );

(ii) if u0 ∈ N+ the solution u = u(t) to (36) satisfies J(u(t)) < d and u(t) ∈
N+ for all t ∈ (0, T ).

Proof. If J(u0) < d, then J(u(t)) < d for all t ∈ (0, T ) in view of Lemma 4.1.
Assume moreover that u0 ∈ N+ and, for contradiction, that u(t) 6∈ N+ for some
t ∈ (0, T ). Then, necessarily u(t) ∈ N for some t ∈ (0, T ) so that, by (13),
J(u(t)) ≥ d, contradiction. We may argue similarly if u0 ∈ N−. �

Next, we prove a kind of L2-Cauchy property for global solutions with bounded
energy.

Lemma 4.3. Let u0 ∈W 2,2
0 (Ω) and let u = u(t) be the corresponding solution to

(36). Then

‖u(t+ δ)− u(t)‖22 ≤ δ
(
J(u(t))− J(u(t+ δ))

)
∀δ > 0

and

(37)
(
‖u(t+ δ)‖2 − ‖u(t)‖2

δ

)2

≤ J(u(t))− J(u(t+ δ))

δ
.

In particular, the map t 7→ ‖u(t)‖2 is differentiable and(
d

dt
‖u(t)‖2

)2

≤ − d

dt
J(u(t)) .

Proof. By Hölder inequality, Fubini Theorem, and Lemma 4.1, we get

‖u(t+ δ)− u(t)‖22 =

∫
Ω

∣∣∣∣∫ t+δ

t
ut(τ)

∣∣∣∣2 ≤ δ ∫
Ω

∫ t+δ

t
ut(τ)2

= δ

∫ t+δ

t

(∫
Ω
ut(τ)2

)
= δ
(
J(u(t))− J(u(t+ δ))

)
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which is the first inequality. By the triangle inequality and the just proved inequal-
ity we infer that(
‖u(s+ δ)‖2 − ‖u(s)‖2

)2
≤ ‖u(s+ δ)− u(s)‖22 ≤ δ

(
J(u(t))− J(u(t+ δ))

)
∀δ > 0

which we may rewrite as (37). Finally, the estimate of the derivative follows by
letting δ → 0. �

Also the derivative of the squared L2-norm has an elegant form:

Lemma 4.4. Let u0 ∈W 2,2
0 (Ω) and let u = u(t) be the corresponding solution to

(36). Then for all t ∈ [0, T ) we have

(38)
1

2

d

dt
‖u(t)‖22 + ‖u(t)‖2 − 3

∫
Ω
ux(t)uy(t)uxy(t) = 0 .

Proof. Multiply (36) by u(t), integrate over Ω, and apply (8) to obtain (38). �

Finally, we prove that the nonlinear terms goes to the “correct” limit forW 2,2
0 (Ω)-

bounded sequences.

Lemma 4.5. Let {uk} be a bounded sequence in W 2,2
0 (Ω). Then there exists u ∈

W 2,2
0 (Ω) such that uk ⇀ u in W 2,2

0 (Ω) and∫
Ω
φ det(D2uk)→

∫
Ω
φ det(D2u) ∀φ ∈W 2,2

0 (Ω),

after passing to a suitable subsequence.

Proof. The first part is immediate and follows from the reflexivity of the Sobolev
space W 2,2

0 (Ω). The second part cannot be deduced in the same way because
L1(Ω) is not reflexive and consequently the sequence det(D2uk) could converge
to a measure. For all v, w ∈ C∞0 (Ω) some integrations by parts show that

(39)
∫

Ω
w det

(
D2v

)
=

∫
Ω
vx1vx2wx1x2 −

1

2
v2
x2wx1x1 −

1

2
v2
x1wx2x2 .

A density argument shows that the same is true for all v, w ∈ W 2,2
0 (Ω). Therefore

for any φ ∈W 2,2
0 (Ω) and any k we have∫

Ω
φ det

(
D2uk

)
=

∫
Ω

(uk)x1(uk)x2φx1x2 −
1

2
(uk)

2
x2φx1x1 −

1

2
(uk)

2
x1φx2x2 .

By compact embedding we know that uk → u strongly in W 1,4
0 (Ω) since uk ⇀ u

weakly in W 2,2
0 (Ω), and thus

lim
k→∞

∫
Ω
φ det

(
D2uk

)
=

∫
Ω
ux1ux2φx1x2 −

1

2
u2
x2φx1x1 −

1

2
u2
x1φx2x2 ,

after passing to a suitable subsequence. Applying again (39) leads to

lim
k→∞

∫
Ω
φ det

(
D2uk

)
=

∫
Ω
φ det

(
D2u

)
,

after passing to a suitable subsequence. �
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4.2. Finite time blow-up. Our first result proves the existence of solutions to (36)
which blow up in finite time.

Theorem 4.6. Let u0 ∈ N− be such that J(u0) ≤ d. Then the solution u = u(t)
to (36) blows up in finite time, that is, there exists T > 0 such that ‖u(t)‖ → +∞
as t ↗ T . Moreover, the blow up also occurs in the W 1,4

0 (Ω)-norm, that is,
‖u(t)‖

W 1,4
0 (Ω)

→ +∞ as t↗ T .

Proof. Again, since u0 6∈ N , we know that, by Lemma 4.1, we have J(u(t)) < d
for all t > 0. Therefore, possibly by translating t, we may assume that J(u(0)) <
d and, from now on, we rename u0 = u(0). We use here a refinement of the
concavity method by Levine [24], see also [30, 35]. Assume for contradiction that
the solution u = u(t) to (36) is global and define

M(t) :=
1

2

∫ t

0
‖u(s)‖22

so that, by Theorem 3.2 and Corollary 3.4, M ∈ C2(0,∞). Then

M ′(t) =
‖u(t)‖22

2

and, by (38),

M ′′(t) = −3J(u(t)) +
‖u(t)‖2

2
.

By the assumptions on u0 and by Lemma 4.2 we know that u(t) ∈ N− for all
t ≥ 0. In turn, by Theorem 2.5, we infer that ‖u(t)‖2 > 6d for all t ≥ 0. Hence,
recalling Lemma 4.1 and the assumptions, we get

M ′′(t) ≥ −3J(u0) +
‖u(t)‖2

2
> 3(d− J(u0)) > 0 for all t ≥ 0 .

This shows that

(40) lim
t→∞

M(t) = lim
t→∞

M ′(t) = +∞ .

By Lemma 4.1 we also infer that

J(u(t)) = J(u0)−
∫ t

0
‖ut(s)‖22

so that

M ′′(t) = 3

∫ t

0
‖ut(s)‖22 − 3J(u0) +

‖u(t)‖2

2
> 3

∫ t

0
‖ut(s)‖22

since ‖u(t)‖2 > 6d > 6J(u0). By multiplying the previous inequality by M(t) >
0 and by using Hölder inequality, we get

M ′′(t)M(t) ≥ 3

2

∫ t

0
‖ut(s)‖22

∫ t

0
‖u(s)‖22 ≥

3

2

(∫ t

0

∫
Ω
u(s)ut(s)

)2

=
3

2

(
M ′(t)−M ′(0)

)2
.
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By (40) we know that there exists τ > 0 such that M ′(t) > 7M ′(0) for t > τ so
that the latter inequality becomes

(41) M ′′(t)M(t) >
54

49
M ′(t)2 for all t > τ .

This shows that the map t 7→ M(t)−5/49 has negative second derivative and is
therefore concave on [τ,+∞). Since M(t)−5/49 → 0 as t → ∞ in view of (40),
we reach a contradiction. This shows that the solution u(t) is not global and, by
Theorem 3.2, that there exists T > 0 such that ‖u(t)‖ → +∞ as t↗ T .

Since by Lemma 4.2 we have that u(t) ∈ N− for all t ≥ 0, by (17) we infer that

‖u(t)‖2 < 3

∫
Ω
ux(t)uy(t)uxy(t) ≤

3

4
‖u(t)‖ ‖u(t)‖2

W 1,4
0 (Ω)

for all t ≥ 0

so that ‖u(t)‖ < 3
4‖u(t)‖2

W 1,4
0 (Ω)

and the W 1,4
0 (Ω)-norm blows up as t↗ T . �

Next, we state a blow up result without assuming that the initial energy J(u0) is
smaller than the mountain pass level d. Let λ1 denote the least Dirichlet eigenvalue
of the biharmonic operator in Ω and assume that u0 ∈W 2,2

0 (Ω) satisfies

(42) λ1‖u0‖22 > 6J(u0) .

By Poincaré inequality ‖u0‖2 ≥ λ1‖u0‖22, we see that if u0 satisfies (42), then u0 ∈
N−. However, the energy J(u0) may be larger than d. For instance, let e1 denote
an eigenfunction corresponding to λ1 with the sign implying

∫
Ω e

1
xe

1
ye

1
xy > 0. If

we take u0 = αe1, then (42) will be satisfied for any α > α where α is the unique
value of α > 0 such that αe1 ∈ N . And, by (13), we know that J(αe1) > d. So,
for α > α sufficiently close to α we have J(αe1) > d, that is, we are above the
mountain pass level.

Assumption (42) yields finite time blow-up.

Theorem 4.7. Assume that u0 ∈ W 2,2
0 (Ω) satisfies (42). Then the solution u =

u(t) to (36) blows up in finite time, that is, there exists T > 0 such that ‖u(t)‖ →
+∞ and ‖u(t)‖

W 1,4
0 (Ω)

→ +∞ as t↗ T .

Proof. We first claim that if u = u(t) is a global solution to (36) then

(43) lim inf
t→∞

‖u(t)‖ < +∞ .

For contradiction, assume that the solution u = u(t) to (36) is global and that

(44) ‖u(t)‖ → +∞ as t→ +∞ .

In what follows, we use the same tools as in the proof of Theorem 4.6. Consider
again

M(t) :=
1

2

∫ t

0
‖u(s)‖22 .

Then

M ′′(t) = −3J(u(t)) +
‖u(t)‖2

2
→ +∞ as t→ +∞
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because of (44) and Lemma 4.1 (the map t 7→ −3J(u(t)) is increasing). This
proves again (40).

By Lemma 4.1 and using (44) we also infer that there exists τ > 0 such that

M ′′(t) > 3

∫ t

0
‖ut(s)‖22 ∀t > τ .

By multiplying the previous inequality by M(t) > 0 and by using Hölder inequal-
ity, we find

M ′′(t)M(t) ≥ 3

2

(
M ′(t)−M ′(0)

)2
∀t > τ

and that (41) holds, for a possibly larger τ . The same concavity argument used in
the proof of Theorem 4.6 leads to a contradiction. Hence, (44) cannot occur and
(43) follows.

Next, by Poincaré inequality and Lemma 4.1, (38) yields
d

dt
‖u(t)‖22 = −6J(u(t)) + ‖u(t)‖2 ≥ −6J(u0) + λ1‖u(t)‖22 .

By putting ψ0(t) := −6J(u0) + λ1‖u(t)‖22, the previous inequality reads ψ′0(t) ≥
λ1ψ0(t). Since (42) yields ψ0(0) > 0, this proves that ψ0(t) → ∞ as t → ∞.
Hence, by invoking again Poincaré inequality, we see that also (44) holds, a situa-
tion that we ruled out by proving (43). This contradiction shows that T <∞. The
blow up of the W 1,4

0 (Ω)-norm follows as in the proof of Theorem 4.6. �

Let u0 ∈ W 2,2
0 (Ω) and let u = u(t) be the local solution to (36). According to

Theorem 3.2, the solution blows up at some T > 0 if

(45) lim
t→T

‖u(t)‖ = +∞ .

We wish to investigate if the (finite time) blow up also occurs in different ways. In
particular, we wish to analyze the following forms of blow up:

(46) lim
t→T

‖u‖
L2(0,t;W 2,2

0 (Ω))
= +∞ ,

(47) lim
t→T

‖u(t)‖2 = +∞ ,

(48) lim
t→T

‖u‖
L4(0,t;W 1,4

0 (Ω))
= +∞ .

Clearly, (47) implies (45). We show that also further implications hold true.

Theorem 4.8. Let u0 ∈ W 2,2
0 (Ω) and let u = u(t) be the local solution to (36).

Assume that (45) occurs for some finite T > 0. Then there exists τ ∈ (0, T ) such
that u(t) ∈ N− for all t > τ .

Moreover:
(i) If (46) occurs, then (47) occurs.
(ii) If (47) occurs, then (48) occurs.

Finally, (47) occurs if and only if

(49) lim
t→T

∫ t

0

(∫
Ω

∆u(s)|∇u(s)|2
)

= −∞ .
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Proof. For contradiction, assume that there exists a sequence tn → T such that
u(tn) ∈ (N ∪N+). Then

‖u(tn)‖2 ≥ 3

∫
Ω
ux(tn)uy(tn)uxy(tn) ∀n

which, in view of (45), implies that

J(u(tn)) =
1

2
‖u(tn)‖2 −

∫
Ω
ux(tn)uy(tn)uxy(tn) ≥ 1

6
‖u(tn)‖2 → +∞

as n → ∞. This contradicts Lemma 4.1. Hence, there exists τ ∈ (0, T ) such that
u(t) ∈ N− for all t > τ .

Integrating (38) over [0, t] for 0 < t < T yields

(50) ‖u(t)‖22 = ‖u0‖22 +

∫ t

0

(
−2‖u(s)‖2 + 6

∫
Ω
ux(s)uy(s)uxy(s)

)
.

By Lemma 4.1 we know that J(u(t)) ≤ J(u0), that is,

2

∫
Ω
ux(t)uy(t)uxy(t) ≥ ‖u(t)‖2 − 2J(u0) ∀t ∈ (0, T ) .

Hence, (50) yields

‖u(t)‖22 ≥ ‖u0‖22 +

∫ t

0
‖u(s)‖2 − 6J(u0) t ∀t ∈ (0, T ) .

Letting t→ T we see that (46) implies (47).
Using (17) into (50) yields

(51) ‖u(t)‖22 ≤ ‖u0‖22 +

∫ t

0

(
−2‖u(s)‖2 +

3

2
‖u(s)‖ ‖u(s)‖2

W 1,4
0 (Ω)

)
.

By the Young inequality 3
2ab ≤ 2a2 + 9

32b
2, (51) becomes

‖u(t)‖22 ≤ ‖u0‖22 +
9

32
‖u‖4

L4(0,t;W 1,4
0 (Ω))

.

Letting t→ T , this proves that if (47) occurs, then also (48) occurs.
Assume now that (49) occurs and, using (16), rewrite (50) as

(52) ‖u(t)‖22 = ‖u0‖22 +

∫ t

0

(
−2‖u(s)‖2 − 3

2

∫
Ω

∆u(s) |∇u(s)|2
)
.

Two cases may occur. If (46) holds, then by the just proved statement (i), (47)
occurs. If (46) does not hold, so that ‖u‖

L2(0,t;W 2,2
0 (Ω))

remains bounded, then
(52) shows again that (47) occurs. Therefore, in any case, if (49) occurs, then (47)
occurs.

Finally, from (52) we see that

‖u(t)‖22 ≤ ‖u0‖22 −
3

2

∫ t

0

(∫
Ω

∆u(s) |∇u(s)|2
)

which proves that (47) implies (49). �
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4.3. Global solutions. For suitable initial data, not only the solution is global but
it vanishes in infinite time.

Theorem 4.9. Let u0 ∈ N+ be such that J(u0) ≤ d. Then the solution u = u(t)
to (36) is global and u(t)→ 0 in W 4,2(Ω) as t→ +∞.

Proof. Since u0 6∈ N , we know that it is not a stationary solution to (36), that is, it
does not solve (9). Hence, by Lemma 4.1 we have J(u(t)) < d for all t > 0. By
Lemma 4.2 and Theorem 2.5 we infer that u(t) remains bounded in W 2,2

0 (Ω) so
that, by Theorem 4.6, the solution is global. If ‖ut‖2 ≥ c > 0 for all t > 0, then
by Lemma 4.1 we would get J(u(t)) → −∞ as t → ∞ against u(t) ∈ N+, see
again Lemma 4.2. Hence, ut(t)→ 0 in L2(Ω), on a suitable sequence.

Moreover, the boundedness of ‖u(t)‖ implies that there exists u ∈ W 2,2
0 (Ω)

such that u(t) ⇀ u in W 2,2
0 (Ω) as t → ∞ on the sequence. Note also that, by

Lemma 4.5, for all φ ∈W 2,2
0 (Ω) we have∫

Ω
φ det(D2u(t))→

∫
Ω
φ det(D2u).

Therefore, if we test (36) with some φ ∈ W 2,2
0 (Ω), and we let t → ∞ on the

above found sequence, we get

0 =

∫
Ω
ut(t)φ+

∫
Ω

∆u(t)∆φ−
∫

Ω
det(D2u(t))φ→

∫
Ω

∆u∆φ− det(D2u)φ

which shows that u solves (9). Since the only solution to (9) at energy level below
d is the trivial one, we infer that u = 0. Writing (36) as

∆2u(t) = −ut(t) + det(D2u(t))

we see that ∆2u(t) is uniformly bounded in L1(Ω). Whence, by arguing as in the
proof of Theorem 2.3, we first infer that ∆2u(t) is bounded in W−s,2(Ω) for all
s > 1 and then, by a bootstrap argument, that

∆2u(t) = −ut(t) + det(D2u(t))→ 0 strongly in L2(Ω)

so that u(t)→ 0 in W 4,2(Ω) on the sequence.
By Lemma 4.1, we infer that J(u(t)) → 0 regardless of how t → ∞. Since

u(t) ∈ N+ for all t ≥ 0, we also have that J(u(t)) ≥ ‖u(t)‖2/6 for all t. These
facts enable us to conclude that all the above convergences occur as t → ∞, not
only on some subsequence. �

Theorems 4.6 and 4.7 determine a wide class of initial data u0 ∈W 2,2
0 (Ω) which

ensure that the solution to (36) blows up in finite time. One can wonder whether the
blow up might also occur in infinite time. This happens, for instance, in semilinear
second order parabolic equations at critical growth, see [28, 32]. If T = +∞, we
denote by

ω(u0) =
⋂
t≥0

{u(s) : s ≥ t}
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the ω-limit set of u0 ∈W 2,2
0 (Ω), where the closure is taken in W 2,2

0 (Ω). We show
here that infinite time blow up cannot occur for the fourth order parabolic equation
(36).

Theorem 4.10. Let u0 ∈ W 2,2
0 (Ω) and let u = u(t) be the local solution to (36).

If T = +∞ then the ω-limit set ω(u0) is a nonempty bounded connected subset
of W 2,2

0 (Ω) which consists of solutions to (9). In particular, this means that there
exists a solution u to (9) such that u(t)→ u in W 2,2

0 (Ω) up to a subsequence and,
if u is an isolated solution to (9), then u(t) → u in W 2,2

0 (Ω) as t → ∞ (without
passing on a subsequence). These convergences are, in fact, also in W 4,2(Ω).

Proof. If u = u(t) is a global solution to (36), then we know that (43) holds. We
claim that if

(53) C := lim inf
t→∞

‖u(t)‖ < lim sup
t→∞

‖u(t)‖ = +∞ ,

then J(u(t)) ≥ d for all t ≥ 0 and C > 0. By Lemma 4.1, the map t 7→ J(u(t))
admits a limit as t→∞. If this limit were smaller than d (including−∞), then we
would have J(u(t)) < d for some t > 0. By (13) this implies that either u(t) ∈ N+

or u(t) ∈ N−. In the first situation, Theorem 4.9 implies that ‖u(t)‖W 4,2(Ω) → 0
as t→∞. In the second situation, Theorem 4.6 implies that ‖u(t)‖ → ∞ in finite
time. In both cases we contradict (53). Hence, if (53) holds then

(54) J(u(t)) ≥ Υ := lim
t→∞

J(u(t)) ≥ d .

IfC = 0 in (53), then there exists a divergent sequence {tm} such that ‖u(tm)‖ →
0 so that J(u(tm))→ 0, contradicting (54). By Lemma 4.1 we know that

(55)
∫ ∞

0
‖ut(t)‖22 = J(u0)−Υ

so that ut ∈ L2(R+;L2(Ω)) and

(56) lim inf
t→∞

‖ut(t)‖2 = 0 .

We claim that also

(57) u ∈ L∞(R+;L2(Ω)) .

If u ∈ L∞(R+;W 2,2
0 (Ω)), then the statement follows directly from Poincaré in-

equality. So, assume that t 7→ ‖u(t)‖ is not bounded in R+ so that, by (43), we
know that necessarily (53) holds. Let Λ := max{2C, 8J(u0)} > 0 and consider
the two sets

Θ− := {t ≥ 0; ‖u(t)‖2 ≤ Λ} , Θ+ := {t ≥ 0; ‖u(t)‖2 > Λ} .
We have Θ− ∪ Θ+ = R+ and, in view of (53), both Θ+ 6= ∅ and Θ− 6= ∅. Note
that for t ∈ Θ+ we have ‖u(t)‖2 > 8J(u0) ≥ 8J(u(t)) in view of Lemma 4.1 so
that u(t) ∈ N− and, by (38), the map t 7→ ‖u(t)‖2 is strictly increasing in Θ+. By
(53) we know that t changes infinitely many times between Θ+ and Θ−. As long as
t ∈ Θ−, by Poincaré inequality we have λ1‖u(t)‖22 ≤ ‖u(t)‖2 ≤ Λ and therefore
‖u(t)‖2 remains uniformly bounded. Moreover, by the just proved monotonicity,
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as long as t ∈ Θ+ we know that ‖u(t)‖22 ≤ ‖u(t)‖22 ≤ Λ/λ1 where t is the first
instant where t exists Θ+. This proves (57).

Next, note that if c denotes positive constants which may vary from line to line,
we may rewrite (38) as

‖u(t)‖2 = 6J(u(t)) + 2

∫
Ω
u(t)ut(t) ≤ 6J(u0) + 2

∫
Ω
|u(t)ut(t)|

≤ c
(

1 + ‖u(t)‖2 ‖ut(t)‖2
)
≤ c
(

1 + ‖ut(t)‖2
)

where we also used Lemma 4.1 (first inequality), Hölder inequality (second in-
equality), and (57) (third inequality). By squaring, we obtain

(58) ‖u(t)‖4 ≤ c1 + c2‖ut(t)‖22 .

Put Γt := {s ≥ t; ‖u(s)‖4 ≥ c1 + 1} where c1 is as in (58) and let |Γt| denote
the measure of Γt. Then |Γt| → 0 as t → ∞ because of (55) and (58). Take
M := 4

√
c1 + 1, ε = 1, and let τ > 0 be the number given by (35). Then take t

sufficiently large so that |Λt| < τ . By (35), for any such twe have ‖u(t)‖ < M+1,
which proves that

(59) u ∈ L∞(R+;W 2,2
0 (Ω)) .

By (56) there exists a diverging sequence {tk} such that ut(tk) → 0 in L2(Ω)

as k → ∞. By (59), up to a further subsequence, we have u(tk) ⇀ u in W 2,2
0 (Ω)

for some u ∈ W 2,2
0 (Ω). By testing (36) with ϕ ∈ C∞0 (Ω) and letting k → ∞,

we see that u solves (9). We may apply these arguments to several subsequences;
hence, due to the continuity of the map t 7→ ‖u(t)‖, the ω-limit set ω(u0) is a
nonempty connected subset of W 2,2

0 (Ω) which consists of solutions to (9). Finally,
the convergences may be improved to W 4,2(Ω) by arguing as in Theorem 4.9. �

Remark 4.11. In Theorem 4.10, by “u is an isolated solution”, we mean that there
exists a W 2,2

0 (Ω)-neighborhood of u which contains no further solutions to (9).
In general, Theorem 4.10 cannot be improved with the statement that the whole
trajectory converges, see [31, 32] and references therein for second order equations.
Note also that from Lemma 4.3 and (54) we infer that if u is a global solution, then

lim
t→∞
‖u(t+ δ)− u(t)‖2 = 0 ∀δ > 0.

This shows that the convergence to ω(u0) occurs “slowly”.

Finally, we prove a squeezing property which is typical of dissipative dynamical
systems. Since (36) is indeed dissipative when dealing with global solutions, we
restrict our attention to this case. Consider the sequence of Dirichlet eigenvalues
{λm} of the biharmonic operator and denote by {em} the sequence of correspond-
ing W 2,2

0 (Ω)-normalized orthogonal eigenfunctions. It is well-known that

v =

∞∑
m=1

(∫
Ω

∆v∆em
)
em ∀v ∈W 2,2

0 (Ω)



26 C. ESCUDERO, F. GAZZOLA, I. PERAL

where the series converges in the W 2,2
0 (Ω)-norm. For all k ≥ 2 denote by Pk the

projector onto the space Hk spanned by {e1, ..., ek−1} so that

Pkv =

k−1∑
m=1

(∫
Ω

∆v∆em
)
em ∀v ∈W 2,2

0 (Ω) .

Finally, we recall the improved Poincaré inequality

(60) λk‖v‖22 ≤ ‖v‖2 ∀v ∈ H⊥k
where H⊥k denotes the orthogonal complement of Hk, namely the closure of the
infinite dimensional space spanned by {ek, ek+1, ...}. Roughly speaking, the next
result states that the asymptotic behavior of the solutions to (36) is determined by
a finite number of modes.

Theorem 4.12. Let u = u(t) and v = v(t) be the solutions to (36) correspond-
ing to initial data u0 ∈ W 2,2

0 (Ω) and v0 ∈ W 2,2
0 (Ω), respectively. Assume that

u and v are global solutions to (36). There exists k ∈ N, depending only on
‖u‖

L∞(R+;W 2,2
0 (Ω))

and ‖v‖
L∞(R+;W 2,2

0 (Ω))
, such that if Pku(t) = Pkv(t) for all

t ≥ 0, then

lim
t→∞
‖u(t)− v(t)‖W s,2(Ω) = 0 for all s ∈ [0, 2) .

Proof. Since u, v ∈ C(R+;W 2,2
0 (Ω)), by Theorem 4.10 we know that

(61) u, v ∈ L∞(R+;W 2,2
0 (Ω)) .

We first claim that there exists µ > 0 such that for all u, v ∈W 2,2
0 (Ω) we have

(62)
∫

Ω

(
det(D2u)− det(D2v)

)
(u− v) ≤ µ

(
‖u‖+ ‖v‖

)
‖u− v‖ ‖u− v‖∞ .

To see this, let us rewrite

det(D2u)− det(D2v) =

uxx(uyy − vyy) + vyy(uxx − vxx) + uxy(vxy − uxy) + vxy(vxy − uxy)
so that, by Hölder inequality,

‖det(D2u)− det(D2v)‖1 ≤ ‖uxx‖2 ‖uyy − vyy‖2 + ‖vyy‖2 ‖uxx − vxx‖2
+‖uxy‖2 ‖vxy − uxy‖2 + ‖vxy‖2 ‖vxy − uxy‖2

≤ µ
(
‖u‖+ ‖v‖

)
‖u− v‖ .

Hence, by applying once more, Hölder inequality we obtain∫
Ω

(
det(D2u)− det(D2v)

)
(u− v) ≤ ‖det(D2u)− det(D2v)‖1 ‖u− v‖∞

≤ µ
(
‖u‖+ ‖v‖

)
‖u− v‖ ‖u− v‖∞ ,

which proves (62).
By subtracting the two equations relative to u and v we obtain

(63) wt + ∆2w = det(D2u)− det(D2v)
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where w(t) = u(t)− v(t). Multiply (63) by w and integrate over Ω to obtain

1

2

d

dt
‖w(t)‖22 + ‖w(t)‖2 =

∫
Ω

(
det(D2u(t))− det(D2v(t))

)
w(t) .

By (62) the latter may be estimated as

1

2

d

dt
‖w(t)‖22 + ‖w(t)‖2 ≤ µ

(
‖u(t)‖+ ‖v(t)‖

)
‖w(t)‖ ‖w(t)‖∞ .

In turn, by the Gagliardo-Nirenberg inequality ‖w‖∞ ≤ c‖w‖1/2 ‖w‖1/22 (see [13,
29]) we obtain

1

2

d

dt
‖w(t)‖22 + ‖w(t)‖2 ≤

µ
(
‖u‖

L∞(R+;W 2,2
0 (Ω))

+ ‖v‖
L∞(R+;W 2,2

0 (Ω))

)
‖w(t)‖3/2 ‖w(t)‖1/22 .

By recalling the assumption that Pkw(t) = 0, that is w(t) ∈ H⊥k , and by using
(60) we then get

1

2

d

dt
‖w(t)‖22

≤
[
µ
[
‖u‖

L∞(R+;W 2,2
0 (Ω))

+‖v‖
L∞(R+;W 2,2

0 (Ω))

]
‖w(t)‖1/22 −‖w(t)‖1/2

]
‖w(t)‖3/2

≤
[
µ
[
‖u‖

L∞(R+;W 2,2
0 (Ω))

+‖v‖
L∞(R+;W 2,2

0 (Ω))

]
−λ1/4

k

]
‖w(t)‖1/22 ‖w(t)‖3/2.

Take k large enough so that λk > µ4
(
‖u‖

L∞(R+;W 2,2
0 (Ω))

+‖v‖
L∞(R+;W 2,2

0 (Ω))

)4

and put

ωk := λ
1/4
k − µ

(
‖u‖

L∞(R+;W 2,2
0 (Ω))

+ ‖v‖
L∞(R+;W 2,2

0 (Ω))

)
> 0 ,

δk := 2ωkλ
3/4
k > 0 .

By (60) we may finally rewrite the last inequality as

d

dt
‖w(t)‖22 ≤ −2ωk‖w(t)‖1/22 ‖w(t)‖3/2 ≤ −δk‖w(t)‖22

which, upon integration, gives

(64) ‖w(t)‖22 ≤ ‖w(0)‖22 e−δkt ∀t ≥ 0

and the statement follows for s = 0 by letting t→∞.
By interpolation, we know that

‖u(t)− v(t)‖2W s,2(Ω) ≤ ‖u(t)− v(t)‖2−s2 ‖u(t)− v(t)‖s for all s ∈ (0, 2) ;

the statement follows for all such s by combining (61) and (64). �
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5. FURTHER RESULTS AND OPEN PROBLEMS

Monotonicity of the L2-norm. It is clear that the limits in (46) and in (48) do exist
due to the fact that they involve increasing functions of t. Less obvious is the
existence of the limit in (47). The next result gives some monotonicity properties
of the map t 7→ ‖u(t)‖2 which guarantee that also the limit in (47) exists.

Proposition 5.1. Let λ1 denote the least eigenvalue of the biharmonic operator
under Dirichlet boundary conditions in Ω. Take u0 ∈ W 2,2

0 (Ω) and let u = u(t)
denote the corresponding local solution to (36).

(i) If (42) holds, then the map t 7→ ‖u(t)‖2 is strictly increasing on [0, T ).
(ii) If u0 ∈ N− and J(u0) < d, then the map t 7→ ‖u(t)‖2 is strictly increasing

on [0, T ).
(iii) If u0 ∈ N+ and J(u0) < d, then the map t 7→ ‖u(t)‖2 is strictly decreasing

on [0, T ).
Moreover, the map t 7→ ‖u(t)‖2 is strictly increasing (resp. decreasing) when-

ever u(t) ∈ N− (resp. u(t) ∈ N+).
Finally, the map t 7→ ‖u(t)‖2 is differentiable and(

d

dt
‖u(t)‖2

)2

≤ − d

dt
J(u(t)) .

Proof. In view of the definition of N± and Lemma 4.2, (38) proves directly state-
ments (ii) and (iii) and the corresponding strict monotonicity of the map t 7→
‖u(t)‖2 whenever u(t) ∈ N±.

On the other hand, by Poincaré inequality, (38) yields

d

dt
‖u(t)‖22 = −6J(u(t)) + ‖u(t)‖2 ≥ −6J(u(t)) + λ1‖u(t)‖22 =: ψ(t) .

By the assumption in (i) we infer that ψ(0) > 0 so that the map t 7→ ‖u(t)‖2 is
initially strictly increasing, say on some maximal interval (0, δ) where δ > 0 is the
first time where ψ(δ) = 0. If such δ exists then, by Lemma 4.1, also t 7→ ψ(t)
is strictly increasing on (0, δ) so that ψ(δ) > ψ(0) > 0, contradiction. Therefore
δ does not exist and the maximal interval of strict monotonicity for t 7→ ‖u(t)‖2
coincides with (0, T ).

Finally, the differentiability of the map t 7→ ‖u(t)‖2 and the estimate of its
derivative follows from Lemma 4.3. �

Finite time blow-up for Navier boundary conditions. Consider the initial-boundary
value problem

(65)

 ut = det(D2u)−∆2u in Ω× (0, T ),
u(x, t) = ∆u(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω.

We will prove that the solution to it blows up in finite time provided u0 is large
enough in a sense to be specified in the following. For simplicity we focus on the



A 4TH ORDER PARABOLIC PDE INVOLVING THE HESSIAN 29

radial problem set on the unit ball, Ω = B1(0), so problem (65) simplifies to

(66)

 ut = ururr
r −∆2

ru for r ∈ [0, 1) , t > 0,
u(1, t) = ∆ru(1, t) = 0 for t > 0,
u(r, 0) = u0(r) for r ∈ [0, 1)

where u = u(r, t) and ∆r(·) = 1
r [r(·)r]r is the radial Laplacian. Note that smooth-

ness of the solution implies the symmetry condition ur(0, t) = 0 for all t ≥ 0
during the lapse of existence.

Theorem 5.2. Let u = u(r, t) be a smooth solution to (66). If∫ 1

0

(
4

5
r5 − 9

4
r4 +

5

2
r2

)
(u0)r dr

is large enough, then there exists a T ∗ < ∞ such that u ceases to exist when
t→ T ∗.

Proof. We begin our proof with the following identity∫ 1

0

(
4

5
r5 − 9

4
r4 +

5

2
r2

)
ur dr = −

∫ 1

0
(4r4 − 9r3 + 5r)u dr,

where the integration by parts made use of the boundary condition u(1, t) = 0 and
the fact that one of the roots of the polynomial inside the left hand side integral is
located at the origin. Now, using equation (66) we get

− d

dt

∫ 1

0
(4r4 − 9r3 + 5r)u dr = −

∫ 1

0
(4r3 − 9r2 + 5)ururr dr

+

∫ 1

0
(4r3 − 9r2 + 5)[r(∆ru)r]r dr.

The first integral on the right hand side can be estimated integrating by parts

−
∫ 1

0
(4r3 − 9r2 + 5)ururr dr =

∫ 1

0
(6r − 9)(ur)

2 r dr,

where we have used the symmetry condition ur(0, t) = 0 and the fact that the
polynomial inside the integral on the left hand side has one root at r = 1. Now we
estimate the integral∫ 1

0
(4r3 − 9r2 + 5)[r(∆ru)r]r dr = −

∫ 1

0
(12r2 − 18r)(∆ru)r r dr

=

∫ 1

0
(36r2 − 36r)∆ru dr

= −36

∫ 1

0
ur r dr,

where the boundary terms vanish due to the presence of roots of the polynomial at
the boundary points in the first case, due to the root of the polynomial at the origin
and the boundary condition ∆ru(1, t) = 0 in the second case and due to the roots
of the polynomial and the symmetry condition ur(0, t) = 0 in the third case.
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Summarizing we have

d

dt

∫ 1

0

(
4

5
r5 − 9

4
r4 +

5

2
r2

)
ur dr =

∫ 1

0
(6r − 9)(ur)

2 r dr − 36

∫ 1

0
ur r dr.

Therefore

d

dt

∫ 1

0

(
4

5
r5 − 9

4
r4 +

5

2
r2

)
ur dr ≤ −

∫ 1

0
(9− 6r)(ur)

2 r dr

+36
C2

2ε
+ 36

ε

2

∫ 1

0
(9− 6r)(ur)

2 r dr

≤ −C
∫ 1

0
(9− 6r)(ur)

2 r dr + C ′,

where we have used∫ 1

0
ur r dr =

∫ 1

0

√
9− 6r√
9− 6r

ur r dr

≤
(∫ 1

0

1

9− 6r
r dr

)1/2(∫ 1

0
(9− 6r)(ur)

2 r dr

)1/2

≤ C

(∫ 1

0
(9− 6r)(ur)

2 r dr

)1/2

≤ C2

2ε
+
ε

2

(∫ 1

0
(9− 6r)(ur)

2 r dr

)
,

and here we have employed Hölder inequality and Young inequality in the first and
third inequalities respectively.

We finish our proof with the estimate

d

dt

∫ 1

0

(
4

5
r4 − 9

4
r3 +

5

2
r

)
ur r dr ≤

−C
∫ 1

0

(
4

5
r4 − 9

4
r3 +

5

2
r

)2

(ur)
2 r dr + C ′ ≤

−C
[∫ 1

0

(
4

5
r4 − 9

4
r3 +

5

2
r

)
ur r dr

]2

+ C ′,

where we have used that 9− 6r is bounded from below by a positive constant and
4r4/5− 9r3/4 + 5r/2 is non-negative and bounded from above in [0, 1] in the first
step and Jensen inequality in the second step. This automatically implies blow-up
in finite time

(67)
∫ 1

0

(
4

5
r4 − 9

4
r3 +

5

2
r

)
ur r dr → −∞ when t→ T ∗∗,

for T ∗∗ < ∞ and a sufficiently large initial condition. In turn, this proves that the
solution ceases to exist at some time T ∗ ≤ T ∗∗. �
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Remark 5.3. A subtle distinction should be made between solutions which “cease
to exist” and solutions which “blow up”. The former concerns the existence of
the smooth solution, the latter concerns the unboundedness of some norm; whence
the latter implies the former. Theorem 5.2 merely states that the smooth solution
ceases to exist, with no statement about blow-up. In particular, if (67) held then
an integration by parts would show that the L1(B1(0)) norm of the solution would
blow up. We conjecture that this is not true and that, in fact, T ∗ < T ∗∗.

We conclude this paper with some natural questions and some open problems.

• Uniqueness and/or multiplicity of stationary solutions.
By [11] we know that (9) admits the trivial solution u ≡ 0 and also a mountain

pass solution ũ. One can then wonder whether (9) also admits further solutions.
Note first that the functional J in (10) is not even and, therefore, standard multi-
plicity results are not available. In particular, −ũ is not a solution to (9). Does the
multiplicity of solutions depend on the domain? Can we have finite multiplicity
results? What about radial solutions in the ball? In this case, one can refer to some
results in [8, 9]. An answer to these questions would lead to an improvement of the
statement of Theorem 4.10, by making more precise the possible structure of the
ω-limit set ω(u0), see Remark 4.11.

• Blow up in Lp norms.
From Theorems 4.8 and 4.10 we learn that when blow up occurs, then also the

W 1,4
0 (Ω)-norm blows up. What about the Lp(Ω)-norms? Is there some critical

exponent q ∈ (1,∞) such that the blow up in the Lp(Ω)-norm occurs if and only
if p > q? Or does the L∞(Ω)-norm remain bounded? And, even more interesting,
what happens under Navier boundary conditions? In this respect, see Theorem 5.2
and Remark 5.3.

• Qualitative properties of solutions.
It is well-known that the biharmonic operator under Dirichlet boundary condi-

tions does not satisfy the positivity preserving property in general domains, see e.g.
[16]. Moreover, also the biharmonic heat operator in Rn does not preserve posi-
tivity and exhibits only eventual local positivity, see [12, 15] where also nonlinear
problems are considered. For there reasons, a full positivity preserving property
for (36) (such as u0 ≥ 0 implies u(t) ≥ 0) cannot be expected. However, one can
wonder whether (36) has some weaker form of positivity preserving, for instance
bounds for the negative part of u(t) when u0 ≥ 0.

• Other boundary conditions.
According to the physical model one wishes to describe, it could be of interest to

study (36) with different boundary conditions. In particular, it could be interesting
to consider the more deeply the Navier boundary conditions u = ∆u = 0 on
∂Ω. For the stationary problem (9), these conditions were studied in [8, 9, 11]. It
turns out that (9) is no longer of variational type and different techniques (such as
fixed point theorems) need to be employed. Therefore, it is not clear whether an
energy functional can be defined and if the same proofs of the present paper may be
applied. More generally, one could also consider the so-called Steklov boundary
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conditions u = ∆u− auν = 0 on ∂Ω, where a ∈ C(∂Ω) should take into account
the mean curvature of the (smooth) boundary. We refer to [16] for the derivation
and the physical meaning of these conditions.

• Further regularity of the solution.
Using the regularizing effect of the biharmonic heat operator, one could wonder

which (maximal) regularity should be expected for solutions to (36). Moreover,
since the nonlinearity u 7→ det(D2u) is analytic, one could investigate if the results
in [19, 33] concerning the ω-limit can be extended to (36). This would allow to
improve Theorem 4.10 and to have convergence of the whole flow u(t) and not
only of a subsequence. However, this appears nontrivial due to the presence of
different second order derivatives involved.

• High energy initial data.
Except for Theorem 4.7, in order to prove global existence or finite time blow-

up for (36) we assumed that J(u0) ≤ d. What happens for J(u0) > d? Possible
hints may be found in [14, 17] although the lack of a comparison principle for (9)
certainly creates more difficulties. Can the basin of attraction of the trivial solution
u ≡ 0 be characterized more explicitly?

• Higher space dimensions.
If we set the equation (36) in some Ω ⊂ Rn with n ≥ 3 we lose the physical ap-

plication but the problem is mathematically challenging. If n ≤ 4 the embedding
W 2,2

0 (Ω) ⊂ W 1,4
0 (Ω) is still true, although for n = 4 it becomes a critical em-

bedding which lacks compactness. Moreover, the embedding W 2,2
0 (Ω) ⊂ L∞(Ω)

fails for n ≥ 4. But the most relevant problem concerns the nonlinearity det(D2u)
which has the same degree as the dimension. For instance, if n = 3 the term
det(D2u) is cubic, involving the product of 3 second order derivatives. Since each
derivative merely belongs to L2(Ω) (whenever u ∈ W 2,2

0 (Ω)), this term may not
belong to any Lp space. Hence, no variational approach can be used and a different
notion of solution is needed.
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