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Abstract. For a given p > 1 and an open bounded convex set Ω ⊂ R
2, we

consider the minimization problem for the functional Jp(u) =
∫
Ω
( 1

p
|∇u|p−u)

over W 1,p
0 (Ω). Since the energy of the unique minimizer up may not be

computed explicitly, we restrict the minimization problem to the subspace
of web functions, which depend only on the distance from the boundary ∂Ω.
In this case, a representation formula for the unique minimizer vp is available.
Hence the problem of estimating the error one makes when approximating
Jp(up) by Jp(vp) arises. When Ω varies among convex bounded sets in the
plane, we find an optimal estimate for such error, and we show that it is
decreasing and infinitesimal with p. As p → ∞, we also prove that up − vp
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converges to zero in W 1,m
0 (Ω) for all m < ∞. These results reveal that the

approximation of minima by means of web functions gains more and more
precision as convexity in Jp increases.

2000 Mathematics Subject Classification: 49K30, 52A10, 49Q10.
Key words: Minimization, web functions, convexity, planar shapes.

1 Introduction

Let Ω ⊂ R
2 be an open bounded convex domain. Following [12], we call web

functions on Ω those functions u which have the same family of level lines as
the distance function dΩ(x) := dist(x, ∂Ω) from the boundary of Ω. The class of
web functions turns out to have relevant properties regarding the minimization
of integral functionals J on Ω. In fact, if Kp(Ω) denotes the subspace of web
functions in W 1,p

0 (Ω), and J has the form

J(u) =
∫

Ω
h(|∇u|) − u, u ∈ W 1,p

0 (Ω),

suitable assumptions on the integrand h (not involving convexity), guarantee the
existence of a minimizer for J on Kp(Ω) for some p ≥ 1. Moreover, the energy of
such minimizer admits a simple representation formula, see (4) below for the case
h(s) = sp/p. It has therefore some interest to ask whether the minimum value of
J over Kp(Ω) can be used to approximate efficiently the infimum value of J over
W 1,p

0 (Ω), when the explicit computation of the latter is not possible. To this end,
as suggested in [8, 9], one is led to consider the quotient functional

E(Ω) =
minu∈Kp(Ω) J(u)
infu∈W 1,p

0 (Ω) J(u)
.

Assuming that infu∈W 1,p
0 (Ω) J(u) < 0 and J(0) = 0, the ratio E(Ω) is well-defined,

and its value falls into the closed interval [0, 1]. Of course, the closer E(Ω) is to 1,
the better is the approximation with web functions for the energy J . So, in order
to determine a sharp lower bound for the error when the shape Ω varies, one has
to consider the optimization problem

inf{E(Ω) : Ω ⊂ R
2, Ω convex bounded}. (1)

In our previous work [7], we studied the above problem for the quadratic energy

J2(u) =
∫

Ω

(
1
2
|∇u|2 − u

)

and we proved that the corresponding value for the infimum in (1) is 3/4, and it
is not attained. In this paper we consider the same problem for the energy

Jp(u) =
∫

Ω

(
1
p
|∇u|p − u

)
, (2)



Vol. 12, 2005 On the role of energy convexity in the web function approximation 95

where p belongs to the interval (1,+∞). The Euler equation for the functional Jp

on W 1,p
0 (Ω) is { −∆pu = 1 in Ω

u = 0 on ∂Ω, (3)

where ∆pu = div(|∇u|p−2∇u) denotes the p-Laplacian. It is worth noticing that,
thanks to an integration by parts in (3), we get

min
u∈W 1,p

0 (Ω)
Jp(u) = Jp(up) = −p− 1

p

∫
Ω

|∇up|p.

Thus the integral
∫
Ω |∇up|p equals C1/(p−1), where C = C(Ω) is the best constant

for the Sobolev inequality ‖u‖p
1 ≤ C‖∇u‖p

p on W 1,p
0 (Ω), and the lower bound for

E(Ω) can also be used to obtain an upper bound for C(Ω) in terms of the minimum
of Jp over Kp(Ω). From the web function point of view, the interest in studying
the case of a general exponent p is twofold: to understand the role of convexity in
the approximation error E and to investigate the limit of such error as p → ∞. It
is known [2] that the solutions to (3) converge uniformly to the distance function
dΩ(x) as p → ∞. Therefore, a better (larger) lower bound for E is expected when
the convexity exponent p increases. Our results confirm this expectation. In fact
we show that, when Jp is given by (2), the infimum in (1) has the value

Ep :=
2p− 1
p− 1

1
2p/(p−1) .

Again, such value is not attained, namely, there does not exist an optimal design.
Note that Ep tends to 1 as p → ∞. Actually we prove a stronger result about the
asymptotic behaviour as p → ∞: the difference between the solutions
to (3) and the web minimizers of Jp tends to zero in the W 1,m

0 (Ω)-norm for
all m < ∞. In order to obtain the sharp lower bound for E , we follow the same
line of our proof in [7]. Nevertheless, the quasilinear case of general p is far from
being a straightforward extension of the linear case p = 2. In particular, the
turning point is a p-dependent geometric-integral inequality for convex sets, see
Proposition 4. In [7], it was stated just for polygons when p = 2. The proof
for arbitrary p is more delicate as it is based directly on the Brunn-Minkowski
Theorem, without involving the isoperimetric inequality for convex polygons. As a
consequence, the validity of the statement is enlarged to the whole class of convex
bodies. This makes the inequality under consideration more interesting from the
point of view of possible applications. For instance, as a corollary of Proposition
4 applied with p = 2, it is easy to show that the disk supports the largest sandpile
among all planar domains with a given area (see Remark 1 below). The contents
are organized as follows. In Section 2 we state the main results: we establish
the optimal lower bound for E in Theorem 1, and the asymptotic behaviour of
solutions as p → ∞ in Theorem 2. In Section 3, we study the extremal domains
for the functional E , by showing that E attains its maximum on a unique shape
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(disks) and exhibiting a minimizing sequence (made of isosceles triangles) which
shows that the lower bound Ep is sharp. In Section 4, we give bounds for both the
denominator and the numerator of E (the proofs are postponed respectively to
Sections 6 and 7) and we show that, combined together, they entail Theorem 1.
The proof of Theorem 2 is given in Section 5.

2 Main results

Before stating our results, some preliminaries are in order. Let C denote the class
of all nonempty open bounded convex subsets of R

2. For every Ω ∈ C, we denote
by RΩ its inradius, i.e. the supremum of the radii of the disks contained in Ω.
Then, the level lines of web functions are none other than the boundary of the
so-called parallel sets Ωt := {x ∈ Ω : dΩ(x) ≥ t} for t ∈ [0, RΩ]. In terms of
parallel sets, when Jp is given by (2), the representation formula [8, (25)] for the
minimum of Jp over Kp(Ω) reads

min
u∈Kp(Ω)

Jp(u) = −p− 1
p

∫ RΩ

0

( |Ωt|p
|∂Ωt|

)1/(p−1)

dt, (4)

where |Ωt| and |∂Ωt| indicate respectively the area and the perimeter of Ωt.
Formula (4) will be heavily exploited throughout the paper. It is also convenient
to set

N (Ω) = − p

p− 1
min

u∈Kp(Ω)
Jp(u), D(Ω) = − p

p− 1
min

u∈W 1,p
0 (Ω)

Jp(u),

so that both the numerator N and the denominator D of E are nonnegative. Note
also that N and D are homogeneous, while the functional

E(Ω) =
N (Ω)
D(Ω)

is invariant under dilations. We may now give the sharp lower bound for E :

Theorem 1 For all Ω ∈ C we have

E(Ω) > inf
C

E =
2p− 1
p− 1

1
2p/(p−1) =: Ep.

Note that the map p 	→ Ep is strictly increasing on (1,+∞), and that

lim
p→1

Ep = 0 lim
p→∞ Ep = 1. (5)

This tells us that more convexity in the functional gives more precision in the
approximation with web functions. Clearly, the limiting behaviour (5) as p → ∞
for the uniform lower bound implies the “pointwise” asymptotic

lim
p→∞ E(Ω) = 1 ∀Ω ∈ C; (6)
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note however that the monotonicity of the map p 	→ Ep does not imply the same
property for each map p 	→ E(Ω) with fixed Ω. Investigating this property could
be a further point of interest. On the other hand, we can make more precise how
(6) occurs. By using a result in [2] (see also [13]), we prove

Theorem 2 Let Ω ∈ C, and for all p > 1 denote by up and vp the minimizers of
Jp over W 1,p

0 (Ω) and Kp(Ω) respectively. Then, for all m ∈ [1,+∞),

up → dΩ and vp → dΩ in W 1,m
0 (Ω); (7)

in particular, limp→∞ ‖up − vp‖1,m = 0. Moreover,

lim
p→∞ Jp(up) = lim

p→∞ Jp(vp) =
∫

Ω
dΩ(x).

Note that the convergence in (7) may not be improved to the W 1,∞
0 (Ω)

norm topology. To see this, it suffices to consider the case when Ω is a disk: for
all p > 1, we have up = vp ∈ C1(Ω), whereas dΩ �∈ C1(Ω). The convergence in (7)
may also be seen in a different, more geometric, fashion. For all p denote by Ωp,t

the superlevels of up:
Ωp,t := {x ∈ Ω : up(x) ≥ t}.

By [14, Theorem 2], u(p−1)/p
p is a concave function over Ω, hence the sets Ωp,t are

convex. Their limit as p → ∞ can be identified to the parallel set Ωt. Indeed, as a
consequence of theW 1,m

0 convergence of up to dΩ, we obtain the following corollary
of Theorem 2. It enlightens the role of p in the web function approximation for
the p-Laplace problems (3): larger p yield level sets of the solutions more similar
to parallel sets.

Corollary 1 Let Ω ∈ C. For all t ≥ 0, we have limp→∞ Ωp,t = Ωt in the
Hausdorff topology.

3 The maximal shape and a minimizing sequence

In this section, we investigate the existence of extremal domains for the
functional E . We fix p > 1 and for convenience we introduce the conjugate expo-
nent to p, namely q := p

p−1 . Then, we may rewrite N (Ω) in terms of q as

N (Ω) =
∫ RΩ

0

|Ωt|q
|∂Ωt|q−1 dt, (8)

and the statement of Theorem 1 reads

E(Ω) > inf
C

E =
q + 1
2q

∀Ω ∈ C.
We start proving that E attains its maximum on Ω if and only if Ω is a disk. In
other words, the solution up to (3) is a web function if and only if Ω is a disk.
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Proposition 1 E(Ω) = 1 if and only if Ω is a disk.

Proof. If Ω is a disk then the solution to (3) is radially symmetric, hence E(Ω) = 1.
Assume now that E(Ω) = 1, namely that the solution up to (3) coincides with the
minimizing web function vp. If ∂Ω is smooth, the statement follows from the exten-
sion of a classical result by Serrin to the quasilinear case (see [10, Theorem 1.3]
for 1 < p < 2 and [3, Theorem 4] for arbitrary p). For general ∂Ω, to prove the
result we exploit the representation formula for the web minimizer, which gives

vp(x) =
∫ dΩ(x)

0

( |Ωt|
|∂Ωt|

)q−1

dt =: φ(dΩ(x)), (9)

see [6, Theorem 3.1]. On the other hand, since vp = up, it is well-known [11, 16]
that vp ∈ C1,α(Ω). Since φ′(t) > 0 for every t ∈ [0, RΩ), this is possible only if dΩ
is of class C1 in the open set {x ∈ Ω; 0 < dΩ(x) < RΩ}, or equivalently if the sets
Ωt for t ∈ [0, RΩ) have C1 boundary. Following the arguments of [1, Section I.1.4],
we deduce that this regularity property of parallel sets is satisfied uniquely when
the equality sign holds in the Bonnesen’s inequality

|∂Ω| ≥ |Ω|
RΩ

+ πRΩ.

On the other hand, the extremal domains for this inequality consist of a rectangle
ended by two half disks, that is, are of the form Ω = S+BRΩ , where S is a compact
(possibly degenerate) line segment, and BRΩ is a disk of radius RΩ. Finally, on
sets of this shape a direct computation shows that the solution up to (3) can be a
web function if and only if S is degenerate, that is, if and only if Ω is a disk. �

We say that Ω is a tangential body to a disk D if through each point of ∂Ω
there exists a tangent line to Ω which is also tangent to D. For such domains Ω,
the following simple characterization of N (Ω) in terms of RΩ holds.

Proposition 2 Let Ω ∈ C be a tangential body to a disk. Then we have

N (Ω) =
|Ω|

(q + 2)2q−1 RΩ
q.

Proof. By the density of polygons and the continuity of Ω 	→ N (Ω) with respect
to the Hausdorff topology [6, Section 6], it suffices to prove the statement when
Ω is a circumscribed polygon. In that case, by the arguments in the proof of
[7, Proposition 3], we know that |∂Ω| = 2|Ω|/RΩ, and for all t ∈ (0, RΩ)

|Ωt| =
|Ω|
RΩ

2 (RΩ − t)2, |∂Ωt| =
2|Ω|
RΩ

2 (RΩ − t).

Therefore,
|Ωt|q

|∂Ωt|q−1 =
|Ω|

2q−1RΩ
2 (RΩ − t)q+1

so that the statement follows from (8) after integration over (0, RΩ). �
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We now determine an upper bound for the infimum of E :

Proposition 3 There exists a sequence of isosceles triangles {Th}h ⊂ C such that

lim sup
h→+∞

E(Th) ≤ q + 1
2q

. (10)

In particular, infΩ∈C E(Ω) ≤ (q + 1)2−q.

Proof. For all integer h ≥ 1 consider the isosceles triangle Th ∈ C defined by

Th =
{

(x, y) ∈ R
2; 0 < y <

π

h
,
h2y

π
− h < x < h− h2y

π

}
.

Taking into account that RT h = πh(h2 +
√
h4 + π2)−1, using Proposition 2 and

letting h → ∞, we obtain

N (Th) ≈ πq+1

22q−1

1
q + 2

h−q as h → ∞. (11)

In order to find an asymptotic lower bound for D(Th), we choose a particular
function vh ∈ W 1,p

0 (Th). We take

vh(x, y) =
1
q

[(
βh(x)

2

)q

−
∣∣∣∣βh(x)

2
− y

∣∣∣∣
q]
,

where βh is the function defining the two equal sides of Th, namely

βh(x) = min
{ π

h2 (h+ x),
π

h2 (h− x)
}

x ∈ [−h, h].

We have
D(Th) = −q min

u∈W 1,p
0 (T h)

Jp(u) ≥ −qJp(vh) ∀h ≥ 1.

By the symmetry of Th and vh we may restrict our attention to the (half) triangle
Th = {(x, y) ∈ Th; x > 0} and double all the integrals involved. In Th we have

vh(x, y) =
1
q

[(
π(h− x)

2h2

)q

−
∣∣∣∣π(h− x)

2h2 − y

∣∣∣∣
q]
.

With the change of variables x = hs, y = t/h, Th transforms into the fixed triangle

T =
{

(s, t) ∈ R
2; 0 < t < π, 0 < s < 1 − t

π

}
;
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moreover, we have:

vh(s, t) = h−q

{
1
q

[(π
2

)q

(1 − s)q −
∣∣∣π
2

(1 − s) − t
∣∣∣q]} =: h−qαq(s, t)

∂xvh(s, t) = h−q−1
{

−
(π

2

)q

(1 − s)q−1 +
π

2

∣∣∣π
2

(1 − s) − t
∣∣∣q−2 (π

2
(1 − s) − t

)}
=: h−q−1βq(s, t)

∂yvh(s, t) = h−q+1
{∣∣∣π

2
(1 − s) − t

∣∣∣q−2 (π
2

(1 − s) − t
)}

=: h−q+1γq(s, t) .

Hence, with the above change of variables, we obtain

Jp(vh) = 2
∫

T

{q − 1
q

[h2(−q−1)β2
q (s, t) + h2(−q+1)γ2

q (s, t)]q/(2(q−1))

−h−qαq(s, t)
}
ds dt

≈ 2h−q

∫
T

{
q − 1
q

|γq(s, t)|q/(q−1) − αq(s, t)
}
ds dt as h → ∞.

Some calculations give∫
T

αq(s, t) ds dt =
∫

T

|γq(s, t)|q/(q−1) ds dt =
(π

2

)q+1 2
(q + 1)(q + 2)

.

Then we get

D(Th) ≥ −qJp(vh) ≈ πq+1

2q−1

1
(q + 1)(q + 2)

h−q as h → ∞.

Combining this asymptotic inequality with (11) proves (10) by letting h → ∞. �

4 Proof of Theorem 1 (optimal lower bound)

In view of Proposition 3, the proof of Theorem 1 is complete if we show that

E(Ω) >
q + 1
2q

∀Ω ∈ C. (12)

We first recall the definition of the piercing function λ, see [7] and previous work
by Cellina [5].

For a.e. y ∈ ∂Ω the outer unit normal is well-defined and it will be denoted
by n(y). For a.e. x ∈ Ω the point Π(x) ∈ ∂Ω such that |x − Π(x)| = dΩ(x) is
uniquely determined. Then we set:

λ(y) = sup{k ≥ 0; Π(y − kn(y)) = y} for a.e. y ∈ ∂Ω . (13)
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We clearly have 0 ≤ λ(y) ≤ RΩ on ∂Ω. We also extend the definition of λ to
points x ∈ Ω:

λ(x) = λ(Π(x)) − |x− Π(x)| for a.e. x ∈ Ω. (14)

When Ω ⊂ R
2 is a convex polygon, (14) enables us to write the measure of the

parallel set Ωt as

|Ωt| =
∫

∂Ωt

λ(y) dy. (15)

Moreover, we have the following upper bound for D(Ω) in terms of the piercing
function:

Theorem 3 Let Ω ⊂ R
2 be a convex polygon and let up be the minimizer of Jp

in W 1,p
0 (Ω). Then there exists δ = δ(Ω) such that

D(Ω) =
1

q + 1

∫
∂Ω
λq+1(y) dy − δ(Ω) (16)

and

δ(Ω) ≥ (q − 1)
∫

Ω
[|∇up(x)|p − |∇up(x) · n(Π(x))|p] dx. (17)

We also have a “dual” statement to Theorem 3, namely a lower bound for
N (Ω) in terms of the piercing function:

Theorem 4 For all convex polygon Ω ⊂ R
2 we have

N (Ω) ≥ 1
2q

∫
∂Ω
λq+1(y) dy.

We postpone the proofs of Theorems 3 and 4 until Sections 6 and 7
respectively.

We are now in a position to prove inequality (12). If Ω is a disk, the inequality
is obvious since E(Ω) = 1, see Proposition 1. If Ω is a polygon, (12) is a direct
consequence of Theorems 3 and 4. If Ω is a bounded convex set other than a disk,
we take an inner approximating sequence {Ph} of polygons (that is, Ph ⊂ Ω for
all h and Ph → Ω in the Hausdorff topology as h → ∞). By Theorems 3 and 4
we have

E(Ph) =
N (Ph)
D(Ph)

≥ Ep
D(Ph) + δ(Ph)

D(Ph)
∀h ∈ N.

Therefore, it is enough to show that (a subsequence of) {δ(Ph)} converges to a
strictly positive constant CΩ. We argue by contradiction, assuming that δ(Ph) → 0.
Consider the distance functions dh = dPh

and dΩ, and let uh and up be the
minimizers of Jp over W 1,p

0 (Ph) and W 1,p
0 (Ω). Extending them by zero on Ω \Ph,
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we may think of dh and uh as defined on the whole Ω. We have

0 = lim inf
h

δ(Ph) ≥ (q − 1)
∫

Ω
lim inf

h

[|∇uh(x)|p − |∇uh(x) · ∇dh(x)|p] dx
= (q − 1)

∫
Ω

[|∇up(x)|p − |∇up(x) · ∇dΩ(x)|p] dx ≥ 0.

(18)

The first inequality in (18) follows from (17) and Fatou’s lemma. The subsequent
equality is deduced from the a.e. convergence ∇dh → ∇d and ∇uh → ∇up, which
hold up to subsequences. For the former, see (28) in [7]. The latter can be deduced
using the weak W 1,p-convergence of uh to up (see for instance [4]) combined with
the convergence ‖∇uh‖Lp(Ω) → ‖∇up‖Lp(Ω) (deriving from the Euler equations (3)
in Ω and Ph). Now we conclude from (18) that ∇up is parallel to ∇dΩ a.e. in Ω,
that is up is a web function. By Proposition 1, this contradicts the assumption
that Ω is not a disk.

5 Proof of Theorem 2 (asymptotic behaviour)

The first part of (7) (the convergence up → dΩ) is just Proposition 2.1 in [2]. In
order to prove the convergence vp → dΩ, recall the explicit form (9) of vp. Then,
for all m ≥ 1, we have

∫
Ω

|∇dΩ −∇vp|m =
∫

Ω

[
1 −

( |ΩdΩ(x)|
|∂ΩdΩ(x)|

)1/(p−1)
]m

|∇dΩ(x)|m → 0 as p → ∞,

and (7) follows. Finally, the limit

lim
p→∞ Jp(up) = lim

p→∞ Jp(vp) =
∫

Ω
dΩ(x)

follows from (7) by direct computation.

6 Proof of Theorem 3 (upper estimate of D)

We follow the same line of proof adopted for the linear case in [7]. We first
show (16). Assume that Ω has N sides and denote them by F1, . . . , FN . For
simplicity, for all j = 1, . . . , N we denote by Fj the open segment, namely the
j-th side of Ω without its endpoints. Note that the function λ introduced in (13)
is defined in every point of ∂Ω except for the N vertices. Moreover, n(y) ≡ nj

is a constant vector on Fj . We take a partition of Ω into N open subpolygons
P1, . . . , PN defined as follows:

Pj = {y − tnj ; y ∈ Fj , 0 < t < λ(y)}.
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Each polygon Pj may also be seen as the (open) epigraph Zj of the function λ on
Fj , namely

Zj = {(y, t); y ∈ Fj , 0 < t < λ(y)}.
For all j ∈ {1, . . . , N} let

W 1,p
∗ (Pj) := {v ∈ W 1,p(Pj); v = 0 on Fj},

W 1,p
∗ (Zj) := {v ∈ W 1,p(Zj); v(y, 0) = 0 ∀y ∈ Fj}

and consider the functional

Hj(v) =
∫

Pj

(
1
p
|∇v|p − v

)
∀v ∈ W 1,p

∗ (Pj).

Note that

Hj(v) =
∫

Fj

∫ λ(y)

0

[
1
p
|∇v(y − tnj)|p − v(y − tnj)

]
dt dy ∀v ∈ W 1,p

∗ (Pj). (19)

Let up be the minimizer of Jp. Let also uj denote the restrictions of up to Pj

(j = 1, . . . , N) and set

wj(y, t) = uj(y − tnj) ∀(y, t) ∈ Zj . (20)

Since uj ∈ C1 ∩W 1,p
∗ (Pj), we have wj ∈ W 1,p

∗ (Zj) and
∂wj

∂t
= −∇uj · nj so that

∣∣∣∣∂wj

∂t
(y, t)

∣∣∣∣ ≤ |∇uj(y − tnj)| ∀(y, t) ∈ Zj . (21)

Therefore we get
Hj(uj) ≥ Ij(wj) (j = 1, . . . , N) (22)

where

Ij(v) :=
∫

Fj

∫ λ(y)

0

[
1
p

(
∂v

∂t

)p

− v

]
dt dy ∀v ∈ W 1,p

∗ (Zj).

On the other hand, at each fixed y ∈ Fj , we have

min

{∫ λ(y)

0

[
1
p
|g′(t)|p − g(t)

]
dt ; g ∈ W 1,p(0, λ(y)), g(0) = 0

}

= − 1
q(q + 1)

λq+1(y).

Therefore the minimum of Ij on W 1,p
∗ (Zj), which is attained by the function

w(y, t) =
1
q

(λq(y) − [λ(y) − t]q) ,
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may be evaluated as

min{Ij(v); v ∈ W 1,p
∗ (Zj)} = − 1

q(q + 1)

∫
Fj

λq+1(y) dy. (23)

Then, by (22) and (23) we have

Jp(up) =
N∑

j=1

Hj(uj) ≥
N∑

j=1

Ij(wj)

≥ − 1
q(q + 1)

N∑
j=1

∫
Fj

λq+1(y) dy

= − 1
q(q + 1)

∫
∂Ω
λq+1(y) dy. (24)

This yields

D(Ω) = −q Jp(up) ≤ 1
q + 1

∫
∂Ω
λq+1(y) dy. (25)

To complete the proof of (16), it remains to show that the inequality in (25) is
strict. We may have equality in (25) only if we have equalities in (21) for all
j = 1, . . . , N . But this is equivalent to up ∈ Kp(Ω) (i.e. up web function), and in
turn, to E(Ω) = 1, a contradiction in view of Proposition 1. We now prove (17).
By using (24), (19) and (20) we obtain

δ(Ω) =
1

q + 1

∫
∂Ω
λq+1 − D(Ω)

= q

[
Jp(up) +

1
q(q + 1)

∫
∂Ω
λq+1

]
≥ q

∑
j

[Hj(uj) − Ij(wj)]

= q
∑

j

∫
Fj

∫ λ(y)

0

[
1
p
|∇uj(y − tnj)|p − uj(y − tnj)

−1
p

∣∣∣∣∂wj

∂t
(y, t)

∣∣∣∣
p

+ wj(y, t)
]
dt dy

= (q − 1)
∑

j

∫
Fj

∫ λ(y)

0
[|∇uj(y − tnj)|p − |∇uj(y − tnj) · nj |p]dt dy

= (q − 1)
∫

Ω
[|∇up(x)|p − |∇up(x) · n(Π(x))|p] dx

and (17) follows.
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7 Proof of Theorem 4 (lower estimate of N )

The main tool for the proof of Theorem 4 is the following geometric inequality for
convex domains Ω, involving the family of its parallel sets. We believe it might
have an independent interest in the framework of convex bodies (see Remark 1
below).

Proposition 4 For every Ω ∈ C and every q ∈ [1,∞) the following inequality
holds: ( |Ω|

|∂Ω|
)q

≥ q(q + 1)
2q

∫ RΩ

0

|∂Ωt|
|∂Ω| t

q−1 dt. (26)

If q > 1, the equality sign holds if and only if Ω is a tangential body to a disk.

Proof. Let us define the function

α(s) :=
|∂ΩsRΩ |

|∂Ω| , s ∈ [0, 1].

With a linear change of variables, the inequality (26) can be rewritten as

(
2

∫ 1

0
α(s) ds

)q

≥ q(q + 1)
∫ 1

0
α(s)sq−1 ds. (27)

The function α is non-negative, strictly monotone decreasing and, by the Brunn-
Minkowski Theorem (see [15, Thm. 6.4.3]), it is concave down on [0, 1]. Hence the
function

β(s) := α(s) − (1 − s), s ∈ [0, 1],

is non-negative, concave down, and satisfies β(0) = 0. If β(s) ≡ 0, then (27) is
trivially satisfied; so assume that β(s) �≡ 0. Then, from the concavity of β, we
infer that

β′(s) ≤ β(s)
s

for a.e. s ∈ (0, 1). (28)

In terms of the function β, the inequality (27) now becomes

(
2

∫ 1

0
β(s) ds+ 1

)q

− 1 ≥ q(q + 1)
∫ 1

0
β(s)sq−1 ds. (29)

Let us define the following transform of the function β:

F (γ) :=
∫ 1

0
β(s)sγ−1 ds, γ ≥ 1.
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As β(s) �≡ 0, we know that F (γ) > 0. Since β ∈ AC[0, 1], by an integration by
parts and (28) we obtain the following estimate on the derivative of F :

F ′(γ) =
∫ 1

0
(log s)β(s)sγ−1 ds

= − 1
γ

∫ 1

0
β(s)sγ−1 ds− 1

γ

∫ 1

0
(log s)β′(s)sγ ds

≤ − 1
γ
F (γ) − 1

γ
F ′(γ),

hence
F ′(γ) ≤ − 1

γ + 1
F (γ), γ ≥ 1.

Since F (1) > 0, such differential inequality implies

F (γ) ≤ 2F (1)
γ + 1

, γ ≥ 1. (30)

Finally, from (30) we obtain(
2

∫ 1

0
β(s) ds+ 1

)q

− 1 = (2F (1) + 1)q − 1 ≥ 2qF (1) ≥ q(q + 1)F (q)

= q(q + 1)
∫ 1

0
β(s)sq−1 ds, (31)

so that (29) follows and the first part of the proposition is proved. In order to
study the equality case in (26), it is enough to observe that, from (31), it holds
if and only if F (1) = 0, that is if and only if β ≡ 0. In turn, this is equivalent
to α(s) = 1 − s, which holds if and only if Ω is a tangential body to a disk
(see [15, Lemma 3.1.10]). �

Remark 1 From the classical isoperimetric inequality we have that

|Ω|(q−1)/2 ≤
( |∂Ω|

2
√
π

)q−1

. (32)

From the identity
∫
Ω d

q−1
Ω (x) dx =

∫ RΩ

0 |∂Ωt| tq−1 dt, combining (26) and (32) we
obtain the following inequality:∫

Ω
dq−1
Ω (x) dx ≤ 2

q(q + 1)π(q−1)/2 |Ω|(q+1)/2, ∀Ω ∈ C, q ∈ [1,+∞), (33)

where the equality sign holds if and only if Ω is a disk. For q = 2 the last inequality
reads ∫

Ω
dΩ(x) dx ≤ 1

3
√
π

|Ω|3/2.
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As an application, this special case of inequality (33) can be used in order to prove
that among all plane regions of a given area, the circle can support the largest
sandpile (see for example [1, p. 8]).

Corollary 2 Let Ω ⊂ R
2 be a convex polygon. Then, for every q ∈ [1,∞) the

function

ψq(t) :=
|Ωt|q

|∂Ωt|q−1 − q + 1
2q

∫
∂Ωt

λq(z) dz t ∈ [0, RΩ] (34)

is nonnegative.

Proof. Since Ω is a polygon, we may apply Fubini’s Theorem to obtain

∫
∂Ωt

λq(z) dz = q

∫ RΩ

t

(s− t)q−1|∂Ωs| ds.

Then, with a linear change of variables, (34) follows from Proposition 4 applied
to the convex domains Ωt. �

Remark 2 If q ∈ N, the proof of Corollary 2 does not require Proposition 4.
Indeed, by (15) we have ψ1(t) ≡ 0. Then, making use of the isoperimetric inequal-
ity for convex polygons in a similar way as in the proof of [7, Lemma 2], one sees
that ψq ≥ 0 implies ψq+1 ≥ 0. Therefore, Corollary 2 follows arguing by induction
on q ∈ N.

We are now ready to prove Theorem 4. Let vp ∈ Kp(Ω) be the (unique)
minimizing web function, i.e.

Jp(vp) = min
u∈Kp(Ω)

Jp(u).

By [6, Theorem 3.1] we have

vp(x) =
∫ dΩ(x)

0
νq−1(t) dt, ν(t) :=

|Ωt|
|∂Ωt| .

Then, since N (Ω) = −qJp(vp), using the coarea formula and an integration by
parts we infer

N (Ω) = −q
∫

∂Ω

∫ λ(y)

0

[
νq(t)
p

−
∫ t

0
νq−1(s)ds

]
dt dy

= −q
∫

∂Ω

∫ λ(y)

0

[
νq(t)
p

− (λ(y) − t)νq−1(t)
]
dt dy

=
1
2q

∫
∂Ω
λq+1(y) dy + ∆(Ω) (35)
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where

∆(Ω) :=
∫

∂Ω

∫ λ(y)

0

[
−q + 1

2q
[λ(y) − t]q − (q − 1)νq(t) + q[λ(y) − t]νq−1(t)

]
dt dy.

By Fubini’s Theorem and recalling that (14) defines λ in the whole Ω, we may
rewrite ∆(Ω) as

∆(Ω) =
∫ RΩ

0

∫
∂Ωt

[
−q + 1

2q
λq(z) − (q − 1)νq(t) + qλ(z)νq−1(t)

]
dz dt.

Finally, by (15), we have that ν(t) is the integral mean value of λ in ∂Ωt, and the
above equation becomes

∆(Ω) =
∫ RΩ

0

[ |Ωt|q
|∂Ωt|q−1 − q + 1

2q

∫
∂Ωt

λq

]
dt =

∫ RΩ

0
ψq(t) dt .

This, combined with (35) and Corollary 2, proves Theorem 4.
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