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Weak solutions of

quasilinear elliptic PDE’s at resonance(*)

GIANNI ARIOLI(1) and FILIPPO GAZZOLA(1)

Annales de la Faculte des Sciences de Toulouse 
’ 

Vol. VI, n° 4, 1997

Nous etudions une certaine classe d’EDP quasi lineaires
variationnelles avec resonance a l’infini en utilisant une theorie des points
critiques pour fonctionnelles irregulieres. Nous demontrons 1’existence
d’une solution dans le cas general et un resultat de multiplicite lorsque
l’équation est invariante par rapport a une action du groupe Z2.

ABSTRACT. - We study a class of variational quasilinear elliptic PDE’s
with resonance at infinity by means of a nonsmooth critical point theory.
We prove the existence of a solution in the general case and a multiplicity
result when the equation is invariant with respect to a Z2-action.

1. Introduction

Let Q be an open bounded subset of Rn with n > 3; in this paper we
prove the existence of functions u E Ho satisfying in a weak sense the
following equation

We assume the ellipticity condition and the "usual" semipositivity condition
(see [3]) on the matrix [s ~aij (x, s)/~s] to be fulfilled:

(*) Reçu le 20 septembre 1995
~ Dipartimento di Scienze T.A, via Cavour 84, I-15100 Alessandria (Italy)



We require the coefficients u) to satisfy

Assume that

denote by G(x, s) = fo g(x, t) dt and assume that there exist a E

L2~/(n+2)~~~ ~ E Ln/2~~~ and y E L1(S2) such that

an example of function G satisfying the above assumptions is given by
G(x, s~ = s4/3..
We will prove the following result.

THEOREM 1.2014 Assume (2)-(6), then (1) admits a weak solution.

When u) _ bi~ this result is due to Rabinowitz (see [12, Theo-
rem 4.12]); for the more general equation (1) we cannot apply directly the
saddle point Theorem (see [12, Theorem 4.6]). Indeed, to find weak solu-
tions of (1) we look for critical points of the functional J : : Ho (S2) --~ II8
defined by

V ~ E >



As was noticed by Canino [3] the functional J is not even locally Lipschitz
continuous unless either the functions aij (x, s) are independent of s or n = 1;
therefore, to treat (1) a different notion of critical point is needed, see

Section 2 where the nonsmooth critical point theory developed in [8] and

[9] is briefly outlined. Such theory has already been used by Canino to find
weak solutions of quasilinear elliptic equations; in her paper she studied

equation (1) with g(x, u) having a superlinear behaviour at infinity: under
this assumption the functional satisfies the geometric requirements of the
mountain pass theorem. In our case g satisfies (6), that is we study a case
of resonance, and a generalized saddle point theorem is required.

We point out that different problems involving quasilinear elliptic equa-
tions with coefficients depending on u have been treated with variational
methods by Arcoya and Boccardo [1] and by Struwe ([13], [14]).

An important tool to establish the geometrical properties of the func-
tional J is the following linear elliptic "operator at infinity" .

we denote by ~~ ( j E N) its eigenvalues. Note that by (5) (and the
same arguments used in the proof of Lemma 3) only a finite number of
such eigenvalues are negative, Aj -~ +00 as j -> oo and the set of the
corresponding eigenfunctions ej is a complete system in H := in

the sequel we denote by ]] . ]] the norm in H (the Dirichlet norm). We
study the resonance case, i.e., when L°° is not invertible, as it seems to be
more interesting: indeed for the corresponding semilinear equation, if L°°
admits an inverse, the existence of a weak solution follows from standard

elliptic estimates and Schauder’s fixed point theorem; the results we obtain
can be easily extended to the case where 0 is not an eigenvalue of (7), see
Remark 4 in Section 4.

If the coefficients of the equation satisfy the following symmetries

then index theory can be applied to prove the following multiplicity result.



THEOREM 2. - Assume (2J-(6J (with a - 0~ and (8); define

and

Let k be the number of nonpositive eigenvalues of L°° and let m  +~ be
the number of nonpositive eigenvalues of L~; if k > m, then equation (1)
admits at least k - m pairs of weak solutions.

Remark 1. If g(x, 0) = 0 for a.e. x E 5~2, then u _ 0 is a solution
of (1). By an extension of Morse theory to continuous functionals recently
introduced by Corvellec [6] and with the methods used in [7] it can be proved
that m (k and m as in Theorem 2), then (1) admits a nontrivial
solution.

Remark 2. - If in (5) and (6) we assume that b, a, ,Q e for
some p > n/2, then all weak solutions of (1) are in (see e.g.

[4]). Consequently, further regularity informations can be obtained by the
techniques of [11].

This paper is organized as follows.

In Section 2 we prove a generalization to continuous functionals of the
saddle point theorem and of a multiplicity result: this is done in the
framework of the nonsmooth critical point theory introduced by Degiovanni
et al. and with a weaker version of the Palais-Smale condition introduced

by Cerami [5]. In Section 3, we prove some technical results concerning the
properties of the functional J. Finally, in Section 4, we prove Theorems 1
and 2.

2. General results of nonsmooth critical point theory

In this paper we deal with the critical point theory for continuous
functionals developed in [8] and [9] : in this section we introduce the basic
definitions and tools.



DEFINITION 1. - Let (X, d) be a metric space, I E C(X, lI8) and let

x E X. We denote by the supremum of the ~ E ~0, such that

there exist b > 0 and a continuous map

such that ‘d y E B(x, b), d t E ~ 0 , 6 ~ ] we have

where B(x, r) := {y E X ~ d(x, y)  r~; is called the weak slope of I
at x.

This notion for continuous functionals has been independently introduced

by Katriel ~10~. .

DEFINITION 2. - Let (X, d) be a metric space and I E C(X, II8); a point
x E X is said to be critical for I if = 0. A real number c is said

to be a critical value for I if .there exists x E X such that 1(x) = c and
= 0.

Let (X, d) be a metric space, I E C(X, II8) and c E IIB; we define the sets

and

Next we deal with Palais-Smale sequences (PS sequences): following [9]
we say that a functional I E C(X, satisfies the PS condition if every

sequence C X such that I {xr,z, ) is bounded and -~ 0 is

relatively compact. We will prove that the functional J satisfies a weaker
version of the PS condition which is due to Cerami [5] : in our framework

the Palais-Smale-Cerami (PSC) sequences and the PSC condition can be
defined as follows.



DEFINITION 3.- Let X be a Banach space and let I E We

say that a sequence C X is a PSC sequence if

We say that 1 satisfies the PSC condition if all its PSC sequences are

precompact.

We generalize the saddle point theorem to the case of continuous func-
tionals satisfying the PSC condition (see also Theorem 3.7 in [8]).

THEOREM 3. - Let X be a Banach space, I : X - II8 a continuous

functional, (D, S) a compact pair and : S -~ X a continuous map. Let

~ := {~p E C(D, X) ~ = ~} and assume that there exists a closed subset
A of X such that

If I satisfies the PSC condition and

then 0; moreover, if c = infA I, then n A ~ (~.

Proof. - If I E II8) and I satisfies PS the result is proved in [8]
where X is any complete metric space. If I only satisfies PSC, then we can
define a different metric d on X by

it is not difficult to verify that (X, d) is a complete metric space and that
the topology endowed by d is equal to the norm topology: furthermore
if IdII ~ is the weak slope of I with respect to the metric d, then =

IdII(x) therefore if I satisfies PSC with respect to the norm metric,
then it also satisfies PS with respect to the metric d and the result follows. 0



If the functional is even, then index theory applies.

THEOREM 4. - ~et X be a Banach space, V C X a nontrivial finite
dimensional subspace, I : X --~ II8 a continuous functional satisfying the
PSC condition and 1(0) = 0; assume moreover that:

(i~ I is even;

~ p, ~ > 0 and a subspace U of X of finite codimension such that
> u for all x E 8Bp n U and codim(U)  dim(V);

(iii ) ~ R > p such that if x E ~BR n V, then I(x)  0.

Then I admits at least dim(V) - codim(U) pairs of critical points.

Proof. - The proof follows the same lines of Theorem 9.12 in [12], see
also ~15~ : we use the same notations as in [12] and give a sketch of the proof.

Let k = dim(V), let ~ e~ ~~=1 ~ ,..~ ~ be a basis of V and for m = 1, ... , k
let Em = span{e1, ... , and be the families of sets defined in [12].
We can define k minimax levels of J and prove that if m > codim(U),
then cm > 0 and is a critical level of J by a standard application of
the deformation theorem. Moreover, if cn = for n > m >

codim(U) then > n - m + 1 and the set of critical points at level
cm is infinite.

There are two differences between our case and [12]: we have m -

1, ..., k instead of m ~ N and the classical deformation lemma does not hold
in the framework of nonsmooth critical point theory. On the other hand, an
odd deformation is provided by Theorem 2.17 in [8] for functionals satisfying
PS and the same observation as in the proof of Theorem 3 applies. D

We introduce a notion of differentiability which is suitable for handling
weak solutions of PDE’s.

DEFINITION 4. - Let X be a Banach space, let I E C(X, II$) and let Y
be a dense subspace of X. . If the directional derivative of I exists for all x
in X in all the directions y E Y (i.e. ’d x E X, d y E Y, ~ I~{x)~y~) we say
that I is weakly Y-differentiable and we call weak Y-slope in x the extended
real number



We focus our attention on functionals I defined on Ho (S2) of the following
type:

where Q C Rn {n > 3) is open and bounded, and there exists h e [0, 
~1 E L1 ~~) ~ h2 E h3 E such that 
satisfies:

We obtain a lower estimate of the weak slope of I by means of the weak
the following lemma is a reformulation of Theorem 1.5 in ~3~ .

LEMMA 1. Let I be as in (9), with L as in (10), then I E 
and I is weakly Y-differentiable with Y = furthermore, d u E
Ho {S2) we have ,

in particular if u E is a critical point of I (in the sense of
Definition ~) then

We can now state the version af the saddle point theorem which we use.

THEOREM 5. - Let ® W, where V ~ ~0~ is finite dimen-
sional. Assume L : SZ x Il8 x ~ II8 satisfies (10), let I be defined as in
(9) and assume that:



(iJ if C Ho(S2) is a sequence such that I(um) is bounded and

with’Y’r,, - 0 in then is precompact ; ;

(ii) ~ Q E IL8 such that d x E W we have I(x) > /~;

(iii) ~ a  ,~ and ~ R > 0 such that if x E 8BR n V, then I(x)  a.

Then the quasilinear equation

has a solution u E distributional sense.

Proof. - By assumption (i) and Lemma 1 the functional I satisfies the
PSC condition.

Let D = BR n V, S = ~BR n V and 03A6 = {h E C(D, X) | h = id on S}.
By (ii) and (iii) the assumptions of Theorem 3 are fulfilled, with A = W,
therefore I admits a critical value

If the equation is invariant under a 22-action, then we can rephrase
Theorem 4 as follows.

THEOREM 6. - Take the same assumptions of Theorem 5 and assume
moreover that I is even and that there exists p E (0, R) and a subspace U
of Ho (S2) of finite codimension such that:

Then the quasilinear equation

admits at least dim(V) - codim(U) pairs of distinct solutions in distribu-
tional sense.



3. Properties of the functional J

We wish now to adapt the previous result to the functional J. Consider
the operator L: defined by

it is not difficult to see that L satisfies conditions (10) and Lemma 1 applies.
Some remarks about assumptions (6) are in order: in [3] the assumption

about g is that of superlinear growth at infinity and this leads to the usual
estimates of superquadratic functionals; in [12] it is assumed that g is

bounded while in our case (6) allows a strict sublinear growth but avoids
the possibility of G(x, s) going to -~ as |s| - ~. There are two reasons
for our assumptions (6): the first one is to prove Lemma 4, the second one
is used in Proposition 1 and is explained in the following.

LEMMA 2.- Assume (6), and let C H be a sequence such that
--> oo; then, as m -r oo,

Proof. - Let C H be such that ~; we claim that there

exists a sequence C such that E~.,, ~ 0 and, for a.e. x 

We prove (11) in the case > 0, the case  0 being similar.
If  then, by (6) we have



and (11) follows. If ~ note that by applying Holder
inequality and by (6) we get

by (12) we have

and (11) follows.
To complete the proof note that, by integrating (11) we have

With the next result we prove that for every unbounded sequence

~ur,.~, } C H such that J(um ) is upper bounded we can estimate the growth
of its H-norm by means of its L2-norm.

LEMMA 3. - There exists r~ > 0 such that if C H is a sequence
such that J(um) is upper bounded and oo as m ~ ~, then

Proof.- By (5), for all 6; > 0 there exist b1 e Ln/2 and b2 E L°° such
that b = b2 and e. By (2) we have

but, by Lemma 2,



and, since

the result follows by choosing g small enough and taking into account that
H is continuously embedded into L2n/(n-2), 0

Remark 3.- Using (3) and a result of [2] it has been proved (see [3,
Theorem 2.1]) that it makes sense to evaluate J’(u) in u because all the
integrals involved in J’(u)[u] exist.

We wish to prove that the assumption (i) of Theorem 5 holds; we achieve
this task in two steps: we first prove that a PSC sequence is bounded.

LEMMA 4.- All the PSC sequences for J are bounded.

Proof. - Assume the converse, then, by Lemma 1, there exist k > 0 and
a sequence C H such that

By Remark 3 we can evaluate



from the boundedness of J(um) we know that

hence, if m --~ oo, by (13) and the Hahn-Banach Theorem we have

Define vr",(x) := then, = 1 and 3 v E H such that on a

subsequence and pointwise a.e. in Q; by Lemma 3 we know
that v ~ 0.

By (6) we infer that 2G(x, u,.,,)-g(x, +~ on a subset of SZ with

positive measure, hence by Fatou’s lemma f~ (2G(x, u",,) - g(x, 
+00. Furthermore, by (3) we have

and the left hand side of (14) diverges to +00, contradiction. 0

We can now prove that the functional J satisfies the PSC condition.

LEMMA 5.2014 Let be a PSC sequence for the functional J, then

~ur,.,, ~ is precompact.

Proof. - Let be a PSC sequence; by Lemma 4 is a bounded

PS sequence, hence u and bum --~ bu in on a subsequence
by a standard procedure (see e.g. [4]). Analogously, up to a subsequence,
we get g(x, um) - g(x, u) in The result then follows from Lemma

2.3 and Corollary 1.8 in [3]. 0



4. Proofs of the results

Assume that ~k = 0 (eigenvalue relative to (7)) and consider the spaces

we have H = Hk ~ Hk . For all u E H we denote by u~+ (respectively
uk-) its component over Hk (respectively Hk ).
We prove that the geometrical requirements of the saddle point theorem

hold.

PROPOSITION 1. - Assume (,~~, (5) and (6), then

(i~ ~ ~i E II8 such that d u E Hk we have J(u) > ~3;
~ a  ,~ and ~ R > 0 such that if u E H~ and = R, then

J(u)  a.

Proof. - Statement (i) is proved if we prove that for every sequence
C Hk such that -. oo we have J(um) - for such

a sequence {u",}, by Lemma 2 we know that f~ G(x, II2 - 0,
therefore it suffices to prove that for m large enough

where := There exists v E H 1) such that 
on a subsequence; as b E Ln/2, on a subsubsequence 03A9bv2m ~ 03A9 bv2.

To conclude the proof of (i) we use the same device as in [7].
Let

as is bounded, on a subsequence .~~.,2 --~ ~ and two cases may occur:



n

1 ) .~ > 1 ~ ; in this case, as v E { 15) follows;
~ i,j=1

n

2) l  1 03A3Aij(x) DivDjv; then vr,.z --> v strongly in H, because
~ i,~=1

by {2)

but D;v in L2 and Djv in L2 by
Lebesgue’s dominated convergence theorem, therefore

and

so in H and the claim follows.

To prove (ii) it suffices to prove that if C H~ is a sequence such
--~ oo, then Recall that dim 1~; hence, for

such a sequence ~u~.,,~, by (6) we know that G(x, um) - on a subset

of Q with positive measure, and by Fatou’s lemma

the result follows taking into account that if Um E then the quadratic
part of the functional is negative. D



By Lemma 5 and the above proposition, the assumptions of Theorem 5
are fulfilled and Theorem 1 is proved.

To prove Theorem 2, consider that by the definition of the operator LO
there exists a subspace U C H of codimension m such that (LOu, u) > 0 for
all u E U. By the semipositivity condition (3) we infer that

where

this proves that

and therefore there exist p, u > 0 such that the hypotheses of Theorem 6
are fulfilled. The proof of Theorem 2 then follows.

Remark 4. - If L°° in (7) is invertible, then the existence of a weak
solution u and (1) follows with minor modifications of the proof.
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