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1. Introduction. In the last forty years a great deal has been written about
existence and multiplicity of solutions to nonlinear second order elliptic problems in
bounded and unbounded domains of R

n (n ≥ 2). Important achievements on this
topic have been made by applying various combinations of analytical techniques, and
among all of them we mention only the variational and topological methods. For
the latter, especially when the main interest is focused on the existence of positive
solutions, the fundamental tool which has been used is the maximum principle [A1]
and its consequences [GNN].

For higher order problems, a possible failure of the maximum principle causes
several technical difficulties. This fact is very likely the reason why the knowledge on
higher order nonlinear problems is far from being reasonably complete, as it is in the
second order case.

One of the most interesting and intensively studied second order model problems
that exhibits several peculiar features of most nonlinear elliptic equations is the so-
called Gel’fand problem [G, section 15],{

−∆u = λeu in Ω,
u = 0 on ∂Ω.

(1)

Here Ω is a bounded smooth domain in R
n (n ≥ 3) and λ ≥ 0 is a parameter. This

problem appears in connection with combustion theory [G, JL] and stellar structure
[C]. From a mathematical point of view, one of the main interests is that it may have
both unbounded (singular) solutions and bounded (regular) solutions (see [BV, GMP,
MP1, MP2]): by the results in [CR, BCMR] it is known that there exists λ∗ > 0
such that if λ > λ∗ there exists no solution of (1) (neither regular nor singular),
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while if 0 ≤ λ < λ∗, there exists a minimal regular solution Uλ of (1) and the map
λ �→ Uλ is smooth and increasing. In the unit ball B, the bifurcation picture of radial
solutions is rather complete. There is always a singular solution uσ := −2 log |x| with
corresponding parameter λσ = 2(n− 2). If n ≥ 10, the solution branch consists only
of minimal solutions and terminates at λ∗ = λσ in the singular solution. If 3 ≤ n ≤ 9,
then λ∗ > λσ and the extremal point (λ∗, U∗) is a turning point. The branch bends
back and meanders infinitely many times around λσ while approaching the singular
solution uσ. We refer to [BV, Figure 1] for the pictures. The interested reader may
see also [BE] for an account on motivations and related results.

Some interesting generalizations of (1) have been considered in the framework of
second order quasi-linear operators. We refer to [GPP] for equations associated to
the p-Laplace operator and to [J, JS] for the case of the k-Hessian operator.

The aim of this paper is to give a contribution to the solution of a special case of a
problem formulated in [Li, section 4.2 (c)], namely, Is it possible to obtain a description
of the solution set for higher order semilinear equations associated to exponential
nonlinearities?

Recently, interest in higher order nonlinear problems due to its exciting and
promising developments has become increasingly evident especially for fourth order
equations [PT]. Following this trend, we shall consider in this paper the fourth order
version of (1), a semilinear elliptic problem which involves the biharmonic operator,
more precisely,

{
∆2u = λeu in B,

u =
∂u

∂n
= 0 on ∂B.

(Pλ)

Here B denotes the unit ball in R
n (n ≥ 5) centered at the origin and ∂

∂n the dif-
ferentiation with respect to the exterior unit normal, i.e., in radial direction; λ ≥ 0
is a parameter. We are interested in two kinds of solutions of (Pλ), regular solutions
and singular solutions; see Definition 1 in the next section. We restrict our attention
to the case n ≥ 5, where the nonlinearity is supercritical. In low dimensions 1 ≤ n ≤ 4
the problem is subcritical and has a different behavior; see Remark 14 at the end of
the following section.

Many techniques, familiar from second order equations like the maximum prin-
ciple, are not available here. But since we restrict ourselves to the ball, at least
a comparison principle is available; see Lemma 16 below. Moreover, in fourth or-
der equations, one usually does not succeed in finding suitable nontrivial auxiliary
functions satisfying again a differential inequality. This is a serious difficulty in prov-
ing Theorem 3 (cf. the proof of [BCMR, Theorem 3]), and it is overcome by carefully
exploiting the properties of the exponential nonlinearity and the construction of mini-
mal solutions, based upon the already mentioned comparison principle. Finally, when
looking for radial solutions, one may perform a phase space analysis for the corre-
sponding system of ODEs. Here, the phase space is no longer two-dimensional, where
the topology is relatively simple and the Poincaré–Bendixson theory is available, but
we have to work in a four-dimensional phase space. Some of the resulting difficulties
could be overcome only with computer assistance.

This paper is organized as follows: In the next section we state some definitions
and the main results contained in this work (see Theorems 3, 4, 6, 7, and 12 below).
The content of sections 3 through 7 is devoted to the proofs of these theorems. Sec-
tion 8 contains some results on the stability of regular solutions of (Pλ) and a list
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of open problems that we consider of some interest and related to the main results
of this paper. Finally, in section 9 we describe the algorithm used in the computer
assisted proof of Theorem 7.

2. Main results. We first make precise in which sense we intend a function to
solve (Pλ). For this purpose, we fix some exponent p with p > n

4 and p ≥ 2. The
definitions and results below do not depend on the special choice of p.

Definition 1. We say that u ∈ L2(B) is a solution of (Pλ) if eu ∈ L1(B) and∫
B

u∆2v = λ

∫
B

euv for all v ∈ W 4,p ∩H2
0 (B).(2)

We say that a solution u of (Pλ) is regular (resp., singular) if u ∈ L∞(B) (resp.,
u �∈ L∞(B)).

Clearly, according to this definition, regular and singular solutions exhaust all
possible solutions. Note that by standard regularity theory for the biharmonic op-
erator (see [ADN]), any regular solution u of (Pλ) satisfies u ∈ C∞(B). Note also
that by the positivity preserving property of ∆2 in the ball [B] any solution of (Pλ) is
positive; see also Lemmas 16 and 18 below for a generalized statement. This property
is known to fail in general domains. For this reason, we restrict ourselves to balls also
in Theorems 3 and 4; cf. also Open Problem 8 in section 8.

We also need the notion of minimal solution, as follows.
Definition 2. We call a solution Uλ of (Pλ) minimal if Uλ ≤ uλ a.e. in B for

any further solution uλ of (Pλ).
In order to state our results, we denote by λ1 > 0 the first eigenvalue for the

biharmonic operator with Dirichlet boundary conditions{
∆2u = λ1u in B,

u =
∂u

∂n
= 0 on ∂B;

(3)

it is known from the mentioned positivity preserving property and Jentzsch’s (or
Krein–Rutman’s) theorem that λ1 is isolated and simple and that the corresponding
eigenfunctions do not change sign.

We may now state the following theorem.
Theorem 3. There exists

λ∗ ∈
[
14.72(n− 1)(n− 3),

λ1

e

)

such that the following hold:
(i) (Pλ) admits a minimal regular solution Uλ for all λ < λ∗ and no solutions if

λ > λ∗.
(ii) The map λ �→ Uλ(x) is strictly increasing for all x ∈ B. Moreover, there

exists a solution U∗ of (Pλ∗) which is the pointwise limit of Uλ as λ ↑ λ∗.
(iii) Uλ → U∗ in the norm topology of H2

0 (B) as λ ↑ λ∗.
(iv) The extremal solution U∗ and all the minimal solutions Uλ (for λ < λ∗) are

radially symmetric and radially decreasing.
It is remarkable that at λ∗ there is an immediate switch from existence of regular

minimal solutions to nonexistence of any (even singular) solution. The only possibly
singular minimal solution corresponds to λ = λ∗. This result is known from [BCMR]
for the second order problem (1), but the method used there may not be carried over
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to fourth order problems. Nevertheless, the result extends to the biharmonic case.
The proof is given in Lemma 20 below.

We may also characterize the uniform convergence to 0 of Uλ as λ → 0 by giving
the precise rate of its extinction.

Theorem 4. For all λ ∈ (0, λ∗) let Uλ be the minimal solution of (Pλ) and let

Vλ(x) =
λ

8n(n + 2)

[
1 − |x|2

]2
.

Then Uλ(x) > Vλ(x) for all λ < λ∗ and all |x| < 1, and

lim
λ→0

Uλ(x)

Vλ(x)
= 1 uniformly with respect to x ∈ B.

A complete result in the spirit of Gidas, Ni, and Nirenberg [GNN] does not hold
for fourth order equations under Dirichlet boundary conditions. It has been recently
proved by Sweers in [Sw] that for general semilinear autonomous biharmonic equations
in a ball under Dirichlet boundary conditions, we may have positive radially symmetric
solutions which are not radially decreasing, provided the right-hand side is not positive
everywhere. This phenomenon may not occur in our situation; however, it is not
known whether any smooth solution of (Pλ) is radially symmetric. Moreover, also in
the second order case it is not known whether singular solutions are always radially
symmetric. Nevertheless, Theorem 3 suggests that we pay particular attention to
radially symmetric solutions. In this context, we put r = |x| and consider the functions
u = u(r).

First of all, in the following definition we introduce a new notion of solution which
seems to be the natural framework for radially symmetric solutions.

Definition 5. We say that a radial singular solution u = u(r) of (Pλ) is weakly
singular if the limit limr→0 ru

′(r) exists.

We do not know whether every singular solution is also weakly singular. In the
second order case, Joseph and Lundgren [JL] reduce (1) to a system of two ODEs and
study its phase portrait in R

2; using Bendixson’s theorem, they show that singular
solutions are also weakly singular. For the fourth order equation (Pλ) a similar argu-
ment should be carried out in R

4 (see section 3) where a general result of Bendixson’s
type does not hold. Therefore, the equivalence between singular and weakly singular
solutions seems out of reach in our context; see Open Problem 5 in section 8.

If we seek radially symmetric solutions, we rewrite problem (Pλ) as (0 < r ≤ 1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d4u

dr4
+

2(n− 1)

r

d3u

dr3
+

(n− 1)(n− 3)

r2

d2u

dr2
− (n− 1)(n− 3)

r3

du

dr
= λeu(r),

u(1) = 0,

du

dr
|r=1= 0.

(4)

In [GPP, JL, MP2] the second order equation (1) was reduced to a system of two
autonomous ODEs. Here, we reduce (4) to a system of four equations. First, we make
the change of variables

s = log r, v(s) = u(es), s ∈ (−∞, 0](5)
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so that (4) becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d4v

ds4
+ 2(n− 4)

d3v

ds3
+ (n2 − 10n + 20)

d2v

ds2
− 2(n− 2)(n− 4)

dv

ds
= λe4s+v(s),

v(0) = 0,

dv

ds
|s=0= 0;

(6)

then we set ⎧⎪⎪⎨
⎪⎪⎩

v1(s) = v′(s) + 4,
v2(s) = −v′′(s) − (n− 2)v′(s),
v3(s) = −v′′′(s) + (4 − n)v′′(s) + 2(n− 2)v′(s),
v4(s) = −λev(s)+4s.

(7)

Finally, we obtain the following (nonlinear) differential system:⎧⎪⎪⎨
⎪⎪⎩

v′1(s) = (2 − n)v1(s) − v2(s) + 4(n− 2),
v′2(s) = 2v2(s) + v3(s),
v′3(s) = (4 − n)v3(s) + v4(s),
v′4(s) = v1(s)v4(s)

(8)

with initial conditions

v1(0) = 4, v4(0) = −λ.(9)

It turns out that (8) admits only the two stationary points P1 = (4, 0, 0, 0) and
P2 = (0, 4n − 8, 16 − 8n,−8(n − 2)(n − 4)); see section 3.1. Then, in section 3.2, we
prove the following result.

Theorem 6. Let u = u(r) be a radial solution of (Pλ) and let

V (s) = (v1(s), v2(s), v3(s), v4(s))

be the corresponding trajectory relative to (8). Then
(i) u is regular (i.e. u ∈ L∞(B)) if and only if

lim
s→−∞

V (s) = P1;

(ii) u is weakly singular if and only if

lim
s→−∞

V (s) = P2.

Our following results concern the existence of weakly singular solutions and a
lower bound λ∗

min on the value of λ∗. For all n = 5, . . . , 16 we prove the existence of
λσ such that (Pλσ ) admits a weakly singular solution; we provide a lower and upper
bound on the value of λσ. For all n = 5, . . . , 16 let λmin

σ and λmax
σ be as given in

Table 1, and for all n = 5, . . . , 10 let λ∗
min be as given in Table 1.

Theorem 7. For all n = 5, . . . , 16 there exists λσ ∈ [λmin
σ , λmax

σ ] such that (Pλσ )
admits a weakly singular solution Uσ. In particular, λσ > 8(n− 2)(n− 4).

For all n = 5, . . . , 10 the value of λ∗ is larger than λ∗
min.

In section 6 we use Theorem 6 to show that Theorem 7 is equivalent to some
intersection properties of the unstable manifolds of P1 and P2 with the hyperplane
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Table 1

n λσ λ∗ λmin
σ λmax

σ λ∗
min

5 113.19 236.49 113.11 113.26 235.89
6 260.82 362.10 260.72 260.86 361.34
7 449.55 524.70 449.45 449.60 523.16
8 679.45 728.36 679.04 679.55 724.50
9 950.28 976.66 949.58 950.49 969.81
10 1261.79 1272.09 1260.71 1262.23 1268.48
11 1613.78 1615.77 1610.89 1615.30
12 2006.09 2006.11 1997.53 2010.41
13 2438.60 2438.60 2403.42 2457.15
14 2911.21 2911.21 2843.32 2947.17
15 3423.83 3423.83 3260.54 3514.51
16 3976.40 3976.40 3597.37 4211.88

v1 = 4. The remaining part of the proof of Theorem 7 is divided into two parts.
First, in section 6 a rigorous bound on the location of the unstable manifold close
to the stationary point is obtained by analytical methods. Then the intersection of
the manifold with the hyperplane and its location are proved by a computer assisted
algorithm; see section 9. The following definition explains exactly what we mean by
a computer assisted proof.

Definition 8. A proof is called computer assisted if it consists in finitely many
elementary operations, but their number is so large that, although each step may be
written down explicitly, it is only practical to perform such operations with a computer.

We believe that a weakly singular solution exists in any dimension n ≥ 5, but
since our type of proof requires a finite number of steps for each value of n, we cannot
prove this conjecture. We performed the computer assisted proof for n = 5, . . . , 16
because the “interesting” phenomena of (Pλ) arise in these dimensions.

We expect the “singular parameter” λσ and the singular solution to be unique.
However, also for this statement, we do not yet have a proof. See Open Problem 3 in
section 8 below.

Table 1 summarizes our results: λ∗ and λσ are the best, purely numerical, esti-
mates for the values, up to two decimal places, while the numbers λmin

σ , λmax
σ , and

λ∗
min are rigorously computed values as stated in Theorem 7.

Remark 9. We point out that both the approximate numerical computation and
the computation with rigorous estimate on the error for λ∗ become very difficult as
n increases. For this reason the best rigorous estimate we have on λ∗

min for n ≥ 11 is
nothing but for λmin

σ , while the best numerical estimate we have on λ∗ for n ≥ 13 is
λσ. These values of n may be improved with a more accurate algorithm, but we do
not feel that this would lead to a qualitative improvement of the result.

From Table 1 we immediately get the following.
Corollary 10. For all n = 5, . . . , 10 we have λσ < λ∗.
Remark 11. We have numerical evidence that λσ < λ∗ for n = 11, 12 as well,

but λ∗ − λσ is much smaller than the rigorous estimate of the numerical error, and
thus we do not have a proof. For n ≥ 13 the values of λσ and λ∗ are closer than the
numerical error; therefore we cannot even provide a conjecture supported by numerical
evidence. If one could show uniqueness of the singular parameter λσ and that in fact
λσ < λ∗ in dimensions n ≤ 12, one could conclude that here the extremal solution U∗
is either regular or “strongly singular” (i.e., limr→0 ru

′(r) does not exist). For n ≥ 13
we expect the extremal solution U∗ to be weakly singular. See Open Problems 3, 4,
and 5 in section 8.
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Fig. 1.

To complete the numerical inspection of the problem, we provide Figure 1, which
shows the (regular) solution for n = 5 and λ = λ∗.

Theorem 6 states that any weakly singular solution u = u(r) of (4) corresponds
to a (weakly singular) solution v = v(s) of (6) which satisfies v(s) ≈ −4s as s → −∞:
this is because v(s) = −4s is precisely the stationary point P2. Hence, as a further
consequence of Theorem 6, we have that any weakly singular solution Uσ behaves
asymptotically like −4 log r as r → 0. Moreover, as may be checked by a simple
calculation, the function r �→ −4 log r solves the equation and the first boundary
condition in (Pλ) for λ = 8(n − 2)(n − 4) but not the second boundary condition
(recall also λσ > 8(n − 2)(n − 4) by Theorem 7). Contrary to what happens for the
second order equation (1), the explicit form of the radial weakly singular solution does
not seem simple to be determined; see also Proposition 34 below. To this end, we
characterize it further by means of the following theorem.

Theorem 12. Let Uσ be a weakly singular solution with λσ > 8(n− 2)(n− 4) as
it is obtained in Theorem 7 for 5 ≤ n ≤ 16. Then

Uσ(r) = −4 log r + W (r),

where W is a bounded function satisfying

lim
r→0

W (r) = W0 := log
8(n− 2)(n− 4)

λσ
< 0

and (at least) one of the two following facts holds true:
(i) W (r) −W0 changes sign infinitely many times in any neighborhood of r = 0.
(ii) W (r) ≥ max[W0, 2r

2 − 2] for all r ∈ (0, 1].
If n ≥ 13, case (ii) necessarily occurs.

Finally, the function W (r) is not analytic, i.e., not a convergent power series in
r2 close to r0 = 0.

Remark 13. It is quite surprising that the asymptotic behavior of weakly singular
solutions of (Pλ) is the same as that of the quasi-linear equation −∆4u = λeu; see
[GPP]. Here −∆p denotes the p-Laplace operator.

We conclude this section with a short remark concerning the behavior of (Pλ) in
low dimensions.

Remark 14. In dimensions 1 ≤ n ≤ 4 the problem is subcritical and has a different
behavior. In particular, there are no singular solutions.
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The minimal solution is constructed as in the present paper. There is a parameter
λ∗ > 0 such that for any λ ∈ (0, λ∗) there is precisely one minimal stable positive
solution. Taking this one as a “trivial” solution, with the help of variational techniques
(which apply only in a subcritical setting) one finds a second positive “large” solution
above the minimal solution and unstable. For λ > λ∗ there is no positive solution.
Concerning the bifurcation diagram, one expects a smooth branch emanating from 0,
extending until λ∗, where it bends back and approaches λ = 0, while the L∞ norm of
the solutions blows up. See also [We, Wi].

3. Characterization of regular and weakly singular radial solutions. In
this section we perform a phase space analysis for the system (8), which corresponds
to the radial version of (Pλ). This gives some insight into which behavior of regular
and of weakly singular radial solutions may be expected in dependence on the space
dimension. These results are essential for the proofs of Theorems 7 and 12. For the
proofs of Theorems 3 and 4 one may skip directly to sections 4 and 5.

3.1. Analysis of the stationary points. It is easy to verify that system (8)
has only two stationary points:

P1 = (4, 0, 0, 0) and P2 = (0, 4n− 8, 16 − 8n,−8(n− 2)(n− 4)).

In order to linearize (8) in a neighborhood of P1, we must just replace (8)4 with

v′4(s) = 4v4(s).

Then the linearized system has two distinct positive eigenvalues, µ1 = 2, µ2 = 4,
and two distinct negative ones, µ3 = 2 − n, µ4 = 4 − n. We conclude that P1 is a
hyperbolic point independently of the dimension.

Eigenvectors corresponding to the positive eigenvalues µ1, µ2 in the neighborhood
of P1 have the form

α1(1,−n, 0, 0) and α2(−1, n + 2, 2n + 4, 2n2 + 4n),

where α1, α2 ∈ R \ {0}. Therefore, the tangent hyperplane to the unstable manifold
of P1 consists of those points in R

4 whose coordinates can be represented as

(α1 − α2,−nα1 + (n + 2)α2, (2n + 4)α2, (2n
2 + 4n)α2)(10)

with α1, α2 ∈ R.
Similarly, the tangent hyperplane to the stable manifold of P1 is spanned by

eigenvectors corresponding to negative eigenvalues of the linearized system, that is,

α3(1, 0, 0, 0) and α4(1,−2, 2n− 4, 0),

where α3, α4 ∈ R \ {0}.
Now consider the second critical point P2 of (8). In its neighborhood the linear

approximation of (8)4 (the only nonlinear equation) takes the form

v′4(s) = −8(n− 2)(n− 4)v1(s).

Therefore, the eigenvalues of the linearized system in the neighborhood of P2 are
the solutions of the fourth order algebraic equation

ν(ν − 2)(ν + n− 2)(ν + n− 4) − 8(n− 2)(n− 4) = 0;
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hence,

ν1,2,3,4 =
1

2

(
4 − n±

√
M1(n) ±M2(n)

)
,

where M1(n) = n2−4n+8 = (n−2)2 +4 > (n−2)2 and M2(n) = 4
√

68 − 52n + 9n2.
Therefore,

ν1 =
1

2

(
4 − n +

√
M1(n) + M2(n)

)
and ν2 =

1

2

(
4 − n−

√
M1(n) + M2(n)

)
are real numbers. It is easy to see that

ν2 < 0 < ν1 for all n ≥ 4.

Moreover, for 5 ≤ n ≤ 12, we have M1(n) −M2(n) < 0, while for n ≥ 13 there holds
M1(n) −M2(n) > 0. Therefore, for 5 ≤ n ≤ 12 the eigenvalues

ν3 =
1

2

(
4 − n +

√
M1(n) −M2(n)

)
and ν4 =

1

2

(
4 − n−

√
M1(n) −M2(n)

)
are complex conjugate with the real part

Re ν3 = Re ν4 =
1

2
(4 − n) < 0,

while for n ≥ 13 both ν3 and ν4 are real, ν3 < 0 and ν4 < 0.
This analysis implies that for all n ≥ 5 the critical point P2 of system (8) is also

hyperbolic, but its stable manifold is three-dimensional and the unstable manifold
is one-dimensional. Moreover, taking into account that for 5 ≤ n ≤ 12 we have
Imν3 = −Imν4 �= 0, we deduce from the general theory of critical points (see, for
example, [A2]) that for these values of n (and only for them) trajectories in the stable
manifold of P2 locally have the form of a spiral.

3.2. Proof of Theorem 6. We first consider regular solutions. It will prove to
be useful to have the following meaning of v1, . . . , v4 in terms of derivatives of u in
mind: ⎧⎪⎪⎨

⎪⎪⎩
v1(s) = es u′ (es) + 4,
v2(s) = −e2s · ∆u (es) ,

v3(s) = −e3s (∆u)
′
(es) ,

v4(s) = −λe4seu(es).

(11)

If u is a regular solution of (Pλ), then u, u′,∆u, and (∆u)′ stay bounded in particular
for r ↘ 0, i.e., for s → −∞. So, we get immediately from (11) the first part of the
statement.

To prove the converse, assume that

lim
s→−∞

(v1(s), v2(s), v3(s), v4(s)) = P1

so that

lim
r↘0

ru′(r) = lim
r↘0

r2∆u(r) = lim
r↘0

r3(∆u)′(r) = lim
r↘0

r4eu(r) = 0.(12)
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The first limit yields particularly, that for r > 0 small enough,

u(r) ≤ −1

2
log(r), eu(r) ≤ r−1/2.

Using the differential equation (Pλ) and the growth conditions (12) (observe n > 4),
we obtain successively for r close to 0

(∆u)′(r) = O(r1/2), ∆u(r) = O(1), u′(r) = O(r), u(r) = O(1).

That means that u is regular.
Next, we characterize weakly singular solutions. All the limits are intended as

s → −∞; with c we denote generic constants.
Note first that if limV (s) = P2, then the solution is weakly singular.
In order to prove the converse, we claim that

v′(s) → −4.(13)

To this end, we exclude all the other cases; recall that lim v′(s) exists by definition of
weakly critical solutions.

(A) It cannot be that lim v′(s) = c ∈ (−∞,−4).
For contradiction, if lim v′(s) = c < −4, then by (7)1 we infer

lim v1(s) = c + 4 < 0,(14)

and by (7)4 we get

v4(s) → −∞.(15)

Write (8)3 as

d

ds
[e(n−4)sv3(s)] = e(n−4)sv4(s)

so that by (15) we infer that the map s �→ e(n−4)sv3(s) is decreasing in a neighborhood
of −∞, and therefore it admits a limit. If e(n−4)sv3(s) → c ≥ 0, then by (8)3 and
(15) we get v′3(s) → −∞ and hence v3(s) → +∞. If e(n−4)sv3(s) → c < 0, then
v3(s) → −∞. In any case we obtain

|v3(s)| → +∞.(16)

A completely similar (but slightly more involved) argument shows that (8)2 and (16)
entail

|v2(s)| → +∞.(17)

Finally, (8)1, (14), and (17) furnish |v′1(s)| → +∞, which contradicts (14).
(B) It cannot be that v′(s) → −∞.
For contradiction, assume that v′(s) → −∞: then by (7)1 we have

v1(s) → −∞,(18)

and by (7)4 we get

v4(s) → −∞;(19)
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moreover,

v(s)

s
→ −∞.(20)

We may rewrite (8)3 as

d

ds
[e(n−4)sv3(s)] = e(n−4)sv4(s) = −λens+v(s) → −∞,

where the second equality is just (7)4 and the infinite limit is a consequence of (20):
the previous limit yields e(n−4)sv3(s) → +∞ and, in turn,

v3(s) → +∞.(21)

Similarly, we may rewrite (8)2 as

d

ds
[e−2sv2(s)] = e−2sv3(s) → +∞,

where the infinite limit is a consequence of (21): hence, we deduce that e−2sv2(s) →
−∞, which, together with (8)2 and (21), shows that v2(s) → −∞. Inserting this into
(7)2 gives v′′(s)+(n−2)v′(s) → +∞, and therefore v′(s)+(n−2)v(s) → −∞: hence,

there exists σ < 0 such that v′(s) + (n− 2)v(s) < 0 for all s ≤ σ.

We rewrite this inequality as

d

ds
[e(n−2)sv(s)] < 0 for all s ≤ σ;

integrating it over [s, σ] and taking into account that v(σ) > 0, we infer that

there exists K > 0 such that v(s) ≥ Ke(2−n)s for all s ≤ σ.

Using (5) and returning to the function u (solution of (Pλ) and (4)), this shows that

there exists K > 0 such that u(r) ≥ K

rn−2
for all r ≤ eσ;

this contradicts eu ∈ L1(B).
(C) It cannot be that lim v′(s) = c ∈ (−4, 0].
For contradiction, if lim v′(s) = c ∈ (−4, 0], then by (7)1 we infer

lim v1(s) = c + 4 > 0,(22)

and by (7)4 we get

v4(s) → 0.(23)

Then from (8)3 we deduce

v3(s) → 0,(24)

because otherwise we would get a contradiction similar to that of case (A). Next, from
(8)2 and (24) we obtain

v2(s) → 0.(25)
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Since, by assumption, v1 has a limit, we deduce that necessarily v1(s) → 4. This,
together with (23), (24), and (25), contradicts part (i) proved above.

By (A), (B), (C), statement (13) is proved. This shows that v1(s) → 0: inserting
this into (8)1 gives v2(s) → 4(n − 2). Inserting the latter into (8)2 yields v3(s) →
−8(n − 2); finally, inserting this into (8)3 gives v4(s) → −8(n − 2)(n − 4). This
completes the proof of (ii).

Remark 15. If in case (ii) of Theorem 6 we do not assume that lim v′(s) exists,
then we can merely show that lim inf v′(s) ≤ −4 ≤ lim sup v′(s). Clearly, if one could
prove that both inequalities are in fact equalities, then we would again have (13).

4. Proof of Theorem 3. We denote by K the cone of nonnegative L2-functions
in B,

K = {u ∈ L2(B); u(x) ≥ 0 for almost every x ∈ B},

and (for the sake of completeness) we prove the following weak formulation of Boggio’s
positivity preserving property [B], which we extensively use.

Lemma 16. Assume that u ∈ L2(B) satisfies∫
B

u∆2v ≥ 0 for all v ∈ K ∩H4 ∩H2
0 (B);

then u ∈ K. Moreover, one has either u ≡ 0 or u > 0 a.e. in B.
Proof. (i) Take any ϕ ∈ K ∩ C∞

c (B) and let vϕ be the unique (classical) solution
of {

∆2vϕ = ϕ in B,

vϕ =
∂vϕ

∂n = 0 on ∂B.

Then, by the classical Boggio principle [B], we infer that vϕ ∈ K. Hence, vϕ is a
possible test function for all ϕ so chosen, and therefore∫

B

uϕ =

∫
B

u∆2vϕ ≥ 0 for all ϕ ∈ K ∩ C∞
c (B).

This shows that u ∈ K.
(ii) By (i) we know that u ∈ K. So, assume that u �> 0 a.e. in B and let φ denote

the characteristic function of the set {x ∈ B; u(x) = 0} so that φ ≥ 0, φ �≡ 0. Let v0

be the unique (a.e.) solution of the problem{
∆2v0 = φ in B,

v0 = ∂v0

∂n = 0 on ∂B.

Then

v0 ∈

⎛
⎝⋂

q≥1

W 4,q(B)

⎞
⎠ ⊂ C3(B)

and by Boggio’s principle [B] we have v0 > 0 in B. By the biharmonic analogue of
Hopf’s lemma in balls (see [GS, Theorem 3.2], which also holds if ∆2v0 ∈ Lp(B) for
some p > n/2), we necessarily have ∆v0 > 0 on ∂B. This last inequality allows us to
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state that for all v ∈ C4(B) ∩H2
0 (B) there exists t1 ≤ 0 ≤ t0 such that v + t0v0 ≥ 0

and v + t1v0 ≤ 0 in B. This, combined with the fact that∫
B

u∆2v0 =

∫
{u=0}

u = 0,

enables us to show that both

0 ≤
∫
B

u∆2(v + t0v0) =

∫
B

u∆2v and 0 ≥
∫
B

u∆2(v + t1v0) =

∫
B

u∆2v.

Hence, we have for all v ∈ C4(B) ∩H2
0 (B)∫
B

u∆2v = 0.

We need to show that C4(B)∩H2
0 (B) is dense in H4 ∩H2

0 (B). For this purpose, take
any function U ∈ H4(B) ∩H2

0 (B) and put f := ∆2U . We approximate f in L2(B)
by C∞(B)-functions fk and solve ∆2Uk = fk in B under homogeneous Dirichlet
boundary conditions. We then even have Uk ∈ C∞(B), and by L2-theory there holds
‖Uk − U‖H4(B) → 0 as k → ∞.

By the previous statement we may now conclude that

for all v ∈ H4 ∩H2
0 (B) :

∫
B

u∆2v = 0.

Since u ∈ L2(Ω), we may take as v ∈ H4 ∩ H2
0 (B) the solution of ∆2v = u under

homogeneous Dirichlet boundary conditions. This finally yields u ≡ 0.
In particular, thanks to Lemma 16 we may establish a result in the spirit of

[BCMR], as follows.
Lemma 17. For all f ∈ L1(B) such that f ≥ 0 a.e. in B there exists a unique

u ∈ L1(B) such that u ≥ 0 a.e. in B and which satisfies∫
B

u∆2v =

∫
B

fv for all v ∈ C4(B) ∩H2
0 (B);

moreover, there exists C > 0 (independent of f) such that ‖u‖1 ≤ C‖f‖1.
Proof. Uniqueness follows by means of the observation that L∞-functions may be

approximated by a pointwise convergent but uniformly bounded sequence of C∞
c (B)-

functions. This is applied to truncations of u, and suitable test functions v are ob-
tained from approximations of the truncations of u by solving the biharmonic Dirichlet
problems.

Existence follows by truncating f and by arguing as in the proof of [BCMR,
Lemma 1], the only difference being the positivity preserving property, which is stan-
dard for the Laplacian; in our case we invoke Lemma 16.

Combining the method of proof of Lemmas 16 and 17, one also has the following.
Lemma 18. Assume that u ∈ L1(B) satisfies∫

B

u∆2v dx ≥ 0 for all v ∈ K ∩ C4(B) ∩H2
0 (B);

then u ≥ 0 a.e. in B.
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As was pointed out to us by Anna Dall’Acqua (TU Delft), similar techniques and
the application of Weierstraß’s approximation theorem yield that also for the stronger
conclusion of Lemma 16 it is enough to require u ∈ L1(B).

The previous lemmas enable us to make use of the super-subsolutions method, as
follows.

Lemma 19. Let λ > 0 and assume that there exists ū ∈ K such that eū ∈ L1(B)
and ∫

B

ū∆2v ≥ λ

∫
B

eūv for all v ∈ K ∩W 4,p ∩H2
0 (B).

Then there exists a solution u of (Pλ) such that 0 ≤ u ≤ ū a.e. in B.
Proof. Let u0 = ū, and for all m ∈ N, define inductively the function um+1 as the

unique solution of∫
B

um+1∆
2v = λ

∫
B

eumv for all v ∈ W 4,p ∩H2
0 (B).(26)

Note that by Lemmas 16 to 18 the sequence {um} is well-defined and

um ∈ K, eum ∈ L1(B), 0 ≤ um+1(x) ≤ um(x) for almost every x ∈ B

for all m ∈ N.

Since this sequence is pointwise decreasing, there exists u ∈ K such that eu ∈ L1(B)
and which is the pointwise limit of {um}. Then, letting m → ∞ in (26) and applying
Lebesgue’s theorem, we obtain the result.

Define Λ := {λ ≥ 0; (Pλ) admits a solution} and

λ∗ := sup Λ;

clearly 0 ∈ Λ and so Λ �= ∅. Moreover, by the implicit function theorem we know that
λ∗ > 0. It follows directly from Lemma 19 that Λ is an interval.

Let λ ∈ Λ; then there exists uλ satisfying (2). Taking into account that es ≥ es for
all s ≥ 0 with strict inequality whenever s �= 1, and choosing v = φ1 (the normalized
positive first eigenfunction of (3)) as a test function in (2), we get

λ1

∫
B

uλφ1 =

∫
B

uλ∆2φ1 = λ

∫
B

euλφ1 > λe

∫
B

uλφ1,

which proves that

λ <
λ1

e
for all λ ∈ Λ.(27)

We now prove the most delicate part of Theorem 3, namely, that for any λ < λ∗,
there exists a regular solution.

Lemma 20. Assume that for some µ > 0 there exists a (possibly singular) solution
u0 of (Pµ). Then for all 0 < λ < µ there exists a regular solution of (Pλ).

Proof. Let 0 < λ < µ and consider the (unique) functions u1, u2 ∈ L1(B) satisfy-
ing, respectively,∫

B

u1∆
2v = λ

∫
B

eu0v for all v ∈ W 4,p ∩H2
0 (B),
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B

u2∆
2v = λ

∫
B

eu1v for all v ∈ W 4,p ∩H2
0 (B).(28)

Such functions exist by Lemma 17 and also belong to L2(B), since by Lemma 18 we
have

u0 >
λ

µ
u0 = u1 ≥ u2 almost everywhere in B.(29)

Let ϕ(x) = (1 − |x|2)2; it is readily verified that

ϕ ∈ H2
0 (B), ∆2ϕ = 8n(n + 2).(30)

We also need the following elementary statement:

for all ϑ > 1 and δ > 0 there exists γ > 0

such that eϑs + γ − (1 + δ)es ≥ 0 for all s ≥ 0.(31)

Take ϑ = µ/λ, δ = nλ/4µ and choose k > 0 in such a way that

e
µ
λ s +

8n(n + 2)

λ
k ≥ (1 + δ)es for all s ≥ 0;(32)

this choice is clearly allowed by (31). Thanks to (30) and (32) we find∫
B

(u1 + kϕ)∆2v =

∫
B

[λeu0 + 8n(n + 2)k]v =

∫
B

[λe
µ
λu1 + 8n(n + 2)k]v

≥ λ(1 + δ)

∫
B

eu1v = (1 + δ)

∫
B

u2∆
2v

for all v ∈ K ∩W 4,p ∩H2
0 (B).

Hence, by Lemma 16 we infer that u2 ≤ u1+kϕ
1+δ in B; in particular, we get

eu2 ≤ e
k

1+δϕ e
λ

µ(1+δ)
u0 ,

from which we get at once that

eu2 ∈ L
n
4 +µ

λ (B)(33)

since ϕ ∈ L∞(B) and eu0 ∈ L1(B) (recall also our choice of δ). Finally, consider
u3 ∈ L2(B) such that∫

B

u3∆
2v = λ

∫
B

eu2v for all v ∈ W 4,p ∩H2
0 (B).

By (33) and elliptic regularity [ADN], we deduce that

u3 ∈ W 4,n4 +µ
λ (B) ⊂ L∞(B).

Moreover, by (28), (29), and Lemma 16 we infer that u3 ≤ u2 and hence∫
B

u3∆
2v ≥ λ

∫
B

eu3v for all v ∈ K ∩W 4,p ∩H2
0 (B).
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We have so found a weak bounded supersolution u3 of (Pλ), and the statement follows
from Lemma 19.

With the help of Lemma 20 we can now show the following.
Lemma 21. For all 0 ≤ λ < λ∗, the minimal solution Uλ exists, is regular, and

is radially symmetric.
Proof. By the preceding lemma we have the existence of a regular solution uλ

of (Pλ). This may serve as a (classical) supersolution of (Pλ), while U0 ≡ 0 is a
subsolution. Hence, the minimal solution Uλ of (Pλ) may be obtained as the increasing
limit of the following sequence {Um}:⎧⎨

⎩
∆2Um+1 = λeUm in B,

Um+1 =
∂Um+1

∂n
= 0 on ∂B

(m ≥ 0).

Since U0 is radially symmetric, so is U1; similarly, all the functions Um are radially
symmetric: therefore, their (pointwise) limit Uλ is also radially symmetric.

The previous lemma allows us to show that the interval Λ is closed: we first remark
that the map λ �→ Uλ(x) is strictly increasing for all x ∈ B (in view of Lemma 16). If
0 ≤ λ < µ < λ∗, the minimal solution Uµ of (Pµ) is a (strict) supersolution for (Pλ).
Therefore

U∗(x) := lim
λ→λ∗

Uλ(x) ∈ [0,∞](34)

exists for all x ∈ B. In fact, more can be said about this limit, as follows.
Lemma 22. Let U∗ be the function defined in (34). Then U∗(x) is finite for

almost every x ∈ B and U∗ solves (Pλ) for λ = λ∗. Moreover, Uλ → U∗ in H2
0 (B) as

λ ↑ λ∗. Finally, U∗ is radially symmetric.
Proof. By Lemma 21 we have Uλ ∈ C∞(B), and therefore, by using the gener-

alized Pohozaev identity [P] by Pucci and Serrin [PS] and by arguing as in the proof
of [GMP, Théorème 2], we obtain that the set {Uλ; λ < λ∗} is bounded in H2

0 (B),
and hence Uλ ⇀ U∗ in H2

0 (B), up to a subsequence (this follows by uniqueness of the
pointwise limit). This shows that U∗ is a.e. finite, that U∗ solves (Pλ) for λ = λ∗, and
also that U∗e

U∗ ∈ L1(B). Finally, since Uλe
Uλ ≤ U∗e

U∗ , by Lebesgue’s theorem we
deduce that

1

λ

∫
B

|∆Uλ|2 =

∫
B

Uλe
Uλ →

∫
B

U∗e
U∗ =

1

λ∗

∫
B

|∆U∗|2 as λ ↑ λ∗,

which, together with weak convergence, shows that Uλ → U∗ in the norm topology of
H2

0 (B); since the above arguments may be repeated for any sequence in {Uλ; λ < λ∗},
the result follows without extracting subsequences.

Finally, by Lemma 21, all the minimal solutions Uλ (for 0 < λ < λ∗) are radially
symmetric. Then by (34) also U∗ is radially symmetric.

Remark 23. The proof of Lemma 22 may also be obtained by exploiting the
stability of the minimal solution Uλ (see Proposition 37(i) below) and by arguing as
in [BV, Remark 3.3].

Finally, we claim that

λ∗ ≥ 14.72(n− 1)(n− 3).(35)

Indeed, this holds true by Lemma 19 since the function ū(x) = 7.36(1−|x|)2 is a weak
supersolution (ū ∈ C∞(B̄ \ {0})) of (Pλ) for all λ ≤ 14.72(n− 1)(n− 3).
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Proof of Theorem 3. The upper bound for λ∗ follows from (27) and from Lemma 22,
the latter saying that λ∗ ∈ Λ. The lower bound for λ∗ is proved in (35). Statement
(i) follows from Lemmas 20 and 21. The map λ �→ Uλ(x) is nondecreasing for all
x by Lemma 19 and strictly increasing by Lemma 16; this proves the first part of
statement (ii). The second parts of (ii) and (iii) follow from Lemma 22. Finally, the
radial symmetry of U∗ and of all the minimal solutions Uλ (for λ < λ∗) is obtained in
Lemmas 22 and 21, respectively. The regular minimal solutions Uλ (for λ < λ∗) are
strictly radially decreasing in view of [So]. Passing to the limit, we also get that U∗

is radially decreasing.
Remark 24. The above analysis does not allow us to establish whether the ex-

tremal solution U∗ is regular, weakly singular, or singular. However, since it is radially
symmetric, in the regular and weakly singular case, Theorem 6 describes the behavior
of U∗ when studied in the phase space R

4. With our computer assisted proof, we may
then find some space dimensions where the first case certainly occurs, provided that
we can also show uniqueness of the weakly singular solution and the corresponding
parameter λσ.

5. Proof of Theorem 4. We first show that

Uλ → 0 uniformly as λ → 0.(36)

Since this is standard, we just briefly sketch its proof. By Theorem 3 we know that

0 < λ < µ < λ∗ =⇒ Uλ(x) < Uµ(x) if |x| < 1.

Then, by multiplying the equation in (Pλ) by Uλ and by integrating by parts, we
obtain that ‖Uλ‖H2

0 (B) remains bounded. Hence, up to a subsequence, {Uλ} converges

in the weak H2
0 (B) topology to U0 ≡ 0, which is the unique solution of (P0). By

convergence of the norms, we infer that the convergence is in the norm topology.
Finally, by pointwise convergence and elliptic regularity, we infer (36).

Next, note that Vλ satisfies⎧⎨
⎩

∆2Vλ = λ in B,

Vλ =
∂Vλ

∂n
= 0 on ∂B.

(37)

Therefore, ∆2Uλ > ∆2Vλ, and the inequality Uλ > Vλ follows by Lemma 16.
In order to prove the last statement of Theorem 4, note that from (36) we infer

for all ε > 0 there exists λε > 0 such that λ < λε =⇒ ‖Uλ‖∞ < ε.

So, fix ε > 0 and let λ < λε. Then (37) entails

∆2Uλ = λeUλ < λeε = eε∆2Vλ in B.

This shows that Uλ(x) < eεVλ(x) for all x ∈ B, and the result follows by arbitrariness
of ε.

6. Proof of Theorem 7. The proof of Theorem 7 is obtained with computer
assistance. We first describe the numerical procedure used to obtain the approximate
values for λσ and λ∗; then we show how the algorithm can be made rigorous. We main-
tain here the same notation as in section 3. The computation of λσ is somehow simpler
than the computation of λ∗, since the unstable manifold of P2 is one-dimensional. We
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choose a point v̄ = P2 + re1 where e1 is an eigenvector corresponding to the unstable
manifold and r is some small value. We solve system (8) with v̄ as the initial condition
and look for the intersection of the solution with the hyperplane v1 = 4. The choice
of a positive or negative r leads to a different result, since the manifold is made of
two branches: it turns out that one branch never appears to intersect the hyperplane,
while the other branch always does. If the solution intersects the hyperplane v1 = 4
at some point v̂ = (v̂1, v̂2, v̂3, v̂4) such that v̂4 < 0, by Theorem 6 and by (7) we have
numerical evidence of a singular solution at λ = −v̂4.

In order to compute the value of λ∗, we have to study the two-dimensional un-
stable manifold of P1. The direction on the tangent hyperplane can be parametrized
by an angle ϑ. In order to find the largest value for λ, we use a directional shooting
method; i.e., we choose some value ϑ (the shooting direction) and solve the equation
with starting point v̄ = P1 + r(e1 sinϑ + e2 cosϑ), where e1 and e2 are the orthonor-
malized eigenvectors corresponding to the (tangent) unstable manifold and r > 0 is
some small arbitrarily chosen value. If the solution intersects the hyperplane v1 = 4
at some point v̂ = (v̂1, v̂2, v̂3, v̂4) such that v̂4 < 0, then by Theorem 6 and by (7) and
(8) we have numerical evidence of a regular solution for λ = −v̂4. By varying ϑ we
can look for the maximal value of λ.

Of course these procedures do not lead to an exact value for two reasons. First, we
can choose only v̄ on the unstable manifold of the linearized equation, and although
we know that we are close to the manifold of the full equation, we are not exactly on
it. Second, the algorithm used to solve the differential equation provides an accurate,
but not rigorous, solution. We address the problem of proving that a branch of the
unstable manifold of P2 does intersect the hyperplane v1 = 4 and of computing a
rigorous estimate for the values λσ and λ∗ in the following sections.

6.1. Rigorous bounds for the manifolds. We first address the general prob-
lem of computing rigorous bounds for the location of the unstable manifold in the
neighborhood of a stationary hyperbolic point of an ODE. The same technique could
be applied to the stable manifold as well, but in this paper we are not interested in it.

Let f ∈ C2(Rd,Rd), d ≥ 2. We consider the equation ẋ = f(x) and assume that
0 is a hyperbolic stationary point. Then

ẋ = Ax + N(x),(38)

where

A = ∇f(0), N(x) = O(|x|2) as x → 0(39)

and all eigenvalues of A have nonzero real part. Let ϕ(x, t) be the flow induced by (38)
and let ϕA(x, t) be the flow induced by the linear equation ẋ = Ax. Let S0 (resp., U0)
be the span of all eigenvectors corresponding to the eigenvalues with negative (resp.,
positive) real part. S0 (resp., U0) is called the stable (resp., unstable) subspace, and
it is characterized as follows: S0 (resp., U0) is the set of points x ∈ R

d such that
ϕA(x, t) → 0 as t → +∞ (resp., t → −∞). It is well known that the full equation also
admits a stable manifold S (resp., an unstable manifold U) still defined as the set of
points x ∈ R

d such that ϕ(x, t) → 0 as t → +∞ (resp., t → −∞). Such a manifold
is tangent at the origin to S0 (resp., U0). If S0 (resp., U0) is empty, then there exists
a neighborhood of the origin which is a subset of U (resp., S). We are interested in
the case when both manifolds are nontrivial, and we wish to study the intersection
of the unstable manifold with some other manifold P . In order to achieve this goal,
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we consider a point x̄ ∈ U \ {0} and study ϕ(x̄, t). If we can prove that ϕ(x̄, t0) ∈ P
for some positive t0, then we infer that U ∩P �= ∅, and we also know the intersection
point. The main problem to address is that the only point of the manifold we know
precisely is the origin: the other points lie very close to U0, at least in a neighborhood
of 0, but we do not know their explicit position. We proceed as follows.

There exists an invertible matrix M such that B := M−1AM is block diagonal,
i.e., the canonical basis {ei} of R

d is split in S′
0 ∪U ′

0, where S′
0 = span{e1, . . . , em} is

the stable eigenspace and U ′
0 = span{em+1, . . . , ed} is the unstable eigenspace. If we

let y = M−1x, the (38) can be written as

ẏ = By + M−1N(My) =: g(y).(40)

By (39), for all ε > 0 there exists β > 0 such that |N(x)| ≤ β |x|2 for all |x| ≤ ε.
Let α < 0 be the maximum of the real parts of the eigenvalues with negative real
parts, γ = − α

βm2
1m2

, m1 = ‖M‖, and m2 =
∥∥M−1

∥∥. Choose ε > 0; let β > 0 as above;

choose a vector ŷ ∈ U ′
0 \ {0} of norm r ≤ ε and k > 1. Let Ps be the orthogonal

projection onto S′
0; let Pu be the orthogonal projection onto the linear space spanned

by ŷ; and let

Ξ =
{
y ∈ R

d :
γ

k
|Psy| ≤ |Puy|2 ≤ r2

}
.(41)

We show that, under a suitable choice of k > 1 and 0 < r ≤ ε, for all y ∈ ∂Ξ such
that |Puy| < r the flow is inward; i.e., given ȳ ∈ Ξ we want the solution of the Cauchy
problem ẏ(t) = g(y(t)), y(0) = ȳ to leave Ξ only through the set {y ∈ ∂Ξ : |Puy| = r}.
If this happens, then for all ŷ ∈ U ′

0 satisfying |ŷ| = r either the unstable manifold
intersects the set

κ := κŷ := ŷ +

{
ỹ ∈ S′

0 : |ỹ| ≤ k

γ
r2

}
(42)

or it is entirely contained in Ξ. As a result, to study a branch of the unstable manifold
it is sufficient to exclude the second case and consider the initial value problem for all
ȳ ∈ κ.

Lemma 25. Choose ε > 0 and k > 1. Let α, β, γ, m1, m2, and Ξ be as above
and let

r = min

{
εγ

m1

√
γ2 + k2

, 1,

√
k − 1

k
γ,

γ

2

}
.(43)

For all ȳ ∈ ∂Ξ such that 0 < |Puȳ| < r we have

(g(ȳ), Psȳ) < 0.(44)

Proof. Let ŷ = Psȳ, ỹ = Puȳ, r̂ = |ŷ|, and r̃ = |ỹ|. Since r̃ < r ≤ εγ

m1

√
γ2+k2

, then

|Mȳ| ≤ ε, and therefore |N(ȳ)| ≤ β |ȳ|2. We have

(Bȳ, ŷ) + (M−1N(Mȳ), ŷ) = (Bŷ, ŷ) + (N(Mȳ), (M−1)tŷ)

≤ αr̂2 + βm2
1m2(r̂

2 + r̃2)r̂.

Then a simple computation shows that (44) is implied by

1

2

(
γ +

√
γ2 − 4r̃2

)
> r̂ >

1

2

(
γ −

√
γ2 − 4r̃2

)
.(45)
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The first inequality is satisfied because r̃ < r ≤ γ
2 . For all ȳ ∈ ∂Ξ, 0 < |Puȳ| < r, by

(41), we have r̂ = k
γ r̃

2 and

1

2

(
γ −

√
γ2 − 4r̃2

)
< k

r̃2

γ
if r̃ <

√
k − 1

k
γ .

Since r̃ < r, then (45) and therefore (44) hold.
We need a condition which ensures that the invariant manifold is not entirely

contained in Ξ, but it intersects κ at some point. Let α′ be the minimum of the real
parts of the eigenvalues of B with positive real parts.

Lemma 26. If r, α, α′, k, and Ξ are as above and

α′ +
α

γ

(
r +

k2

γ2
r3

)
> 0,(46)

then there exists δ > 0 such that (g(ȳ), Puȳ) ≥ δ|Puȳ|2 for all ȳ ∈ Ξ, and therefore the
component of the flow in the direction of the unstable manifold is always increasing
in Ξ, together with its first derivative.

Proof. Choose δ > 0 satisfying

βm2
1m2

(
r +

k2

γ2
r3

)
≤ α′ − δ.

Fix ȳ ∈ Ξ and let ŷ = Psȳ, ỹ = Puȳ, r̂ = |ŷ|, and r̃ = |ỹ|. By (46) and the definition
of γ, such a δ exists. We have

(Bȳ, ỹ) + (M−1N(Mȳ), ỹ) = (Bỹ, ỹ) + (N(Mȳ), (M−1)tỹ)

≥ α′r̃2 − βm2
1m2

(
r̂2 + r̃2

)
r̃ ≥ δr̃2,

because r̂ ≤ k
γ r̃

2 by the definition of Ξ.

Lemma 27. Let r, α, α′, k, ŷ, and κ be as above. The unstable manifold tangent
to ŷ intersects κ.

Proof. By Lemma 26 the unstable manifold cannot be entirely contained in Ξ.
By Lemmas 25 and 26 it can only exit through κ.

In the next subsection we apply these ideas in order to prove Theorem 7.

6.2. The computer assisted proofs. We apply the general result stated in
the previous subsection to system (8).

We first consider the point P1 = (4, 0, 0, 0). Let x = v−P1. System (8) takes the
form (38) with

A1 =

⎡
⎢⎢⎣

2 − n −1 0 0
0 2 1 0
0 0 4 − n 1
0 0 0 4

⎤
⎥⎥⎦ ,

N(x) = (0, 0, 0, x1x4), and α = 4 − n.
If we consider the linearization at P2 = (0, 4n− 8, 16− 8n,−8(n− 2)(n− 4)) and

set x = v − P2, then system (8) can be written as (38) with

A2 =

⎡
⎢⎢⎣

2 − n −1 0 0
0 2 1 0
0 0 4 − n 1

−8(−4 + n)(−2 + n) 0 0 0

⎤
⎥⎥⎦ ,
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and again N(x) = (0, 0, 0, x1x4). From section 3.1 we know that if n = 5, . . . , 12, the
eigenvalues are ((4 − n)/2 + iσ, (4 − n)/2 − iσ, λ1, λ2), where λ1 < (4 − n)/2 < 0 and
λ2 > 0. It turns out that α = (4 − n)/2. If n ≥ 13, all eigenvalues are real and

α = 2 − 1

2
n +

1

2

√
8 − 4n + n2 − 4

√
68 − 52n + 9n2.

We remark that since the nonlinear part is very simple, it is possible to obtain a
better estimate for the coefficients β, m1, and m2 than the one we had in section 6.1.

In the following, let M be the matrix that diagonalizes either A1 or A2 and let
|Mi| be the (Euclidean) norm of the ith row of M .

Lemma 28. For all y1, y2 ∈ R
4 the following inequality holds:

(N(My1), (M
−1)ty2) ≤ |M1| |M4|

∣∣(M−1)t4
∣∣ |y1|2 |y2| .

Proof. We have

(N(My1), (M
−1)ty2) = (My1)1(My1)4((M

−1)ty2)4,

where we denoted by (Av)i the ith component of the vector (Av), i.e., the scalar
product of the ith row of A with the vector v. The conclusion follows by the definition
of |Mi|.

By the above lemma we infer that γ may be obtained as

γ = − α

|M1| |M4| |(M−1)t4|
(47)

and ε may be chosen arbitrarily.
To compute a rigorous enclosure [λmin

σ , λmax
σ ] for the value of λσ, we fix n and

compute the value γ in (47). We can choose k > 1 and r > 0 satisfying (43) and (46).
We have some degree of arbitrariness: we prefer a small r in order to have a small set
κ, but we also like a large r in order to reach the hyperplane in fewer time steps. It
is also convenient to have the smallest possible k, since it also implies a smaller set κ.
We have to make an empirical choice by trying different values and selecting the best
trade-off. It turns out that it is convenient to choose r first, set

k =
γ2 −

√
γ4 − 4r2γ2

2r2
,(48)

and check whether (46) holds. Since the unstable manifold in P2 is one-dimensional,
we have to choose between two possible directions. The numerical experiment gave
us the correct direction. Once we choose r and compute k, we have the set κ as given
in (42). We should compute the evolution of all points in κ and its intersection with
the hyperplane v1 = 4. This would require a very long computer time, but since two
solutions of (38) cannot intersect, then it is enough to compute the evolution of the
points in the boundary of κ, provided we can prove that the trajectories of all points
in the interior of κ also reach the hyperplane v1 = 4. This can be checked by the
following lemma.

Lemma 29. Set

κ′ := κ′
ŷ := ŷ +

{
ỹ ∈ S0 : |ỹ| =

k

γ
r2

}
.(49)
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Assume that the trajectories of all points in κ′ intersect the hyperplane v1 = 4 and do
not intersect the hyperplane (2 − n)v1 − v2 + 4(n − 2) = 0. Let κ̂ be the intersection
of all such trajectories with v1 = 4.

Then the trajectories of all points in κ also intersect the hyperplane v1 = 4, and
the intersection takes place in the region bounded by κ̂.

Proof. Since v′1 = (2−n)v1 − v2 +4(n− 2), then v′1 is positive and bounded away
from zero for all points of the trajectories starting from κ′. Then, by the uniqueness
and continuous dependence on the initial condition of the Cauchy problem, it follows
that the union τ(κ′) of such trajectories is a “tube” in R

4 and the trajectories of all
points in κ \ κ′ cannot exit τ(κ′). Then v′1 is also positive and bounded away from
zero for all points starting in κ, and the trajectory of every point in κ reaches v1 = 4
in a finite time.

Our strategy is as follows: We compute the intersection of the flow starting from
all points in κ′ with the hyperplane v1 = 4. If all the trajectories intersect the
hyperplane, we have a proof that the singular solution exists; furthermore the envelope
in the v4-direction of all intersections yields the desired λ-interval. Note that the set
κ′ is the image of S2 through an invertible affine map, and therefore we need an
efficient discretization of a sphere.

Lemma 30. For all n = 5, . . . , 16, let r = .001, let k be as in (48), and, let
κ′ = κ′

ŷ as in (49). For a suitable choice of the direction ŷ in the one-dimensional
unstable manifold U0, the following conclusions hold:

1. The flow starting in κ′ intersects the hyperplane v1 = 4.
2. The absolute value of the first coordinate of the intersection point is in the

interval set [λmin
σ , λmax

σ ] defined in Table 1.
3. The flow starting in κ′ and ending on the hyperplane v1 = 4 does not intersect

the hyperplane (2 − n)v1 − v2 + 4(n− 2) = 0.

The proof is by computer assistance, as described in section 9.

In order to compute a rigorous lower bound for λ∗, we consider the trajectories
of points in the unstable manifold of P1 and compute the intersection with the hyper-
plane v1 = 4. Since the manifold is two-dimensional, we have to decide the direction
to follow: we use the numerical results presented above to compute the direction that
gives the highest possible value for λ. We define κ as above, and we wish to prove
that all trajectories starting from κ intersect the hyperplane v1 = 4. We also need
to estimate the location of such intersections. It would save some computer time
to restrict the computation to the boundary of κ as in the proof of Lemma 30, but
we cannot proceed as in Lemma 29 because P1 lies on the hyperplane v1 = 4 and
therefore v1 cannot be monotone. Furthermore, since the unstable manifold has now
dimension 2, we do not have the topological argument (the tube) used before. On the
other hand, in this case we only have to consider a region which is the affine image of
a disk; therefore it is feasible to compute the trajectory for all point in the disk.

Lemma 31. For all n = 5, . . . , 10, let r = .001 if n ≤ 9 and r = .0001 if n = 10;
let ŷ = P1 + r(e1 sinϑn + e2 cosϑn), where e1 and e2 are the eigenvectors of A1 with
unit norm and positive first component corresponding, respectively, to the eigenvalues
2 and 4 and ϑ5 = 6.2829856, ϑ6 = 6.28298854, ϑ7 = 6.2829901, ϑ8 = 6.2829918,
ϑ9 = 6.2829914, ϑ10 = 6.28316589; let k be as in (48) and let κ be as in (42).

1. The flow starting at all points of κ intersects the hyperplane v1 = 4.
2. The absolute value of the first coordinate of the intersection point is larger

than the λ∗
min displayed in Table 1.

We point out that this statement shows only that there exists a regular solution
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for some value of λ obtained as the intersection of a one-dimensional submanifold of
the unstable manifold with the hyperplane v1 = 4. Since we cannot exclude that there
exists a solution for a larger value of λ, we only have a lower bound for λ∗.

The proof of Theorem 7 follows by Lemmas 27–31.

7. Proof of Theorem 12. In this section we use both the PDE notation ∆2

and the ODE notation with primes denoting differentiation (with respect to r or s,
depending on the context).

We assume that Uσ is any radial weakly singular solution of (Pλσ ) with

λσ > 8(n− 2)(n− 4).(50)

In particular, we deal with those solutions obtained in Theorem 7; see also Table 1.
Then, by Theorem 6(ii), we know that

Uσ(r) = −4 log r + o(| log r|) as r → 0.

Therefore, we define the function

W (r) := Uσ(r) + 4 log r

and study its behavior. After some calculations, we find that it weakly solves the
equation ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∆2W =

1

|x|4 [λσe
W − 8(n− 2)(n− 4)] in B,

W = 0 on ∂B,
∂W

∂n
= 4 on ∂B.

(51)

The proof of Theorem 12 follows from the next two lemmas and Proposition 34
at the end of this section.

Lemma 32. Assume (50) and assume that W ∈ C4(0, 1] weakly solves (51)
(W = W (r)); then

lim
r→0

W (r) = log
8(n− 2)(n− 4)

λσ
= W0 < 0.(52)

Moreover, at least one of the two following facts holds true:
(i) The function W (r) −W0 changes sign infinitely many times in any neighbor-

hood of r = 0.
(ii) W (r) ≥ max[W0, 2r

2 − 2] for all r ∈ (0, 1].
Proof. The negativity of W0 follows from (50), while (52) is a consequence of

Theorem 6.
Assume that case (i) in the statement does not occur; we first claim that

W (r) ≥ W0 for all r ∈ (0, 1].(53)

For contradiction, assume that (53) does not hold; then there exists R̄ ∈ (0, 1) such
that W (R̄) < W0 and two cases may occur, as follows.

First case. There exists R ∈ (0, 1) such that W ′(R) = 0 and W0 ≤ W (r) < W (R)
for all r ∈ (0, R). In this case, let H(r) = W (r) − W (R) so that H(r) < 0 for all
r ∈ (0, R); on the other hand, H weakly solves the problem⎧⎨

⎩
∆2H = ∆2W ≥ 0 in BR,

H =
∂H

∂n
= 0 on ∂BR,
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so that by Lemma 16, one gets H(r) ≥ 0 for all r ∈ (0, R), a contradiction.
Second case. There exists R ∈ (0, 1) such that W ′(R) = 0 and W0 ≥ W (r) >

W (R) for all r ∈ (0, R). In this case, H(r) = W (r) −W (R) satisfies both H(r) > 0
for all r ∈ (0, R) and ⎧⎨

⎩
∆2H = ∆2W ≤ 0 in BR,

H =
∂H

∂n
= 0 on ∂BR,

giving again a contradiction.
We have so proved (53): hence, if we define the function φ(r) = W (r) + 2 − 2r2,

we infer that φ = φ(|x|) weakly satisfies⎧⎨
⎩

∆2φ = ∆2W ≥ 0 in B,

φ =
∂φ

∂n
= 0 on ∂B;

this yields φ(r) ≥ 0, namely, W (r) ≥ 2r2 − 2 for all r ∈ (0, 1].
We have so proved that if (i) does not occur, then (ii) holds true, that is, the

statement follows.
In high dimensions the previous alternative breaks down, and we can describe the

behavior of weakly singular solutions.
Lemma 33. If n ≥ 13, then case (i) of Lemma 32 cannot occur.
Proof. Let W = W (r), let W0 be as in Lemma 32, and consider the function

Z(s) = W (es) −W0, s ∈ (−∞, 0).

Then, since W satisfies (51), we deduce that

L4Z + p(s)Z = 0, s ∈ (−∞, 0),(54)

where L4Z = Z ′′′′ + 2(n− 4)Z ′′′ + (n2 − 10n + 20)Z ′′ − 2(n− 2)(n− 4)Z ′ and

p(s) = −8(n− 2)(n− 4)
eZ(s) − 1

Z(s)
.

Note that p(s) is well-defined for all s < 0 and that, by (52), p(s) → −8(n− 2)(n− 4)
as s → −∞. In particular, for all ε > 0 there exists sε < 0 such that

p(s) ≥ −[8(n− 2)(n− 4) + ε] for all s ≤ sε.(55)

Since n ≥ 13, for sufficiently small ε, the linear equation

L4Z − [8(n− 2)(n− 4) + ε]Z = 0(56)

admits four linearly independent solutions of “exponential type,” namely, Zi(s) = eνis

for some νi ∈ R (i = 1, . . . , 4); see also the discussion in section 3.1. Hence, (56) is
nonoscillatory in (−∞, 0) according to the definition in [E]. Therefore, by (55) and [E,
Corollary 1], also (54) is nonoscillatory in (−∞, 0) and the statement follows.

Let us conclude this section with the observation that an explicit form of the
weakly singular solution Uσ seems not so easy to be obtained.

Proposition 34. Assume that the function W is a solution of (51) as considered
in Lemma 32. Then the function W = W (r) is not analytic in r close to 0.
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Proof. For contradiction, let ak = W (2k)(0)/(2k)! and assume that

W (r) =
∞∑
k=0

akr
2k

is a convergent power series for r close to 0. Since W is regular, the right-hand side
of the equation in (51) is bounded as r → 0, and we necessarily have

a0 = log
8(n− 2)(n− 4)

λσ
, a1 =

W ′′(0)

2
= 0.(57)

Then

W (k)(r) =
W ′′′′(0)

(4 − k)!
r4−k + O

(
r5−k

)
as r → 0 (k = 1, 2, 3),

and hence

n(n + 2)

3
W ′′′′(0) = ∆2W |r=0 =

λσe
a0W ′′′′(0)

24
=

(n− 2)(n− 4)

3
W ′′′′(0),

where we have used (51) and (57). This shows that W ′′′′(0) = 0 and a2 = 0.
We now proceed by induction. Assume that for some k ≥ 2 we have shown

that a1 = · · · = ak = 0; we claim that ak+1 = 0. Once we show this, we achieve
a contradiction and the statement follows. Note that λσe

W − 8(n − 2)(n − 4) =
8(n− 2)(n− 4)[eW−a0 − 1] and, by induction assumption,

1

r4

(
eW−a0 − 1

)
= ak+1r

2k−2 + O
(
r2k

)
.

Therefore, from (51) we get

(
d

dr

)2k−2

∆2W
∣∣∣
r=0

= 8(2k − 2)!(n− 2)(n− 4)ak+1.(58)

On the other hand, recalling the radial form of ∆2 (see the left-hand side of (4)) and
taking into account that (as r → 0)

W ′(r) ∼ W (2k+2)(0)

(2k + 1)!
r2k+1 , W ′′(r) ∼ W (2k+2)(0)

(2k)!
r2k,

W ′′′(r) ∼ W (2k+2)(0)

(2k − 1)!
r2k−1 , W ′′′′(r) ∼ W 2k+2(0)

(2k − 2)!
r2k−2,

we also deduce that(
d

dr

)2k−2

∆2W |r=0 = 2k(2k + 2)(n + 2k)(n + 2k − 2) · (2k − 2)! ak+1.

Combining this with (58), we get

ak+1 {2k(2k + 2)(n + 2k)(n + 2k − 2) − 8(n− 2)(n− 4)} = 0.

Since the term in brackets is strictly positive, this yields ak+1 = 0.
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8. Further results and open problems. First, we discuss the stability of the
linearizations around regular solutions of problem (Pλ). For this purpose we observe
that the minimal solution depends continuously on λ.

Proposition 35. As before, let Uλ denote the minimal solution of (Pλ). Then
[0, λ∗) � λ �→ Uλ ∈ C4,α(B) is continuous from the left. Moreover, if λ0 ∈ [0, λ∗) is
such that the first eigenvalue of the linearization LUλ0

:= ∆2 − λ0 exp(Uλ0
) is strictly

positive, then λ �→ Uλ is also continuous in λ = λ0.
Proof. Let λk ↗ λ0. Since Uλk

≤ Uλ0
and since the (Uλk

)k are monotonically

increasing, we get Ũ := limk→∞ Uλk
, first in any Lq-space, then by elliptic theory in

W 4,q, and finally in C4,α(B). Hence, Ũ also solves (Pλ0
), and 0 < Ũ ≤ Uλ0 . We

conclude that Ũ = Uλ0 by minimality of Uλ0 .
The second statement follows from the implicit function theorem and again the

monotonicity of Uλ in λ.
The next statement extends some results of [CR] to the biharmonic case; see

Proposition 2.15 there. In order to show the sign condition of eigenfunctions, we use
a decomposition method with respect to pairs of dual cones.

Proposition 36. Let u be a regular solution for (Pλ), where λ ∈ (0, λ∗]. Let
the first eigenvalue µ1 of the linearization Lu := ∆2 − λeu under Dirichlet boundary
conditions be nonnegative: µ1 ≥ 0. Then every eigenfunction of Luϕ = µ1ϕ is of
fixed sign. Moreover, if v ∈ C4(B̄) solves ∆2v ≥ λev in B and v = ∂v

∂n = 0 on ∂B,
then it follows that v ≥ u. Finally, if µ1 = 0, then we even have v = u.

Proof. In order to show that the first eigenfunction ϕ of Lu is of fixed sign, we
need to explain a decomposition technique with respect to dual cones, which was
found in the abstract setting by Moreau [Mo] and adapted to biharmonic Dirichlet
problems in [GG]. As usual we equip H2

0 (B) with the scalar product

(u,w)H2
0

:=

∫
B

∆u∆w dx.

Here, let

K =
{
u ∈ H2

0 (B); u ≥ 0 a.e. in B
}
,

denote the convex closed cone of nonnegative H2
0 -functions and

K′ =
{
u ∈ H2

0 (B); for all w ∈ K : (u,w)H2
0
≤ 0

}
its dual cone in H2

0 of weak subsolutions of the clamped plate equation. By Lemma 16
we see that K′ ⊂ −K. For any w ∈ K′ we even have that either w ≡ 0 or w < 0 in B.

Assume now by contradiction that ϕ is not of fixed sign. Then, according to [Mo],
we may decompose

ϕ = ϕ1 + ϕ2

with ϕ1 ∈ K, ϕ2 ∈ K′, and ϕ1 ⊥ ϕ2 in H2
0 (B). By assumption we have that ϕ1 ≥ 0,

ϕ1 �≡ 0, and ϕ2 < 0. But then

0 ≤ µ1 = inf
w∈H2

0 (B)\{0}

∫
B

(
(∆w)

2 − λ exp(u)w2
)
dx∫

B
w2 dx

≤

∫
B

(
(∆(ϕ1 − ϕ2))

2 − λ exp(u)(ϕ1 − ϕ2)
2
)
dx∫

B
(ϕ1 − ϕ2)2 dx
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<

∫
B

(
(∆(ϕ1 + ϕ2))

2 − λ exp(u)(ϕ1 + ϕ2)
2
)
dx∫

B
(ϕ1 + ϕ2)2 dx

=

∫
B

(
(∆ϕ)

2 − λ exp(u)ϕ2
)
dx∫

B
ϕ2 dx

= µ1,

a contradiction. Hence, ϕ is of fixed sign, say ϕ ≥ 0, and in a second step we may
conclude from the equation and the strict positivity of the biharmonic Green function
(in the ball) that ϕ > 0.

We consider now u and v as in the statement. For τ ∈ [0, 1] we look at

∆2 (u + τ(v − u)) − λ exp (u + τ(v − u))(59)

≥ ∆2 (u + τ(v − u)) − λ (τ exp(v) + (1 − τ) exp(u)) ≥ 0.

Since (59) equals 0 for τ = 0, its first derivative at τ = 0 must be nonnegative:

∆2(v − u) − λeu(v − u) =: f ≥ 0.(60)

If µ1 > 0, a decomposition trick as above applied to the functional w �→
∫
B

((∆w)2 −
λeuw2 − fw)dx shows that v ≥ u.

If µ1 = 0, we test (60) with the positive first eigenfunction ϕ and get

∆2(v − u) − λeu(v − u) = 0.

That means that also the first derivative of (59) with respect to τ = 0 vanishes, so
that the second derivative needs to be nonnegative:

−λeu (v − u)2 ≥ 0.

But this immediately yields v = u.
Concerning the stability behavior of the linearizations around regular solutions,

we have the following.
Proposition 37. Let λ > 0, let u be a regular solution of (Pλ), let Lu = ∆2−λeu

be the linearized operator at u, and let µ1 = µ1(Lu) be the smallest eigenvalue of Lu;
then

(i) if λ < λ∗ and u is the minimal solution, then µ1 > 0;
(ii) if λ < λ∗ and u is not the minimal solution, then µ1 < 0;
(iii) if λ = λ∗ and the extremal solution u = U∗ is regular, then µ1 = 0.

Finally, if Uλ denotes the minimal (regular) solution of (Pλ) and µ1(λ) = µ1(LUλ
),

then the map λ �→ µ1(λ) is decreasing.
Proof. (i) The monotonicity of µ1(λ) follows immediately from the variational

characterization

µ1(λ) = inf
w∈H2

0 (B)\{0}

∫
B

(∆w)
2
dx−

∫
B

exp(Uλ)w2 dx∫
B
w2 dx

and from the monotonicity of Uλ with respect to λ. By Proposition 35 we see that
the function λ �→ µ1(λ) is continuous from the left on (0, λ∗) and even on (0, λ∗],
provided the extremal solution U∗ is regular.

Assume by contradiction that there exists a λ̃ ∈ (0, λ∗) with µ1(λ̃) ≤ 0. We put

λ0 := sup {λ ≥ 0 : µ1(λ) > 0} ≤ λ̃ < λ∗.
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According to the mentioned continuity from the left, we have µ1(λ0) ≥ 0. If we
assume µ1(λ0) > 0, then the second part of Proposition 35 would give µ1(λ) > 0 also
for some λ > λ0, a contradiction. Consequently we have µ1(λ0) = 0. Let u = Uλ0 > 0
be the corresponding minimal solution:

∆2u = λ0e
u in B, u = ∇u = 0 on ∂B.

Consider any λ ∈ (λ0, λ
∗) with minimal solution v = Uλ > 0:

∆2v = λev in B, v = ∇v = 0 on ∂B.

Since λ > λ0, Proposition 36 applies and yields v = u and hence λ = λ0, a contradic-
tion.

(ii) Let Uλ be the minimal solution for (Pλ) so that u ≥ Uλ. If the linearization
around u had nonnegative first eigenvalue, then Proposition 36 would also yield u ≤
Uλ so that u and Uλ necessarily coincide, a contradiction.

(iii) Assume that the extremal solution u = U∗ is regular. By continuity, we have
µ1 ≥ 0. If µ1 > 0, the implicit function theorem would also yield solutions for some
λ > λ∗. This is a contradiction, so that µ1 = 0.

Open Problem 1. Does (ii) of Proposition 37 extend to weak solutions u as
formulated in [BV, Theorem 3.1]?

We now turn to the extremal solution U∗. We first suggest the following open
problem.

Open Problem 2. Do we have uniqueness of weak solutions for (Pλ∗)? By Propo-
sition 37(iii), and arguing as in Lemma 2.6 in [BV], one obtains that if the extremal
solution is regular, then it is unique even in a weak sense. However, without the
regularity assumption on U∗, the proof seems much more difficult; we refer to [Ma]
for the corresponding result related to the second order problem (1). In particular,
the proof of a result in the spirit of [Ma, Lemma 2.1] requires a new trick, probably
of the same kind as the one we used to prove Lemma 20.

Perhaps, the precise characterization of all singular solutions Uσ and the corre-
sponding “singular” parameters λσ is the most interesting and difficult problem we
have to leave open in the present paper.

Open Problem 3. Are the singular parameter and the weakly singular solution
unique? In order to construct a weakly singular radial solution, according to Theo-
rem 6, one has to follow the unstable branch arising from P2. One can do so in two
(opposite) exit directions. In one direction we actually find at most (and presumably
precisely) one solution by the result of Soranzo [So]: the solution of the PDE has to
be strictly decreasing. We emphasize that this result extends to the class of weakly
singular radial solutions. For the ODE system (8) this means that any “singular”
trajectory may intersect the hyperplane v1 = 4 only once and cannot come back to it.
But we do not have a proof that the unstable branch leaving P2 in the other direction
will not intersect the hyperplane v1 = 4 even if numerical experiments suggest so.

Next, we recall that in [GGM] it was shown that for any open bounded domain
Ω ⊂ R

n there exist C1, C2 > 0 such that the following improved Hardy inequality
holds:

∫
Ω

|∆u|2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4 dx + C1

∫
Ω

u2

|x|2 dx + C2

∫
Ω

u2 dx for all u ∈ H2
0 (Ω).

(61)
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A similar inequality was used in [BV] in order to establish the space dimensions in
which the extremal solution for (1) is regular or singular. For (Pλ) this seems more
intriguing: it is not clear which is the role of each of the remainder terms in (61).
Furthermore, as we have seen in Theorem 12 and Proposition 34, the singular solution
is difficult to describe. However, we have a partial result relating Hardy’s inequality
with extremal solutions: clearly, this statement is weaker than Corollary 10 if n ≤ 10.

Proposition 38. Let λσ and Uσ be as in Theorem 7 and assume that λσ = λ∗.
Then if n ≤ 12, case (ii) in Theorem 12 cannot occur.

Proof. By Proposition 37(i), by Theorem 3(ii)–(iii), and by using the notation of
Theorem 12, we infer that∫

B

|∆φ|2 ≥ λ∗
∫
B

eU∗φ2 = λ∗
∫
B

eW

|x|4φ
2 for all φ ∈ H2

0 (B).(62)

For contradiction, if (ii) in Theorem 12 holds, then

λ∗
∫
B

eW

|x|4φ
2 ≥ 8(n− 2)(n− 4)

∫
B

φ2

|x|4 for all φ ∈ H2
0 (B).

Since 8(n− 2)(n− 4) > n2(n−4)2

16 whenever n ≤ 12, the last inequality, together with
(62), would improve the best constant in Hardy’s inequality, a contradiction.

Proposition 38 and Corollary 10 suggest the following question and conjecture.
Open Problem 4. Which are all the space dimensions n ≥ 5 for which λσ < λ∗?

We conjecture that the answer is n ≤ 12. In view of Corollary 10 we know that
among these dimensions n, there are at least 5 ≤ n ≤ 10. Moreover, Theorem 12
and Proposition 38 prove “half” of this conjecture when n = 11, 12. Maybe the proof
relies on the interpretation of the two remainder terms in (61).

Open Problem 5. Show that any radial singular solution is also weakly singu-
lar, according to Definition 5. In particular, this would strengthen the statement of
Theorem 6.

If the previous three open problems could be solved in the affirmative, then we
could also conclude that the extremal solution U∗ is singular if and only if n ≥ 13.

We conclude this paper with some further problems. The next one is not yet
completely solved even in the second order case.

Open Problem 6. Do there exist singular nonradial solutions to (Pλ) for some
λ > 0? We conjecture that the answer is positive; see also Problem 7 in [BV].

Figure 2 displays the numerically computed value of −v4 of the intersection of a
portion of the unstable manifold of P1 with the hyperplane v1 = 4 in the case n = 5.

More precisely, −v4 is displayed as a function of x := − log(−ϑ). One may observe
the estimated value of λ∗ as the maximum value reached by −v4; furthermore, as
ϑ → 0− the value of −v4 appears to asymptotically reach λσ oscillating around it.
This leads us to the following problem.

Open Problem 7. Assume n ≤ 12. Prove that for every N ∈ N there exists
ε = ε(N) > 0 such that for λ ∈ [λσ − ε, λσ + ε] there exist at least N distinct regular
radial solutions. For the second order problem the same statement holds true; see
[GPP, Theorem 15].

Open Problem 8. How can one proceed in arbitrary smooth domains where it
is known that comparison principles like Lemma 16 become false? How can one
construct and characterize the minimal solution? Does one have similar bifurcation
diagrams, where the solutions, however, can no longer be expected to be positive
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everywhere? Or does the lack of comparison principles lead to a completely different
behavior, at least in geometrically very complicated domains?

9. Appendix. Computation techniques. We describe here the algorithm
used in the computer assisted proofs. In order to prove Theorem 7 we need a rigorous
estimate of the intersection of a branch of the unstable manifold with the hyperplane
v1 = 4. Since we do not know the exact location of any point of the manifold, except
for the stationary point, we compute the trajectory of the whole set κ′ as described
in section 6. Since no analytical solution of the equation is available, we estimate the
trajectories of all points of the set and compute the intersections with the hyperplane
v1 = 4 with rigorous error bounds. In order to compute the image of an infinite set
of points, we partition it into boxes with small enough sides, which we call interval
sets, and we compute their trajectories using interval arithmetics. More precisely,
we start with a Taylor approximation of order 10; i.e., we estimate the trajectory of
an interval by using the Taylor expansion of order 10 and estimate the error by the
Lagrange remainder. If h is the time step, we compute a rough but rigorous enclosure
D of the trajectory at times [0, h], which is an interval set D such that the solution
of the equation lies in D for all times between 0 and h. By Lagrange theorem we
estimate the error we make neglecting the remaining terms of the Taylor expansion

by computing x(11)(D)h
11

11! . We compute x(11)(D) (which is an interval enclosing all
possible values assumed by the 11th derivative of the trajectory, therefore enclosing
the Lagrange remainder) using a recursive algorithm for the time derivatives of the
solutions (see section I.8 in [HNW]). We point out that it takes a finite amount of
s-time to go from any point in the set κ′ (in Lemma 30) or κ (in Lemma 31) to the
hyperplane v1 = 4. The actual number and size of the intervals that we used as a
partition of the sets κ′ and κ can be read directly from the Mathematica notebook,
together with the time step we used for the integration. We feel that it is pointless to
display here the long list of numbers which represents such partitions, but since such a
list is an essential part of the proof, we make it available in the Mathematica notebook.

The interval arithmetics algorithms address the problem of computing the tra-
jectory of an interval and of keeping track of the errors in an elegant and rigorous
way, but they introduce another problem. Indeed, even in the simplest dynamical
system, the procedure described above leads to a very rough estimate of trajectories,
due to the wrapping effect which makes the bounds on the error grow exponentially
fast. The wrapping effect is one of the main problems one faces when trying to do
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rigorous numerics for ODEs.
We describe it with one example: Consider a square centered at the origin x =

[−δ, δ]2 and the matrix that represents the rotation in R
2 by an angle α,

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

Assume for simplicity that 0 < |α| < π/2. If we apply Rα to x and wish to repre-
sent the result by another interval (i.e., another rectangle with sides parallel to the
coordinate axes), we see that we need (cos(α) + | sin(α)|)[−δ, δ]2; therefore, although
Rα is an isometry, its computer realization has a growth factor cos(α) + | sin(α)| > 1.
When solving the system of equations of the harmonic oscillator

ẋ = −y, ẏ = x,(63)

the 2π-shift along the trajectory is an identity map, but when we compute it numer-
ically in interval arithmetics, say with time step h = 2π/N , we have to compose N
times the map induced by R(h). An easy computation shows this computation yields
a growth factor e2π ≈ 535 as h → 0.

We substantially reduce the wrapping effect by using the Lohner algorithm. A
complete description of interval arithmetics and of the Lohner algorithm is beyond the
scope of this paper; we refer to section 6 in [AZ] and the references cited therein for
an exhaustive treatment of the topic. More specifically, see [MZ] concerning interval
arithmetics and [Lo] for the Lohner algorithm. For the purpose of this description
it suffices to consider the Lohner algorithm as a finite number of interval arithmetic
operations based on the Taylor expansion which, given (8), an (interval) initial condi-
tion V0 ⊂ R

4, and a time step h, returns an interval V1 ⊂ R
4 such that for all points

v0 ∈ V0 the solution v(s) of the Cauchy problem with initial condition v(0) = v0 sat-
isfies v(h) ∈ V1. In other words, the Lohner algorithm provides a rigorous enclosure
of the solution at time h of a given Cauchy problem by performing a finite number
of operations. The fact that the operations involved are in finite number and purely
arithmetical (they are basically sums and multiplications, which can be performed
with computer representable numbers with rigorous control on the round-off) makes
it suitable for implementation with a computer.

We must determine the intersection of the trajectory with the hyperplane v1 = 4.
Since we are computing the trajectory of an interval, it takes a finite (nonzero) amount
of “time” to cross the hyperplane; therefore we necessarily introduce another error
when estimating the intersection point and have to give a rigorous bound for this error
as well. We proceed as follows. We numerically compute the time s1 required for the
flow to reach the intersection. We compute with the Lohner algorithm the solution
V1 of the problem at time s1. We check if the first component (V1)1 of V1 is contained
in (−∞, 4]. If (V1)1 ⊂ (−∞, 4], then no points in V1 have crossed the hyperplane. If
(V1)1 �⊂ (−∞, 4], we choose (arbitrarily) a smaller value of s1 and repeat the step.
Then we roughly compute the time s2 required for the set V1 to cross the hyperplane.
With the Lohner algorithm we compute the solution V2 of the problem at time s2.
We check that all points in V2 have crossed the hyperplane, i.e., (V2)1 ⊂ [4,+∞). If
not, we choose a larger value for s2 and repeat the step. We are interested only in
the value of the fourth component of the solution: since at all points of our interest
v′4 < 0 (because v′4 = v1v4), it suffices to compute the hull of the interval value of v4

before and after the crossing of the hyperplane. We now have a rigorous proof that
the intersection takes place at some v4 ∈ [min(V2)4,max(V1)4], and this last interval
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(with the left bound rounded down and the right bound rounded up) is the value we
display in Table 1. For the λ∗ computation we display only max(V1)4 rounded down,
since the other side of the interval does not have any meaning.

In order to check the third statement in Lemma 30, it is not enough to check
that the evolution of all points is in A as defined in subsection 6.2. Indeed, if the
time step is large, it may happen that some trajectory leaves A and reenters it in a
single integration step. We have therefore to check at every time step that the whole
rough enclosure D as defined above is in A and that the part of the set A which is
contained in the flow tube has a trivial topology, i.e., it does not have holes. The
round-off errors are taken care directly by suitable C++ procedures. Such errors may
vary by changing computers and/or operating systems, but since they are usually very
small when compared to the wrapping effect, we expect that the proofs can be easily
reproduced on any recent computer obtaining very similar bounds.

To perform the proofs, we implemented a version of the whole algorithms in
a combination of Mathematica 4.0 and C++ (gcc version 2.95.1) under the Linux
operating system. More precisely, Mathematica was used to handle all the data and to
perform a few algorithms which are less demanding for the CPU, but more complicated
to implement. Furthermore Mathematica was used to make all numerical experiments
and to draw the pictures. On the other hand C++ was used for the heavy interval
arithmetic computations, where it offered much higher speed and more controllable
accuracy. The connection between the two languages was obtained by MathLink. The
verification of the whole proof takes a few days of CPU time on a machine equipped
with an Athlon XP1700 processor. The computer programs which are part of the
proofs can be obtained from the authors upon request, while the interval algorithms
are provided by [CAPD].
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