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Existence of Minima
for Nonconvex Functionals
In Spaces of Functions
Depending on the Distance from the Boundary
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Abstract

We prove that some nonconvex functionals admit a unique minimum in a func-
tional space of functions which depend only on the distance from the boundary of
the (plane) domain where they are defined. The domains considered are disks and
regular polygons. We prove that the sequence of minima of the functional on the
polygons converges to the unique minimum on the circumscribed disk as the num-
ber of sides tends to infinity. Our method also allows us to determine the explicit
form of the minima.

1. Introduction

Let © be an open bounded domainRf. We consider the cases whe®eis
either a disk or a regular polygon. Let: Rt — R be a (not necessarily convex)
superlinear lower semicontinuous (l.s.c.) function and consider the functional
defined by

J(u) = / [A(|Vul) +ul dx.
Q
We study the following problem of existence of minima,

min_J (), 1)

where.ZZ" is the subset oW()l’l(Q) of functions depending only on the distance
from the boundary 2. We call the functions inzZ” web functiondecause their
level lines recall a spider's web. Wheéhis a disk, web functions are nothing but
radially symmetric functions.

Since no convexity on is required, the functional may not have a minimum
on the whole spacW&’l(Q). In such a case it is usual to introduce the relaxed
functionalJ* and consider its minimum, which coincides with the minimunyof
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if the latter exists. In Section 6.1 we study a problem from shape optimization. In
this case the minimum af does not generally exist, so that the minimum/df
corresponds to an optimal design which is not easily manufactured. For this reason
we could decide to seek an optimal design in a simpler class of possible designs as,
for instance, the class of web functions.
WhenQ = Dy (an open disk of given radiu®R > 0) it is known [4] that the
functional/ admits a unique minimumain Wol’l(DR) which s radially symmetric.
We will prove that for al > 3 and for all regular polygor®,, of n sides inscribed
in Dg, problem (1) on2,, admits a unique solution, for which we are able to
give the explicit form. Then we prove that the unique solutiaf (1) on Dg may
be obtained as the (uniform) limit of the sequeficg. This also enables us to give
the explicit form of the functiom.
We believe that our results may be a starting point for further research, provided
answers can be found to some natural questions. First of all, S#ice Wol’l(Q)
we clearly have
min Jw) = inf  J®@w).
ue. 7% ueW&‘l(Q)

It would be interesting to understand for which kind of functiong(ge., for which
functionsh) equality holds. In other words, are there functionals for which there is

a possible minimizing function in the se¥™? In [2] there is an example of a convex
functional on a square whose minimum does not have convex sublevels. The first
step towards answering the above question would then be to determine sufficient
conditions for the possible minimum to have convex sublevels.

If the radiusR is smaller than some constant relatedhtdhe results in [3]
show that the minima of on W&’l(szn) exist and depend linearly af(x, 92,,).

More general set® (other than polygons or disks) are also considered. Another
natural question which arises is the following. If a web function minimizem
Wol’l(Q), is it necessarily linear with respect dgx, 92)? Wheng is a disk the
answer is negative, as our explicit form (see (4) below) clearly states (see also [4]).
We believe that it is also negative whenis a polygon.

Can our results be extended to a wider class of functiohaftdo general convex
domains2 ¢ R2? Probably Theorems 1 and 2 cannot be completely extended
to more general problems, but maybe this is possible in a weaker form, as in
Section 5.1.

The outline of this paper is as follows. In Section 2 we state our main existence,
unigueness and convergence results and we determine explicitly the solutions to the
minimum problems. These results are proved in Sections 3 and 4. In Section 5 we
make several remarks; in particular, we partially extend our results to a slightly more
general class of functionals Finally, some applications are given in Section 6.

2. Main results

For simplicity, letDg be the open disk centered at the origin of given radius
R > 0, letA € 9Dy and let2,, be the regular polygon af (n > 3) sides inscribed
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in Dg and having a vertex id. Consider the sets of web functions

T ={u e Wy (Dp): u(x) =u(lx|]) Vx e Dg},
T ={u € Wyt (Qu); u(x) = u(d(x, 32,)) Vx € Q).
Note that7,, c C(, \ {0}). Indeed, a discontinuity in some point 2, \ {0}

would imply the discontinuity on a whole polygon and would not allow the function
to belong toW&’l.

We assume that the functidns= oo satisfies the following two conditions:

(h1) h:RT > Risls.c,

there exists a convex |.s.c. increasing functionR™ — R such that
(h2) h(t) = ®(t) forallt e RT

We consider the problems of minimizing the functiodabn.72" and. 7, :

P min h(|V dx,

(P) min DR[ (IVul) + ul dx

(Py) min / [A(|Vu|) + u] dx.
ue. I, Q

In order to solve these problems we introduce the funaiigrthe convexification
of h (the supremum of the convex functions less or equélt@nd we denote by
3 its support, namely
Y :={t=20; h*(t) < +o0}.
Next, we define the functions
. h*(t — h*(¢
T (o) =min {l‘ ey M Z z
e 2
h*(t) — h*(t —
T+(O') — max{t ex; u § g
I3 2
where we use the convention th&t(r + ¢) — h*(t) = —oo for all ¢ > 0 and all
strictly less than any element &f, while h*(t) — h*(t — ¢) = oo foralle > 0
and allz strictly greater than any element Bf Sincei™ is convex, it has left and
right derivatives at every pointe ¥ (with the same convention as above for the
points ofd X, if they exist). We denote such derivatives @y)”_(r) and(h*)’_(1).
Then, itis not difficult to verify that an equivalent definition of the functidisis

T~ (o) =min{r € T; (W), (1) = %}, T (o) = max{r € T; (h*)_(1) < %}.
2

In what follows we will make use of both the above characterizations of these

functions. We also refer to Section 5.2 for some propertiegaf
We first prove the following result.
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Theorem 1.Assume(h1) and (k2); then, for alln = 3, problem(P,) admits
a unique solutioru, € .72,. Moreover,u, € W&’O"(Qn), and it is explicitly
expressed by

d(x,092,)
uy(x) = —/ T7<R COSz — a) do. 3)
0 n

With an abuse of notation we also denote gythe function in W&’l(DR)
obtained by extending,, by 0 onDy \ 2,,, and we prove that the sequericg }
converges as — oo to the unique solution of the minimizing problem in the disk.

Theorem 2.Assumghl) and (h2); for all n let u,, be the solution of P,) and let

u be the unique solution @#). Then, we have, —* u in W&’w(DR); MOreovet,
lim, - J(u,) = J(u) andu, — u uniformly. Therefore, u is explicitly expressed
by

R
ulx) = —/ T (o) do. (4)
\

x|

3. Proof of Theorem 1

Let 2* be the convexification di and let/* be the corresponding functional
J*(u) = / [W*(|Vul) +ul dx
Qp

wheren 2 3 is fixed. Consider the relaxed problem

(P)) min/ (W*(IVul) + u] dx.
ueTn JQ,

We first prove the following lemma.

Lemma 1. The problem P;) admits a solutiom,, € .7 ,.

Proof. The set7Z, is clearly a linear space. Moreover, lgt,} C .77, satisfy
Uy — uin Wol’l(Q,,) for someu € W&’l(QH). Then there is a subsequence:gf
converging ta: a.e., which proves that € .77, and that72", is weakly closed.

The functional/* is convex and by/?2) it is coercive, so that any minimizing
sequence is bounded Wié’l and relatively compact in?. By Theorem 11 in [13]
J*is|.s.c. with respect to the! norm topology and therefore it admits a minimum.
O

Since problem B,) is autonomous we may translate and rot@teso that it
lies in the half planer; > 0 and so that one of its sides has equatign= 0,
0= x2 £ 2RsinZ. Let¢, = RsinZ, A, = RcosT andd, = tan’, and define
the triangle

T, = {(x1, x2) € Qp; x1 € (0, Xy), x2 € (Vyx1, 20, — Vpx1)}. 5)
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Then, by symmetry properties of functions #',,, we have

Yue.7,, Jwu =n/ [A(\Vu|) +uldx, J*u) =n/ [P*(IVu|) + uldx.
T, Tn
(6)

Moreover, any solutios of (P,) may be represented by

x1
V(i1 x) € Ty, ii(xn, x2) = — fo V(s x2)| ds. @

Indeed, ifz minimizesJ*, we clearly havei(x) < 0 for all x € ©,, and since
u € .7, its level lines inT,, have equations; = ¢ and Vi is a.e. orthogonal to
such lines, see LemmaA.2 p.50 in [7].

Existence of a solution. We claim that any solution of (P;) is also a solution
of (P,).

Note that there exists at most a countable set of intefyils}'] (m € N) on
which #* is affine; denote by, the slope of:* in such intervals, that is,

(W) (1) =am Vte (l:’l_n, tén)
To prove the claim it suffices to show that

Vi) € |t ) foraex e Q.

meN

Since(P)) is a minimizing problem we have
VmeN, an, <0 = |Vix)| ¢ (#",15") fora.ex € Q,. (8)

Indeed, for contradiction, assume that there extists 7;, of positive measure such
that |Vi(x)| e (1", 3') for all x e T. Characterize the function € .77, by
Vo(x) = iy Vi) for all x € T and byVo(x) = Va(x) fora.e.x € T, \ 7.
Then,h*(|Vv(x)|) < h*(|Va(x)|) in T and, by (7)p(x) < i(x) in T,, which yield
J*(v) < J*(u), a contradiction.

By using (8) we can prove th&Vu(x)| ¢ (¢1", ;') for all m such that,, > 0.
We fix any suchn and consider two different cases according to the value. of

The caseR cos? = 2a,. In this case we will prove thgVii(x)| < ¢ for a.e.

x € Q,. For contradiction, assume that there exist 0 and a subseb C Q, of
positive measure such thati(x)| = 1" + ¢ for all x € w; then, by the symmetry
of i there exists a sdt c [0, A, ] of positive one-dimensional measure such that
|Vit(x1, x2)| 2 t]" +efora.e.(x1, x2) € T, suchthat; € I. Consider the function

v € .7, defined for all(x1, x2) € T, by

Vi if I 1
[Vu(xy, x2)| = | Lf(xl’XZ)l I * ¢ v(x1, x2) = —/ [Vu(s, x2)| ds.
|Viu(xy, x2)|—e ifx1el 0
9)
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Then by (7) and by Fubini Theorem we get

An 20— 19,,x1
/ / [v—uldxodxy
Pnx1

M 2, —Vpx1 px1
/ / f [(IVii(s. x2)] — [Vo(s, x2)|] ds dxz dx1
Dy x 0

n n —0yx1
/ / / [Vi(s. x2)| — [Vo(s, x2)|] dxz dxy ds
Unx1 (10)

An
=2 /f £, — Oyx1) dxy1 ds
1Js

=¢ / (Onx2 — 20,x1 — 0pA2 + 20,0y) dix1.
1

On the other hand, sind®ii(x1, x2)| — & = t" whenevew; € I, by definition of
v we also have

A 20, —Vpx1
/ / [A*(IVv]) — h*(IVii])] dx2 dx1
Unx

20, —Vpx1 W (IVii| — — *(I\Vi
— Vil = &) (Vi)
9,

nX1 €
2@,1 Ppx1
—&ay, // dxy dx1 = —2¢a,, /(En — ¥yx1) dxq;
Dpx I

this, together with (6) and (10) implies that
J*Ww) — J* () <
n =

A

U /‘[sz_ + 2(am — An)x1+ )\5 — 2ahp] dx1. (11)
1

Consider the functiorf (s) = s2 + 2(am — An)s + A,% — 2a,,\,; itis not difficult
to verify that f(s) < O foralls € (0, A,,) and allA,, < 2a,,: therefore, (11) proves
thatJ*(v) — J*(u) < 0 and contradicts the assumption thahinimizesJ*.

The caseR cos” > 2a,,. From the previous case we know th&ti(x)| < ¢{" for
a.e.(xy, x2) € T, such thatc; > 1, — 2a,,; we claim thatVii(x)| = ¢ for a.e.
(x1, x2) € T, such thatc; < A, — 2a,,. We argue as above, but here we achieve
the contradiction by showing th&Vii(x)| may be increased. Assume that there
existe > 0and asef C [0, A,, — 2a,,] of positive one-dimensional measure such
that|Vii(x1, x2)| < 13! — ¢ for a.e.(x1, x2) € T, such thaty; € 7. Consider the
functionv € .77, defined for all(x1, x2) € T, by

|Vie(x1, x2)| ity é

X1
. v(xy, x2) = — Vu(s, x2)|ds.
Vi x)| 45 fager “OT2 /0 Vvis, x2)]

[Vu(xg, x2)| = {
Then, by reasoning corresponding to (11) we get

J*(w) — J*(i
% < ¢t /[—x% + 2(Ay — am)x1 — A,% + 2a,, 1,1 dx1.
I
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Consider the functiog(s) = —s2+2(k, — am)s — A2 + 2a,, A,.; then,g (s) < 0 for
all s € [0, A,, — 2a,,) and this proves that*(v) < J*(u) which is a contradiction.
The existence of a solutiar, to problem @,) is proved for allR > 0. O

Uniqueness of the solution. Let u, v € .72, be two solutions of ). Sinceu
andv have the same level lines we infer

[IVu(x)| Vu(x) = |Vu(x)| Vv(x) a.e.ing,.

Uniqueness then follows by reasoning as in the proof of Theorem 10 in [6].

Proof of (3). Letu, € .72, be the unique solution of,). Exactly as in the proof
of existence above, we may obtain the following results:

[Vu,(x)| £ T (o) fora.ex €, suchthati(x, 92,) = Rcosz — 0.

n
|[Vu,(x)| = T (c) fora.ex e Q, suchthat/(x, 9%2,) < Rcosz —o.
n
(12)
Note also that (2) and the convexity iof entail
Yo =0 T (o) <TT (o). (13)

Now we prove that
T (0) <Tt(0c) = h*isaffineintheintervalT (o), T"(0)]. (14)
Indeed, fore > 0 small enough we havé~(¢) + ¢ < TT (o). For suche the

mapt — h*(t) — h*(t — ) is non-decreasing, therefore by taking into account the
definition of 7+ we get

h*(T~ (o) + &) — h* (T~ (0)) < W (Tt (o)) —h*(T* (o) —¢) o
) = e 2

A
A

N Q

which proves that* € CT~ (o), T*(0)] and that(h*) (1) = Zforallt e
(T~ (o), TT(0)), that s, (14).

Sinceh* is affine on at most a countable set of intervals, from (13) and (14) we
infer that

T (0)=T%() foraeoc =0. (15)

By their definitions, the mapg* are non-decreasing and therefore they admit at
most a countable set of discontinuities of the first kind (i.e., with left and right limits
both finite but different). Such discontinuities correspond with= 2a,, (double
the slope of an affine part @f*). We also refer to Section 5.2 for a more precise
characterization of'*. Now leto be a point of continuity fof  and7~, so that

lim TT(0)=T"G)=T"(5) = lim T (o).

o—>0



64 FiL1PPO GAZZOLA

Then, by (12), for alb > 0 we have

[Vup,(x)| = T~ (0 +6) fora.ex e Q, suchthad(x, 3$2,) = R cost—o 4,

|[Vu,(x)| = TT(c—8) fora.ex e @, suchthat(x, 922,) £ RcosZ —o+38.
n

By letting§ — 0 we infer thaiVu,(x)| = T~ (o) fora.e.c =2 0and a.ex € ©,
such thati(x, 92,) = R cos?- — o. Then (3) follows by (7). O

4. Proof of Theorem 2

For the proof of Theorem 2 we need the following density result which we think
may be of independent interest.

Proposition 1. Let 2 be a disk, and for alk > 3 let 2,, be a regular polygon of
n sides inscribed if2. Let.7, denote the set of web functions relativestg,
extended b@in Q\ @,. Letp € [1, c0). Then, for any radially symmetric function
w e Wol""(Q) there exists a sequen¢e,} C Wol”’(Q) such thatw, € .7/, and
w, — w in the Wol”’(Q) norm topology. Moreover, the sequene,} may be
chosen so thaVw, (x)| < |Vw(x)| for a.e.x € Q.

Proof. For simplicity, letQ2 be the unit disk centered at the origin, and assume
that all theR,, are symmetric with respect to the-axis and such that one of their
sides has equatiom = cos®. To get the result, it suffices to prove that for all
& > 0 there exista € N (» = 3) and a functionw,, € .77, N W&”’(Q) such that
lw, — w”l,p <é.

Thus, fixe > 0 and take a radially symmetric functian. € Cé(Q) such that
[Vwe (x)| £ |Vw(x)| fora.e.x € Q and

&
”ws_w”l,p < é (16)

This is always possible by a density argument. Si¥iee is uniformly continuous
in Q there exist$ > 0 such that

Vilx2eQ [t =x? <8 = |Vl — V(x| < 6|828W'
Next choose: large enough so that
b1 Yr ¢
sin— <§ and (/ |Vw5(x)|pdx> < —. a7)
n Q\Q, 3

For suchn consider the triangle

T T
T, = {(xl,xz) €Qy; 0Zxp=cos—, 0= x2 = xltan—}.
n n

We wish to define a suitable function, € .77, N W(}”’(sz) in T,, so that we obtain
its definition on the whol&,, by symmetrization. We first set, (cos™, x2) = 0for
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all x2 € [0, sinZ]. Next, for allx; € (0, cosZ ] letxz be such thafVw, (x1, x2)| =
|Vwe (x1, x2)| for all x2 € [0, xptan®] (suchx; exists because the map —
|Vw,(x)] is continuous and the segment is compact). Then we set

[Vwe (x1, x2)|
[Vwe (x1, 0)]

T T
Vx1 € (0,cos—], Vx2e]0,x;tan—).
n n

Vwy (x1, x2) = Vwe(x1, 0)

If Vw,(x1,0) = 0 (i.e. X, = 0), we simply seVw, (x1,0) = 0. By (17), for all
(x1, x2) € T, we have

T . T _
|(x1, x2) — (x1,0)] =x2 S xptan— <sin— <8 and |[(xg, X2) — (x1, 0) < 4.
n n

Therefore

—Vuw (xl,xz)‘
|Vwe (x1, 0)] ‘

[V (31, %2) = Ve (1, x2)] = [ Ve (x1, 0)

S [Vwe(x1, 0) = Ve (xg, x2)|
+ || Ve ez, O = |V (31, 7o) |

&
NCEE
&
< — .
3|Q|Y/r

+ [Vwe (x1, 0) — Vwg (x1, X2)

By symmetry ofw, andw,, the previous inequality holds a.e.n,. Hence,

lw, — w”l,p § lw, — we”l,p + lwe — w”l,p’
r
by (16) < (/ [Vwe (x)|Pdx +/ IVw, (x) — ng(x)|pdx> + =,
Q\Q, o 3

eP 12 \\Y? e
by (17) < (3—p(1+ 2l )) +§<8.

Moreover,|Vw, (x)| £ |[Vw.(x)| £ |Vw(x)| for a.e.x € Q and the proposition is
proved. O

Proof of Theorem 2. From Theorem 1 we deduce thad, ||1,.c < T~ (R cosT) <
T~ (R). Hence, there exists a subsequencezaadvg’w(DR) such that,, —~* v
in Wol"’o. Since the reasoning below is available on all subsequences, we have

u, =~*vin Wol’oo on the whole sequence. Then, Asis |.s.c. with respect to the
weak* W1 >-topology, we have

J*(w) £ Iirr_l)ipof J*(uy). (18)
Letu € W&’l(DR) be the unique solution ofR): by Theorem 3 in [4] we know

thatu is radially symmetric. Now we wish to prove that= «, and to this end we
consider two distinct cases.
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The casd € . Let{w,} C W&'l(DR) be the sequence relative #ogiven by
Proposition 1 (withp = 1). We claim that

nleoo J*(wy) = J* ). (19)

By adding a constant to* we may assume that (0) = 0, and by 1) we know that
h* € C(X). SinceVw, — Vu in LY(Dg), we know thati Vw, (x)| — |Vu(x)|
a.e. inDg (up to a subsequence) and therefbtgVw, (x)|) — h*(|Vu(x)|) for
a.ex € Dg.Moreover, sincéVw, (x)| < |[Vu(x)| a.e.inDg, by (#2) we also have
h*(IVwu (x)]) £ h*(|Vu(x)|) + C fora.e.x € Dg with C = —min,>qh*(#) 2 0.
Then, we apply the Lebesgue Theoremand olgfé\'jm*(anD — fDR h*(|Vul),
so that (19) follows.

Sinceu, is a solution of £F), we haveJ*(u,) < J*(w,) for all n. This,
together with (18) and (19) yields* (v) < J*(u), which proves that is a solution
of (P). By uniqueness of the solution of such a problem, wevgetu.

The cas® ¢ ¥. In this case we cannot guarantee thiati Vw,|) € L1(2). Thus,
leta :=max{r € ; h*(t) < h*(s) Vs = 0}. Since 0¢ T we clearly haver > O.
Consider the function

h = {h*(a) it10al
h*@) ifr e fa, +00)

and the corresponding functional defined by
J(w) :/ [(A(IVw]) + wldx  Yw e Wit(Dg).
Dpg

Sinceu minimizesJ*, by arguing as for (8), we hav& u (x)| > afora.ex € Dg
and therefore/*(u) = J(u). Hence, by using the Lebesgue Theorem as for (19)
we can prove that

lim_ J(wy) = J() = J*). (20)

If for all » we have|Vw,(x)| 2 « for a.e.x € ©,, then we can finish as in the
previous case. Otherwise, for aldenote byr;, the triangle in (5) and Ief” C T,
be the set wher&Vw, (x)| < «; definew, € .7, so thatVw, coincides with
Vw, in T, \ T" and so thaWw,(x) = (—«,0) for all x € T". Then we have
h(IVw,(x)]) = h(|Vw,(x)]) for a.e.x € ©, and by a representation like (7) we
getw, (x) < w,(x) in £,. Therefore, we obtaid (w,) = J(w,) = J*(,), and
sinceu, is a solution of ¢;*) we haveJ*(u,) < J*(w,) for all n. This, together
with (18) and (20), yieldg*(v) < J*(u) which proves again that = u.

To conclude, note that the uniform convergemge — u follows from the
boundedness ofu,} in Wol’OO and from the Ascoli-Arzela Theorem, while by
pointwise convergencaf(x) — u(x)) and by a change of variables (-~ R — o)
we get (4). O
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5. Remarks and further results

5.1. An extension of Theorems 1 and 2

In this section we extend part of the statements of Theorems 1 and 2 to a slightly
more general class of functionalsthat is,

70 = [ 1V + gl dx,
whereg satisfies the following assumptions

g is convex
(g) 1 gisnon-decreasing
gt+s)—gt) <s Vr<0 Vs 20.
Let A be the set of strictly positive slopes of the affine partsofThe setdA may

be (countably) infinite, finite or empty, this last case occurring wiieis strictly
convex whenever itis increasing. We consider first the dageff and assume that

a:=infA>0. (22)
Let Dg, Q,, .72 and.7Z’, have the same meanings as before.

Theorem 3.Assumehl), (h2), (g) (21), and thatR < 2a. Then, for alln € N
(n = 3) there exists a unique solution, of the problem

(On) Jn /;Z’l[h(IVul)Jrg(u)] dx.

Furthermore,||luy 1,00 = T~ (2a cOST).
Moreover, there exists a radially symmetric solutionf the problem

Q) mif}l [A(IVul) + g(u)] dx
ueWy~ J Dg
which satisfies (up to a subsequence):

(i) wu, =~*uin W01’°°(DR) andu, — u uniformly,
(”) iMoo J(uy) = J(u),
(i) llullr,00 = T~ (2a).

Proof. This follows closely the proof of Theorems 1 and 2, so we just give a sketch.

Let h* andJ* have the same meaning as in Section 3, and consider the corre-
sponding relaxed problet®}). As in Lemma 1(Q;) admits a solutiom,, € .77,.
Again, we translate and rotafg, and consider the trianglE, in (5) so that

Yue. 7, Ju =n/ [A(|Vul) + g(u)] dx,
Ty

J*(u) Zn/T [7*(IVul) + g()] dx.
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Leti be any solution of Q). Since(g)2 holds, we still have (7); in particular < 0.
By (g)2 we also know thatVii| never belongs to the (possible) interval whietés
non-increasing, namelwi(x)| = T (0) for a.e.x € Q,. We show thaf is also
a solution of(Q,). To this end, it suffices to prove thii(x)| = T~ (2a cos?)
fora.e.x € Q,.

For contradiction, assume that there exist- 0 and a setf c [0, A,,] of
positive one-dimensional measure such tNai(x)| = 7~ (2a cos?) + ¢ for a.e.
(x1, x2) € T, suchthatx; € I. Define the function € .72, as in (9) and note that
by (g)3 and (10) we get

dn 2l—0px1 An 2—Vpx1
[ o—g@ianan < [ matdxdn
0 Jy 0 Jv,

nX1 nX1

= / (9 x2 =20, x1— 0, A2 42€,0,) dx1.
1

Therefore, we obtain again (11) and we arrive at a contradiction proving tigo
solves Q,) and that|u,[l1,c0c = 7~ (2a cOST).
Uniqueness follows again by reasoning as in the proof of Theorem 10 in [6].
Now we may proceed as in Section 4 with two slight differences. We know that
v (the weak limit ofu,,) is radially symmetric by Remark 8 below, and the existence
of a radial solution: of (P) follows here by Theorem 2 in [4] but we do not know if
it is unique. We take one such solution and by reasoning as in Section 4 we obtain
(i) and (ii); finally, (iii) follows by the |.s.c. of thé¥ 1> norm with respect to weak*
convergence.n

Similarly, whenA = ¢ we obtain the following result.

Theorem 4.Assume(hl), (h2) and (g). Then, for alR > Oand alln € N
(n = 3) there exists a unique solutian, of the problem(Q,,). Furthermore,
lunllsco = T7(RCOST).

Moreover, there exists a solutianof the problem (Q) which satisfi€s, (ii) of
Theorem 3 andlu|l1.00 < T~ (R).

Remark 1. Assumptiongg)1 and(g)2 are needed in order to ensure the existence
of at least one radial solution of the minimum problemWi§*(Dx), see [4].
Moreover, they allow us to prove that the (possible) minimunify, is negative.
Assumption(g)s is a one-sided Lipschitz condition which is used to obtain the
crucial inequality (11): obviously, if the Lipschitz constaniga L > 1, it suffices

to divide both# andg by L in order to apply the above results. Finally, not that
other conditions of the same kind may be considered.

5.2. Properties of the functior& and 7~

Proposition 2. The functionT ~ is left continuous and the functiofi* is right
continuous.
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Proof. We first prove that for alt- > 0 we have lim_,g+ T~ (c —8) = T (o).
By definition of 7, for all § > 0 we have

KT (c-8+e) T (c-8) ,o-8 _ _, (22)
& - 2 .

Let T = liminfs_ o+ T~ (0 — §) and let§, — 0T be a sequence such tHat=
lim,— T~ (0 — §8,). Then, by takingg = §,, in (22), by lettingn — oo, and by
continuity of 2* we get
(T +¢&) — h*(T)
&

= Ve >0,

N Q

which proves thal" > T~ (o) sinceT ~ (o) is the minimum satisfying the above
property. On the other hand, as the nfapis non-decreasing, we have

limsupT (o —8) < T (o),

§—0t

which proves the left continuity df —.
For T one can proceed similarlyo

Remark 2. If i* € C1(R*) andh* is strictly convex, then by (2) we have

Vo 20 T (0)=T"(0)=I[0h"T%%.
Remark 3. The above proposition and remark give a precise picture of the functions
T*:

—If (W) < (W) (1) thenT* (o) =t for all ¢ € [2(h*)_(1), 2(h*) (1)].
— T* are discontinuous and different only at the poinig, &vherea,), is the slope
of some affine part of*;

lim T*Q2a, —8) = T~ (2ay) < T (2ay) = 6|in3+ T*(2a,, + §).

§—0F

Remark 4. By (15) we infer that (3) and (4) may be replaced respectively by

d(x,082,) R
n (x) = —f T*(RcosZ — o) do and u(x) = —/ T (o) do.
0

|x]

5.3. Miscellaneous remarks

Remark 5. The solutions of p,) and (P) are Lipschitz continuous since they be-
long respectively t& (2, \ {0}) N Wy™ andC(Dg \ {0}) N Wy ™; and they are
piecewiseC? by their explicit forms (3) and (4), respectively. No more regularity
is to be expected ofR,), asVu, is certainly discontinuous on theradii of Dg
corresponding to the vertices @f, if u,, = 0. On the other hand, further regularity
for (P) is related to the smoothness/gf by means of (4).



70 FiL1PPO GAZZOLA

Remark 6. If we assume tha* € C1(R™), then the solutiom,, of (P,) satisfies
the following generalized Euler equation

/Q (dlv[(h )(|w,,|)IV n|] —1>¢=0 Vo e T,

To see this, it suffices to consider the functio@) = J*(u+1¢) and to require that
F’(0) = 0. Note also tha}M is a constant vector in each one of thesosceles
triangles which composeg,,.

Remark 7. The extension of our results to higher dimensional problems seems to
be purely technical: we could consider regular polyhedra inscribed in a Y of

(N = 3) and define web functions in a completely similar way. We believe that
Theorems 1 and 2 continue to hold.

Remark 8. The statement of Proposition 1 may be inverted. Indeed, by using the
a.e. pointwise convergence, we find thafuf,} C W&”’(Q) satisfiesw,, € .7,
andw, — win wol*f’(sz) for somep € [1, +00), thenw is radially symmetric in

Q.

Remark 9. In our original proof of Theorem 2 there was no distinction between
the two cases @ ¥ and 0¢ ¥ and the functional was not introduced. Indeed,
Proposition 1 may be proved in a slightly stronger version by obtaining as well
the boundVw, (x)| = infg [Vw(x)| = I. In this case the functiom, € C3 0(82),

for which the previous inequality may not be fulfilled, is constructed. Then the
functionw, is modified by a piecewise affine function with slope equal to the
region wherd Vw,(x)| < I and this new approximating error is estimated. This
method requires too many calculations, which is why we prefer the above proof of
Theorem 2.

6. Some applications

6.1. A problem from optimal design
Lethy(r) = at?, ho(r) = Bt + y (withe > g > 0,y > 0) and
h(t) = min{hy(z), h2(1)}, (23)

and consider the functional
J(u) :/[h(|Vu|)+u] dx
Q

The problem of minimizing’ on the spacéfo1 arises from elasticity [1,5, 6]. We
wish to place two different linearly elastic materials (of shear mogiutind5) in
the plane domaif so as to maximize the torsional rigidity of the resulting rod when
the proportions of these materials are prescribed. Such a problem may not have a
solution, but one can construct new composite materials by mixing them together
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on a microscopic scale. Mathematically, this corresponds to the introduction of
the relaxed problem which does have a minimum. Hence, there exists an optimal
design if one is allowed to incorporate composites. However, the resulting design
may not be so easy to manufacture and therefore one may have to try to find an
optimal design in a simpler class of possible designs as, for instance, the class of
web functions. Whe®2 is a square, numerical results [5,6] lead to the conjecture
that in general/ does not admit a minimum because a composite region seems
to appear. By seeking the minimum in the class of web functions we avoid the
possibility that the composite region is different from a frame (the part between
two squares) and thus raise the natural question: Is the minimuhatifined in
72°47? As we have seen, the answer to this question is positive. Let us also mention
that by Remarque 41 in [9], €2 is simply connected and if has a minimum
in Hc} with a C1 interface separating the two regions containing the two different
materials, therf2 must be a disk and the optimal design consists of an annulus of
strong material filled with a disk of soft material. We also refer to [12] where the
limiting case of the soft material being replaced by empty regions is considered.
We now show how our results apply to this problem. Straightforward calcula-
tions yield

hi(t) ift <1,
@)= Rat+b iftp <t < 1o,
ha(t) ifrp =1,

Ol(a—ﬁ) ﬁ(a—ﬁ) a—p

We also find

where

e <
T (o) = 4(?‘ ?fU = 2,
@ |f0>2ﬂ,

so that, by (3), the unique solutian, € .72, of (P,) is given byu,(x) =
%[df(x) — 2R cosTd,(x)] (whered, (x) = d(x,9%,)) if Rcos? < 2a, and
by
g5 (40— R? c0S T)+ & (d2(x)—2R c0S%d, (x) 4 R? cOS' & —4a?)
up(x) = if dy(x) = RcOST—2a
%[df(x)—ZR cosZd, (x)] if d,(x) < RcosZ —2a

if RcosZ > 2a; while, by (4), the unique solution € .72 of (P) is given by
u(x) = g (Ix|2 — R?) if R < 2a, and by

g (112 — 4a®) + g5 (4a® — R?) if x| = 2

ur) = & (X2 - R?) if x| > 2a
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if R > 2a. Inthe latter case € H] satisfies the Euler equation

Y Qa)~t if x| £ 2a
et if x| > 2a

and has been determined in Remarque 40 in [9].

6.2. An approximating problem

Consider the case where

0 ifr=1,
hi®)y=131 ift=2,
oo elsewhere

This case was studied in [2] in an attempt to simplify the functoim (23) by
retaining its essential feature of lacking convexity. It is not difficult to verify that

2 i1 el
" oo elsewhere

so that

(o) = 1 ifo €]0,2],
|2 ifo e @ ).

Then, by (3), the unique solution ofy) is given byu, (x) = —d,(x) if R cosT =
2, and itis given by

) —2d,(x) if d(x) = RcosT —2
Up(X) =
! 2— Rcos™ —d,(x) if dy(x) > RcosT — 2

if Rcos?: > 2.
Note that ifR cos?- = 1, our solution is the “true” solution, namely, the min-

imum of J on Wol’l(sz,,) (see [3]). Indeed, with the notation introduced in that
paper, we havé/g, = Rcos7- andA = 1. On the other hand, the functionals

known to have no minimum imvg’l(m) (the square) iR cos7 € (1, 1+ ¢) for
sufficiently smalke (see [2]). Therefore, wheR cosT > 1 we may conjecture that

u, just furnishes an approximate solution for the minimuny fon Wg’l(szn). It
would be interesting to estimate the “error”

E,(R) = J(u,) — min J*
wat@u)

It is conceivable that

E,(R) -0 as R—
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Consider now the case of the dilkg. By (4) we infer thatu(x) = |x| — R if
R £ 2, and that

(= [H1+2-2R if x| <2
X) =
2(x] = R)  if |x|>2

if R > 2. This is the solution already described in the introduction of [2].
The natural extension of the above example is when the fungtisrdefined

by
A ifreN
h(t) = ’
® 00 elsewhere

In this casel' T (o) = [%] + 1 ([x] denotes the integer part of. Here we make use

of T* since it has an elegant form (see Remark 4). Then, the explicit form of
(andu) is easily derived: the polygon (or disk) is the union of a central polygon (or
disk) and of a finite number of frames (or annuli) of width 2; in the central polygon
(or disk) the slope oft,, (or u) is 1 and the slope increases by 1 every time one
skips into the following frame (or annulus).

6.3. A problem from glaciology
We consider the degenerate elliptic problem

Apl/l =1 in Dg, (24)
u=20 onodDg,

wherep > 1andA,u = div(|Vu|P~2Vu). This equation (with nonlinear boundary
conditions) has been applied to the description of some phenomena in glaciology
(see [10,11)]). In this casBy is the cross-section of the glacierjs the surface
velocity, andA ,u represents the traction. Problem (24) has been widely studied
and the explicit form of its solution is well-known (see, e.g., [8] and references
therein) and may be obtained with ordinary differential equation methods. Here we
determine it by means of our approach. Equation (24) is the Euler equation of the
potential energy functional

VulP
J(u):/ (' ul +u)dx,
Dgr p
t?

and critical points off are solutions of (24). In this case we ha@xe) = h* () = n
so that by Remark 2 we get

= ()7

Inserting this in (4), we find that the unique (radial) minimum/at given by

__P=1 =D _ /D
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6.4. An estimate for the solution of a quasilinear problem

Let Dy be a disk of radiug > 0 and consider the problem

1 .
Apl/t = m n DR, (25)
u=~0 onoDgp.
Define the function

g(t) = .
8 if + >0,

which satisfies assumptiog); By Theorem 3 in [4] we know that the functional
[VulP—_
J(u) = / ( + g(u)) dx
Dg p

admits a unique minimura € W,"'(Dg) which is radially symmetric. By Theo-
rem 4 the functiork is negative and satisfies

1
R\ 71
liill1.00 < (5) . (26)

{arctarr if t <0,

Sinceu belongs to the cone of negative functions, it solves (25): hence, (25) admits

a negative radially symmetric solution satisfying (26).
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