
Arch. Rational Mech. Anal. 150 (1999) 57–76.c© Springer-Verlag 1999

Existence of Minima
for Nonconvex Functionals

in Spaces of Functions
Depending on the Distance from the Boundary

Filippo Gazzola

Communicated byJ. Serrin

Abstract

We prove that some nonconvex functionals admit a unique minimum in a func-
tional space of functions which depend only on the distance from the boundary of
the (plane) domain where they are defined. The domains considered are disks and
regular polygons. We prove that the sequence of minima of the functional on the
polygons converges to the unique minimum on the circumscribed disk as the num-
ber of sides tends to infinity. Our method also allows us to determine the explicit
form of the minima.

1. Introduction

Let � be an open bounded domain ofR2. We consider the cases where� is
either a disk or a regular polygon. Leth : R+ → R̄ be a (not necessarily convex)
superlinear lower semicontinuous (l.s.c.) function and consider the functionalJ

defined by

J (u) =
∫

�

[h(|∇u|) + u] dx.

We study the following problem of existence of minima,

min
u∈K

J (u), (1)

whereK is the subset ofW1,1
0 (�) of functions depending only on the distance

from the boundary∂�. We call the functions inK web functionsbecause their
level lines recall a spider’s web. When� is a disk, web functions are nothing but
radially symmetric functions.

Since no convexity onh is required, the functionalJ may not have a minimum
on the whole spaceW1,1

0 (�). In such a case it is usual to introduce the relaxed
functionalJ ∗ and consider its minimum, which coincides with the minimum ofJ
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if the latter exists. In Section 6.1 we study a problem from shape optimization. In
this case the minimum ofJ does not generally exist, so that the minimum ofJ ∗
corresponds to an optimal design which is not easily manufactured. For this reason
we could decide to seek an optimal design in a simpler class of possible designs as,
for instance, the class of web functions.

When� = DR (an open disk of given radiusR > 0) it is known [4] that the
functionalJ admits a unique minimumu in W

1,1
0 (DR) which is radially symmetric.

We will prove that for alln = 3 and for all regular polygons�n of n sides inscribed
in DR, problem (1) on�n admits a unique solutionun for which we are able to
give the explicit form. Then we prove that the unique solutionu of (1) onDR may
be obtained as the (uniform) limit of the sequence{un}. This also enables us to give
the explicit form of the functionu.

We believe that our results may be a starting point for further research, provided
answers can be found to some natural questions. First of all, sinceK ⊂ W

1,1
0 (�)

we clearly have

min
u∈K

J (u) = inf
u∈W

1,1
0 (�)

J (u).

It would be interesting to understand for which kind of functionalsJ (i.e., for which
functionsh) equality holds. In other words, are there functionals for which there is
a possible minimizing function in the setK ? In [2] there is an example of a convex
functional on a square whose minimum does not have convex sublevels. The first
step towards answering the above question would then be to determine sufficient
conditions for the possible minimum to have convex sublevels.

If the radiusR is smaller than some constant related toh, the results in [3]
show that the minima ofJ on W

1,1
0 (�n) exist and depend linearly ond(x, ∂�n).

More general sets� (other than polygons or disks) are also considered. Another
natural question which arises is the following. If a web function minimizesJ on
W

1,1
0 (�), is it necessarily linear with respect tod(x, ∂�)? When� is a disk the

answer is negative, as our explicit form (see (4) below) clearly states (see also [4]).
We believe that it is also negative when� is a polygon.

Can our results be extended to a wider class of functionalsJ or to general convex
domains� ⊂ R2? Probably Theorems 1 and 2 cannot be completely extended
to more general problems, but maybe this is possible in a weaker form, as in
Section 5.1.

The outline of this paper is as follows. In Section 2 we state our main existence,
uniqueness and convergence results and we determine explicitly the solutions to the
minimum problems. These results are proved in Sections 3 and 4. In Section 5 we
make several remarks; in particular, we partially extend our results to a slightly more
general class of functionalsJ . Finally, some applications are given in Section 6.

2. Main results

For simplicity, letDR be the open disk centered at the origin of given radius
R > 0, letA ∈ ∂DR and let�n be the regular polygon ofn (n = 3) sides inscribed
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in DR and having a vertex inA. Consider the sets of web functions

K = {u ∈ W
1,1
0 (DR); u(x) = u(|x|) ∀ x ∈ DR},

K n = {u ∈ W
1,1
0 (�n); u(x) = u(d(x, ∂�n)) ∀ x ∈ �n}.

Note thatK n ⊂ C(�̄n \{O}). Indeed, a discontinuity in some pointx ∈ �̄n \{O}
would imply the discontinuity on a whole polygon and would not allow the function
to belong toW1,1

0 .
We assume that the functionh |≡ +∞ satisfies the following two conditions:

(h1) h : R+ → R̄ is l.s.c.,

(h2)




there exists a convex l.s.c. increasing function8 : R+ → R such that

h(t) = 8(t) for all t ∈ R+

lim
t→∞

8(t)

t
= +∞.

We consider the problems of minimizing the functionalJ onK andK n:

(P ) min
u∈K

∫
DR

[h(|∇u|) + u] dx,

(Pn) min
u∈K n

∫
�n

[h(|∇u|) + u] dx.

In order to solve these problems we introduce the functionh∗, the convexification
of h (the supremum of the convex functions less or equal toh), and we denote by
6 its support, namely

6 := {t = 0; h∗(t) < +∞}.
Next, we define the functions

T −(σ ) = min
{
t ∈ 6; h∗(t + ε) − h∗(t)

ε
= σ

2
∀ ε > 0

}
,

T +(σ ) = max
{
t ∈ 6; h∗(t) − h∗(t − ε)

ε
5 σ

2
∀ ε > 0

}
,

where we use the convention thath∗(t + ε) − h∗(t) = −∞ for all ε > 0 and allt
strictly less than any element of6, while h∗(t) − h∗(t − ε) = +∞ for all ε > 0
and allt strictly greater than any element of6. Sinceh∗ is convex, it has left and
right derivatives at every pointt ∈ 6 (with the same convention as above for the
points of∂6, if they exist). We denote such derivatives by(h∗)′−(t) and(h∗)′+(t).
Then, it is not difficult to verify that an equivalent definition of the functionsT ± is

T −(σ ) = min
{
t ∈ 6; (h∗)′+(t) = σ

2

}
, T +(σ ) = max

{
t ∈ 6; (h∗)′−(t) 5 σ

2

}
.

(2)

In what follows we will make use of both the above characterizations of these
functions. We also refer to Section 5.2 for some properties ofT ±.

We first prove the following result.
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Theorem 1.Assume(h1) and (h2); then, for all n = 3, problem(Pn) admits
a unique solutionun ∈ K n. Moreover,un ∈ W

1,∞
0 (�n), and it is explicitly

expressed by

un(x) = −
∫ d(x,∂�n)

0
T −(

R cos
π

n
− σ

)
dσ. (3)

With an abuse of notation we also denote byun the function inW
1,1
0 (DR)

obtained by extendingun by 0 onDR \ �n, and we prove that the sequence{un}
converges asn → ∞ to the unique solution of the minimizing problem in the disk.

Theorem 2.Assume(h1) and(h2); for all n let un be the solution of(Pn) and let
u be the unique solution of(P ). Then, we haveun ⇀∗ u in W

1,∞
0 (DR); moreover,

limn→∞ J (un) = J (u) andun → u uniformly. Therefore, u is explicitly expressed
by

u(x) = −
∫ R

|x|
T −(σ ) dσ. (4)

3. Proof of Theorem 1

Let h∗ be the convexification ofh and letJ ∗ be the corresponding functional

J ∗(u) =
∫

�n

[h∗(|∇u|) + u] dx

wheren = 3 is fixed. Consider the relaxed problem

(P ∗
n ) min

u∈K n

∫
�n

[h∗(|∇u|) + u] dx.

We first prove the following lemma.

Lemma 1. The problem(P ∗
n ) admits a solutionun ∈ K n.

Proof. The setK n is clearly a linear space. Moreover, let{um} ⊂ K n satisfy
um ⇀ u in W

1,1
0 (�n) for someu ∈ W

1,1
0 (�n). Then there is a subsequence ofum

converging tou a.e., which proves thatu ∈ K n and thatK n is weakly closed.
The functionalJ ∗ is convex and by(h2) it is coercive, so that any minimizing

sequence is bounded inW1,1
0 and relatively compact inL1. By Theorem 11 in [13]

J ∗ is l.s.c. with respect to theL1 norm topology and therefore it admits a minimum.
ut

Since problem (Pn) is autonomous we may translate and rotate�n so that it
lies in the half planex1 > 0 and so that one of its sides has equationx1 = 0,
0 5 x2 5 2R sin π

n
. Let `n = R sin π

n
, λn = R cosπ

n
andϑn = tan π

n
, and define

the triangle

Tn = {(x1, x2) ∈ �n; x1 ∈ (0, λn), x2 ∈ (ϑnx1, 2`n − ϑnx1)}. (5)
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Then, by symmetry properties of functions inK n, we have

∀ u ∈ K n, J (u) = n

∫
Tn

[h(|∇u|) + u] dx, J ∗(u) = n

∫
Tn

[h∗(|∇u|) + u] dx.

(6)

Moreover, any solution̄u of (P ∗
n ) may be represented by

∀ (x1, x2) ∈ Tn, ū(x1, x2) = −
∫ x1

0
|∇ū(s, x2)| ds. (7)

Indeed, ifū minimizesJ ∗, we clearly havēu(x) 5 0 for all x ∈ �n, and since
ū ∈ K n its level lines inTn have equationsx1 = c and∇ū is a.e. orthogonal to
such lines, see Lemma A.2 p.50 in [7].

Existence of a solution. We claim that any solution̄u of (P ∗
n ) is also a solution

of (Pn).
Note that there exists at most a countable set of intervals[tm1 , tm2 ] (m ∈ N) on

whichh∗ is affine; denote byam the slope ofh∗ in such intervals, that is,

(h∗)′(t) = am ∀ t ∈ (tm1 , tm2 ).

To prove the claim it suffices to show that

|∇ū(x)| |∈
⋃
m∈N

(tm1 , tm2 ) for a.e.x ∈ �n.

Since(P ∗
n ) is a minimizing problem we have

∀ m ∈ N, am 5 0 H⇒ |∇ū(x)| |∈ (tm1 , tm2 ) for a.e.x ∈ �n. (8)

Indeed, for contradiction, assume that there existsT ⊂ Tn of positive measure such
that |∇ū(x)| ∈ (tm1 , tm2 ) for all x ∈ T . Characterize the functionv ∈ K n by

∇v(x) = tm2|∇ū(x)|∇ū(x) for all x ∈ T and by∇v(x) = ∇ū(x) for a.e.x ∈ Tn \ T .
Then,h∗(|∇v(x)|) < h∗(|∇ū(x)|) in T and, by (7),v(x) 5 ū(x) in Tn which yield
J ∗(v) < J ∗(ū), a contradiction.

By using (8) we can prove that|∇ū(x)| |∈ (tm1 , tm2 ) for all m such thatam > 0.
We fix any suchm and consider two different cases according to the value ofR.

The caseR cosπ
n

5 2am. In this case we will prove that|∇ū(x)| 5 tm1 for a.e.
x ∈ �n. For contradiction, assume that there existε > 0 and a subsetω ⊂ �n of
positive measure such that|∇ū(x)| = tm1 + ε for all x ∈ ω; then, by the symmetry
of ū there exists a setI ⊂ [0, λn] of positive one-dimensional measure such that
|∇ū(x1, x2)| = tm1 +ε for a.e.(x1, x2) ∈ Tn such thatx1 ∈ I . Consider the function
v ∈ K n defined for all(x1, x2) ∈ Tn by

|∇v(x1, x2)| =
{

|∇ū(x1, x2)| if x1 |∈ I

|∇ū(x1, x2)|−ε if x1 ∈ I
v(x1, x2) = −

∫ x1

0
|∇v(s, x2)| ds.

(9)
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Then by (7) and by Fubini Theorem we get

∫ λn

0

∫ 2`n−ϑnx1

ϑnx1

[v − ū] dx2 dx1

=
∫ λn

0

∫ 2`n−ϑnx1

ϑnx1

∫ x1

0
[|∇ū(s, x2)| − |∇v(s, x2)|] ds dx2 dx1

=
∫ λn

0

∫ λn

s

∫ 2`n−ϑnx1

ϑnx1

[|∇ū(s, x2)| − |∇v(s, x2)|] dx2 dx1 ds

= 2ε

∫
I

∫ λn

s

(`n − ϑnx1) dx1 ds

= ε

∫
I

(ϑnx
2
1 − 2`nx1 − ϑnλ

2
n + 2`nλn) dx1.

(10)

On the other hand, since|∇ū(x1, x2)| − ε = tm1 wheneverx1 ∈ I , by definition of
v we also have∫ λn

0

∫ 2`n−ϑnx1

ϑnx1

[h∗(|∇v|) − h∗(|∇ū|)] dx2 dx1

= ε

∫
I

∫ 2`n−ϑnx1

ϑnx1

h∗(|∇ū| − ε) − h∗(|∇ū|)
ε

dx2 dx1

5 −εam

∫
I

∫ 2`n−ϑnx1

ϑnx1

dx2 dx1 = −2εam

∫
I

(`n − ϑnx1) dx1;

this, together with (6) and (10) implies that

J ∗(v) − J ∗(ū)

n
5 εϑn

∫
I

[x2
1 + 2(am − λn)x1 + λ2

n − 2amλn] dx1. (11)

Consider the functionf (s) = s2 + 2(am − λn)s + λ2
n − 2amλn; it is not difficult

to verify thatf (s) < 0 for all s ∈ (0, λn) and allλn 5 2am: therefore, (11) proves
thatJ ∗(v) − J ∗(ū) < 0 and contradicts the assumption thatū minimizesJ ∗.

The caseR cosπ
n

> 2am. From the previous case we know that|∇ū(x)| 5 tm1 for
a.e.(x1, x2) ∈ Tn such thatx1 > λn − 2am; we claim that|∇ū(x)| = tm2 for a.e.
(x1, x2) ∈ Tn such thatx1 5 λn − 2am. We argue as above, but here we achieve
the contradiction by showing that|∇ū(x)| may be increased. Assume that there
existε > 0 and a setI ⊂ [0, λn − 2am] of positive one-dimensional measure such
that |∇ū(x1, x2)| 5 tm2 − ε for a.e.(x1, x2) ∈ Tn such thatx1 ∈ I . Consider the
functionv ∈ K n defined for all(x1, x2) ∈ Tn by

|∇v(x1, x2)| =
{

|∇ū(x1, x2)| if x1 |∈ I

|∇ū(x1, x2)| + ε if x1 ∈ I
v(x1, x2) = −

∫ x1

0
|∇v(s, x2)| ds.

Then, by reasoning corresponding to (11) we get

J ∗(v) − J ∗(ū)

n
5 εϑn

∫
I

[−x2
1 + 2(λn − am)x1 − λ2

n + 2amλn] dx1.
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Consider the functiong(s) = −s2+2(λn −am)s −λ2
n +2amλn; then,g(s) < 0 for

all s ∈ [0, λn − 2am) and this proves thatJ ∗(v) < J ∗(ū) which is a contradiction.
The existence of a solutionun to problem (Pn) is proved for allR > 0. ut
Uniqueness of the solution. Let u, v ∈ K n be two solutions of (P ∗

n ). Sinceu

andv have the same level lines we infer

|∇v(x)| ∇u(x) = |∇u(x)| ∇v(x) a.e. in�n.

Uniqueness then follows by reasoning as in the proof of Theorem 10 in [6].

Proof of (3). Let un ∈ K n be the unique solution of (Pn). Exactly as in the proof
of existence above, we may obtain the following results:

|∇un(x)| 5 T −(σ ) for a.e.x ∈ �n such thatd(x, ∂�n) = R cos
π

n
− σ.

|∇un(x)| = T +(σ ) for a.e.x ∈ �n such thatd(x, ∂�n) 5 R cos
π

n
− σ.

(12)

Note also that (2) and the convexity ofh∗ entail

∀ σ = 0 T −(σ ) 5 T +(σ ). (13)

Now we prove that

T −(σ ) < T +(σ ) H⇒ h∗ is affine in the interval[T −(σ ), T +(σ )]. (14)

Indeed, forε > 0 small enough we haveT −(σ ) + ε < T +(σ ). For suchε the
mapt 7→ h∗(t)−h∗(t − ε) is non-decreasing, therefore by taking into account the
definition ofT ± we get

σ

2
5 h∗(T −(σ ) + ε) − h∗(T −(σ ))

ε
5 h∗(T +(σ )) − h∗(T +(σ ) − ε)

ε
5 σ

2

which proves thath∗ ∈ C1[T −(σ ), T +(σ )] and that(h∗)′(t) = σ
2 for all t ∈

(T −(σ ), T +(σ )), that is, (14).
Sinceh∗ is affine on at most a countable set of intervals, from (13) and (14) we

infer that

T −(σ ) = T +(σ ) for a.e.σ = 0. (15)

By their definitions, the mapsT ± are non-decreasing and therefore they admit at
most a countable set of discontinuities of the first kind (i.e., with left and right limits
both finite but different). Such discontinuities correspond withσ = 2am (double
the slope of an affine part ofh∗). We also refer to Section 5.2 for a more precise
characterization ofT ±. Now let σ̄ be a point of continuity forT + andT −, so that

lim
σ→σ̄

T +(σ ) = T +(σ̄ ) = T −(σ̄ ) = lim
σ→σ̄

T −(σ ).
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Then, by (12), for allδ > 0 we have

|∇un(x)| 5 T −(σ +δ) for a.e.x ∈ �n such thatd(x, ∂�n) = R cosπ
n
−σ −δ,

|∇un(x)| = T +(σ −δ) for a.e.x ∈ �n such thatd(x, ∂�n) 5 R cosπ
n
−σ +δ.

By letting δ → 0 we infer that|∇un(x)| = T −(σ ) for a.e.σ = 0 and a.e.x ∈ �n

such thatd(x, ∂�n) = R cosπ
n

− σ . Then (3) follows by (7). ut

4. Proof of Theorem 2

For the proof of Theorem 2 we need the following density result which we think
may be of independent interest.

Proposition 1. Let � be a disk, and for alln = 3 let �n be a regular polygon of
n sides inscribed in�. Let K n denote the set of web functions relative to�n,
extended by0 in �\�n. Letp ∈ [1, ∞). Then, for any radially symmetric function
w ∈ W

1,p
0 (�) there exists a sequence{wn} ⊂ W

1,p
0 (�) such thatwn ∈ K n and

wn → w in the W
1,p
0 (�) norm topology. Moreover, the sequence{wn} may be

chosen so that|∇wn(x)| 5 |∇w(x)| for a.e.x ∈ �.

Proof. For simplicity, let� be the unit disk centered at the origin, and assume
that all the�n are symmetric with respect to thex1-axis and such that one of their
sides has equationx1 = cosπ

n
. To get the result, it suffices to prove that for all

ε > 0 there existsn ∈ N (n = 3) and a functionwn ∈ K n ∩ W
1,p
0 (�) such that

‖wn − w‖1,p < ε.
Thus, fixε > 0 and take a radially symmetric functionwε ∈ C1

0(�) such that
|∇wε(x)| 5 |∇w(x)| for a.e.x ∈ � and

‖wε − w‖1,p <
ε

3
. (16)

This is always possible by a density argument. Since∇wε is uniformly continuous
in �̄ there existsδ > 0 such that

∀ x1, x2 ∈ �̄ |x1 − x2| < δ H⇒ |∇wε(x
1) − ∇wε(x

2)| <
ε

6|�|1/p
.

Next choosen large enough so that

sin
π

n
< δ and

( ∫
�\�n

|∇wε(x)|pdx

)1/p

<
ε

3
. (17)

For suchn consider the triangle

Tn =
{
(x1, x2) ∈ �n; 0 5 x1 5 cos

π

n
, 0 5 x2 5 x1 tan

π

n

}
.

We wish to define a suitable functionwn ∈ K n ∩W
1,p
0 (�) in Tn so that we obtain

its definition on the whole�n by symmetrization.We first setwn(cosπ
n
, x2) = 0 for
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all x2 ∈ [0, sin π
n
]. Next, for allx1 ∈ (0, cosπ

n
] let x̄2 be such that|∇wε(x1, x̄2)| 5

|∇wε(x1, x2)| for all x2 ∈ [0, x1 tan π
n
] (such x̄2 exists because the mapx 7→

|∇wε(x)| is continuous and the segment is compact). Then we set

∇wn(x1, x2) = ∇wε(x1, 0)
|∇wε(x1, x̄2)|
|∇wε(x1, 0)|

∀ x1 ∈ (0, cos
π

n
], ∀ x2 ∈ [0, x1 tan

π

n
).

If ∇wε(x1, 0) = 0 (i.e. x̄2 = 0), we simply set∇wn(x1, 0) = 0. By (17), for all
(x1, x2) ∈ Tn we have

|(x1, x2) − (x1, 0)| = x2 5 x1 tan
π

n
5 sin

π

n
< δ and |(x1, x̄2) − (x1, 0)| < δ.

Therefore

|∇wn(x1, x2) − ∇wε(x1, x2)| =
∣∣∣∇wε(x1, 0)

|∇wε(x1, x̄2)|
|∇wε(x1, 0)| − ∇wε(x1, x2)

∣∣∣
5 |∇wε(x1, 0) − ∇wε(x1, x2)|

+
∣∣∣|∇wε(x1, 0)| − |∇wε(x1, x̄2)|

∣∣∣
<

ε

6|�|1/p
+ |∇wε(x1, 0) − ∇wε(x1, x̄2)|

<
ε

3|�|1/p
.

By symmetry ofwε andwn, the previous inequality holds a.e. in�n. Hence,

‖wn − w‖1,p 5 ‖wn − wε‖1,p + ‖wε − w‖1,p,

by (16) <

( ∫
�\�n

|∇wε(x)|pdx +
∫

�n

|∇wn(x) − ∇wε(x)|pdx

)1/p

+ ε

3
,

by (17) <

(
εp

3p

(
1 + |�n|

|�|
))1/p

+ ε

3
< ε.

Moreover,|∇wn(x)| 5 |∇wε(x)| 5 |∇w(x)| for a.e.x ∈ � and the proposition is
proved. ut
Proof of Theorem 2.From Theorem 1 we deduce that‖un‖1,∞ 5 T −(R cosπ

n
) 5

T −(R). Hence, there exists a subsequence andv ∈ W
1,∞
0 (DR) such thatun ⇀∗ v

in W
1,∞
0 . Since the reasoning below is available on all subsequences, we have

un ⇀∗ v in W
1,∞
0 on the whole sequence. Then, asJ ∗ is l.s.c. with respect to the

weak*W1,∞-topology, we have

J ∗(v) 5 lim inf
n→∞ J ∗(un). (18)

Let u ∈ W
1,1
0 (DR) be the unique solution of (P ): by Theorem 3 in [4] we know

thatu is radially symmetric. Now we wish to prove thatv ≡ u, and to this end we
consider two distinct cases.
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The case0 ∈ 6. Let {wn} ⊂ W
1,1
0 (DR) be the sequence relative tou given by

Proposition 1 (withp = 1). We claim that

lim
n→∞ J ∗(wn) = J ∗(u). (19)

By adding a constant toh∗ we may assume thath∗(0) = 0, and by (h1) we know that
h∗ ∈ C(6). Since∇wn → ∇u in L1(DR), we know that|∇wn(x)| → |∇u(x)|
a.e. inDR (up to a subsequence) and thereforeh∗(|∇wn(x)|) → h∗(|∇u(x)|) for
a.e.x ∈ DR. Moreover, since|∇wn(x)| 5 |∇u(x)| a.e. inDR, by (h2) we also have
h∗(|∇wn(x)|) 5 h∗(|∇u(x)|) + C for a.e.x ∈ DR with C = − mint=0 h∗(t) = 0.

Then, we apply the LebesgueTheorem and obtain
∫
�n

h∗(|∇wn|) → ∫
DR

h∗(|∇u|),
so that (19) follows.

Sinceun is a solution of (P ∗
n ), we haveJ ∗(un) 5 J ∗(wn) for all n. This,

together with (18) and (19) yieldsJ ∗(v) 5 J ∗(u), which proves thatv is a solution
of (P ). By uniqueness of the solution of such a problem, we getv ≡ u.

The case0 |∈ 6. In this case we cannot guarantee thath∗(|∇wn|) ∈ L1(�). Thus,
let α := max{t ∈ 6; h∗(t) 5 h∗(s) ∀ s = 0}. Since 0 |∈ 6 we clearly haveα > 0.
Consider the function

h̃(t) =
{

h∗(α) if t ∈ [0, α]
h∗(t) if t ∈ [α, +∞)

and the corresponding functional defined by

J̃ (w) =
∫

DR

[h̃(|∇w|) + w] dx ∀ w ∈ W
1,1
0 (DR).

Sinceu minimizesJ ∗, by arguing as for (8), we have|∇u(x)| = α for a.e.x ∈ DR

and thereforeJ ∗(u) = J̃ (u). Hence, by using the Lebesgue Theorem as for (19)
we can prove that

lim
n→∞ J̃ (wn) = J̃ (u) = J ∗(u). (20)

If for all n we have|∇wn(x)| = α for a.e.x ∈ �n, then we can finish as in the
previous case. Otherwise, for alln denote byTn the triangle in (5) and letT n ⊂ Tn

be the set where|∇wn(x)| < α; definew̄n ∈ K n so that∇w̄n coincides with
∇wn in Tn \ T n and so that∇w̄n(x) = (−α, 0) for all x ∈ T n. Then we have
h̃(|∇w̄n(x)|) = h̃(|∇wn(x)|) for a.e.x ∈ �n and by a representation like (7) we
getw̄n(x) 5 wn(x) in �n. Therefore, we obtaiñJ (wn) = J̃ (w̄n) = J ∗(w̄n), and
sinceun is a solution of (P ∗

n ) we haveJ ∗(un) 5 J ∗(w̄n) for all n. This, together
with (18) and (20), yieldsJ ∗(v) 5 J ∗(u) which proves again thatv ≡ u.

To conclude, note that the uniform convergenceun → u follows from the
boundedness of{un} in W

1,∞
0 and from the Ascoli-Arzela Theorem, while by

pointwise convergence (un(x) → u(x)) and by a change of variables (σ 7→ R−σ )
we get (4). ut
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5. Remarks and further results

5.1. An extension of Theorems 1 and 2

In this section we extend part of the statements of Theorems 1 and 2 to a slightly
more general class of functionalsJ , that is,

J (u) =
∫

�

[h(|∇u|) + g(u)] dx,

whereg satisfies the following assumptions

(g)




g is convex,

g is non-decreasing,

g(t + s) − g(t) 5 s ∀ t 5 0 ∀ s = 0.

LetA be the set of strictly positive slopes of the affine parts ofh∗. The setA may
be (countably) infinite, finite or empty, this last case occurring whenh∗ is strictly
convex whenever it is increasing. We consider first the caseA |= ∅ and assume that

a := inf A > 0. (21)

Let DR, �n, K andK n have the same meanings as before.

Theorem 3.Assume(h1), (h2), (g) (21), and thatR 5 2a. Then, for alln ∈ N
(n = 3) there exists a unique solutionun of the problem

(Qn) min
u∈K n

∫
�n

[h(|∇u|) + g(u)] dx.

Furthermore,‖un‖1,∞ 5 T −(2a cosπ
n
).

Moreover, there exists a radially symmetric solutionu of the problem

(Q) min
u∈W

1,1
0

∫
DR

[h(|∇u|) + g(u)] dx

which satisfies (up to a subsequence):

(i) un ⇀∗ u in W
1,∞
0 (DR) andun → u uniformly,

(ii) lim n→∞ J (un) = J (u),
(iii) ‖u‖1,∞ 5 T −(2a).

Proof. This follows closely the proof of Theorems 1 and 2, so we just give a sketch.
Let h∗ andJ ∗ have the same meaning as in Section 3, and consider the corre-

sponding relaxed problem(Q∗
n).As in Lemma 1,(Q∗

n) admits a solutionun ∈ K n.
Again, we translate and rotate�n and consider the triangleTn in (5) so that

∀ u ∈ K n, J (u) = n

∫
Tn

[h(|∇u|) + g(u)] dx,

J ∗(u) = n

∫
Tn

[h∗(|∇u|) + g(u)] dx.
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Let ū be any solution of(Q∗
n). Since(g)2 holds, we still have (7); in particularū 5 0.

By (g)2 we also know that|∇ū| never belongs to the (possible) interval whereh∗ is
non-increasing, namely|∇ū(x)| = T +(0) for a.e.x ∈ �n. We show that̄u is also
a solution of(Qn). To this end, it suffices to prove that|∇ū(x)| 5 T −(2a cosπ

n
)

for a.e.x ∈ �n.
For contradiction, assume that there existε > 0 and a setI ⊂ [0, λn] of

positive one-dimensional measure such that|∇ū(x)| = T −(2a cosπ
n
) + ε for a.e.

(x1, x2) ∈ Tn such thatx1 ∈ I . Define the functionv ∈ K n as in (9) and note that
by (g)3 and (10) we get

∫ λn

0

∫ 2`n−ϑnx1

ϑnx1

[g(v)−g(ū)] dx2 dx1 5
∫ λn

0

∫ 2`n−ϑnx1

ϑnx1

[v−ū] dx2 dx1

= ε

∫
I

(ϑnx
2
1−2`nx1−ϑnλ

2
n+2`nλn) dx1.

Therefore, we obtain again (11) and we arrive at a contradiction proving thatū also
solves (Qn) and that‖un‖1,∞ 5 T −(2a cosπ

n
).

Uniqueness follows again by reasoning as in the proof of Theorem 10 in [6].
Now we may proceed as in Section 4 with two slight differences. We know that

v (the weak limit ofun) is radially symmetric by Remark 8 below, and the existence
of a radial solutionu of (P ) follows here by Theorem 2 in [4] but we do not know if
it is unique. We take one such solution and by reasoning as in Section 4 we obtain
(i) and (ii); finally, (iii) follows by the l.s.c. of theW1,∞ norm with respect to weak*
convergence.ut

Similarly, whenA = ∅ we obtain the following result.

Theorem 4.Assume(h1), (h2) and (g). Then, for allR > 0 and all n ∈ N
(n = 3) there exists a unique solutionun of the problem(Qn). Furthermore,
‖un‖1,∞ 5 T −(R cosπ

n
).

Moreover, there exists a solutionu of the problem (Q) which satisfies(i), (ii) of
Theorem 3 and‖u‖1,∞ 5 T −(R).

Remark 1. Assumptions(g)1 and(g)2 are needed in order to ensure the existence
of at least one radial solution of the minimum problem inW

1,1
0 (DR), see [4].

Moreover, they allow us to prove that the (possible) minimum inK n is negative.
Assumption(g)3 is a one-sided Lipschitz condition which is used to obtain the
crucial inequality (11): obviously, if the Lipschitz constant ofg isL > 1, it suffices
to divide bothh andg by L in order to apply the above results. Finally, not that
other conditions of the same kind may be considered.

5.2. Properties of the functionsT + andT −

Proposition 2. The functionT − is left continuous and the functionT + is right
continuous.
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Proof. We first prove that for allσ > 0 we have limδ→0+ T −(σ − δ) = T −(σ ).
By definition ofT −, for all δ > 0 we have

h∗(T −(σ − δ) + ε) − h∗(T −(σ − δ))

ε
= σ − δ

2
∀ ε > 0. (22)

Let T = lim inf δ→0+ T −(σ − δ) and letδn → 0+ be a sequence such thatT =
limn→∞ T −(σ − δn). Then, by takingδ = δn in (22), by lettingn → ∞, and by
continuity ofh∗ we get

h∗(T + ε) − h∗(T )

ε
= σ

2
∀ ε > 0,

which proves thatT = T −(σ ) sinceT −(σ ) is the minimum satisfying the above
property. On the other hand, as the mapT − is non-decreasing, we have

lim sup
δ→0+

T −(σ − δ) 5 T −(σ ),

which proves the left continuity ofT −.
ForT + one can proceed similarly.ut

Remark 2. If h∗ ∈ C1(R+) andh∗ is strictly convex, then by (2) we have

∀ σ = 0 T −(σ ) = T +(σ ) = [(h∗)′]−1( σ
2 ).

Remark 3. The above proposition and remark give a precise picture of the functions
T ±:

– If (h∗)′−(t) < (h∗)′+(t) thenT ±(σ ) = t for all σ ∈ [2(h∗)′−(t), 2(h∗)′+(t)].
– T ± are discontinuous and different only at the points 2am wheream is the slope

of some affine part ofh∗;

lim
δ→0+ T ±(2am − δ) = T −(2am) < T +(2am) = lim

δ→0+ T ±(2am + δ).

Remark 4. By (15) we infer that (3) and (4) may be replaced respectively by

un(x) = −
∫ d(x,∂�n)

0
T +(

R cosπ
n

− σ
)

dσ and u(x) = −
∫ R

|x|
T +(σ ) dσ.

5.3. Miscellaneous remarks

Remark 5. The solutions of (Pn) and (P ) are Lipschitz continuous since they be-
long respectively toC(�̄n \ {O}) ∩ W

1,∞
0 andC(D̄R \ {O}) ∩ W

1,∞
0 ; and they are

piecewiseC1 by their explicit forms (3) and (4), respectively. No more regularity
is to be expected of (Pn), as∇un is certainly discontinuous on then radii of DR

corresponding to the vertices of�n if un |≡ 0. On the other hand, further regularity
for (P ) is related to the smoothness ofh∗ by means of (4).
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Remark 6. If we assume thath∗ ∈ C1(R+), then the solutionun of (Pn) satisfies
the following generalized Euler equation∫

�n

(
div

[
(h∗)′(|∇un|) ∇un

|∇un|
]

− 1

)
ϕ = 0 ∀ ϕ ∈ K n.

To see this, it suffices to consider the functionF(t) = J ∗(u+tϕ) and to require that
F ′(0) = 0. Note also that∇un|∇un| is a constant vector in each one of then isosceles
triangles which compose�n.

Remark 7. The extension of our results to higher dimensional problems seems to
be purely technical: we could consider regular polyhedra inscribed in a ball ofRN

(N = 3) and define web functions in a completely similar way. We believe that
Theorems 1 and 2 continue to hold.

Remark 8. The statement of Proposition 1 may be inverted. Indeed, by using the
a.e. pointwise convergence, we find that if{wn} ⊂ W

1,p
0 (�) satisfieswn ∈ K n

andwn ⇀ w in W
1,p
0 (�) for somep ∈ [1, +∞), thenw is radially symmetric in

�.

Remark 9. In our original proof of Theorem 2 there was no distinction between
the two cases 0∈ 6 and 0 |∈ 6 and the functionalJ̃ was not introduced. Indeed,
Proposition 1 may be proved in a slightly stronger version by obtaining as well
the bound|∇wn(x)| = inf � |∇w(x)| = I . In this case the functionwε ∈ C1

0(�),
for which the previous inequality may not be fulfilled, is constructed. Then the
functionwε is modified by a piecewise affine function with slope equal toI in the
region where|∇wε(x)| < I and this new approximating error is estimated. This
method requires too many calculations, which is why we prefer the above proof of
Theorem 2.

6. Some applications

6.1. A problem from optimal design

Let h1(t) = αt2, h2(t) = βt2 + γ (with α > β > 0, γ > 0) and

h(t) = min{h1(t), h2(t)}, (23)

and consider the functional

J (u) =
∫

�

[h(|∇u|) + u] dx.

The problem of minimizingJ on the spaceH 1
0 arises from elasticity [1,5,6]. We

wish to place two different linearly elastic materials (of shear moduli1
2α

and 1
2β

) in
the plane domain� so as to maximize the torsional rigidity of the resulting rod when
the proportions of these materials are prescribed. Such a problem may not have a
solution, but one can construct new composite materials by mixing them together
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on a microscopic scale. Mathematically, this corresponds to the introduction of
the relaxed problem which does have a minimum. Hence, there exists an optimal
design if one is allowed to incorporate composites. However, the resulting design
may not be so easy to manufacture and therefore one may have to try to find an
optimal design in a simpler class of possible designs as, for instance, the class of
web functions. When� is a square, numerical results [5,6] lead to the conjecture
that in generalJ does not admit a minimum because a composite region seems
to appear. By seeking the minimum in the class of web functions we avoid the
possibility that the composite region is different from a frame (the part between
two squares) and thus raise the natural question: Is the minimum ofJ attained in
K 4? As we have seen, the answer to this question is positive. Let us also mention
that by Remarque 41 in [9], if� is simply connected and ifJ has a minimum
in H 1

0 with a C1 interface separating the two regions containing the two different
materials, then� must be a disk and the optimal design consists of an annulus of
strong material filled with a disk of soft material. We also refer to [12] where the
limiting case of the soft material being replaced by empty regions is considered.

We now show how our results apply to this problem. Straightforward calcula-
tions yield

h∗(t) =




h1(t) if t 5 t1,

at + b if t1 5 t 5 t2,

h2(t) if t2 5 t,

where

t1 =
√

βγ

α(α − β)
, t2 =

√
αγ

β(α − β)
, a = 2

√
αβγ

α − β
, b = βγ

β − α
.

We also find

T −(σ ) =
{

σ
4α

if σ 5 2a,
σ
4β

if σ > 2a,

so that, by (3), the unique solutionun ∈ K n of (Pn) is given by un(x) =
1

8α
[d2

n(x) − 2R cosπ
n
dn(x)] (wheredn(x) = d(x, ∂�n)) if R cosπ

n
5 2a, and

by

un(x) =




1
8β

(4a2−R2 cos2 π
n
)+ 1

8α
(d2

n(x)−2R cosπ
n
dn(x)+R2 cos2 π

n
−4a2)

if dn(x) = R cosπ
n
−2a

1
8β

[d2
n(x)−2R cosπ

n
dn(x)] if dn(x) < R cosπ

n
−2a

if R cosπ
n

> 2a; while, by (4), the unique solutionu ∈ K of (P ) is given by
u(x) = 1

8α
(|x|2 − R2) if R 5 2a, and by

u(x) =
{

1
8α

(|x|2 − 4a2) + 1
8β

(4a2 − R2) if |x| 5 2a
1

8β
(|x|2 − R2) if |x| > 2a
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if R > 2a. In the latter caseu ∈ H 1
0 satisfies the Euler equation

1u =
{

(2α)−1 if |x| 5 2a

(2β)−1 if |x| > 2a

and has been determined in Remarque 40 in [9].

6.2. An approximating problem

Consider the case where

h(t) =




0 if t = 1,

1 if t = 2,

∞ elsewhere.

This case was studied in [2] in an attempt to simplify the functionh in (23) by
retaining its essential feature of lacking convexity. It is not difficult to verify that

h∗(t) =
{

t − 1 if t ∈ [1, 2],
∞ elsewhere,

so that

T −(σ ) =
{

1 if σ ∈ [0, 2],
2 if σ ∈ (2, ∞).

Then, by (3), the unique solution of (Pn) is given byun(x) = −dn(x) if R cosπ
n

5
2, and it is given by

un(x) =
{

−2dn(x) if dn(x) 5 R cosπ
n

− 2

2 − R cosπ
n

− dn(x) if dn(x) > R cosπ
n

− 2

if R cosπ
n

> 2.
Note that ifR cosπ

n
5 1, our solution is the “true” solution, namely, the min-

imum of J on W
1,1
0 (�n) (see [3]). Indeed, with the notation introduced in that

paper, we haveW�n = R cosπ
n

and3 = 1. On the other hand, the functionalJ is

known to have no minimum inW1,1
0 (�4) (the square) ifR cosπ

4 ∈ (1, 1 + ε) for
sufficiently smallε (see [2]). Therefore, whenR cosπ

n
> 1 we may conjecture that

un just furnishes an approximate solution for the minimum ofJ ∗ onW
1,1
0 (�n). It

would be interesting to estimate the “error”

En(R) = J (un) − min
W

1,1
0 (�n)

J ∗.

It is conceivable that

En(R) → 0 as R → 1

cosπ
n

.
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Consider now the case of the diskDR. By (4) we infer thatu(x) = |x| − R if
R 5 2, and that

u(x) =
{

|x| + 2 − 2R if |x| 5 2

2(|x| − R) if |x| > 2

if R > 2. This is the solution already described in the introduction of [2].
The natural extension of the above example is when the functionh is defined

by

h(t) =
{

t (t−1)
2 if t ∈ N,

∞ elsewhere.

In this caseT +(σ ) = [σ
2 ]+1 ([x] denotes the integer part ofx). Here we make use

of T + since it has an elegant form (see Remark 4). Then, the explicit form ofun

(andu) is easily derived: the polygon (or disk) is the union of a central polygon (or
disk) and of a finite number of frames (or annuli) of width 2; in the central polygon
(or disk) the slope ofun (or u) is 1 and the slope increases by 1 every time one
skips into the following frame (or annulus).

6.3. A problem from glaciology

We consider the degenerate elliptic problem{
1pu = 1 in DR,

u = 0 on∂DR,
(24)

wherep > 1 and1pu = div(|∇u|p−2∇u). This equation (with nonlinear boundary
conditions) has been applied to the description of some phenomena in glaciology
(see [10,11]). In this caseDR is the cross-section of the glacier,u is the surface
velocity, and1pu represents the traction. Problem (24) has been widely studied
and the explicit form of its solution is well-known (see, e.g., [8] and references
therein) and may be obtained with ordinary differential equation methods. Here we
determine it by means of our approach. Equation (24) is the Euler equation of the
potential energy functional

J (u) =
∫

DR

( |∇u|p
p

+ u
)

dx,

and critical points ofJ are solutions of (24). In this case we haveh(t) = h∗(t) = tp

p
so that by Remark 2 we get

T −(σ ) =
(σ

2

) 1
p−1

.

Inserting this in (4), we find that the unique (radial) minimum ofJ is given by

u(x) = p − 1

p21/(p−1)
(|x|p/(p−1) − Rp/(p−1)).



74 Filippo Gazzola

6.4. An estimate for the solution of a quasilinear problem

Let DR be a disk of radiusR > 0 and consider the problem{
1pu = 1

1+u2 in DR,

u = 0 on∂DR.
(25)

Define the function

ḡ(t) =
{

arctant if t 5 0,

t if t = 0,
.

which satisfies assumption (g). By Theorem 3 in [4] we know that the functional

J (u) =
∫

DR

( |∇u|p
p

+ ḡ(u)
)

dx

admits a unique minimum̄u ∈ W
1,1
0 (DR) which is radially symmetric. By Theo-

rem 4 the function̄u is negative and satisfies

‖ū‖1,∞ 5
(

R

2

) 1
p−1

. (26)

Sinceū belongs to the cone of negative functions, it solves (25): hence, (25) admits
a negative radially symmetric solution satisfying (26).
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