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ABSTRACT: We study an autonomous Hamiltonian system consisting of a lattice
of particles each interacting with the adjacent ones; both the cases of a finite number
and of an infinite number of particles are considered. For different choices of the
forces we establish, by variational methods, the existence of periodic motions.
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1. INTRODUCTION

We consider an autonomous Hamiltonian system consisting of a lattice of particles
with nearest neighbor interaction: the state of the lattice at time ¢ is represented by
a vector function q(t) = {¢:(t)} (i € I, I = {1,..., N} for finite lattices and I = Z
for infinite lattices), where ¢;(t) is the state of the i-th particle; if ®; : R — R
denotes the potential of the interaction between the i-th and the (i 4+ 1)-th particle
(the assumptions on ®; are given below), then the equation governing the state of
¢;(t) reads

4 = ‘1’2—1(%4 — ;) — ‘I’;(Ch‘ — Git1) - (1)
We define the global potential ® of the system by ®(q) := Y ;cr Pi(q: — giv1) so that
equations (1) can be written in the vectorial form

§=—2(q) . (2)

The starting point of studies of motions in lattices of particles is the celebrated nu-
merical experiment of Fermi et al [10]: they tried to test numerically the conjecture
that, even if in a chain of particles with nearest neighbor interactions of linear type
the energy of each normal mode is constant, it is enough to introduce a small pertur-
bation in order to destroy such stability and spread the energy among all the modes.
Surprisingly, they obtained the opposite result, i.e. they saw that if the perturbation
is small enough, the energy does not spread; this is the first step to show that the
system is not ergodic. Years later, Toda [18] proved that a chain of particles with
exponential interaction potential is integrable, and therefore it does not spread the
energy at all: the physical model considered is that of a chain of disks which are
allowed to rotate around their axes, the variables ¢;(¢) being the values of the angle of
rotation; the nearest neighbor disks are connected with a spring which rises a force.
An alternative model is that of a one-dimensional system of atoms, see [7]. More
recently, Ruf & Srikanth [16] proved with variational techniques that a finite lattice
of particles with a Toda type potential admits periodic motions of assigned period T
Different kinds of results about lattices of particles can be found in [11, 19].

The results of section 3 have been obtained in collaboration with G. Arioli and
Theorem 5 with G. Arioli and S. Terracini; for the proofs of the results stated here
we refer to the original papers [1, 2, 3, 12].

2. FINITE LATTICES
In this section we consider finite lattices of N particles (N > 2); the state of the lattice
at time ¢ is here represented by a vector ¢(t) € IRY. We study lattices with one fixed



endpoint, i.e. go = 0, in the case where the interparticle potentials ®; have repulsive
barriers at the endpoints of their (bounded) intervals of definition; (1) become

Gi(t) = @ 1lqi1(t) — @(t)] — Pi[qi(t) — qiva(?)] i=1,..,N—-1
gn(t) = Phy_qlgn—1(t) — an(1)] .

We can figure the model where the disks are free to rotate until a given position
from which they are “bounced back” in an elastic way; obviously, (3) may not be
satisfied in classical sense and a suitable definition of generalized solution is needed.
We establish that (3) admits a periodic generalized solution of assigned energy E or
period T": these results are obtained by means of a sequence of approximated problems
having a strong force term [13] and by taking the limit when the strong force term
tends to vanish; this technique has already been used in [4].

Let us now turn to the mathematical setting of the problem: for all: =0,..., N—1
let a;, b; € IR, with a; < b; and assume that the potentials ®; satisfy

q)i S C’Q[ai,bi] . (C)

Define QT = {q = (ql, ...,qN) S HT, qz(t) — QH-l(t) S (ai,bi) Vi = 0, ,N - 1, vVt €
[0, 7]}, where Hyp is the Hilbert space of absolutely continuous T —periodic functions
q:[0,T] — IRY with square integrable derivative, endowed with the scalar product

vty ()= [ a0 i) ae ([Caw ) (o0 @)

Let us explain what we mean by generalized periodic solution:

Definition 1 A generalized T—periodic solution of energy E of equation (3) is a
function q € Qp such that:

(i) there exist N finite Borel measures p1;(q¢; — giy1) on [0,T] (i = 0,...,N — 1) such
that

Bi(q) = suppp; C {t € [0,T}; ¢;(t) — qi1(t) € {as, bi}}
(ii) there exists i € {0, ..., N — 1} such that B;(q) # 0

(iii) if p(q) == X pi(@ — qir1) and B(q) := U; Bi(q) then |B(q)| = 0, ¢ € C*[0,T] \
B(q) and the equation § = —P'(q) — u(q) is satisfied in distributional sense i.e.

T T
/ qp dt—/ P'(q)p dt:/ pdu(q) Vpe Oy
0 0 B(q)

where C3° is the space of smooth T—periodic functions with values in RY
(v) if t € B;(q) then ¢; — ¢i+1 has right and left limit in t and

lim [g(s) = i1 (s)] = lim [ds41(s) = di(s)]

W) 230 + Y Blalt) — g ()] = B for all € 0,71\ Blo)

If no bounces occur then p;(¢; — gi1) = 0 for all ¢ and a generalized solution of (3)
is in fact a classical (C?) solution.
For the prescribed energy case we have (see [12]):



Theorem 1 Assume (C) and let € be the set of positive noncritical levels of ®; then
for all E € & there exists T > 0 such that system (3) admits a (possibly) generalized
T—periodic solution of energy E. Moreover, there exists Ey = Eo(®;) > 0 such that
if E > Ey the generalized solution has at least one bounce; in particular, if ®; = 0 for

all i, then Ey = 0.

Sketch of the proof. First we add a smooth strong force term eW;(q; — g 1) (¢ > 0)
to the forces @, in (3): we define ¥(q) := >; V;(q; — Git1), P- = ® + €W, and for all
€ > 0, the action functional I, : 2; — IR by

L) = [ liPdr- (B~ [@0)a] ;

we have I. € C?(Qy, R) and its critical points ¢ at positive level correspond to classical
T.-periodic solutions of energy F of the equation § = —®.(q), after a time scaling.
Next, we prove by a suitable linking technique [15], that J¢° such that IZ(¢%) = 0;
hence, ¢ is a classical T;-periodic motion of energy E = £|¢*(t)|* + ®.[¢°(t)] of the
above equation: the assumption E € £ is used to prove the Palais-Smale condition
(PS condition). Finally, we let ¢ — 0: we obtain uniform estimates of the norm ||¢°||,
of the critical level I.(¢%) and of the period 7.. These estimates allow to prove that all
the requirements of Definition 1 are satisfied: the measures y; are the limits (in the
weak™ measure topology) of the sequences {eW}}. To prove that if E is large enough
the solution has at least one bounce, we prove that (2) cannot be satisfied in classical
sense. A Morse index argument can be used to prove that |B(q)| = 0. O

For the prescribed period case we have (see [12]):

Theorem 2 Assume (C); then for all T > 0 there exists E > 0 such that system (3)
admits a generalized T'—periodic solution of energy E.

Sketch of the proof. This proof is similar to the previous one: we add smooth
strong forces eV}, we denote ®. = ¢ + ¥ and we consider for all € > 0, the action
functional J. € C?(Qr,R) defined by

L) =5 [ e~ [ (@@

its critical points correspond to classical T-periodic solutions of the equation § =
—®’(q). To prove the PS condition for J. we prove that a PS sequence {¢"} cannot
be unbounded by the comparison between the rates of growth at infinity of [ ®.(¢")
and [{ ®(¢")q"; by means of a suitable linking we obtain the existence of ¢° € Qp
such that J/(¢°) = 0. If we let ¢ — 0 we obtain uniform estimates of the norm ||¢°||,
of the critical level J.(¢%) and of the energy E. which allow to conclude as above.
Here the existence of at least one bounce is obtained for all 7' > 0. O

3. INFINITE LATTICES
In this section we deal with infinite lattices: the state of the lattice at time ¢ is now
represented by a sequence ¢(t) = {¢;(t)} (i € Z) and the potential of the system
® : R? — IR is the series ®(q) := Yz Pi(¢; — qi1). For all i € Z we assume the



potential ®; to satisfy

®;(z) = —ouz® + Vy(x) where a; >0, V; € O}
36 > 0 such that V/(z)x > (2+6)Vi(z) >0 Vzre R
Vi(x) =0<=2=0

Jm € IN such that &;,,, = &, .

When «; > 0 the force is repulsive-attractive (RA), i.e. repulsive for small displace-
ments and attractive for large displacements, while if o; = 0 the force is purely
attractive (PA). Think to an infinite chain of parallel disks: the nearest neighbor
disks are connected with a superlinear attractive spring if ; = 0 and also with a
linear repulsive spring if a; > 0; in the latter case the disks achieve at least an un-
stable equilibrium position, when the angles are equal, and two stable equilibrium
positions, one in each direction of rotation. For all 7' > 0, we prove the existence of
a T-periodic solution of (1): the solution we obtain has finite energy, that is, all the
couples (except a finite number) of adjacent disks interacting with RA forces move
in a neighborhood of their unstable equilibrium position, i.e. they never fall in the
stable position where the potential attains its minimum; for the same reason, almost
all the couples of adjacent disks interacting with PA forces move in a neighborhood of
the stable equilibrium. Therefore almost all the energy remains contained in a finite
region of the space; this fact is also be supported by numerical results. The existence
of a nontrivial periodic solution of finite energy for this system may be surprising: one
could expect that an infinite lattice of particles interacting with strongly nonlinear
conservative forces is highly ergodic, i.e. it tends to distribute the energy among the
particles, while the existence of a periodic motion of finite energy suggests lack of
ergodicity.
Let S =[0,7]/{0,T}; our framework is the following space

7 {q c Hl(Sl,IR)Z;/OT qo(t)dt =0, Z/OT UCL(@]Q + |qi(t) — Qz‘+1(t)’2] dt < oo}

i€Z

which is a Hilbert space when endowed with the scalar product

(q,p) = Z/OT [(¢:)(Pi) + (@ — @is1) (i — Pis1)] Vp,q € H ;

i€Z

we consider the functional J : H — IR defined by

Ta)y=5 [ ldoPd— [ e

the functional J is well defined on H and J € C*(H,IR), see [1]. We prove the exis-

tence of a T-periodic motion of (2) by showing that the functional J admits a critical

point; note that due to its translation invariance, the functional does not satisfy

the PS condition. To manage this lack of compactness we use Lions’ concentration-

compactness Lemma (C-C Lemma) [14] in a discrete version, see [1] for the proof.
The following theorem summarizes our results, see [2]:



Theorem 3 Assume (P); then YT > 0 system (2) admits a nonzero T-periodic
solution of finite energy. Furthermore if a; = 0 Vi this solution is nonconstant VT > 0,
otherwise AT > 0 such that if T > T the solution is nonconstant.

Sketch of the proof. For all n = km (m as in (P), k € IN) consider the system (.5,,)
consisting in a periodic lattice of 2n particles (i.e. I ={—n,....n—1} and ¢, = q_,,):
to study this problem we use the Hilbert space H,, := {q € HY(S", IR)*™; [T q = 0}
which can be imbedded continuously into H by means of a suitable operator T,,.
Consider the functional

5 = & [ 300 - 00 - aea()]

i=—n

a periodic solution of system (.S,,) is a critical point of .J,,. For all n € IN the functional
J,, satisfies the PS condition and the geometrical requirements of the linking theorem:
if a; > 0 Vi the linking is in fact a mountain pass [15]. The existence of critical points
q™ for J, follows and we obtain uniform estimates of their norms and critical levels.
We prove that {Y,q™} is a bounded PS sequence for J in H, hence 3¢ € H such
that T,q™ — ¢; as the PS condition does not hold for .J, we make use of the discrete

C-C Lemma. We apply it to the sequence of sequences {u§">}neN, where

w | @)+ [T (@ () - qf(¢)2dt if i < n

,U/Z‘ -

0 if |i| > n

and ¢\ € H, is the critical point previously obtained. We first exclude the vanishing
case of the C-C Lemma. Next we establish the existence of bumps for the dichotomy
and concentration cases; for all n most of the norm of ¢ (in case of concentration) or
a fixed part of it (in case of dichotomy) is concentrated around a certain particle: we
call bump this concentrated part. In both cases we achieve a sequence of functions
{q"™} whose bump is in a finite part of the lattice; we “cut” the periodic lattice

between the two particles opposite to the bump. If concentration holds for {uz(-n)}
then Y,¢"™ — ¢ strongly in H, hence ¢ is a nontrivial critical point of J in H. If
dichotomy holds for {ugn)}, by a suitable truncation procedure we build another PS
sequence {Q™} and determine o > 0 such that Q™| — a < liminf,_ ||¢™]
and Q™ — ¢ in H: therefore ||q]| = o and ¢ is a nonzero periodic solution of (2);
hence, the strong limit of the truncated sequence {Q™} equals the weak limit ¢ of
the untruncated sequence {¢™}. If a; > 0 for some i, the potential ®; has nonzero
stationary points and the solution we find could be an equilibrium point for the
potential ®; we can exclude this for large period T (say T > T) by proving that in
such case, the critical level of the functional J is lower than the minimum level of
a nonzero equilibrium point, see [1]. Finally, it is easy to see that the energy of the
solution is finite. O

Remark. If the infinite lattice we consider only has RA forces, i.e. a; > 0 for all
i € Z, we can give a more direct proof of Theorem 3, see [1]: we prove that the
functional J admits a PS sequence {¢™} C H such that

dey,co >0 such that 0<ecr < lg™] < ey (4)



and we use the same concentration-compactness arguments as above. From the ana-
lytical point of view the problem with only RA forces is quite different from the one
where at least one force (and hence an infinity of forces by (P)) is PA, indeed in the
latter case the mountain pass geometry is replaced by an infinite dimensional linking
and the technique developed in [5] to handle this kind of problems cannot be applied,
due to the lack of compactness of the functional. O

From now on we deal with lattices having only RA forces and we assume the
condition 7" > T to be satisfied so that the critical points of J are nonconstant. We
can give a detailed picture of the structure of a PS sequence by the same device as in
8, 9]: the functional J is invariant under both a representation of Z which we denote
x, and a representation of S* which we denote §2; these representations are defined by

T
CTZXHH, (b ok whee (k% a(t) = din(®) 3 [ ain
0
Q:S'xH—H, where  [Q(7,q(t)]; = ¢t +7) .

For all a,b € IR such that b < a we denote J* = J~!((—o0,al]), J& = J([b,a]),
K={qe H\{0}; J(¢)=0}and K*=J°NK. Foralll € N, k = (k',.... k') € Z'
and ¢ = (¢*,...,q") € H', we define k * g := >,_; k/ * ¢/; for all sequences of I-tuples
of integers k,, = (kL,...,k!), by k, — oo we mean that |k — k?| — oo as n — oo for
i # j. The following representation theorem holds, see [1]:

Theorem 4 Assume (P) and let {¢™} C H be a PS sequence for J at level b > 0
satisfying (4). Then there exist a subsequence still denoted by {¢™}, p > 1, [ points
A<i<p)¢ eK (j=1,..1), and l sequences of integers ki (n € IN), such that if
g=(q"....¢") and k, = (kL ....k.), then

Hq(n)—];;n>i<q_H—>07 iJ(qj):b, F = 00 .

=1

This result states that the variational structure of our problem possesses some
analogies with that of the problem of homoclinic orbits for non-autonomous Hamil-
tonian systems with periodic potentials. In both cases, the functional is invariant
under the action of a non-compact group Z and the PS condition does not hold at
any critical level; on the other hand, the same action may allow to prove the existence
of multibump solutions by a “sticking procedure”. This structure was discovered by
Séré [17] for the problem of homoclinics studied in [8]. Our problem is invariant un-
der an S'-action as well and we can prove the existence of multibump solutions by
assuming (e) instead of the more stringent (H) in [17] and (*) in [9], see Theorem 5
below. Let us first explain what we mean by multibump solutions:

Definition 2 A critical point q is a multibump solution of kind (I,p) € IN x R" if
= (kY. k) e Z and §=(¢",....d"), ¢ € K, such that q € B,(k * q).

With this notion we can state the following multiplicity result, see [3]:

Theorem 5 Assume (P); then K/(S* x Z) is infinite. More precisely if

da > 0 and a compact set K C H such that

(o) )
K" = Upez bk * K with ki K N ky x K = 0 when ky # ko |



then ¥n € IN and Va, p > 0 system (2) admits infinitely many multibump solutions of
kind (n, p) in JWTe/(S' x Z).

By applying an algorithm developed by Choi & McKenna [6] we computed the
solutions for finite lattices in the case of RA forces; the numerical results we obtain
describe the process of approximation of the solution for the infinite lattices adopted
in the proof of Theorem 3: for a detailed description of our procedure we refer to [2].
In our experiments we tried various configurations with different number of particles
and potentials; to simplify the structure of the program we chose all the interparticle
potentials to be equal (®; = ®). In the following table we quote our results for
systems of respectively 8 and 14 particles with potentials ®(z) = —x? + z*: the
particle labeled with 0 is the one undergoing the oscillation of maximum amplitude
and is in opposition of phase with all the others; we do not show the amplitude of
oscillation of particles 45, £6 in the second system, as it results to be negligible.

particle number 0 +1 +2 +3 +4
amplitude of oscillation (8) [ 3| 1.2 [3-1072|1.2-1073|4-107°
amplitude of oscillation (14) |4 | 8-107! | 3-1072 | 8-107* | 3-107°

We remark that in both cases only the nearest and second nearest neighbor parti-
cles undergo an oscillation of wide amplitude; the amplitude decreases quickly when
getting farther away from the middle particle. The results for the systems are quite
similar, which permits to conjecture that for an increasing number of particles it
would not change: this algorithm produces in fact a PS sequence which remains
concentrated around the particle in the middle of the lattice. We also tested other
kinds of potentials satisfying assumptions (P) and we obtained similar results; we
can therefore guess the shape of the motion of an infinite lattice: it seems reasonable
to think that such a motion is well represented by motions of finite lattices, the other
particles’ motion being negligible.
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