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Abstract. We prove existence and uniqueness (up to rescaling) of positive radial entire solu-
tions of supercritical semilinear biharmonic equations. The proof is performed with a shooting
method which uses the value of the second derivative at the origin as a parameter. This method
also enables us to find finite time blow up solutions. Finally, we study the convergence at infin-
ity of smooth solutions towards the explicitly known singular solution. It turns out that the
convergence is different in space dimensions n ≤ 12 and n ≥ 13.
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1. Introduction

In the present paper we investigate existence, uniqueness, asymptotic behavior and
further qualitative properties of radial solutions of the supercritical biharmonic
equation

�2u = |u|p−1u in R
n, (1)

where n ≥ 5 and p > n+4
n−4 . Let us mention that the subcritical case p ≤ n+4

n−4 is by
now well-established, see [5, Theorems 1.3, 1.4]. There are several motivations
for the study of (1). Let us try to explain them in some detail.

We first recall that the corresponding supercritical second order equation (when
n ≥ 3 and p > n+2

n−2 )

−�u = |u|p−1u in R
n (2)
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was intensively studied by Gidas-Spruck [7], Pohožaev [14] and in particular
detail by Xuefeng Wang [18]. For the reader’s convenience, we state those of the
results obtained there, being of relevance for the present paper.

Proposition 1. [18] Let n ≥ 3 and assume that p > n+2
n−2 . Then, for any a > 0 the

equation (2) admits a unique radial positive solution u = u(r) such that u(0) = a

and u(r) → 0 as r → ∞. The solution u satisfies u′(r) < 0 for all r > 0 and

lim
r→∞ r

2/(p−1)u(r) = L :=
(

2(np − 2p − n)

(p − 1)2

)1/(p−1)

.

Moreover, if n ≤ 10 or if n ≥ 11 and

p < pc := n2 − 8n+ 4 + 8
√
n− 1

(n− 2)(n− 10)

then u(r)−Lr−2/(p−1) changes sign infinitely many times. If n ≥ 11 and p ≥ pc

then u(r) < Lr−2/(p−1) for all r > 0 and the solutions are strictly ordered with
respect to the initial value a = u(0) .

The main concern of the mentioned paper [18] by Wang, however, are corre-
sponding reaction-diffusion equations.

Most of the methods employed for the proof of Proposition 1 are special for
second order equations and do not apply to (1). For instance, qualitative properties
of solutions require a detailed analysis of a dynamical system in the corresponding
phase space which is two dimensional for (2), whereas it is four dimensional for
(1).And in four dimensional spaces powerful tools such as the Poincaré-Bendixson
theory are no longer available. One of our purposes is to find out which of the
results in [18] continue to hold and by which new methods they can be proved.

We seek solutions u of (1) which only depend on |x| so that they also solve
the corresponding ordinary differential equation. Due to their homogeneity, both
equations (1) and (2) are invariant under a suitable rescaling. This means that
existence of a solution immediately implies the existence of infinitely many solu-
tions, each one of them being characterized by its value at the origin. To ensure
smoothness of the solution, one needs to require that u′(0) = u′′′(0) = 0 for (1)
and u′(0) = 0 for (2). But contrary to (2), solutions of (1) may be determined only
by fixing a priori also the value of u′′(0). In Theorem 1, which is stated in detail
like the other main results in Section 2, we show that positive radial solutions
u = u(|x|) of (1) exist and are unique, up to rescaling. The proof is performed
with a shooting method which uses as a free parameter the “shooting concavity”,
namely the initial second derivative u′′(0). Clearly, (2) has no free parameter since
one has just to fix the rescaling parameter u(0).

Theorem 2 highlights a further striking difference between (1) and (2). It states
that the shooting concavity u′′(0) enables to find both positive and negative finite
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time blow up solutions for (1). Since no free parameter is available, no such
solutions exist for (2).

In Sections 3 and 6 we transform (1) into an autonomous ordinary differential
equation and, by exploiting the supercriticality assumption, we construct an energy
functional which has the crucial feature of being strictly decreasing on critical
points of the solution. This fact, combined with several fine estimates, enables us to
prove Theorem 3, namely that positive radial entire solutions of (1) behave asymp-
totically as |x| → ∞ like the (positive) singular solution us(x) := C|x|−4/(p−1)

which solves (1) in R
n \ {0} for a suitable value of C > 0. In other words, we

show that any entire positive radial solution u = u(|x|) of (1) satisfies

lim
|x|→∞

|x|4/(p−1)u(|x|) = C (3)

for some fixed C > 0. Although this result is similar to that obtained in [18] for
(2), its proof is completely different.

The following step is to find out whether the convergence in (3) occurs mono-
tonically or with oscillations. To this end, we perform a stability analysis for the
singular solution us . It turns out that for dimensions n ≥ 13 a new critical expo-
nent pc > n+4

n−4 arises. The stable manifold behaves differently for n ≤ 12 and
p > n+4

n−4 or n ≥ 13 and n+4
n−4 < p < pc on the one hand, and for n ≥ 13 and

p ≥ pc on the other hand. In Section 4 we show that strong hints give the feeling
that oscillations occur in the former situation. On the other hand, in Theorem 4
we prove that monotone convergence occurs in (3) whenever n ≥ 13 and p > pc.
In what follows, the notion “subcritical” and “supercritical” always refers to this
new critical exponent pc. Our results still leave open some questions, which we
describe in detail in Open Problems 1–3 in Section 4.

Finally, let us mention that our results may also shed some light on related
problems in the unit ball B ⊂ R

n. For both the cases L = −� and L = �2,
consider the equation

Lu = λ(1 + u)p in B (4)

where λ ≥ 0. We complement (4) with homogeneous Dirichlet boundary condi-
tions (u = 0 if L = −� and u = |∇u| = 0 if L = �2). When L = −�, it is
known [11, Théorème 4] that the extremal solution u∗ (corresponding to the larg-
est value of λ for which (4) admits a positive solution) is bounded for all n and p
which give rise to smooth solutions of (2) oscillating around the singular solution,
see [18, Proposition 3.7]. For the remaining values of n and p, when no oscillation
occurs in (2), it is known [3] that u∗ is unbounded. When L = �2, similar results
are not known due to several serious obstructions which arise. For instance, the
singular solution of (4) cannot be explicitly determined, see [1,2]. Moreover, the
link with remainder terms in Hardy inequality discovered in [3] seems to fail for
higher order problems [6]. Nevertheless, the results of the present paper enable
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us to conjecture that, when L = �2, extremal solutions of (4) are unbounded if
and only if n ≥ 13 and p ≥ pc.

This paper is organized as follows. In the next section, we state our main
results. In Section 3 we transform equation (1) first into an autonomous equation
and subsequently into an autonomous system. In Section 4 we study the autono-
mous system in the “subcritical” case (n+4)/(n−4) < p < pc. Finally, Sections
5, 6, 7 and 8 are devoted to the proofs of the results.

2. Results

An existence result, which covers the equation (1), was given first by Serrin and
Zou [16]. In Section 5, we give a different proof which is perhaps simpler and
more suitable for our purposes. Moreover, we show uniqueness and complement
these results with some information on the qualitative behavior of the solution.

Theorem 1. Let n ≥ 5 and assume that p > n+4
n−4 . Then, for any a > 0 the

equation

�2u = up in R
n (5)

admits a unique radial positive solution u = u(r) (r = |x|) such that u(0) = a

and u(r) → 0 as r → ∞. Moreover, u satisfies:

(i) u′(r) < 0 for all r > 0.
(ii) �u(r) < 0 for all r > 0.

(iii) (�u)′(r) > 0 for all r > 0.

The solutions in Theorem 1 are constructed by means of a shooting method.
We keep u(0) fixed, say u(0) = 1, and look for solutions uγ of the initial value
problem over [0,∞):

u(4)γ (r)+ 2(n−1)
r
u′′′
γ (r)+ (n−1)(n−3)

r2 u′′
γ (r)− (n−1)(n−3)

r3 u′
γ (r)

= |uγ (r)|p−1uγ (r)

uγ (0) = 1, u′
γ (0) = u′′′

γ (0) = 0, u′′
γ (0) = γ < 0,

(6)

which is the radial version of equation (1). Then, one has the following behavior
with respect to the parameter γ :

Theorem 2. There exists a unique γ < 0 such that the solution u of (6) (for
γ = γ ) exists on the whole interval [0,∞), is positive everywhere and vanishes
at infinity.
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If γ < γ , there exist 0 < R1 < R2 < ∞ such that uγ (R1) = 0 and
limr→R2 uγ (r) = −∞.
If γ > γ , there exist 0 < R1 < R2 < ∞ such that u′

γ (r) < 0 for r ∈ (0, R1),
u′
γ (R1) = 0, u′

γ (r) > 0 for r ∈ (R1, R2) and limr→R2 uγ (r) = +∞.

Theorem 2 shows that entire radial solutions of (1) are necessarily of one sign
so that, in what follows, we restrict our attention to positive solutions. It is a simple
observation that a positive singular solution us of (5) is given by

us(r) = K
1/(p−1)
0 r−4/(p−1), (7)

where

K0 = 8

(p − 1)4

[
(n− 2)(n− 4)(p − 1)3 + 2(n2 − 10n+ 20)(p − 1)2

−16(n− 4)(p − 1)+ 32
]
.

In contrast with the second order equation (2) discussed in [18], a priori the entire
solutions of (5) found in Theorem 1 may have faster decay than the singular solu-
tion, see the discussion in Section 6. However, by transforming equation (6) into
an autonomous 4 × 4 system and by means of a careful analysis of a suitable
energy functional and of corresponding integrability properties, we succeed in
proving the following result:

Theorem 3. Let n ≥ 5 and assume that p > n+4
n−4 . Let u = u(r) be a positive

smooth radial entire solution of (5) and let us be as in (7). Then,

u(r) <

(
p + 1

2

)1/(p−1)

us(r) for all r ≥ 0 (8)

and

lim
r→∞

u(r)

us(r)
= 1. (9)

We now wish to describe in which way (9) occurs. To this end, in Sections 3
and 8 we perform a stability analysis of the singular solution us . It turns out that
for dimensions n ≥ 13 a new critical exponent pc > n+4

n−4 becomes important:

Theorem 4. For all n ≥ 13 there exists pc >
n+4
n−4 such that if p > pc and if u is a

smooth positive radial entire solution of (5), then u(r)−K
1/(p−1)
0 r−4/(p−1) does

not change sign infinitely many times.
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The number pc is the unique value of p > n+4
n−4 such that

−(n− 4)(n3 − 4n2 − 128n+ 256)(p − 1)4 + 128(3n− 8)(n− 6)(p − 1)3

+256(n2 − 18n+ 52)(p − 1)2 − 2048(n− 6)(p − 1)+ 4096 = 0.

In Proposition 2 we show that n �→ pc is decreasing for n ≥ 13 and tends to 1 as
n → ∞.

Theorem 4 is a partial result concerning the “supercritical” case p > pc,
n ≥ 13. Section 4 is devoted to the discussion of the “subcritical” case.

3. An autonomous system

In radial coordinates r = |x|, equation (5) reads

u(4)(r) +2(n− 1)

r
u′′′(r)+ (n− 1)(n− 3)

r2
u′′(r)

−(n− 1)(n− 3)

r3
u′(r) = up(r), r ∈ [0,∞). (10)

Our purpose here is to transform (10) first into an autonomous equation and, sub-
sequently, into an autonomous system. For some of the estimates which follow, it
is convenient to rewrite the original assumption p > n+4

n−4 as

(n− 4)(p − 1) > 8. (11)

Inspired by the proof of [18, Proposition 3.7] (see also [7,9]) we set

u(r) = r−4/(p−1) v(log r) (r > 0), v(t) = e4t/(p−1) u(et ) (t ∈ R).

(12)

Tedious calculations then show that

u′(r)
r3

= r−4p/(p−1)

[
v′(t)− 4

p − 1
v(t)

]
, (13)

u′′(r)
r2

= r−4p/(p−1)

[
v′′(t)− p + 7

p − 1
v′(t)+ 4(p + 3)

(p − 1)2
v(t)

]
,

u′′′(r)
r

= r−4p/(p−1)
[
v′′′(t)− 3(p + 3)

p − 1
v′′(t)+ 2(p2 + 10p + 13)

(p − 1)2
v′(t)

−8(p + 1)(p + 3)

(p − 1)3
v(t)

]
,

u(4)(r) = r−4p/(p−1)

[
v(4)(t)− 2(3p + 5)

p − 1
v′′′(t)+ 11p2 + 50p + 35

(p − 1)2
v′′(t)

−2(3p3+35p2+65p + 25)

(p − 1)3
v′(t)+8(p + 1)(p + 3)(3p + 1)

(p − 1)4
v(t)

]
.
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Therefore, after the change (12), equation (10) may be rewritten as

v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t)+K0v(t) = vp(t) t ∈ R, (14)

where the constants Ki = Ki(n, p) (i = 0, ..., 3) are given by

K0 = 8

(p − 1)4

[
(n− 2)(n− 4)(p − 1)3 + 2(n2 − 10n+ 20)(p − 1)2

−16(n− 4)(p − 1)+ 32
]
,

K1 = − 2

(p − 1)3

[
(n− 2)(n− 4)(p − 1)3 + 4(n2 − 10n+ 20)(p − 1)2

−48(n− 4)(p − 1)+ 128
]
,

K2 = 1

(p − 1)2

[
(n2 − 10n+ 20)(p − 1)2 − 24(n− 4)(p − 1)+ 96

]
,

K3 = 2

p − 1

[
(n− 4)(p − 1)− 8

]
.

By using (11), it is not difficult to show that K1 = K3 = 0 if p = n+4
n−4 and that

K0 > 0, K1 < 0, K3 > 0 ∀n ≥ 5, p >
n+ 4

n− 4
. (15)

On the other hand, the sign ofK2 depends on n and p. We emphasize that the sign
of K1 and K3 is due to assumption (11) and will be essentially exploited in the
proof of Theorem 3, see also the proof of Lemma 6.

Note that (14) admits the two constant solutions v0 ≡ 0 and vs ≡ K
1/(p−1)
0

which, by (12), correspond to the following solutions of (10):

u0(r) ≡ 0, us(r) = K
1/(p−1)
0

r4/(p−1)
.

We now write (14) as a system in R
4. By (13) we have

u′(r) = 0 ⇐⇒ v′(t) = 4

p − 1
v(t).

This fact suggests us to define

w1(t) = v(t),

w2(t) = v′(t)− 4

p − 1
v(t),

w3(t) = v′′(t)− 4

p − 1
v′(t),

w4(t) = v′′′(t)− 4

p − 1
v′′(t)
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so that (14) becomes


w′
1(t) = 4

p−1w1(t)+ w2(t)

w′
2(t) = w3(t)

w′
3(t) = w4(t)

w′
4(t) = C2w2(t)+ C3w3(t)+ C4w4(t)+ w

p

1 (t),

(16)

where

Cm = −
4∑

k=m−1

Kk4k+1−m

(p − 1)k+1−m for m = 1, 2, 3, 4 with K4 = 1. (17)

This gives first that C1 = 0 so that the term C1w1(t) does not appear in the last
equation of (16). Moreover, we have the explicit formulae:

C2 = 2

(p − 1)3

[
(n− 2)(n− 4)(p − 1)3 + 2(n2 − 10n+ 20)(p − 1)2

−16(n− 4)(p − 1)+ 32
]

= p − 1

4
K0,

C3 = − 1

(p − 1)2

[
(n2 − 10n+ 20)(p − 1)2 − 16(n− 4)(p − 1)+ 48

]
,

C4 = − 2

p − 1

[
(n− 4)(p − 1)− 6

]
.

System (16) has the two stationary points (corresponding to v0 and vs)

O
(

0, 0, 0, 0
)

and P
(
K

1/(p−1)
0 ,− 4

p − 1
K

1/(p−1)
0 , 0, 0

)
.

Let us consider first the “regular point” O. The linearized matrix at O is

MO =




4
p−1 1 0 0
0 0 1 0
0 0 0 1
0 C2 C3 C4




and the characteristic polynomial is

λ �→ λ4 +K3λ
3 +K2λ

2 +K1λ+K0.

Then, according to MAPLE, the eigenvalues are given by

λ1 = 2
p + 1

p − 1
, λ2 = 4

p − 1
, λ3 = 4p

p − 1
− n, λ4 = 2

p + 1

p − 1
− n.

Since we assume that p > n+4
n−4 >

n
n−4 >

n+2
n−2 , we have

λ1 > λ2 > 0 > λ3 > λ4.
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This means that O is a hyperbolic point and that both the stable and the unstable
manifolds are two-dimensional. This is the same situation as in the exponential
case (see [1]) and except for λ2 it seems as if one could perform a formal limit
p → ∞.

Around the “singular point”P the linearized matrix of the system (16) is given
by

MP =




4
p−1 1 0 0
0 0 1 0
0 0 0 1
pK0 C2 C3 C4


 . (18)

The corresponding characteristic polynomial is

ν �→ ν4 +K3 ν
3 +K2 ν

2 +K1ν + (1 − p)K0

and the eigenvalues are given by

ν1 = N1 +
√
N2 + 4

√
N3

2(p − 1)
, ν2 = N1 −

√
N2 + 4

√
N3

2(p − 1)
,

ν3 = N1 +
√
N2 − 4

√
N3

2(p − 1)
, ν4 = N1 −

√
N2 − 4

√
N3

2(p − 1)
,

where

N1 := −(n− 4)(p − 1)+ 8, N2 := (n2 − 4n+ 8)(p − 1)2,

N3 := (9n− 34)(n− 2) (p − 1)4 + 8(3n− 8)(n− 6) (p − 1)3

+(16n2 − 288n+ 832) (p − 1)2 − 128(n− 6)(p − 1)+ 256.

The stability of the stationary point P is described by the following

Proposition 2. Assume that p > n+4
n−4 .

(i) For any n ≥ 5 we have ν1, ν2 ∈ R and ν2 < 0 < ν1.
(ii) For any 5 ≤ n ≤ 12 we have ν3, ν4 �∈ R and Re ν3 = Re ν4 < 0.

(iii) For any n ≥ 13 there exists pc >
n+4
n−4 such that:

– if p < pc, then ν3, ν4 �∈ R and Re ν3 = Re ν4 < 0.
– if p = pc, then ν3, ν4 ∈ R and ν4 = ν3 < 0.
– if p > pc, then ν3, ν4 ∈ R and ν4 < ν3 < 0.

The number pc is the unique value of p > n+4
n−4 such that

−(n− 4)(n3 − 4n2 − 128n+ 256)(p − 1)4 + 128(3n− 8)(n− 6)(p − 1)3

+256(n2 − 18n+ 52)(p − 1)2 − 2048(n− 6)(p − 1)+ 4096 = 0.

The function n �→ pc is strictly decreasing and approaches 1 as n → ∞.
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Proof. See Section 8. ��
According to Proposition 2, in any case we have

ν1 > 0, ν2 < 0, Re ν3 = Re ν4 < 0.

This means that P has a three dimensional stable manifold and a one dimensional
unstable manifold (as in the exponential case, see [1, Sect. 3.1]).

Remark 1. Consider the function

φ(x) := x4 +K3x
3 +K2x

2 +K1x. (19)

We have φ(0) = 0 and φ′(0) = K1 < 0 for every n and p. Moreover, by the
previous analysis around the point O, we know that the equation φ(x) = −K0

always has 4 real solutions, 2 positive and 2 negative. By these facts we deduce
that the graphic of φ has the shape of W with two local minima (one positive, one
negative) at level below −K0 and the unique local maximum (negative) at strictly
positive level. In particular, for any −K0 ≤ γ ≤ 0, the equation φ(x) = γ has
4 real solutions. Finally, note that the level of the local maximum of φ coincides
with (p − 1)K0 if and only if p = pc.

4. Observations on the stable manifold of P and open problems

Let u denote a smooth positive entire radial solution of (5), let v be defined accord-
ing to (12) so that it solves (14), and let w(t) = (

w1(t), w2(t), w3(t), w4(t)
)

be
the vector solution of the corresponding first order system (16).

We first state a general result which holds for any entire smooth solution:

Proposition 3. We assume that u is an entire smooth positive radial solution of
(5) and that w = (w1, w2, w3, w4) is the corresponding solution of system (16).
Then,

lim
t→∞ w(t) = P.

In particular, the trajectory w is on the stable manifold of P .

Proof. See Section 8. ��
By Proposition 3 we know that w is on the stable manifold of the singular point

P while Theorem 4 gives information on the non-oscillatory behavior of u around
the singular solution us in the “supercritical” case. In this section, we refer to the
new critical exponent pc arising in Proposition 2. Here, we are interested in the
(presumably) oscillatory behavior in the “subcritical” case, i.e. in what follows
we assume:

n ≤ 12 or
(
n ≥ 13 and

n+ 4

n− 4
< p < pc

)
. (20)
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We study the relative position of the hyperplane

H := {w ∈ R
4 : w1 = K

1/(p−1)
0 }

with respect to the tangential plane of the oscillatory component of the stable
manifold

OS := {sx + ty : s, t ∈ R}.
Here x ± iy denotes eigenvectors of the matrixMP defined in (18) corresponding
to the nonreal eigenvalues ν3, ν4.

Proposition 4. The hyperplaneH and the plane P +OS intersect transversally,
i.e.

P +OS �⊂ H.

Proof. See Section 8. ��
Open Problem 1. Since we have that ν2 < Re ν3 = Re ν4 < 0 we know that
all trajectories of system (16) which are in the stable manifold of P are eventu-
ally tangential to OS, except the trajectory being tangential to the eigenvector
corresponding to ν2. By Proposition 4 we may conclude that all these trajecto-
ries have infinitely many intersections with the hyperplane H . If the trajectory w
corresponding to the solution u is among these, then we would have shown:

For t → ∞, the first component v(t) = w1(t) attains infinitely many
times the valueK1/(p−1)

0 so that for r near ∞, u(r) oscillates infinitely often
around the singular solution us , provided that the subcriticality assumption
(20) is satisfied.

In order to complete the proof of this statement, it “only” remains to show that at
∞, t �→ w(t) is not tangential to an eigenvector corresponding to ν2. For this it
would suffice to identify the trajectories having this property and to see that they
are different from w.

Open Problem 2. Our proof of Theorem 4 relies on a result by Elias [4] which no
longer applies when p = pc. Nevertheless, we believe that the statement of Theo-
rem 4 also holds true in this limit situation. If one could show that for allp > pc the
solutions u of (10) are approaching the singular solution us from below, then the
same result would presumably also follow for p = pc by continuous dependence.

Open Problem 3. With the same proof of Theorem 4, one can also show that if
uα and uβ are positive radial entire solutions of (5) with shooting levels uα(0) = α

and uβ(0) = β, then (under the assumptions of Theorem 4) uα − uβ is non-
oscillatory, i.e. it has at most a finite number of zeros. A natural question arises
whether all these solutions (including the singular one) are completely ordered,
i.e. they have no crossing at all, and not only eventually.
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5. Proof of Theorems 1 and 2

If u = u(r) is a radial positive solution of (5) such that u(0) = 1 and u(r) → 0
as r → ∞, then

ua(r) := a u(a
p−1

4 r) (a > 0)

is a radial positive solution of (5) such that ua(0) = a and ua(r) → 0 as r → ∞.
Therefore, Theorem 1 follows if we prove existence and uniqueness of a solution
u satisfying u(0) = 1.
Existence. In order to prove existence, we apply a shooting method with initial
second derivative as parameter. We remark that nu′′(0) = �u(0) and that by
l’Hospital’s rule

(�u)′(0) = u′′′(0)+ (n− 1) lim
r→0

ru′′(r)− u′(r)
r2

= n+ 1

2
u′′′(0).

This means that the initial conditions in (6) also read as

u(0) = 1, u′(0) = (�u)′(0) = 0, �u(0) = nγ < 0. (21)

For all γ < 0, (10)–(21) admits a unique local smooth solution uγ defined on
some right neighborhood of r = 0. Let

Rγ =
{+∞ if uγ (r)u′

γ (r) < 0 ∀r > 0
min{r > 0; uγ (r)u′

γ (r) = 0} otherwise.

From now on we understand that uγ is continued on [0, Rγ ). Let

I+ = {γ < 0; Rγ < ∞ , uγ (Rγ ) = 0},
I− = {γ < 0; Rγ < ∞ , u′

γ (Rγ ) = 0}.
We prove the following statement:

Lemma 1. Assume p > n+4
n−4 . If both I+ and I− are nonempty then there exists

γ < 0 such that Rγ = ∞. Moreover, uγ is defined on [0,∞) and limr→∞ uγ
(r) = 0.

Proof. Since p ≥ n+4
n−4 , Pohožaev’s identity (see e.g. [13, Corollary 1]) tells us

that for any R > 0 the problem
{
�2w = wp if |x| < R

w = |∇w| = 0 if |x| = R

admits no positive solution. In our setting, this reads

I+ ∩ I− = ∅. (22)
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Moreover, by continuous dependence with respect to the variable initial datum γ ,
we have that

I+ and I− are open in (−∞, 0). (23)

Combining (22)–(23) with the assumption, we infer that there exists γ �∈ I+ ∪I−.
Then, Rγ = +∞ and limr→∞ uγ (r) exists (recall u′

γ < 0). Finally, this limit is
necessarily 0, since uγ solves (10). ��
Remark 2. A well-known crucial difference arises when 1 < p < n+4

n−4 . In such
case, by standard critical point theory and rescaling one has that I+ ∩ I− �= ∅.

Consider now the Euler equation for Sobolev minimizers (see e.g. [17]):


v(4)(r)+ 2(n−1)

r
v′′′(r)+ (n−1)(n−3)

r2 v′′(r)− (n−1)(n−3)
r3 v′(r)

= v
n+4
n−4 (r),

r ≥ 0,

v(0) = 1, v′(0) = (�v)′(0) = 0, �v(0) = nδ,

(24)

where δ < 0 is chosen in such a way that the unique solution of (24) is given by

v(r) =
[
n(n2 − 4)(n− 4)

] n−4
4

(
√
n(n2 − 4)(n− 4)+ r2)

n−4
2

. (25)

This explicit solution will serve as a comparison function for the initial value
problem (10)–(21). For this purpose we quote a comparison principle, which has
been observed by McKenna-Reichel [10] and which will turn out to be useful also
in the proof of uniqueness below:

Lemma 2. Assume that f : R → R is locally Lipschitzian and strictly increasing.
Let u, v ∈ C4([0, R)) be such that


∀r ∈ [0, R) : �2v(r)− f (v(r)) ≥ �2u(r)− f (u(r)), v(0) ≥ u(0),

v′(0) = u′(0) = 0, �v(0) ≥ �u(0),

(�v)′(0) = (�u)′(0) = 0.

(26)

Then we have for all r ∈ [0, R):

v(r) ≥ u(r), v′(r) ≥ u′(r), �v(r) ≥ �u(r), (�v)′(r) ≥ (�u)′(r).
(27)

Moreover,

(i) the initial point 0 can be replaced by any initial point ρ > 0 if all four initial
data are weakly ordered.



918 F. Gazzola, H-Ch. Grunau

(ii) a strict inequality in one of the initial data at ρ ≥ 0 or in the differ-
ential inequality on (ρ, R) implies a strict ordering of v, v′,�v,�v′ and
u, u′,�u,�u′ on (ρ, R).

With the aid of this lemma we obtain

Lemma 3. Let δ < 0 be as in (24) and let v be as in (25). Let γ < δ and let uγ be
the local solution of (10)–(21). Then, one of the two following facts holds true:

(i) γ ∈ I+.

(ii) 0 < uγ (r) < v(r) for all r > 0.

Proof. Since 0 < v ≤ 1 we have

�2v − vp ≥ �2v − v(n+4)/(n−4) = 0 = �2u− |u|p−1u,

as long as u exists. Hence, v(r) > u(r) and 0 > v′(r) > u′(r) for these r > 0.
Assume that γ �∈ I+. Then it is immediate from Lemma 2 that alternative (ii)
holds true. ��

If the alternative (ii) in Lemma 3 holds true, then the corresponding solution
uγ satisfies the requirements of Theorem 1 and existence follows.

If the alternative (i) in Lemma 3 holds true, in view of Lemma 1, existence is
proved once we show that

I− �= ∅. (28)

To this end, we consider the following Dirichlet problem

�2w = λ(1 + w)p in B
w > 0 in B
w = ∂w

∂n
= 0 on ∂B

(29)

where λ > 0 and B ⊂ R
n is the unit ball. Arguing as in the proof of [2, Theorem

2.3] (see also [15]) and taking into account both Lemma 6 and Theorem 1 in [1] we
infer that there existsλ > 0 such that for allλ ∈ (0, λ] problem (29) admits a radial

smooth solutionwλ = wλ(r). So, fix one such λ and putw(r) = λ
1

p−1 (1+wλ(r)).
Then, w satisfies 



�2w = wp in B

w > λ
1

p−1 in B

w = λ
1

p−1 on ∂B
∂w
∂n

= 0 on ∂B.
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Finally, the function uγ (r) := α
4

p−1w(αr) with α = w
1−p

4 (0) satisfies uγ (0) = 1
and 



�2uγ = u
p
γ in B1/α

uγ > α
4

p−1λ
1

p−1 in B1/α

uγ = α
4

p−1λ
1

p−1 on ∂B1/α
∂uγ

∂n
= 0 on ∂B1/α.

Take γ = u′′
γ (0) < 0. Then, Rγ = α−1 and u′

γ (Rγ ) = 0. This proves that γ ∈ I−

and, in turn, that (28) holds true. And this proves the existence of a positive radial
solution of (5) satisfying u(0) = 1 and u(x) → 0 as |x| → ∞.
Qualitative behavior. Let u = u(r) be a radial solution of (5) such that u(0) = 1
and u(r) → 0 as r → ∞. Statement (iii) follows by integrating

{
rn−1 [�u(r)]′

}′ = rn−1up(r) (30)

over [0, r] for r > 0.
In order to prove (i), we assume for contradiction that there exists R1 > 0,

the first solution of u′(R1) = 0. Then, �u(R1) = u′′(R1) ≥ 0. By using the just
proved statement (iii) for r > R1 we deduce that �u(r) > 0 for all r > R1 and
that u′(r) > 0 for all r > R1, against the assumption of u(r) vanishing at +∞.
This contradiction proves (i).

Next we shall prove (ii). For contradiction, assume now that there exists
R1 > 0, the first solution of�u(R1) = 0. Then, by (iii), we know that there exist
R2 > R1 and ε > 0 such that�u(r) ≥ ε for all r ≥ R2. Multiplying by rn−1 this
inequality yields

[rn−1u′(r)]′ ≥ εrn−1 for all r ≥ R2.

Integrating this last inequality over [R2, r] for any r > R2 and dividing by rn−1

gives

u′(r) ≥ ε

n
r + Rn−1

2 u′(R2)

rn−1
− εRn2

nrn−1
for all r ≥ R2.

Letting r → ∞ we then obtain u′(r) → +∞, contradiction. Hence, also (ii) is
proved.
Uniqueness. By means of the comparison principle Lemma 2, it is immediate
that the family in Lemma 3 is ordered:

Lemma 4. Letγ1 < γ2 and letuγj be the corresponding local solution of (10)–(21).
As long as both solutions exist, we have for r > 0 that

uγ1(r) < uγ2(r). (31)
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Since we already proved existence, the following statement makes sense:

Lemma 5. Let u denote a positive entire radially decreasing solution of (5) such
that u(0) = 1 and u(r) → 0 as r → ∞ and let γ = u′′(0). For any γ < γ let uγ
be the local solution of (10)–(21). Then, for r > 0, as long as uγ exists:

u′
γ (r) < u′(r). (32)

Again, the proof follows directly from Lemma 2. In particular, Lemma 5 tells
us that for any γ < γ , uγ (r) vanishes in finite time. This proves uniqueness and
completes the proof of Theorem 1. ��
Proof of Theorem 2. The existence of precisely one such γ follows from the proof
of Theorem 1.

The statement in the case γ > γ follows by arguing similarly as in Theorem
4.2 in [2]. More precisely, by Lemma 4, for r > 0 we have 0 < u(r) < uγ (r)

as long as the latter exists. If there exists no R1 > 0 such that u′
γ (R1) = 0, then

u′
γ (r) < 0 for all r > 0 so that uγ would be a positive global solution of (6) such

that uγ (r) → 0 as r → ∞, against the uniqueness stated in Theorem 1. So, let
R1 > 0 be the first solution of u′

γ (R1) = 0. Then, �uγ (R1) ≥ 0. By integrating
(30) over [0, r] for r > R1 we deduce that �uγ (r) > 0 for all r > R1 and
that u′

γ (r) > 0 for all r > R1. Then, uγ (r) → +∞ at some (finite or infinite)
R2 > R1.

In order to show that R2 < ∞ we essentially refer to a reasoning, which was
performed for the critical case in [8, Lemma 2]. Let ũ(r) := uγ (r)− 1, so that it
solves �2ũ = (1 + ũ)

p. Since ũ(r) ↗ ∞ for r ↗ R2, successive integration of
the differential equation shows that for some suitable r0 < R2, r0 close enough to
R2, one has:

ũ(r0) > 0, ũ′(r0) > 0, �ũ(r0) > 0, (�ũ)
′
(r0) > 0.

For any value of the rescaling parameter α > 0,

u0,α(r) := α
(
1 − (r/λα)

2)−(n−4)/2
,

λα = α−2/(n−4) [(n+ 2)n(n− 2)(n− 4)]1/4 ,

solves

�2u0,α = u
(n+4)/(n−4)
0,α ≤ (

1 + u0,α
)(n+4)/(n−4) ≤ (

1 + u0,α
)p

for r ∈ [0, λα).

Choosing α > 0 small enough one may achieve that λα > r0 and that

ũ(r0) > u0,α(r0),

ũ′(r0) > u0,α(r0),

�ũ(r0) > �u0,α(r0),

(�ũ)
′
(r0) >

(
�u0,α

)′
(r0).
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That means that u0,α is a subsolution for ũ on [r0,min{R2, λα}). Lemma 2 yields
that

ũ(r) ≥ u0,α(r) on [r0,min{R2, λα}).
Consequently, R2 ≤ λα < ∞.

The statement in the case γ < γ is mostly a further consequence of Lemma
5. Indeed, for γ < γ we know that necessarily uγ vanishes in finite time, say
at r = R1. Since by (32) u′

γ remains negative for all r , we necessarily have
uγ (r) → −∞ at some R2 > R1. By considering −u for r < R2 close to R2

and observing that −u solves the same differential equation, the first part of the
present proof shows that also here R2 < ∞. ��

6. Proof of Theorem 3

In order to prove (9) we proceed in three steps. We consider the corresponding
global positive solution v of (14) and show first that for t → +∞, v → 0 or
v → K

1/(p−1)
0 or v oscillates infinitely many times near ∞. In a second step,

we exclude the first alternative. Finally, we study solutions v being oscillatory at
∞. For this purpose, an energy functional is introduced, which helps to deduce
suitable L2-bounds on the solution v. These bounds show that the solution again
and again and even faster and faster has to be in a neighbourhood of the singular
point P . By local properties of the autonomous system (16), the trajectory of v
is (finally) on the stable manifold of P . For these arguments it is crucial that the
coefficients K1 and K3 have the “good” sign: K1 < 0 and K3 > 0.

As a first step, we prove:

Proposition 5. Let v be a global positive solution of (14) and assume that there
exists L ∈ [0,+∞] such that

lim
t→+∞ v(t) = L.

Then, L ∈ {0,K1/(p−1)
0 }.

Proof. For contradiction, assume first thatL is finite andL �∈ {0,K1/(p−1)
0 }. Then,

vp(t) − K0v(t) → α := Lp − K0L �= 0 and for all ε > 0 there exists T > 0
such that

α − ε ≤ v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t) ≤ α + ε ∀t ≥ T . (33)

Take ε < |α| so that α − ε and α + ε have the same sign and let

δ := sup
t≥T

|v(t)− v(T )| < ∞.
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Integrating (33) over [T , t] for any t ≥ T yields

(α − ε)(t − T )+ C − |K1|δ ≤ v′′′(t)+K3v
′′(t)+K2v

′(t)
≤ (α + ε)(t − T )+ C + |K1|δ ∀t ≥ T ,

where C = C(T ) is a constant containing all the terms v(T ), v′(T ), v′′(T ) and
v′′′(T ). Repeating twice more this procedure gives

α − ε

6
(t − T )3 +O(t2) ≤ v′(t) ≤ α + ε

6
(t − T )3 +O(t2) as t → ∞.

This contradicts the assumption that v admits a finite limit as t → +∞.
Next, we exclude the case L = +∞. For contradiction, assume that

lim
t→+∞ v(t) = +∞. (34)

Then, there exists T ∈ R such that

v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t) ≥ vp(t)

2
∀t ≥ T .

Moreover, by integrating this inequality over [T , t] (for t ≥ T ), we get

v′′′(t)+K3v
′′(t)+K2v

′(t)+K1v(t) ≥ 1

2

∫ t

T

vp(s)ds + C ∀t ≥ T , (35)

where C = C(T ) is a constant containing all the terms v(T ), v′(T ), v′′(T )
and v′′′(T ). From (34) and (35) we deduce that there exists T ′ ≥ T such that
α := v′′′(T ′)+K3v

′′(T ′)+K2v
′(T ′)+K1v(T

′) > 0. Since (14) is autonomous,
we may assume that T ′ = 0. Therefore, we have

v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t) ≥ vp(t)

2
∀t ≥ 0, (36)

v′′′(0)+K3v
′′(0)+K2v

′(0)+K1v(0) = α > 0. (37)

We may now apply the test function method developed by Mitidieri-Pohožaev
[12]. More precisely, fix T1 > T > 0 and a nonnegative function φ ∈ C4

c [0,∞)

such that

φ(t) =
{

1 for t ∈ [0, T ]
0 for t ≥ T1.

In particular, these properties imply thatφ(T1) = φ′(T1) = φ′′(T1) = φ′′′(T1) = 0.
Hence, multiplying inequality (36) by φ(t), integrating by parts and recalling (37)
yields ∫ T1

0
[φ(4)(t)−K3φ

′′′(t)+K2φ
′′(t)−K1φ

′(t)]v(t)dt

≥ 1

2

∫ T1

0
vp(t)φ(t)dt + α. (38)
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We now applyYoung’s inequality in the following form: for any ε > 0 there exists
C(ε) > 0 such that

vφ(i) = vφ1/p φ
(i)

φ1/p
≤ εvpφ + C(ε)

|φ(i)|p/(p−1)

φ1/(p−1)
,

φ(i) = diφ

dt i
(i = 1, 2, 3, 4).

Then, provided ε is chosen sufficiently small, (38) becomes

C

4∑
i=1

∫ T1

0

|φ(i)(t)|p/(p−1)

φ1/(p−1)(t)
dt ≥ 1

4

∫ T

0
vp(t)dt + α (39)

whereC = C(ε,Ki) > 0. We now choose φ(t) = φ0(
t
T
), where φ0 ∈ C4

c ([0,∞),
φ0 ≥ 0 and

φ0(τ ) =
{

1 for τ ∈ [0, 1]
0 for τ ≥ τ1 > 1.

As noticed in [12], there exists a function φ0 in such class satisfying moreover

∫ τ1

0

|φ(i)0 (τ )|p/(p−1)

φ
1/(p−1)
0 (τ )

dτ =: Ai < ∞ (i = 1, 2, 3, 4).

Then, thanks to a change of variables in the integrals, (39) becomes

C

4∑
i=1

AiT
1−ip/(p−1) ≥ 1

4

∫ T

0
vp(t)dt + α ∀T > 0.

Letting T → ∞, the previous inequality contradicts (34). ��
In order to perform the above mentioned second step, we show that a solution v

of (14) vanishes at infinity only if the corresponding vector solution
w= (w1, w2, w3, w4) of the system (16) approaches the “regular point” O.

Proposition 6. Assume that v : [T0,∞) → (0,∞) exists for some T0, solves (14)
and satisfies limt→∞ v(t) = 0. Then for all k ∈ N, one also has:

lim
t→∞ v

(k)(t) = 0. (40)

Proof. By assumption we know that for t large enough v(t) < K
1/(p−1)
0 so that by

the differential equation (14) eventually v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t) =(

vp−1(t)−K0
)
v(t) < 0. This shows that

t �→ v′′′(t)+K3v
′′(t)+K2v

′(t)+K1v(t) (41)
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is eventually strictly decreasing. Using the assumption once more we see that
there exists

lim
t→∞

(
v′′′(t)+K3v

′′(t)+K2v
′(t)

)
= lim

t→∞
(
v′′′(t)+K3v

′′(t)+K2v
′(t)+K1v(t)

) ∈ R ∪ {−∞}. (42)

We distinguish several cases and start by assuming

lim
t→∞

(
v′′′(t)+K3v

′′(t)+K2v
′(t)

)
= lim

t→∞
(
v′′′(t)+K3v

′′(t)+K2v
′(t)+K1v(t)

) = 0. (A)

In this case, since (41) is strictly decreasing, one eventually has that v′′′(t)
+K3v

′′(t)+K2v
′(t)+K1v(t) > 0 so that by K1 < 0

v′′′(t)+K3v
′′(t)+K2v

′(t) > 0 for t large enough. (43)

This shows that t �→ v′′(t) + K3v
′(t) + K2v(t) is eventually strictly increasing

so that there exists

lim
t→∞

(
v′′(t)+K3v

′(t)+K2v(t)
) = lim

t→∞
(
v′′(t)+K3v

′(t)
) ∈ R ∪ {+∞}.

If this limit were equal to +∞, then also +∞ = lim
t→∞

(
v′(t)+K3v(t)

)
= lim

t→∞ v
′(t), which contradicts the assumption. Hence

lim
t→∞

(
v′′(t)+K3v

′(t)+K2v(t)
) = lim

t→∞
(
v′′(t)+K3v

′(t)
) ∈ R. (44)

We distinguish three further subcases and start with discussing

lim
t→∞

(
v′′(t)+K3v

′(t)
) = lim

t→∞
(
v′′(t)+K3v

′(t)+K2v(t)
) = 0. (A1)

We want to show that limt→∞ v′(t) exists and assume for contradiction that
lim supt→∞ v′(t) > lim inf t→∞ v′(t). Then we have a sequence (tk)k∈N with
tk → ∞ such that consecutively v′ attains local maxima and local minima in tk so
that in particular v′′(tk) = 0. By (A1) we may conclude that limk→∞ v′(tk) = 0.
Since v′ attains consecutively its local maxima and local minima in tk, this
would contradict lim supt→∞ v′(t) > lim inf t→∞ v′(t). Hence we have proved
that limt→∞ v′(t) ∈ R exists. Since limt→∞ v(t) = 0, we get

lim
t→∞ v

′(t) = 0. (45)

From this and assumption (A1), we directly obtain that also limt→∞ v′′(t) = 0.
From assumption (A) we then get that also limt→∞ v′′′(t) = 0. For k ≥ 4, the
differential equation (14) finally yields limt→∞ v(k)(t) = 0.
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Next we consider the subcase

lim
t→∞

(
v′′(t)+K3v

′(t)
) = lim

t→∞
(
v′′(t)+K3v

′(t)+K2v(t)
) = 2α > 0. (A2)

In this case, one has that eventually v′′(t)+K3v
′(t) ≥ α. Multiplying this inequal-

ity by exp(K3t) and integrating yields

v′(t) ≥ α

K3
+ o(1) near ∞.

But this is impossible in view of our assumption limt→∞ v(t) = 0.
Finally we consider the subcase

lim
t→∞

(
v′′(t)+K3v

′(t)
) = lim

t→∞
(
v′′(t)+K3v

′(t)+K2v(t)
) = 2α < 0. (A3)

With precisely the same reasoning as in the previous case we come up with
v′(t) ≤ α

K3
+ o(1) for t → ∞ and again, we reach a contradiction.

Now we may consider the second main case

lim
t→∞

(
v′′′(t)+K3v

′′(t)+K2v
′(t)

)
= lim

t→∞
(
v′′′(t)+K3v

′′(t)+K2v
′(t)+K1v(t)

) = α �= 0. (B)

Then t �→ v′′(t) + K3v
′(t) + K2v(t) is monotone near ∞ and admits a limit

β ∈ R ∪ {±∞}. Hence, also limt→∞
(
v′′(t)+K3v

′(t)
) = β. If β = 0 we pro-

ceed as in Subcase (A1) and if β �= 0 as in Subcases (A2) and (A3). ��

In order to exclude the possibility L = 0 in Proposition 5, for any global
smooth positive solution v of (14) and any t ∈ R, we define the energy function

E(t) := Ev(t) := 1

p + 1
vp+1(t)− K0

2
v2(t)− K2

2
|v′(t)|2 + 1

2
|v′′(t)|2. (46)

We prove first that on consecutive extrema of v, the energy is decreasing. For the
proof of the following lemma, the sign of the coefficients K1,K3 in front of the
odd order derivatives in equation (14) is absolutely crucial.

Lemma 6. Assume that t0 < t1 and that v′(t0) = v′(t1) = 0. Then

E(t0) ≥ E(t1).

If v is not constant, then the inequality is strict.
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Proof. From the differential equation (14) we find:

E′(s) = vp(s)v′(s)−K0v(s)v
′(s)−K2v

′(s)v′′(s)+ v′′(s)v′′′(s)
= (

vp(s)−K0v(s)−K2v
′′(s)

)
v′(s)+ v′′(s)v′′′(s)

= (
v(4)(s)+K3v

′′′(s)+K1v
′(s)

)
v′(s)+ v′′(s)v′′′(s).

Integrating by parts, this yields:

E(t1)− E(t0) =
∫ t1

t0

E′(s) ds = −
∫ t1

t0

v′′′(s) v′′(s) ds −K3

∫ t1

t0

∣∣v′′(s)
∣∣2
ds

+K1

∫ t1

t0

∣∣v′(s)
∣∣2
ds +

∫ t1

t0

v′′′(s) v′′(s) ds

= −K3

∫ t1

t0

∣∣v′′(s)
∣∣2
ds +K1

∫ t1

t0

∣∣v′(s)
∣∣2
ds ≤ 0, (47)

since K3 > 0 and K1 < 0. If v is not a constant, the inequality is strict. ��
Lemma 6 enables us to prove:

Lemma 7. Assume that v : R → (0,∞) solves (14) and that limt→−∞ v(t) =
limt→−∞ v′(t) = limt→−∞ v′′(t) = 0. Then it cannot happen that also limt→∞
v(t) = 0.

Proof. Consider the energy function E defined in (46). By assumption, we have
E(−∞) = 0. Assume for contradiction that limt→∞ v(t) = 0. Then, by Proposi-
tion 6 we see that also E(+∞) = 0. By Lemma 6, this shows that v is a constant,
hence v(t) ≡ 0. In turn, this contradicts the assumption that v > 0. ��
Remark 3. In terms of dynamical systems, Lemma 7 states that the regular point
O does not allow for a homoclinic orbit of system (16).

We can now exclude the possibility L = 0 in Proposition 5:

Proposition 7. Letu be a smooth positive radial solution of (5) and let v be defined
according to (12). Then the first alternative in Proposition 5 does not occur, i.e.
it is impossible that limt→∞ v(t) = 0.

Proof. Since u is assumed to be smooth near 0 and since v is defined according
to (12), we have that limt→−∞ v(t) = limt→−∞ v′(t) = limt→−∞ v′′(t) = 0. If
we also had limt→∞ v(t) = 0, then v(t) ≡ 0 by Lemma 7. A contradiction! ��

As before, we assume in what follows that u is a smooth positive radial solution
of (5) and that v is defined according to (12) so that v solves (14). If v is eventually
monotonous, then the claim of Theorem 3 follows directly from Propositions 5
and 7. So, it remains to consider solutions v, which oscillate infinitely many times
near t = ∞, i.e. have an unbounded sequence of consecutive local maxima and
minima. In the sequel we always restrict to this kind of solutions without explicit
mention. We first prove the following inequalities:
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Lemma 8.

lim inf t→∞ v(t) > 0; (48)

∀t ∈ R : 0 < v(t) <
(
p+1

2

)1/(p−1)
K

1/(p−1)
0 ; (49)

∀t ∈ R : v′(t) < 4
p−1

(
p+1

2

)1/(p−1)
K

1/(p−1)
0 . (50)

Proof. Since v is defined by means of a smooth solution of (5), we have that
E(−∞) = 0. Let t be any local maximum for v. By Lemma 6 (with t0 = −∞
and t1 = t) we immediately get (49).

Let {tk}k∈N denote the sequence of consecutive positive critical points of v,
starting with the first local maximum t1 in [0,∞) of v. In particular we have that
v′(tk) = 0 and {tk}k∈N is a strictly increasing sequence, diverging to +∞. Since
{E(tk)}k∈N is bounded from below, by Lemma 6 we see that

lim
k→∞

E(tk) =: −δ < 0

exists. Therefore, for k large enough we have

−δ
2

≥ 1

p + 1
vp+1(tk)− K0

2
v2(tk)

which proves (48).
Finally, note that in view of (12), statement (i) of Theorem 1 becomes

v′(t) <
4

p − 1
v(t) for all t ∈ R.

This inequality, combined with (49), proves (50). ��
By (12), we see that (49) proves (8).
In the next four lemmas we prove some summability properties over R of v

and of its derivatives:

Lemma 9. ∫
R

|v′(s)|2 ds +
∫

R

|v′′(s)|2 ds < ∞.

Proof. We take the same sequence {tk}k∈N as in the proof of Lemma 8. Since
E(−∞) = 0, we obtain from (47) that for any k :

−K3

∫ tk

−∞

∣∣v′′(s)
∣∣2
ds +K1

∫ tk

−∞

∣∣v′(s)
∣∣2
ds = E(tk)

≥ min
ν∈[0,∞)

(
1

p + 1
νp+1 − K0

2
ν2

)

> −∞.

The statement follows by letting k → ∞ and using again thatK3 > 0 andK1 < 0.
��
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Lemma 10. ∫
R

|v′′′(s)|2 ds < ∞.

Proof. Here the sequence {tk}k∈N from the previous lemmas is no longer ade-
quate. Instead, we choose a monotonically increasing diverging sequence {τk}k∈N

of flex points of v such that v is there increasing. By Lemma 8 we may achieve:

τk > 0, τk ↗ ∞,

0 ≤ v′(τk) <
4

p − 1

(
p + 1

2

)1/(p−1)

K
1/(p−1)
0 , v′′(τk) = 0. (51)

We multiply the differential equation (14) by v′′ and integrate over (−∞, τk):∫ τk

−∞

(
v(4)(s)+K3v

′′′(s)+K2v
′′(s)+K1v

′(s)+K0v(s)
)
v′′(s) ds

=
∫ τk

−∞
vp(s) v′′(s) ds. (52)

We show that all the lower order terms remain bounded, when k → ∞:∣∣∣∣
∫ τk

−∞
vp(s) v′′(s) ds

∣∣∣∣ =
∣∣∣∣vp(τk)v′(τk)− p

∫ τk

−∞
vp−1(s) |v′(s)|2 ds

∣∣∣∣ ≤ O(1)

(53)

by (49), (51) and Lemma 9. With the same argument, one also gets∣∣∣∣
∫ τk

−∞
v(s) v′′(s) ds

∣∣∣∣ ≤ O(1). (54)

Hölder’s inequality and Lemma 9 imply∣∣∣∣
∫ τk

−∞
v′(s) v′′(s) ds

∣∣∣∣ ≤ O(1). (55)

By our choice of τk (recall that v′′(τk) = 0), we obtain:∫ τk

−∞
v′′′(s) v′′(s) ds =

[
1

2
|v′′(s)|2

]τk
−∞

= 0. (56)

Finally, integrating by parts and again by our choice of τk, we find:∫ τk

−∞
v(4)(s) v′′(s) ds = [

v′′′(s) v′′(s)
]τk
−∞ −

∫ τk

−∞

(
v′′′(s)

)2
ds

= −
∫ τk

−∞

(
v′′′(s)

)2
ds. (57)

Letting k → ∞, the statement follows directly from Lemma 9 and (52)–(57). ��
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Lemma 11. ∫
R

|v(4)(s)|2 ds < ∞.

Proof. In view of Lemmas 8–10 we may find a sequence {sk} such that

lim
k→∞

sk = ∞, v(sk) = O(1), lim
k→∞

v′(sk) = lim
k→∞

v′′(sk) = lim
k→∞

v′′′(sk) = 0.

We multiply the equation (14) by v(4) and integrate over (−∞, sk]:∫ sk

−∞

(
v(4)(s)

)2
ds =

∫ sk

−∞

(
vp(s)−K0v(s)−K1v

′(s)−K2v
′′(s)

−K3v
′′′(s)

)
v(4)(s) ds. (58)

By using Lemmas 8–10 and arguing as in the previous proofs we obtain:∫ sk

−∞
v(4)(s) v′′′(s) ds =

[
1

2
|v′′′(s)|2

]sk
−∞

= o(1);
∫ sk

−∞
v(4)(s) v′′(s) ds = o(1)−

∫ sk

−∞
|v′′′(s)|2 ds = O(1);

∫ sk

−∞
v(4)(s) v′(s) ds = o(1)−

∫ sk

−∞
v′′′(s) v′′(s) ds = o(1);

∫ sk

−∞
v(4)(s) v(s) ds = o(1)−

∫ sk

−∞
v′′′(s) v′(s) ds = o(1)+

∫ sk

−∞
|v′′(s)|2 ds

= O(1);∣∣∣∣
∫ sk

−∞
v(4)(s) vp(s) ds

∣∣∣∣ =
∣∣∣∣o(1)− p

∫ sk

−∞
v′′′(s) vp−1(s) v′(s) ds

∣∣∣∣
≤ o(1)+ C

(∫ sk

−∞
|v′′′(s)|2 ds

)1/2 (∫ sk

−∞
|v′(s)|2 ds

)1/2

≤ O(1).

Inserting all these estimates into (58), the claim follows. ��
Lemma 12. ∫

R

v2(s)
(
vp−1(s)−K0

)2
ds < ∞.

Proof. From the differential equation (14), we conclude
(
v(4)(s)+K3v

′′′(s)+K2v
′′(s)+K1v

′(s)
)2 = v2(s)

(
vp−1(s)−K0

)2
.

The statement follows now immediately from Lemmas 9–11. ��
The proof of Theorem 3 will be completed by showing:
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Proposition 8. We assume that u is an entire smooth positive radial solution of
(5), that v is defined according to (12) and that w = (w1, w2, w3, w4) is the
corresponding solution of system (16). We assume further that v = w1 has an
unbounded sequence of consecutive local maxima and minima near t = ∞. Then
it follows that

lim
t→∞ w(t) = P, (59)

where P is the “singular” steady solution of system (16). In particular,
limt→∞ v(t) = K

1/(p−1)
0 .

Proof. By Lemmas 8–12, we can find a sequence {σk}k∈N such that

σk+1 > σk, lim
k→∞

(σk+1 − σk) = 0, lim
k→∞

σk = ∞, lim
k→∞

w(σk) = P.

If (59) were not true, then there would exist a subsequence {k�}�∈N with the fol-
lowing properties: for any small enough ε > 0 there exists �ε such that for all
� ≥ �ε one has that

∣∣w(σk�)− P
∣∣ < ε, σk�+1 − σk� < ε2

and moreover that there exists θ� ∈ (σk�, σk�+1) with

|w(s)− P | < 2ε ∀s ∈ (σk�, θ�) and |w(θ�)− P | = 2ε.

The triangle inequality shows that |w(θ�)− w(σk�)| > ε, hence

1

θ� − σk�

∣∣w(θ�)− w(σk�)
∣∣ > 1

ε
.

By the mean value theorem we conclude that

1

ε
<

1

θ� − σk�

∣∣∣∣∣
∫ θ�

σk�

w′(s) ds

∣∣∣∣∣ ≤ 1

θ� − σk�

∫ θ�

σk�

∣∣w′(s)
∣∣ ds

so that there exists τ� ∈ [σk�, θ�] with

∣∣w′(τ�)
∣∣ > 1

ε
.

Since ε is arbitrarily small,
∣∣w(σk�)− P

∣∣ < ε, |w(τ�)− P | ≤ 2ε and since
w solves system (16), this is impossible for large enough �. A contradiction is
achieved, thereby proving (59). ��
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7. Proof of Theorem 4

We start this section by recalling the

Definition 1. An m-th order ordinary linear differential equation is said to be
non-oscillatory on an interval I ⊂ R if every nontrivial solution has only a finite
number of zeros in I . It is called disconjugate on I , if every nontrivial solution
has at most (m− 1) zeros in I (counting multiplicities).

Let v be defined by (12) and let φ be as in (19). Assume that n ≥ 13 and
p > pc. Then, by Proposition 2, there exists ε0 > 0 such that the equation
φ(x) = (p − 1)K0 + ε admits four real solutions for all ε ∈ (0, ε0). From now
on, we fix ε = ε0/2 so that the equation

ψ(4)(t)+K3ψ
′′′(t)+K2ψ

′′(t)+K1ψ
′(t)+K0ψ(t)− (pK0 + ε)ψ(t) = 0

t ∈ R,

is non-oscillatory in R. In other words it has four linearly independent solutions
of “exponential type” ψi(t) = eµi t (i = 1, ..., 4) for some µi’s being small
perturbations of the νi’s which are all real numbers. Moreover, the differential
operator

L0 :=
(
d

dt

)4

+K3

(
d

dt

)3

+K2

(
d

dt

)2

+K1

(
d

dt

)
+K0

is disconjugate, since this is the biharmonic operator, transformed by means of
(12). By differentiating (14), we obtain

L0ψ(t)− pvp−1(t)ψ(t) = L0ψ(t)+ p(t)ψ(t) = 0 t ∈ R, (60)

where ψ(t) := v′(t) and p(t) := −pvp−1(t). According to Theorem 3 we know
that

∃ T > 0 ∀t > T : − (pK0 + ε) < p(t) < 0.

Therefore, the equation (60) is between a disconjugate and a non-oscillatory equa-
tion so that it is also non-oscillatory in view of [4, Corollary 1]. This shows
that v′(t) = ψ(t) cannot change sign infinitely many times, and therefore that
v(t)−K

1/(p−1)
0 does not change sign infinitely many times. ��

8. Proof of Propositions 2, 3, 4

Proof of Proposition 2. We first observe that (11) is equivalent to

N1 < 0 (61)
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and that (11) implies

N2 −N2
1 = 4(n− 2)(p − 1)2 + 16(n− 4)(p − 1)− 64

> 4(n− 2)(p − 1)2 + 64 > 0. (62)

Next, we show that

N3 >
(N2 −N2

1 )
2

16
. (63)

Indeed, by exploiting again (11), we have:

N3 − (N2 −N2
1 )

2

16
= 8(n− 2)(n− 4)(p − 1)4 + 16(n2 − 10n+ 20)(p − 1)3

−128(n− 4)(p − 1)2 + 256(p − 1)

> 16(n2 − 6n+ 12)(p − 1)3

−128(n− 4)(p − 1)2 + 256(p − 1)

= 64(p − 1)3 + 16(n− 2)(n− 4)(p − 1)3

−128(n− 4)(p − 1)2 + 256(p − 1)

> 64(p − 1)3 + 128(n− 2)(p − 1)2

−128(n− 4)(p − 1)2 + 256(p − 1)

= 64(p − 1)3 + 256(p − 1)2 + 256(p − 1)

= 64(p + 1)2(p − 1) > 0.

In particular, (63) implies thatN3 > 0. In turn, together with the fact thatN2 > N2
1 ,

this shows that
√
N2 + 4

√
N3 > |N1| which proves statement (i) in Proposition 2.

In order to discuss the stability properties of the eigenvalues ν3 and ν4 we
introduce the function

N4 := 16N3 −N2
2 = −(n− 4)(n3 − 4n2 − 128n+ 256)(p − 1)4

+128(3n− 8)(n− 6)(p − 1)3 + 256(n2 − 18n+ 52)(p − 1)2

−2048(n− 6)(p − 1)+ 4096. (64)

For 1.939447811 . . . < n < 12.56534446 . . . , the first coefficient in (64) is
positive, so that assuming

5 ≤ n ≤ 12,
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we obtain by means of (11):

N4 = −(n− 4)(n3 − 4n2 − 128n+ 256)(p − 1)4

+128(3n− 8)(n− 6)(p − 1)3 + 256(n2 − 18n+ 52)(p − 1)2

−2048(n− 6)(p − 1)+ 4096

> −8(n3 − 4n2 − 128n+ 256)(p − 1)3 + 128(3n− 8)(n− 6)(p − 1)3

+256(n2 − 18n+ 52)(p − 1)2 − 2048(n− 6)(p − 1)+ 4096

= 64n2(p − 1)3 − 8(n− 4)(n2 − 40n+ 128)(p − 1)3

+256(n2 − 18n+ 52)(p − 1)2 − 2048(n− 6)(p − 1)+ 4096

> 64n(n− 4)(p − 1)3 − 64(n2 − 40n+ 128)(p − 1)2

+256(n2 − 18n+ 52)(p − 1)2 − 2048(n− 6)(p − 1)+ 4096

> 512n(p − 1)2 + 64(n− 4)(3n− 20)(p − 1)2

−2048(n− 6)(p − 1)+ 4096

= 2048(p − 1)2 + 192(n− 4)2(p − 1)2 − 2048(n− 6)(p − 1)+ 4096

> 2048(p − 1)2 + 1536(n− 4)(p − 1)− 2048(n− 6)(p − 1)+ 4096

= 2048(p − 1)2 − 512(n− 12)(p − 1)+ 4096 > 0,

since n ≤ 12. This, together with (61), proves statement (ii) in Proposition 2.
In order to prove statement (iii), we assume that

n ≥ 13

and we studyN4 = N4(n, p) as a function of p. We compute its second derivative
with respect to p:

−∂
2N4

∂p2
= 12(n− 4)(n3 − 4n2 − 128n+ 256)(p − 1)2

−768(3n− 8)(n− 6)(p − 1)− 512(n2 − 18n+ 52).

This is a quadratic function of p which tends to +∞ as p → +∞. Its minimum
is smaller than the Sobolev exponent (n+ 4)/(n− 4) if and only if

0 < (n3 − 4n2 − 128n+ 256)− 4(3n− 8)(n− 6)

= (n− 18)(n2 + 2n+ 12)+ 280.

This is certainly true for n ≥ 18, while for n = 13, . . . , 17, we have ∂2N4
∂p2 (n,

n+4
n−4 )

< 0. Summarizing, for p > (n+4)/(n−4), ∂
2N4
∂p2 has at most one zero. Therefore,

for p >
n+ 4

n− 4
, p �→ N4(n, p) is either always concave or it is first convex

and then concave. (65)
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Moreover, since the first coefficient in (64) is now negative (because n ≥ 13), we
have

lim
p→∞N4(n, p) = −∞ ∀n ≥ 13. (66)

Finally, note that

N4

(
n,
n+ 4

n− 4

)
= 32768 n2

(n− 4)3
> 0 and

∂N4

∂p

(
n,
n+ 4

n− 4

)
= 20480 n2

(n− 4)2
> 0.

(67)

By (65)-(66)-(67) there exists a unique pc > (n+ 4)/(n− 4) such that

N4(n, p) > 0 for all p < pc, N4(n, pc) = 0, N4(n, p) < 0 for all p > pc.

In order to prove that n �→ pc is strictly decreasing we calculate dpc
dn

by means of
implicit differentiation and note first that the previous reasoning gives

∂N4

∂p
(n, pc) < 0. (68)

We proceed by calculating

∂N4

∂n
= − (

4n3 − 24n2 − 224n+ 768
)
(p − 1)4 + 256(3n− 13)(p − 1)3

+512(n− 9)(p − 1)2 − 2048(p − 1),

∂2N4

∂n2
= −(12n2 − 48n− 224)(p − 1)4 + 768(p − 1)3 + 512(p − 1)2,

∂3N4

∂n3
= −24(n− 2)(p − 1)4;

the latter being always negative for n > 2. Keeping p > 1 fixed, we consider
now n �→ N4(n, p). First we calculate n > 4 such that p = (n+ 4)/(n− 4), i.e.
n = 4 + 8

p−1 . Negativity of ∂3N4
∂n3 shows that beyond n = 4 + 8

p−1 this function is
either always concave or convex first and then always concave. On the mentioned
particular value we have by (67) that

N4

(
4 + 8

p − 1
, p

)
> 0

and moreover, we find that

∂N4

∂n

(
4 + 8

p − 1
, p

)
= 32

(
4 + 8

p − 1

) (
2 + 8

p − 1

)
(p − 1)4 > 0.

Since N4(n, pc) = 0, this shows that also

∂N4

∂n
(n, pc) < 0. (69)
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By implicit differentiation we conclude from (68) and (69) that

dpc

dn
= −

∂N4
∂n
(n, pc)

∂N4
∂p
(n, pc)

< 0.

Finally one reads directly from the form of N4 that for any p0 > 1, N4(n, p0)

becomes negative, provided n is chosen large enough. This shows that n+4
n−4

< pc < p0 for n large enough, i.e.

lim
n→∞pc = 1.

The proof of statement (iii) in Proposition 2 is so complete. ��
Proof of Proposition 3. This proof is an extension of the one of Proposition 8.

It is enough to consider a solution v which converges eventually monoton-
ically to K1/(p−1)

0 . The differential equation (14) shows that v(4)(t) + K3v
′′′(t)

+ K2v
′′(t) + K1v

′(t) eventually has a fixed sign. Let us now consider ṽ(t)
:= v(t)−K

1/(p−1)
0 . Then

lim
t→∞ ṽ(t) = 0

and ṽ(4)(t)+K3ṽ
′′′(t)+K2ṽ

′′(t)+K1ṽ
′(t) is also eventually of fixed sign. This

shows that

lim
t→∞

(
ṽ′′′(t)+K3ṽ

′′(t)+K2ṽ
′(t)+K1ṽ(t)

)
= lim

t→∞
(
ṽ′′′(t)+K3ṽ

′′(t)+K2ṽ
′(t)

) ∈ R ∪ {±∞}

exists. Now we may proceed precisely as in Proposition 6. ��
Proof of Proposition 4. It is enough to show that MP has no eigenvectors with
first component equal to 0. Assume for contradiction that associated to some
eigenvalue ν, there exists (a, b, c) �= (0, 0, 0) such that




4
p−1 − ν 1 0 0

0 −ν 1 0
0 0 −ν 1
pK0 C2 C3 C4 − ν







0
a

b

c


 =




0
0
0
0


 .

This is clearly impossible. ��

Acknowledgements. We are grateful to the referees for their very careful reading of the manu-
script and for their helpful remarks.



936 F. Gazzola, H-Ch. Grunau

References

1. Arioli, G., Gazzola F., Grunau, H.-Ch., Mitidieri, E.: A semilinear fourth order elliptic
problem with exponential nonlinearity. SIAM J. Math. Anal. 36, 1226–1258 (2005)

2. Berchio, E., Gazzola, F.: Some remarks on biharmonic elliptic problems with positive,
increasing and convex nonlinearities. Electronic J. Diff. Eq. 2005, No. 34, 1–20 (2005)

3. Brezis, H., Vazquez, J.L.: Blow up solutions of some nonlinear elliptic problems. Rev. Mat.
Univ. Complutense Madrid 10, 443–469 (1997)

4. Elias, U.: Nonoscillation and eventual disconjugacy. Proc. Amer. Math. Soc. 66, 269–275
(1977)

5. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in
R
n. Comment. Math. Helv. 73, 206–231 (1998)

6. Gazzola, F., Grunau, H.-Ch., Mitidieri, E.: Hardy inequalities with optimal constants and
remainder terms. Trans. Amer. Math. Soc. 356, 2149–2168 (2004)

7. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic
equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

8. Grunau, H.-Ch., Ould Ahmedou, M., Reichel, W.: The Paneitz equation in the hyperbolic
ball, in preparation.

9. Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources.
Arch. Ration. Mech. Anal. 49, 241–269 (1973)

10. McKenna, P.J., Reichel, W.: Radial solutions of singular nonlinear biharmonic equations
and applications to conformal geometry. Electronic J. Diff. Eq. 2003, No. 37, 1–13 (2003)

11. Mignot, F., Puel, J.P.: Sur une classe de problèmes nonlinéaires avec nonlinéarité positive,
croissante, convexe. Commun. Partial Differ. Equations 5, 791–836 (1980)

12. Mitidieri, E., Pohožaev, S.: Apriori estimates and blow-up of solutions to nonlinear partial
differential equations and inequalities (translated from Russian). Proc. Steklov Inst. Math.
234, 1–362 (2001)

13. Oswald, P.: On a priori estimates for positive solutions of a semilinear biharmonic equation
in a ball. Comment. Math. Univ. Carolinae 26, 565–577 (1985)

14. Pohožaev, S.I.: Solvability of an elliptic problem in R
n with a supercritical index of non-

linearity. Dokl. Akad. Nauk SSSR 313, 1356-1360, (1990), english translation in Soviet
Math. Dokl. 42, 215–219 (1991)

15. Reichel, W., Uniqueness results for semilinear polyharmonic boundary value problems on
conformally contractible domains I & II. J. Math. Anal. Appl. 287, 61–74 & 75–89 (2003)

16. Serrin, J., Zou, H.: Existence of positive solutions of the Lane-Emden system. Atti Semin.
Mat. Fis. Univ. Modena 46 (Suppl.), 369–380 (1998)

17. Swanson, C.A.: The best Sobolev constant. Appl. Anal. 47, 227–239 (1992)
18. Wang, X.: On the Cauchy problem for reaction-diffusion equations. Trans. Amer. Math.

Soc. 337, 549–590 (1993)


