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1. INTRODUCTION

We prove existence results for the semilinear elliptic problem

—Au=g(z,u) + Qx)|u/* 2u  inQ Q)
u=>0 on 0f2

where Q C IR" (n > 3) is an open bounded domain with smooth boundary 0f2,

2* = 2% is the critical Sobolev exponent, g(z,-) has subcritical growth at infinity

(ie. limys o @%ﬁ% = 0) and @ is a bounded positive function.

Consider the Hilbert space H := Hj () endowed with the Dirichlet scalar prod-
uct; we determine nontrivial solutions of equation (1) as critical points of the func-
tional J : H — IR defined by

Jw) =5 [1eP = [ 6w -5 [ @@l

where G(z,s) = [ g(z,t)dt. Standard variational arguments do not apply because
the embedding H C L* () is not compact, i.e. the functional J does not satisfy the
Palais-Smale condition (PS condition). It is well-known that for equations with crit-
ical growth, nontrivial solutions may not exist: this follows by suitable applications
of Pohozaev identity [10] when  is strictly starshaped. In their celebrated paper,
Brezis-Nirenberg [2] showed that the functional J satisfies the PS condition in a cer-
tain compactness range related to S, the best constant of the embedding H C L (Q),
see [12]: this compactness range is modified according to the maximum value of the
function @, see [4,6]. In a recent paper [8], an orthogonalization technique has been
developed for the study of critical growth problems in semilinear elliptic equations;
to assure that the considered minimax levels are in the compactness range, certain
approximating functions having disjoint support with the Sobolev concentrating func-
tions are constructed. We call Sobolev concentrating functions some truncations of
the positive radial entire functions which achieve the best constant in Sobolev in-
equalities. Let us also mention that the technique developed in [8] has been applied



to the study of more general semilinear and quasilinear elliptic problems, see [1,7].
The basic idea of the orthogonalization technique is the following: as we seek critical
points of J by a linking argument [11], to prove that the minimax level stays in the
compactness range, this requires an estimate of the maximum of the functional J
over subsets of V' & IR {u.}, where V is some finite dimensional subspace of H and
u. is the concentrating Sobolev function. Since V' and wu. are not orthogonal, this
estimate involves mixed terms which are difficult to estimate even in simple cases, see
[3]. An orthogonalization (in H as well as in L) of these functions can be obtained
by replacing the space V' by a space V. consisting of functions which approximate the
functions in V', but are zero where u,. is non zero, that is by disjoining their supports.
Of course, now the approximation error of V. must be estimated, but this can be
handled easier than the mentioned mixed terms.

In this paper we show that this orthogonalization technique also applies to more
general semilinear elliptic equations as (1); we consider the case where the critical
growth term is multiplied by a positive function Q. As we will show, existence
results for (1) seem to be related with a “coupled behavior” of the functions @) and
g: in simple cases, if such coupled behavior is violated, Pohozaev identity yields
nonexistence results, see [5]. Let us also point out that with our assumptions on
the lower order term g the functional J may have negative critical levels, and the
above mentioned compactness range becomes a nontrivial energy range, see [8]: more
precisely, we will prove that a PS sequence within the above energy range yields a
nontrivial solution of (1) by means of its weak limit. A preliminary version of the
results presented here may be found in [9].

2. STATEMENT OF THE RESULTS

Let Ax (k € IN), be the eigenvalues of —A relative to the homogeneous Dirichlet
problem in €; it is well-know that each eigenvalue has finite multiplicity and that
A\, — +00 as k — oo.

Without loss of generality we assume that 0 € ). We first require the function
g(x,-) to be subcritical:

g: Q2 xR — IR is a Carathéodory function satisfying @

Ve>0 3Ja. € L7t st. lg(x, s)| < a-(z) +5]s]ﬁ% forae. x€Q VselR.

The other assumptions are imposed on the primitive G(zx, s) = [y g(x,t)dt: we assume
that
G(z,s) >0 forae 2€Q VselR (3)

and that G(z,-) is quadratic in 0. We suppose that @) attains its maximum at 0:
IM > 05t 0<Q(x) <M, Q) —Q(x)=M—Q(z)=0(z°)  (4)

where 3 > 0 will be chosen differently according to the behavior of G(z,-) at infinity
and in 0 (resonance and non-resonance cases).



We assume first that there exist k € IN,6 > 0,0 > 0 and pu € (Mg, Ag41) such that
1 2 L 5
5(/\k +0)s* < G(z,s) < SHs for a.e. x € Q V|s| <6 (5)
furthermore, we assume that

G(x,8) > =(\p + 0)s* — %Q(m)|5|2* for a.e. x € Q Vs #0. (6)

N —

Finally, depending on the values of n and ( a growth assumption for G at infinity
may be required; we assume that there exists {2y C €2 with 0 € €y such that either

‘l‘im G(i’ s) = 400 uniformly w.r.t. x € Qq (7)
§|—00 S
or o )

li (z,5) = +oo uniformly wrt. z € Qo for k° = M (8)

n— 2

Depending on the value of § in (4) we make one of the following set of assumptions:

|s]—o0 Skﬂ

if n =3 and § > 1 assume (2) — (7)

if n =3 and § < 1 assume (2) — (6) and (8)

if n =4 and # > 2 assume (2) — (6) o)
if n =4 and § < 2 assume (2) — (6) and (8)

if n > 5 and 3 > % assume (2) — (6)

if n>5 and 3 < % assume (2) — (6) and (8).

\

The existence result in the non-resonance case reads as follows:

Theorem 1 Let 2 C R"(n > 3) be a smooth open bounded set and assume (9); then
equation (1) admits a nontrivial solution.

Remark: For all n > 3 and 8 > 0 we have 0 < k% < 2* according to (2); moreover,
the map 3 +— k° is decreasing, that is, more flatness of @ in 0 corresponds to weaker
growth assumptions on G(z,-) at infinity. For n = 3 we have kY — 4 as 3 — 17;
therefore there is “continuity” between (7) and (8). This continuity is no longer
available when n > 4 because in Lemma 5 below only the behavior of G(z,-) in 0
(and not its behavior at infinity) is used to obtain the crucial estimate (25). For
kS = 2, or equivalently for 3 = 2, a nonexistence result of Egnell [5] shows that the
growth condition (8) may not be relaxed. O

Let us now assume that there exist £ € IN, 6 > 0 and p € (Mg, Apy1) such that

1 1
5)\k82 < G(z,s) < §u82 for a.e. x € Q V|s| <6 (10)



in this case we also assume that there exists o > 0 such that

1 *
G(z,s) > 5)%32 - (Qz(f) - U)\S\Q forae z€Q VselR (11)

and that there exists an nonempty subset 2y C 2 with 0 € )y such that
G(z,s)

lim —— = 400 uniformly w.r.t. x € Q. (12)
sio0 g7

We observe that by (2) and (11) there exists m € (0, M) such that Q(z) > m and,

necessarily, o € (0, §%|. Finally, we strenghthen (4) with

IM >0st. 0<Q(z) <M, QO0)—Q(z)=M—Q(z) = O(|z|""=2/+2y " (13)
In the resonance case we prove the following

Theorem 2 Let @ C R™ (n > 3) be a smooth open bounded set and assume (2)-(3),
(10)-(13); then equation (1) admits a nontrivial solution.

Remark: In case of resonance, the geometrical properties of the functional become
more difficult to derive because the error due to the approximating space is not easily

estimated; therefore it seems hard to obtain sharp coupled behavior between G and
Q. It Q(0) — Q(z) = O(|z|?) with 8 < =2} the choice in formula (30) below may

n+2
not be optimal. O

3. THE VARIATIONAL CHARACTERIZATION

We recall that a sequence {u,,} C H is called a PS sequence for a functional I at level
cif I(uy,) — cand I'(uy,) — 0 in H . The functional I satisfies the PS condition at
level ¢, if every PS sequence at level ¢ is precompact in H. As already mentioned, the
functional J does not satisfy the PS condition; however, the following result holds:

Lemma 1 Under the assumptions of Theorem 1 or of Theorem 2, let {u,} C H be

a PS sequence for J; then, there exists w € H such that u,, — u up to a subsequence

and J'(u) = 0. Moreover, if J(uy,) — ¢ with ¢ € (0, S—E;;) then w # 0 and hence u
nM™ 2

is a nontrivial solution of (1).

Proof. The proof is standard: we only briefly sketch it. Let f(z,s) = g(z,s) +
Q(x)|s|* %s and F(z,s) = [5 f(x,t)dt; since (2) holds, we have

du>2 J5>0 suchthat pF(z,s)<f(xz,s)s forae xze€ V|s|>5.

Therefore {u,,} is bounded and there exists u such that u,, — u, up to a subsequence.

Furthermore, J'(u) = 0 by weak continuity of J'. Assume c € (0, 5—3_;) and, by
M T

contradiction, u = 0. As the term g(x, u;, )u,, is subcritical, by (4) we infer

2%

o(1) = (] = [ 1Vl = [ e, — [ Q@)

2 +o(1) .

(14)
> [t |* = M|t




By definition of S we have |Ju|[* > 3. for all uw € H: therefore,

o(1) > Jtm|2(1 = S~ M|t

2*—2).

If ||u,|| — 0 we contradict ¢ > 0, therefore |Juy,||* > Sn%,g +o(1) and by (2),(4) and
M
(14) we get

1 n—2 . 1 92
() 2 = |um|* + ——=({|wm|* - 3) +o(1) = nae= el
which contradicts ¢ < qQ,g O
nM™2
Next, consider the family of entire functions
-2
(o) = L= 2T (15)

62 + |2

and define a positive cut-off function n € C°(By,n,) (where B, denotes the ball of
radius r with center in 0) such that n = 1 in By/om, 7 < 1in By, and |V < 4m;
consider the sequence of functions w.(x) := n(x) - ui(x). As e — 0 we have the
following estimates (see [2]):

lucl? = 5% +0(" %) Ju|3: = 5% +O(e"). (16)
Furthermore, we can prove

Lemma 2 If m is large enough and Q(z) satisfies (4) then, for e — 0

b for B <n
AQ@WQT:A%%+O@@D with h(e) =4 en|lne|  forG=n  (17)
g™ for B > n.

Proof. By (4) we can choose m large enough so that M — Q(x) < c|z|? for a.e.
x € Bi/m. Then, by the hypotheses on 7, (4) and (16) we have

_ 2 _
fe@he” = [ M+ [ @) - M
> MS?+0@@—C/ ||
Bl/m

Next, take ¢ < % and evaluate

A
Bi/m By,

m

to this end we estimate separately

|z[%em /
~C
44§+u| = 21° = Cre?



and

Cye? for B <n
’x‘ﬁgn n 1/m 3—2n n—1
Joo @ S LS Gl for =
Che™ for B >n :
then (17) follows. O

Let e; be an L? normalized eigenvector relative to the eigenvalue )\;, let
H™ :=span{e;;i=1,...,k} ,

H* :=(H")* and let P, : H — H~ denote the orthogonal projection.
We take m large enough so that By, C (). Consider the functions ¢, : Q2 — IR
defined by

0 if x € Bl/m
Cm(x) := mlz| —1 ifx € Ay = Bym \ Bim (18)
1 if v € Q\ By ,

the “approximating eigenfunctions” e]* := (,,e; and the space
H,_ :=span{e/;i=1,..., k}.

m

For all v € H, ® IR™{u.} we can write v = w + au., where, by definition,

supp(u=) N supp(w) =0 . (19)
As m — oo we have (see Lemma 2 in [8])

e —e; in H and max  |jull? < A\p +oem® " (20)
wEHps [(u?=1

Let us prove that the functional J has a linking geometrical structure (see [11]).

Proposition 1 Under the assumptions of Theorems 1 or 2 there exist a,, p > 0 such
that
Jw)>a YvedB,NH". (21)

Moreover, there exists R > p such that if Q5, = [(BrN H,,,)) ® [0, R[{u.}] then

<
nax J(v) < wp, (22)

with Wy, — 0 as m — oo. Finally, if m is large enough, 0B, N H* and 0Q5, link.
Proof. By (2) and either (5) or (10) we infer that there exists C' > 0 such that

1 .
G(z,s) < E/LSQ + C|s]?




and therefore

J(0) > Cllv|? — Collv|*  Voe H*

with Cy,Cy > 0 and (21) follows.
By (20) and either (6) or (11) we clearly have

lim max J(v) =0 .
M= ye

By (3) we have J(ru.) < Z|u. | — % Jo Q(z)|u.[* which, by (16) becomes negative
if r = R and R is large enough. Therefore,

J) <wm Vv (H,)U(H, o R{u}) (23)

with w,, — 0 as m — oo. Since maxo<,<gJ(ru.) < 400, by (19) and for R large
enough, we obtain

J() <0 Voe[(0BrNH,)® [0, R{uc}] ; (24)

(22) follows by (23) and (24).
We complete the proof observing that by (20), if m is large enough, then

P.H,=H and H,®H"'=H

where P, : H — H~ is the projection introduced above: therefore, 0B, N H* and
0Q:, link. a

By Proposition 1, the functional J satisfies all the assumptions of the linking
Theorem except for the PS condition. The proofs of Theorem 1 and 2 are performed

by constructing a PS sequence for J at level ¢ € (O, %), indeed, in such case,
nM
Lemma 1 yields a nontrivial solution of (1).
We will proceed as follows: let I' = {h € C(Q5,, H); h(v) = v, Yv € Q%,}, then
by standard methods we obtain a PS sequence for J at level

¢ = inf max J(h(v)) .

hel veQs,

By (21) we obviously have ¢ > 0; moreover, since the identity I'd € T', we have
¢ < maxyeq:, J(v): Theorems 1 and 2 follow if we prove that for e small enough

max J(v) < Si,Q : (25)

veQs, nM 7=

4. PROOF OF THEOREM 1

Throughout this section we assume that (9) holds. Choose m large enough so that
am* "t <o (26)

where ¢ is as in (20) and o is as in (5). As the set {v € Q% ; J(v) > 0} is compact,
for all € > 0 there exist w. € H,, and t. > 0 such that for v. = w. + t.u., we have

2%

J(.) = max J(0) = Sl ~ [ G~ 5 [ Q).

veQs,



By Proposition 1, we immediately obtain that the sequences {t.} C R" and {w.} C
H_ are bounded: hence, up to subsequences, we may assume that

te — 19 >0 and w. — wy € H,

where the convergence of {w.} can be viewed in any norm since the space H,, is finite
dimensional. Note that by (6), (20) and (26) we have

J(w:) <0 Yw. € H,, . (27)
Let us now prove

Lemma 3 As e — 0 we have
1 2
St - = | QG
—2

Proof. The derivative of the function f(x) = ax?—bx?" vanishes for .,z = [ﬂ%l] I
and f(Zmae) = 22[4=2]"5*: then, by taking

n bn

:L > + O(e%) with « = min(B,n — 2) .

a=5STHOE") b= 5 MST+O(h(o))

(with h(e) as in (17)) we obtain

f(xma:p) S % + O(€a> with o = min(ﬂ, n— 2)

nM 2

Hence by (16) and Lemma 2 we have

- & [ @

TSSO — o (MSE + ORI

S%
—= T O(c‘a).

nM ™z

IN

O

If . — 0 we have J(v.) — ¢ < 0 and we are done: hence, from now on, suppose
that t. — to > 0. To estimate the lower order term [, G(x,t.u.) several cases must
be considered.

Lemma 4 If (8) holds, then there exists a function 7, = 1(g) such that lir% () =
+oo and such that, for € small enough we have

lém%m@zﬁ@ﬁ.

Proof. For ¢ small enough we have B, C By /2, C €2 and by (3) and (15) we infer

G
/QG(I’tsus) Z /BE G(I,tEW> .



By (8) there exists § > 0 and an increasing function ¢ = ¢(s) with lim, o ¢(s) =
+o00 such that if s > 5 then

G(z,s) > ¢(s)slCg for a.e. x € Q. (28)
Next, note that if € is small enough (recall that t. — t; > 0) then
[ee?) "5

—M>s Vo € B.;
€2 + |z[*] 7=

hence, by (28) we get

2— 2—n

/QG(x,tsug) > C/BE B(ce T (€T > ch(ce™T ) TR = (e T )P

and the assertion follows by taking () = cp(c°2"). O

For the cases in (9) where (8) does not hold we obtain:

Lemma 5 There exists a function 7o = m2(e) such that lir% T(€) = +o0 and, for e
small enough,

/QG(a:,tgug) > 1y(e)e” a =min(G8,n —2) .

Proof. If n = 3, by (7) one can reason like in Lemma 4 with kY = 4 and obtain
72(€) = cp(e72) for a suitable ¢.

If n > 4 one can use the behavior of G(z,-) at 0 and reason like in Lemma 5 in
[8]: then one obtains
o if n =4 take m(e) = ¢|In¢]
eifn>5and f>n—2 (ie. a=n—2) take m(c) = e2/2
eifn>5and g€ (%,n — 2) (ie. a = B) take my(e) = /2P, O

The proof of Theorem 1 is now easily completed by (19), (27) and Lemmas 3-5;
indeed we have

J(ve) = J(we) + J(teue) < S; + (c—7(e))e® < S;

nM ™2 n 2

for € small enough with ¢ = 1,2 according to the different cases.
5. PROOF OF THEOREM 2

In this section we assume hypotheses (2)—(4) (10)-(13). In order to emphasize the
dependence on m we denote u”, w, v instead u., w., v, (this dependence is hidden
in the cut-off function n). As in the previous section we want to show (25): for all
e > 0 there exist w. € H,, and ¢t. > 0 such that for v. = w. + tu. we have

J(v:) = max J(v) —||vg||2 /G ,0.) — 2*/62

We first remark that we can again reduce to the case where the sequences {¢.} and
{w™} satisty
L>e>0,  Jul|<e (20)

Taking into account the dependence on m, we obtain



Lemma 6 Let m — oo and assume that € = £(m) = o(=); then
w2 = $% +Ol(em)™® [ Q@)lu* = MS% + O[(em)" + " 2/02)]

Moreover, there exists a function ® such that mh_)rrolo ®(z) = 00 and

/G my > S (e

Proof. The estimates of [|u||* and [, G(z,ul") are just Lemma 6 in [8]. By reasoning

as in Lemma 2 with § = %2 (and hence h(g) = e™"=2/("+2)) we get

AQ($)|U?|2 = MS?% + Ol(em)" + gn(n_g)/(n+2)]

and the lemma is proved. O

Now we take € = ¢(m) with
e(m)=m "2 ; (30)

hence, for m — oo, e(m) = o(%) and Lemma 6 applies. From now on, we denote
by v™,u™,w™ the functions v*, w, u" with the above choice of € and with ¢,, the
corresponding t.. Let ® be the function defined in Lemma 6, then by reasoning as
for Lemmas 7 and 8 in [8], for m large enough, we obtain

Sﬂ ’ﬂ( —"] n
J(tpu™) < % —em™ 3 ‘b(cm__{z) (31)
nM 2
and .
J(w™) <emmzT . (32)

The proof of Theorem 2 is now obtained by (19), (31) and (32):

Sﬂ n(2—m n Sﬂ
J(0™) = J(tpu™) + J(™) < ——— — em"FTH@(m ) — 1) < ——
nM™z nM™=
for m large enough.
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