
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

POSITIVE SOLUTIONS TO A LINEARLY PERTURBED
CRITICAL GROWTH BIHARMONIC PROBLEM

Elvise Berchio - Filippo Gazzola

Dipartimento di Matematica del Politecnico

Piazza L. da Vinci 32

Milano, 20133, ITALY

(Communicated by ....)

Abstract. Existence and nonexistence results for positive solutions to a lin-

early perturbed critical growth biharmonic problem under Steklov boundary

conditions, are determined. Furthermore, by investigating the critical dimen-
sions for this problem, a Sobolev inequality with remainder terms, of both

interior and boundary type, is deduced.

1. Introduction. Let B ⊂ Rn (n ≥ 5) be the unit ball, 2∗ = 2n
n−4 denote the

critical Sobolev exponent for the embedding H2(B) ⊂ L2∗(B), λ ≥ 0 and d ∈ R.
We consider the following fourth order elliptic problem with linearly perturbed
critical growth and Steklov boundary conditions: ∆2u = λu+ u2∗−1 in B

u > 0 in B
u = ∆u− duν = 0 on ∂B,

(1)

where uν denotes the outer normal derivative of u on ∂B.
When λ = 0, it is well-known that (1) admits no solutions if d = 0, namely under

Navier boundary conditions (u = ∆u = 0 on ∂B), or if d = −∞, namely Dirichlet
boundary conditions (u = uν = 0 on ∂B), see [24, 26, 34].

On the other hand, under both Dirichlet and Navier boundary conditions, ex-
istence results have been obtained by modifying the geometry of the domain, see
[2, 10, 14], or by perturbing the nonlinearity (λ > 0), see [8, 11, 12, 19, 21, 36]. We
also refer to [16] for an exhaustive treatment of the subject.

In [6] general Steklov boundary conditions are considered first. Then, existence
results are determined for problem (1), when λ = 0, without modifying the geometry
of the domain, see [6, Theorem 1]. One of the purposes of the present paper is to
combine both the contribution of the modification of the nonlinearity and of the
boundary conditions. This gives rise to problem (1).

Existence results under linear perturbations λu of the critical nonlinearity u2∗−1

are quite sensitive to the space dimension n and led Pucci-Serrin [29] to define the
so-called critical dimensions. In these dimensions, one has nonexistence of radial
solutions to the Dirichlet problem in B for small linear perturbations (small λ > 0),
whereas in the other dimensions existence of radial solutions is ensured for any
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positive linear perturbation with λ smaller than the first eigenvalue. Some attempts
were made in order to explain this phenomenon by means of the local summability
properties of the fundamental solution of the biharmonic operator [23, 25] or by
means of summability properties of remainder terms in Sobolev inequality [13].
According to [11, Theorem 1.1] and [29, Theorem 3], the critical dimensions for
the biharmonic operator under Dirichlet boundary conditions are n = 5, 6, 7. By
[36, Theorem 1] and [14, Theorem 3], the same dimensions are also critical for
the Navier problem, at least in a weak sense, see Definitions 2 and 3 in Section 2.
Steklov boundary conditions exhibit an unexpected feature since, for d ∈ [4, n), the
critical dimensions do not exist, see Theorem 4.

On the other hand, for d < 4 critical dimensions do exist and coincide again with
n = 5, 6, 7. In these dimensions we prove nonexistence results for (1) when λ is
sufficient small. As a by-product of the nonexistence results, we deduce a Sobolev
inequality with remainder terms of both interior and boundary type.

The paper is organized as follows: in Section 2 we state our main results, in
Sections 3 and 4 we give the proofs.

2. Results. We denote by ‖ · ‖p the Lp-norm (both on B and on Rn) and we put

‖u‖2∂ν
=

∫
∂B

u2
ν dω for u ∈ H2(B) ∩H1

0 (B).

By [4] we know that the following inequality holds:

‖∆u‖22 ≥ n‖u‖2∂ν
for all u ∈ H2(B) ∩H1

0 (B) . (2)

For d < n, this allows to endow the Sobolev space H2(B) ∩H1
0 (B) with the scalar

product

(u, v) :=
∫

B

∆u∆v dx− d

∫
∂B

uνvν dω

and with the induced norm, which is equivalent to the usual H2∩H1
0−norm ‖∆ · ‖2

(see [16, Theorem 2.31]).
By solutions of (1) we mean functions u ∈ H2(B) ∩H1

0 (B) such that u > 0 a.e.
in B and

(u, v) =
∫

B

(λu+ u2∗−1) v dx for all v ∈ H2(B) ∩H1
0 (B) . (3)

A solution in this sense is in fact a classical solution, see [4, Proposition 23] and
also [35].

For any d ≤ n we denote by λ1(d) the first eigenvalue of the operator ∆2 under
Steklov boundary conditions, namely

λ1(d) := inf
H2(B)∩H1

0 (B)\{0}

‖∆u‖22 − d‖u‖2∂ν

‖u‖22
. (4)

We refer to the Appendix for a possible way to compute λ1(d). Since the map
H2(B) ∩ H1

0 (B) 3 u 7→ uν ∈ L2(∂B) is compact, the infimum in (4) is achieved
by some function φd

1. Furthermore, the map (−∞, n] 3 d 7→ λ1(d) is decreasing,
concave and λ1(n) = 0. For any d < n, ∆2 under Steklov boundary conditions
enjoys the positivity preserving property in B, see [18]. Combining this fact with
the Krein-Rutman Theorem, it follows that φd

1 is strictly of one sign in B and λ1(d)
is simple.

When λ = 0, problem (1) was studied in [6] and [17]. We recall the known
results:
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Proposition 1. [6, 17] For λ = 0 the following statements hold:
(i) if d ≤ 4 or d ≥ n, (1) admits no solutions;

(ii) if 4 < d < n, (1) admits a unique radially symmetric solution.

For completeness we remark that, even if Proposition 1-(i) is proved in [6] only
for d > 0, the same proof extends to the case d ≤ 0.

As already mentioned in the introduction, when λ > 0, the equation in (1) has
been extensively studied under Navier and Dirichlet boundary conditions, corre-
sponding to d = 0 and d = −∞ in (1). We complement the known results by
Theorems 1 and 4 below:

Theorem 1. For n ≥ 8 and λ > 0 the following statements hold:
(i) if d ≥ n or d < n and λ ≥ λ1(d), (1) admits no solutions;

(ii) if d < n, then (1) admits a radially symmetric solution for all λ ∈ (0, λ1(d)).

According to [29] we recall

Definition 2. The dimension n is called critical for problem (1) if there exists
λ = λ(d) > 0 such that a necessary condition for a radial solution to (1) (without
the positivity assumption) to exist is λ > λ.

By [11] and [29], the critical dimensions for the Dirichlet problem are known to
be n = 5, 6, 7. More precisely, when 5 ≤ n ≤ 7, by [11, Theorem 1.6] there exist
0 < λ ≤ λ∗(n) < λ1(−∞) such that problem (1) with d = −∞ admits no radial
solution if λ ∈ (0, λ) and admits a radial solution if λ ∈ (λ∗(n), λ1(−∞)). The
values of both λ∗(n) and λ1(−∞) are explicitly given in terms of the first positive
roots of certain functions related to Bessel functions. By means of some numerical
computations with Mathematica the following approximations hold

n 5 6 7
λ1(−∞) 769.93 1216.3 1818.1
λ∗(n) 373.28 267.59 140.67

Table 1. The bounds of the intervals where existence is known
when d = −∞.

In order to study higher order polyharmonic equations for which the determi-
nation of the critical dimensions is more difficult to handle, see [20], a notion of
weakly critical dimensions was introduced in [22]:

Definition 3. The dimension n is called weakly critical for problem (1) if there
exists λ+ = λ+(d) > 0 such that a necessary condition for a positive radial solution
to (1) to exist is λ > λ+.

In [14] the dimensions n = 5, 6, 7 are shown to be weakly critical also for the
Navier problem (d = 0). For the more general problem (1) we prove that the
weakly critical dimensions are still n = 5, 6, 7, when d < 4. When 4 ≤ d < n,
something somehow surprising happens: the critical dimensions do not exist.

Theorem 4. For n ∈ {5, 6, 7} and λ > 0, the following statements hold:
(i) if d ≥ n or d < n and λ ≥ λ1(d), (1) admits no solutions;
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(ii) if 4 ≤ d < n, then (1) admits a radially symmetric solution for all λ ∈
(0, λ1(d)).

(iii) If d < 4, there exist C(n) > 0 such that problem (1) admits:
- no radially symmetric solution if λ < C(n) 4−d

n−d ;
- a radially symmetric solution if

λ > min {3(8− n)(n+ 4)(4− d), λ∗(n)} , (5)

with λ∗(n) as defined in Table 1.

It is clear that for d close to 4 the minimum in (5) is given by 3(8−n)(n+4)(4−d)
whereas for d < 4 far away from 4 the minimum is given by λ∗(n).

When d = −∞ or d = 0, by [7] and [33] we know that any solution to (1)
is radially symmetric. A similar statement is not known under Steklov boundary
conditions. Then, in view of Theorem 4-(iii), it is natural to wonder if the upper
bound for the nonexistence of radial solutions to (1), is also an upper bound for the
nonexistence of any solution.

We observe that λ1(0) = Z4, where Z is the first zero of the Bessel function
Jn−2

2
. According to [1] we have:

n 5 6 7
λ1(0) 407.6653 695.6191 1103.3996

12(8− n)(n+ 4) 324 240 132

Table 2. The lower bound for existence in (5) when d = 0.

By Tables 1 and 2, we see that when d = 0 the best lower bound for existence in
(5) is 12(8− n)(n+ 4).

Figure 1. The existence and nonexistence regions when n = 5, 6, 7.

Figure 1 represents the existence and nonexistence regions, as d and λ vary, for
radial solutions to problem (1) as stated by Theorem 4. The question mark indicates
the region not covered by our results.
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Let D2,2(Rn) denote the closure of C∞c (Rn) with respect to the norm ‖∆ . ‖2.
We recall that the best constant for the embedding D2,2(Rn) ⊂ L2∗(Rn) may be
characterized by

S = inf
u∈D2,2(Rn)\{0}

‖∆u‖22
‖u‖22∗

. (6)

It is shown in [35], see also [15], that for any smooth domain Ω ⊂ Rn we have

inf{‖∆u‖22; u ∈ H2(Ω) ∩H1
0 (Ω), ‖u‖2∗ = 1} = S

although the infimum is not achieved if Ω 6= Rn. This suggests to try to improve the
Sobolev inequality by adding remainder terms. In [14, Theorem 5], the remainder
term added was of interior Lp-type whereas in [6, Corollary 3] it was ofH1 boundary
type. Here, from Theorem 4-(iii), we deduce a Sobolev inequality with both interior
and boundary remainder terms:

Theorem 5. Let d ≤ 4, there exists an optimal Λ(d) ≥ 0 such that for all u ∈
H2(B) ∩H1

0 (B) we have

‖∆u‖22 ≥ S‖u‖22∗ + d‖u‖2∂ν
+ Λ(d)‖u‖22. (7)

If n ≥ 8, Λ(d) ≡ 0. If n ∈ {5, 6, 7}, the map d 7→ Λ(d) is nonincreasing and strictly
positive on (−∞, 4). Furthermore, Λ(d) → 0 as d→ 4.

3. Existence and nonexistence for n ∈ {5, 6, 7}.

3.1. Existence. Let S be as in (6). Up to translations and nontrivial real multiples,
the infimum in (6) is achieved only by the functions

uε(x) :=
1

(ε2 + |x|2)n−4
2

(8)

for any ε > 0, see [11, Theorem 2.1] and [32, Theorem 4]. From (7.3) and (7.4) in
[6] we have ∫

Rn

|uε|2
∗

=
ωn

2εn

[Γ(n
2 )]2

Γ(n)
=:

K2

εn

and ∫
Rn

|∆uε|2 = S
K

2/2∗

2

εn−4
=:

K1

εn−4
. (9)

Here and in the sequel, ωn denotes the surface measure of the unit ball in Rn:

ωn := |∂B| = 2πn/2

Γ(n
2 )
, (10)

r := |x| denotes the radial variable. Set

H = {u ∈ H2(B) ∩H1
0 (B); u = u(r)}

and consider the minimization problem

Σd,λ := inf
u∈H\{0}

Qd,λ(u), (11)

where

Qd,λ : H2(B) ∩H1
0 (B) \ {0} → R, Qd,λ(u) =

‖∆u‖22 − d‖u‖2∂ν
− λ‖u‖22

‖u‖22∗
. (12)

We have
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Proposition 2. If Σd,λ < S the infimum in (11) is achieved. Moreover, up to a
change of sign and to a Lagrange multiplier, any minimizer is a radial solution to
(1).

The proof of Proposition 2 is given in [6, Proposition 13] for λ = 0 but it directly
extends to the case λ > 0.

The purpose of this section is to prove

Proposition 3. Let n ∈ {5, 6, 7} and d ≤ 4. If λ1(d) > 3(8− n)(n+ 4)(4− d) and

3(8− n)(n+ 4)(4− d) < λ < λ1(d) (13)

then (1) admits a radially symmetric solution. In particular, if d = 4, (1) admits a
radial solution for all λ ∈ (0, λ1(d)).

As shown by Table 1, it turns out that λ1(0) > 12(8 − n)(n + 4), for any n ∈
{5, 6, 7}. Since the map d 7→ λ1(d) is concave, this allows to conclude that

λ1(d) > 3(8− n)(n+ 4)(4− d) for all d ≤ d ≤ 4,

for some d < 0. Hence, the assumptions of Proposition 3 make sense.

Proof. In view of Proposition 2, we are led to exhibit a nontrivial radial function
Uε,δ ∈ H such that

Qd,λ(Uε,δ) < S. (14)
Our construction of this function Uε,δ depends on two parameters ε and δ and
follows the lines of [17]. First, for δ ∈ (0, 1) we define

a :=
2(n− 2)

2− nδn−2 + (n− 2)δn

and consider the function

Φ(δ) := a2(1− δn)
[
(4− d)(1− δn) + nδn

]
(15)

−λa2

∫ 1

δ

(
2 + (n− 2)δn

2(n− 2)
− rn−2

n− 2
− δn

2r2

)2
dr

rn−7
− λ δ8−n

8− n
.

Some tedious computations show that

lim
δ→0

Φ(δ) = (n− 2)2
[
4− d− λ

3(8− n)(n+ 4)

]
< 0

since (13) holds. Hence, we may fix δ > 0 such that

Φ(δ) < 0 . (16)

For such δ, let

gδ(r) :=


1 for r ∈ [0, δ]

a

(
2 + (n− 2)δn

2(n− 2)
− rn−2

n− 2
− δn

2r2

)
for r ∈ (δ, 1],

(17)

so that gδ ∈ C1[0, 1] ∩W 2,∞(0, 1) and gδ(1) = 0. The explicit form (17) for gδ will
be used at the very end of this proof.

Consider the family of functions

Uε,δ(x) = gδ(|x|)uε(x) =
gδ(|x|)

(ε2 + |x|2)n−4
2
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where, again, δ > 0 is fixed and satisfies (16). Then, Uε,δ ∈ H and

Uε,δ(x) = uε(x) =
1

(ε2 + |x|2)n−4
2

in Bδ = {x ∈ Rn; |x| < δ}.

In what follows we let ε vary and we show that for ε sufficiently small (14) holds.
The asymptotic behavior of the denominator in (12) is readily obtained:∫

B

|Uε,δ(x)|2
∗

=
∫

Rn

|uε(x)|2
∗
−

∫
Rn\B

|uε(x)|2
∗
−

∫
B\Bδ

1− gδ(|x|)2
∗

(ε2 + |x|2)n

=
K2

εn
+O(1).

(18)

Here and below, O(1) and o(1) are intended as ε → 0. Next, we seek an upper
bound for the numerator. By (9) we infer∫

B

|∆uε|2 =
∫

Rn

|∆uε|2 −
∫

Rn\B
|∆uε|2

=
K1

εn−4
− (n− 4)2

∫
Rn\B

(nε2 + 2|x|2)2

(ε2 + |x|2)n
=

K1

εn−4
− 4(n− 4)ωn + o(1).

Therefore, we may split the integral as follows∫
B

|∆Uε,δ|2 =
∫

Rn

|∆uε|2 −
∫

B\Bδ

|∆uε|2 +
∫

B\Bδ

|∆Uε,δ|2 −
∫

Rn\B
|∆uε|2

=
K1

εn−4
− 4(n− 4)ωn + o(1) +

∫
B\Bδ

(
|∆Uε,δ|2 − |∆uε|2

)
. (19)

In radial coordinates, after some computations we find

∆Uε,δ(r) = U ′′ε,δ(r) +
n− 1
r

U ′ε,δ(r)

=
g′′δ (r)

(ε2 + r2)(n−4)/2
+

g′δ(r)
r(ε2 + r2)(n−2)/2

[
(7− n)r2 + (n− 1)ε2

]
−(n− 4)

gδ(r)
(ε2 + r2)n/2

(2r2 + nε2) .

Let us recall that g′δ(r) = g′′δ (r) = 0 for r < δ. Furthermore, as ε→ 0, we have

∆Uε,δ(r) =
g′′δ (r)
rn−4

+ (7− n)
g′δ(r)
rn−3

− 2(n− 4)
gδ(r)
rn−2

+ o(1)

uniformly with respect to r ∈ [δ, 1]. By squaring, we get

|∆Uε,δ(r)|2 =
g′′δ (r)2

r2n−8
+ (7− n)2

g′δ(r)
2

r2n−6
+ 4(n− 4)2

gδ(r)2

r2n−4
+

+2(7− n)
g′′δ (r)g′δ(r)
r2n−7

− 4(n− 4)
g′′δ (r)gδ(r)
r2n−6

+ 4(n− 4)(n− 7)
g′δ(r)gδ(r)
r2n−5

+ o(1).

We may now rewrite in simplified radial form the terms contained in the last
integral in (19). With some integrations by parts, and taking into account the
behavior of gδ(r) for r ∈ {1, δ}, we obtain∫ 1

δ

g′′δ (r)g′δ(r)
rn−6

dr =
n− 6

2

∫ 1

δ

g′δ(r)
2

rn−5
dr +

g′δ(1)2

2
, (20)
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δ

g′′δ (r)gδ(r)
rn−5

dr = −
∫ 1

δ

g′δ(r)
2

rn−5
dr + (n− 5)

∫ 1

δ

g′δ(r)gδ(r)
rn−4

dr , (21)∫ 1

δ

g′δ(r)gδ(r)
rn−4

dr =
n− 4

2

∫ 1

δ

gδ(r)2

rn−3
dr − 1

2δn−4
. (22)

Using (20), (21) and (22) we find∫
B\Bδ

(
|∆Uε,δ|2 − |∆uε|2

)
= ωn

∫ 1

δ

(
g′′δ (r)2

rn−7
+ 3(n− 3)

g′δ(r)
2

rn−5

)
dr

+(7− n)ωng
′
δ(1)2 + 4(n− 4)ωn.

(23)

Let us now estimate the L2-norm for n ∈ {5, 6, 7}. With the change of variables
r = εs we obtain∫

B

|Uε,δ|2 = ωnε
8−n

∫ δ/ε

0

sn−1

(1 + s2)n−4
ds+ ωn

∫ 1

δ

rn−1 gδ(r)2

(ε2 + r2)n−4
dr .

Calculus arguments show that, as ε→ 0,∫ δ/ε

0

s4

1 + s2
ds =

[
s3

3
− s+ arctan s

]δ/ε

0

=
δ3

3ε3
+ o(ε−3) ,

∫ δ/ε

0

s5

(1 + s2)2
ds =

[
s2 − log(1 + s2)− s4

2(1 + s2)

]δ/ε

0

=
δ2

2ε2
+ o(ε−2) ,

∫ δ/ε

0

s6

(1 + s2)3
ds =

[
15
8

(s− arctan s)− 5
8

s3

1 + s2
− 1

4
s5

(1 + s2)2

]δ/ε

0

=
δ

ε
+ o(ε−1) .

Summarizing, we get∫
B

|Uε,δ|2 =
ωn δ

8−n

8− n
+ ωn

∫ 1

δ

gδ(r)2

rn−7
dr + o(1). (24)

Finally, simple computations show that∫
∂B

(Uε,δ)2ν = ωng
′
δ(1)2 + o(1)

which, combined with (19) (23) (24), yields∫
B

|∆Uε,δ|2 − d

∫
∂B

(Uε,δ)2ν − λ

∫
B

U2
ε,δ

=
K1

εn−4
+ ωn

∫ 1

δ

(
g′′δ (r)2

rn−7
+ 3(n− 3)

g′δ(r)
2

rn−5
− λ

gδ(r)2

rn−7

)
dr

+ωn(7− n− d)g′δ(1)2 − ωn δ
8−n

8− n
λ+ o(1) .

At this point of the proof we use the explicit form (17) of gδ. Then, some lengthy
computations show that the last equality may be rewritten as∫

B

|∆Uε,δ|2 − d

∫
∂B

(Uε,δ)2ν − λ

∫
B

U2
ε,δ =

K1

εn−4
+ ωnΦ(δ) + o(1) ,

where Φ(δ) is as in (15). Therefore, by (16) and (18), we get

Qd,λ(Uε,δ) =
K1

εn−4 + ωnΦ(δ) + o(1)(
K2
εn +O(1)

)2/2∗
= S +

ωnΦ(δ)
K2

εn−4 + o(εn−4) < S (25)
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for sufficiently small ε. Hence, (14) follows and, by Proposition 2, we infer that
there exists a positive radial solution to (1). Proposition 3 is so proved.

3.2. Nonexistence. First we prove

Lemma 6. If u = u(r) is a radially symmetric solution to (1), then (−∆u)(r) and
u(r) are radially decreasing for r ∈ (0, 1) and (∆u)′(1) > 0, u′(1) < 0.

Proof. The proof follows the same idea of [30, Proposition 1], where Dirichlet bound-
ary conditions are considered.

Let u be a smooth radially symmetric solution to (1), then

rn−1(∆u)′(r) =
∫ r

0

(
sn−1(∆u)′(s)

)′
ds =

∫ r

0

sn−1
(
λu+ u2∗−1

)
ds > 0

for all r ∈ (0, 1]. Hence, (∆u)′(r) > 0 in (0, 1]. Now we set

v(r) :=


u′(r)
r

for r ∈ (0, 1] ,

u′′(0) for r = 0 .

Then, v is smooth in [0, 1] and satisfies
(rn+1v′(r))′ = rn(∆u)′(r) ≥ 0 r ∈ [0, 1] ,

v′(0) = 0 ,

v(1) = u′(1) .

By integrating we deduce that v′(r) ≥ 0 in [0, 1]. Since v(1) = u′(1) < 0, this yields
v(r) < 0 in (0, 1] and we conclude.

As expected, for nonexistence results to problem (1), a key tool is a Pohozaev-
type identity [27, 28] in the spirit of the one noted by Mitidieri [24]. More precisely,
by arguing as in [6, Section 6], one sees that the following identity holds∫

∂B

[2(∆u)ν + d(n− d)uν ]uν dω = −4λ
∫

B

u2 dx

for any solution to (1). If we additionally require u to be radially symmetric, then
we obtain

2(∆u)′(1)u′(1) + d(n− d)(u′(1))2 = − 4λ
ωn

∫
B

u2 dx = −4λ
∫ 1

0

rn−1u(r)2 dr , (26)

with ωn as in (10). Note that (26), combined with Lemma 6, readily implies that (1)
admits no radial solutions if λ = 0 and d < 0. Moreover, (26) is the key ingredient
in the proof of the following

Proposition 4. Let n ∈ {5, 6, 7} and d < 4. There exists C(n) > 0 such that
problem (1) admits no radially symmetric solution for every λ < C(n) 4−d

n−d .

Proof. By the divergence Theorem we have

u′(1) =
1
ωn

∫
B

∆u and (∆u)′(1) =
1
ωn

∫
B

∆2u.

Hence, (26) becomes

− 4λωn

∫
B

u2 = 2
(∫

B

∆2u

) (∫
B

∆u
)

+ d(n− d)
(∫

B

∆u
)2

. (27)
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Let w(x) := (1− |x|2)/(2n), with x ∈ B. Then, −∆w = 1 in B and w = 0 on ∂B.
Next, if u is a radial solution to (1), integrating by parts we deduce

−
∫

B

∆u =
∫

B

∆w∆u =
∫

B

w∆2u+
∫

∂B

wν∆u

=
∫

B

w∆2u− d

n

∫
∂B

uν =
∫

B

w∆2u− d

n

∫
B

∆u,

namely

−
∫

B

∆u =
n

n− d

∫
B

w∆2u.

This, inserted into (27), gives

4λωn(n− d)
n

∫
B

u2 =
(

2
∫

B

∆2u− nd

∫
B

w∆2u

) (∫
B

w∆2u

)
. (28)

Since ∫
B

w∆2u ≤ 1
2n

∫
B

∆2u, (29)

the right hand side of (28) is positive for any d < 4. Denote by B1/2 the ball of
radius 1/2. By Lemma 6, u is radially decreasing and so is ∆2u, hence∫

B

∆2u =
∫

B1/2

∆2u+
∫

B\B1/2

∆2u ≤
∫

B1/2

∆2u+ |B \B1/2|∆2u(1/2)

≤ 1
w(1/2)

(
1 +

|B \B1/2|
|B1/2|

) ∫
B1/2

w∆2u =
n 2n+3

3

∫
B

w∆2u.

Hence, ∫
B

w∆2u ≥ 3
n 2n+3

∫
B

∆2u =: K(n)
∫

B

∆2u. (30)

In view of (29) and (30), by setting s :=
∫

B
w∆2u and A :=

∫
B

∆2u, the right hand
side of (28) corresponds to the positive function

ψ(s) = 2As− nds2 , with s ∈
[
K(n)A ,

A

2n

]
.

The function ψ is concave so that the following estimate holds

ψ(s) ≥ min
{
ψ (K(n)A) , ψ

(
A

2n

)}

= A2 min
{

2K(n)− ndK2(n),
4− d

4n

}
≥ 3A2

n2n+4
(4− d).

This, inserted into (28), gives

λ ‖u‖22 ≥
3

2n+6ωn

4− d

n− d
‖∆2u‖21.

By a duality argument and elliptic estimates (see e.g. [9, Appendix Chapter IX] for
the second order case) we know that, if ∆2u ∈ L1(B) and the boundary conditions
satisfy the complementing condition (see [4, Lemma 15]), then u ∈ Lq(B) for all
q < n

n−4 and

‖u‖q ≥ c(q)‖∆2u‖1.
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Since n ∈ {5, 6, 7} we have
n

n− 4
> 2 and therefore there exists c(n) > 0, indepen-

dent of u, such that
‖∆2u‖21 ≥ c(n)‖u‖22.

Summarizing, if a radial solution of (1) exists we necessarily have that

λ ≥ C(n)
4− d

n− d
,

for a suitable constant C(n) > 0. Hence, no solution exists if λ < C(n) 4−d
n−d .

4. Proof of Theorems 1, 4 and 5.

4.1. Proof of Theorem 1. Proof of (i). Assume first that (1) admits a solution
u for d ≥ n. Then, let φ1(x) = 1 − |x|2 be the eigenfunction corresponding to the
first Steklov boundary eigenvalue d = n of ∆2 in B, see [4]. We recall that φ1 is
the unique function, up to a multiplicative constant, for which the equality holds
in (2). By writing (3) with v = φ1, we deduce that

(n− d)
∫

∂B

uν (φ1)ν > (n− d)
∫

∂B

uν (φ1)ν − λ

∫
B

uφ1 =
∫

B

u2∗−1 φ1 > 0

and we immediately get a contradiction. Similarly, for d < n, we write (3) with
v = φd

1, the first eigenfunction corresponding to λ1(d), and we deduce that

(λ1(d)− λ)
∫

B

uφd
1 =

∫
B

u2∗−1φd
1.

Since φd
1 > 0 in B, this concludes the proof of (i).

Proof of (ii). We use the notations introduced in Section 3.1. By [11] we know
that

inf
u∈H∩H2

0 (B)\{0}
Q0,λ(u) < S, for all 0 < λ < λ1(−∞),

where λ1(−∞) is the first Dirichlet eigenvalue of ∆2. Since H ∩H2
0 (B) ⊂ H, this

readily implies that

Σd,λ = inf
u∈H\{0}

Qd,λ(u) ≤ inf
u∈H∩H2

0 (B)\{0}
Qd,λ(u) = inf

u∈H∩H2
0 (B)\{0}

Q0,λ(u) < S,

for all 0 < λ < λ1(d) ≤ λ1(−∞). By Proposition 2 this gives the statement. �

4.2. Proof of Theorem 4. The proof of (i) is the same of Theorem 1-(i).

Proof of (ii). For 4 < d < n, by Proposition 1-(ii) we know that

inf
u∈H\{0}

Qd,0(u) < S,

see [6, 17] for the details. This implies that

Σd,λ = inf
u∈H\{0}

Qd,λ(u) ≤ inf
u∈H\{0}

Qd,0(u) < S,

for all 4 < d < n and for all 0 < λ < λ1(d). Then statement (ii) follows from
Proposition 2.

For d = 4, the statement follows from Proposition 3.

Proof of (iii). For d < 4, the nonexistence for λ < C(n) 4−d
n−d comes from Propo-

sition 4.
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Now, by [11, Theorem 1.6], we deduce

Σd,λ = inf
u∈H\{0}

Qd,λ(u) ≤ inf
u∈H∩H2

0 (B)\{0}
Qd,λ(u) = inf

u∈H∩H2
0 (B)\{0}

Q0,λ(u) < S,

for all λ ∈ (λ∗(n), λ1(−∞)).
Combining the estimates so far collected with the statement of Proposition 3,

with the aid of Table 1 and 3, we finally obtain the proof. �

4.3. Proof Theorem 5. For any d ≤ 4, we set

Λ(d) := inf
u∈H2(B)∩H1

0 (B)\{0}
Fd(u),

where

Fd : H2(B) ∩H1
0 (B) \ {0} → R, Fd(u) =

‖∆u‖22 − d‖u‖2∂ν
− S‖u‖22∗

‖u‖22
.

By [6, Corollary 3] we know that

‖∆u‖22 ≥ S‖u‖22∗ + 4‖u‖2∂ν
,

for all u ∈ H2(B) ∩ H1
0 (B). Hence, Fd(u) ≥ 0 for all u ∈ H2(B) ∩ H1

0 (B). This
makes Λ(d) well-defined and implies Λ(d) ≥ 0. Furthermore, by definition, the map
d 7→ Λ(d) is nonincreasing. On the other hand, recalling (4), we deduce that

Λ(d) ≤ λ1(d)−
S

|B|4/n
≤ λ1(−∞)− S

|B|4/n
, for all d ≥ 4.

Assume that n ≥ 8. For any λ > 0 there exists uλ ∈ H2(B) ∩ H1
0 (B) such that

Qd,λ(uλ) < S, that is
Fd(uλ) < λ,

where uλ is the least energy solution to problem (1) as given by Theorem 1. This
readily implies that Λ(d) ≡ 0.

When n ∈ {5, 6, 7}, in view of Theorem 4-(ii), the same argument applied above
allows to deduce that Λ(4) = 0. When d = 0, by [33] any positive solution to the
Navier problem is radially symmetric. Thus, Theorem 4-(iii) implies that problem
(1) admits no solution for all λ < C(n) 4

n and by Proposition 2 we have

inf
u∈H2(B)∩H1

0 (B)\{0}
Q0,λ(u) = S.

In particular, taking λ = C(n) 2
n , this implies

‖∆u‖22 ≥ S‖u‖22∗ + C(n)
2
n
‖u‖22,

for all u ∈ H2(B) ∩ H1
0 (B). By this, F0(u) ≥ C(n) 2

n for all u ∈ H2(B) ∩ H1
0 (B)

and, in turn, we deduce that Λ(0) > 0. Since

Fd(u) ≥ F0(u) ≥ Λ(0) for all d < 0,

we also deduce that Λ(d) > 0 for all d < 0. It remains to show that Λ(d) > 0 for
any d ∈ (0, 4). Let d1, d2 ∈ [0, 4], for any t ∈ (0, 1) there holds

Ftd1+(1−t)d2(u) = tFd1(u) + (1− t)Fd2(u) ≥ tΛ(d1) + (1− t)Λ(d2),

for all u ∈ H2(B) ∩H1
0 (B). For d1 = 0 and d2 = 4 this gives

F(1−t)4(u) ≥ tΛ(0) > 0,

for all t ∈ (0, 1) and u ∈ H2(B) ∩H1
0 (B) and the statement follows. �
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Appendix: computation of λ1(d). Since λ1(d) is simple, the corresponding
eigenfunction is a radially symmetric function.

It is known that all the radial smooth solutions to

∆2y = y on Rn

are

y(r) = r1−
n
2

(
c1Jn

2−1(r) + c2In
2−1(r)

)
c1, c2 ∈ R,

where the Jn
2−1 and In

2−1 are, respectively, the Bessel and the Bessel modified
functions, see [11, (4.19)] and [1]. We seek r0 > 0 such that y solves the problem{

∆2y = y in Br0

y = r0∆y − dyν = 0 on ∂Br0 .

Writing the two boundary conditions in radial coordinates, we obtain the system

r
1−n

2
0

(
c1Jn

2−1(r0) + c2In
2−1(r0)

)
= 0 ,[

r1−
n
2

(
c1Jn

2−1(r) + c2In
2−1(r)

)]′′ |r=r0

+n−1−d
r0

[
r1−

n
2

(
c1Jn

2−1(r) + c2In
2−1(r)

)]′ |r=r0 = 0 .

By exploiting the identity F ′ν(t) = Fν−1(t) − ν
tFν(t) which holds for all ν ∈ R,

for all t > 0 and F = J, I, we deduce that nontrivial constants c1 and c2 can be
determined provided

det

 Jn
2−1(r0) In

2−1(r0)

4−n−d
r0

Jn
2−2(r0) + Jn

2−3(r0) 4−n−d
r0

In
2−2(r0) + In

2−3(r0)

 = 0. (31)

Once y is determined, we have that u(s) := y(r0s) solves{
∆2u = r40u in B
u = ∆u− duν = 0 on ∂B.

Hence, if we put

α(d) := min{r0 = r0(d) > 0 : (31) holds},

then

λ1(d) = α4(d).

The existence of such α(d) follows from the existence of λ1(d). For fixed d, the
explicit value of α(d) as the first positive root of (31), can be determined numerically
with Mathematica.

d 5 4 3 2 1 0 −∞
λ1(d) 0 133.95 231.84 305.55 362.53 407.67 769.93

Table 3. Some values of λ1(d) when n = 5.
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