Some results on p-Laplace equations with a critical growth term
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Abstract

Equations involving the p-Laplacian with a term in the critical growth range are considered: exis-
tence results are obtained under minimal assumptions on the lower order perturbation. The problem
is studied by means of variational methods: in particular, a problem with linking geometry is treated
thanks to the orthogonalization technique introduced in [13].

AMS subject classification: 35J20, 35J70

1 Introduction

In this paper we study the following p-Laplacian degenerate elliptic equation:

—Apu=g(z,u) +uff u  inQ 0
u=20 on 0f)

where Apu = div(|Vu[P~2Vu), 2 € R™ is an open bounded domain with smooth boundary 9, p* = e
is the critical Sobolev exponent of the imbedding W, ?(Q) € L¥" () and g(-, s) is a subcritical term. We
consider the case 1 < p < m; when n = p the Sobolev imbedding is into Orlicz spaces [21] and related
results may be found in [1].

Recently, much interest has grown on problems involving critical exponents, starting from the celebrated
paper by Brezis and Nirenberg [5], where the case p = 2 is considered. For arbitrary values of p > 1, we
recall in particular the results obtained in [10, 11], where the existence of a nontrivial solution is proved
for equations with a homogeneous subcritical term and constant coefficient, i.e. g(x,u) = A|u|?~2u for
some g and A € IR; more general results with nonconstant coefficient are obtained in [4, 9, 14, 15].

We consider the Banach space W := W, ?(2), normed by

1/p
Jull = ([ 19ar) "
Q

we denote by || - ||, the L norm. Let Ay be the first generalized eigenvalue of —A, relative to the



homogeneous Dirichlet problem in €, i.e. the smallest value of A for which the problem

—Apu = Nul[P~2u in Q2

u=0 on 0f)

admits a nontrivial solution. It is well-known [2, 16] that \; is positive and simple, and the correspond-
ing eigenfunction does not change sign; moreover, the operator —A, admits a sequence of eigenvalues
diverging to +oo0, see [10].

Define the functional J : W — IR by

J(u) :l/ |Vu|pdaz—/ G(w,u)daz—i*/ |ul?P" dz |
pJa Q P Je

where G(z, s) = [ g(z,t)dt; if g is continuous, then J € C'(W, IR) and the critical points of the functional
J correspond to weak solutions of equation (1). However, standard variational arguments do not apply
because the imbedding W C LP"(€2) is not compact and the functional .J does not satisfy the Palais-Smale
condition (PS condition). And indeed, for equations with critical growth, nontrivial solutions may not
exist; if €2 is starshaped and A < 0, then the following equation admits in W only the trivial solution
u =0, see [14, 18]:

—Apu = AP 2u+ [uff" 2w in &
u=0 on 0f) .

When p = 2 one observes a strong dependence of the results on the dimension n of the space, in particular
different existence results hold for n = 3, n = 4 and n > 5, see [5, 6, 13]. By allowing p to vary in (1, +00)
and having therefore another parameter to deal with, one can try to describe this “strange” behaviour.
Figures 1 and 2 give a picture of the phenomenon we face with our method; we do not know if such
phenomenon is a consequence of a limit of our techniques or if it indeed reflects an intrinsic property of
the equation studied.

In a recent paper [13], an orthogonalization technique has been developed for the study of critical growth
problems in semilinear elliptic equations; such technique is based on variational methods. To assure
that the considered minimax levels lie in the range of compactness, suitable classes of approximating
functions having disjont support with the Sobolev concentrating functions are constructed. We call
Sobolev concentrating functions some truncation of the positive radial functions which achieve the best
constant in Sobolev inequalities in IR"™, see [22]. In [5] such functions have been found responsible for the
loss of compactness of the problem, see also [7].

In this paper, we prove existence results for (1) for all n > p > 1: our results are obtained under minimal
assumptions on the subcritical term g(z,w): in particular we do not require it to be neither homogeneous
with respect to u nor positive. In general the assumptions on g are stricter in lower dimensions. We
consider the cases where the functional J has a mountain pass geometry or a linking structure with or
without resonance: roughly speaking, these three cases correspond respectively to

G(IL‘, S) - )\1 )\1 G(x, S)

. Gz, s A . .
Oghmg<—1, lim , < lim
s—0t sP P s—0t sP P p s—0t sP

To our knowledge no results for the p—Laplace equation have been found by linking techniques, even if
in [8] some results on the subcritical case are obtained in a right neighborhood of the first eigenvalue via



a different method: as noted in [14], the linking structure case needs a deeper knowledge of the spectral
properties of —A,; nevertheless, we prove in Section 3.3 the existence of a linking geometry in a right
neighborhood of the first eigenvalue.

The proofs are performed by slight modifications of the techniques used in [13] for the semilinear case, see
also [3, 12]; in particular, we use the orthogonalization technique introduced there to study the linking
case. With this technique, the mountain pass case and the nonresonant linking case look similar: for
these cases, Figure 1 summarizes the results relative to (2). In Figure 2 we illustrate the results relative
to the more complicated case of resonant linking, that is, the case where A = A; in (2).

2 Statement of the results

We assume that the function ¢ is subcritical in the following sense:

g : QxR — IR is a Carathéodory function )
np n(p—1)+
Ve >0 3a. € L =D+ such that |g(z,s)| < a:(z) + ¢ls] " for ae. x€Q , VseR .

Other assumptions are imposed on the primitive G(x,s) = [j g(x,t)dt: the lower order perturbation
g(x, s) may change sign, provided that

G(z,s) >0 forae xz€Q, VselR. (4)

2.1 The mountain pass case
Assume that there exist an open subset 2y C €2 and some constants ¢, 6, > 0 and b > a > 0 such that
(A1 —o)|sP forae. xe€Q, V]s/ <6 (5)
and

G(z,s) > p forae z€Qy, Vs €la,b] . (6)
Under these assumptions we prove the following:
Theorem 1 Assume (3), (4), (5) and (6).

If 1 < p? < n, then equation (1) admits a positive nontrivial solution.
Ifn=p? and p in (6) is large enough, then equation (1) admits a positive nontrivial solution.

In particular, we obtain a result of [10]:
Corollary 1 Let 1 < p? < n. Then equation (2) admits a positive nontrivial solution for all X € (0, A1).

If p < n < p? we are in the case of the critical dimensions of Pucci-Serrin [19]. In this case assumption
(6) is no longer enough and we need a suitable behavior of G at infinity: more precisely, we require the
existence of a nonempty open set )y C 2 such that

G(z,s)

SEIJPOO —ay = 0 uniformly in Qg , (7)

where oy, = %;L_}){’)_](?—;_Qg. Then we prove



Theorem 2 Let 1 < p < n < p?, assume (3), (4), (5) and (7). Then equation (1) admits a positive
nontrivial solution.

We remark that Theorems 1 and 2 generalize Theorem 3.3 in [11].

Let S be the best constant of the Sobolev imbedding W C LF", see [22]. In the case of the critical

dimensions, we also prove a result about (2):

Theorem 3 Let A = S|Q| 77/, assume 1 <p <n <p? and X € (\1 — A, \1). Then (2) admits a positive
nontrivial solution.

Figure 1
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Note that the number of critical dimensions increases with p and tends to infinity as p — 4oo0. This
is illustrated by Figure 1, where 7 is the curve of equation n = p? and the region below the curve
corresponds to the critical dimensions.



2.2 The linking case

The first eigenvalue of —A,, can be obtained as

M= min ®
ueW,*nB!

where B! = {u € Wy, |ullp, = 1}. Now let w € W% denote by EJ; the subspace of W orthogonal to
w, ie. EL = {ue W|(w,u) =0} where (, ) is the duality product between W~ and W; let

A= sup inf  Jul]?P .
weWw—1.p UEEFNBL

It is easy to observe that X\ < A2, where Ag is the second eigenvalue. If p = 2 then A = \g; if p # 2 it is
not clear whether the equality holds or not, but in Lemma 2 below it is proved that A > Aq.
We first deal with the case of non-resonance near the origin: assume that there exist 6, > 0 such that

l()\1 +0)ls|P < G(z,s) < E(X— o)|s|P forae. ze€Q, V|s|<$¢
p p (9)
G(z,s) >

R o

1 «
()\1+(7)|s|p—]?|s|p forae. ze€Q, Vs#0.

Note that both (5) and (9) imply g(z,0) = 0 for a.e. z € Q and ©w =0 is a solution of (1).
With the above assumptions we will prove

Theorem 4 If 1 < p? < n, assume (3), (4) and (9); if L < p <n < p?, assume (3), (4), (7) and (9).
Then equation (1) admits a nontrivial solution.

Finally, we deal with the more delicate case of resonance near the origin: assume that there exist 6 > 0
and o € (0,1/p*) such that

1)\1’8’]3 < G(z,s) < E(X— o)|sl? forae. 2 €Q, V]s| <6
p p
1

p*

10)
1 . (
G(z,s) > =\|s|]P — (— —0o)|s|? forae. x€Q VselR.

p
Moreover, we need a condition at infinity on G for all n: more precisely, we require the existence of an
open nonempty set 2g C ) such that

lim Gz, 9)

s——+o00 SﬁnP

= +oco uniformly in Qg , (11)

np(np+2p—2n)

where (3, := 3+ We will prove the following

— (n—p)(nptp—mn

Theorem 5 Let n > p > 1 and assume (3), (4), (10), (11). Then (1) admits a nontrivial solution.

Note that 3,, < p* for all n > p > 1 and that 3,, > 0if p > nQ—fQ As a straightforward consequence of
Theorem 5 we have:

Corollary 2 Let p > 1 and let n satisfy n"—jl > p?: then (2) admits a notrivial solution for X = \j.



Figure 2 summarizes the resonant case results: the curves v and 3 have equations respectively p = nQ—J_LQ

and n”—jl = p?. In the whole region 1 < p < n we obtain the existence of a nontrivial solution for equation
(1) in the resonant case by assuming (11). In the region above the curve v, the subcritical perturbation
G does not need to blow up at infinity, and since 1 < p < 2 the Laplacian is not concerned. Above the
curve 3 we have solutions for equation (2) when A = A\;. Note that in the Laplacian case the existence
of a solution is guaranteed only with n > 5 and not for n = 4 as stated in [6], see the remark in [13].

Figure 2
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3 The variational characterization

3.1 The Palais-Smale sequences

Let I € CY(W,1IR); we recall that a sequence {ug} C W is called a Palais-Smale sequence (PS for brevity)
for T at level ¢ if I(uy) — ¢ and I'(ug) — 0 in WL o/ = -5 The functional [ is said to satisfy the
PS condition at level ¢, if every PS sequence at level ¢ is precompact.

The functional J here considered may not satisfy the PS condition; however, we state a crucial result
which generalizes Lemma 2.3 in [11] and yields a sufficient condition for the existence of a nontrivial
solution of (1).

Lemma 1 Assume (3) and that there exists a PS sequence {uy} C W for J at level ¢ € (0, %) Then
there exists u € W\ {0} such that uxy, — uw up to a subsequence and J'(u) = 0.

Proof. Let f(z,s) = g(z,s) + |s|P" ~2s and F(xz,s) = [; f(z,t)dt; since (3) holds, we have
1
39 € (0,—) Is>0  such that F(z,s) <O0f(x,s)s forae ze€Q V|s|>s :
p

then {ug} is bounded (see [20]) and there exists u such that ux — u, up to a subsequence. Furthermore,
J'(u) = 0 by weak continuity of J'.
Assume by contradiction that uw = 0; as the term ¢(x, ug )uy is subcritical, we infer from J'(uy)[ug] = o(1)
that

el = gl = o(1) (12

By the definition of S, for all u € W we have [Ju|[P > S |Ju|?., hence
0(1) 2 [lug|[P(1 — 577 [ug| " F) .

Now |[ug|| # 0 because ¢ > 0; therefore, the last inequality implies ||ug|P > S™P + o(1) and by (12) we
get

1 1 . .
Tue) = el + sl = g 7) + 0(1) 2 25" + (1)

which contradicts the assumption ¢ < %S"/ p, O

By Lemma 1 we can prove Theorems 1-5 by building a PS sequence for J at a level ¢ € (O, S:L/p>; for

sn/p
n

this reason we call the nontrivial threshold. We treat the mountain pass case and the linking case

separately.

3.2 The mountain pass case
Consider the cone of positive functions
C:={ueW; u(z) >0for ae. ze€Q};

sn/p
n

assume that there exists v € C such that max;>o J(tv) < and note that, as the critical term is the
leading term at +oo, there exists 7, > 0 such that J(7r,v) < 0. Consider the class

Ly = {y € C([0,1]; W), 7(0) =0, »(1) = v}



and the infmax value

= inf J(v(t)) .
o= inf mac (v(t)

S:;/P) by standard

variational methods, see [20]; by well-known arguments we can assume that the PS sequence is in C.

If such v exists, we obtain a PS sequence of mountain-pass type for J at level a € (0,

Therefore, Theorems 1, 2 and 3 are proved if we find a function v € C satisfying the above stated
requirement: a different choice of the function v is needed in Theorems 1, 2 and 3.

3.3 The linking case

The following lemma yields a sufficient condition for the linking geometry to hold:

Lemma 2 For all w € WY satisfying (w,e1) # O there exists o, > 0 such that if u € EL, then
||u||P — )\1HuH]€ > au|u||P; therefore >\

Proof. Let w € W7 (w,e;) # 0 and E' = span{e; }: we have W = E' @ EZ and there exists ¢ > 0
such that ||u — v|| > ¢ for all v € Ef and for all w € E' N BL. If the statement is false, then there
exists {ux} C Ey such that [Jug]] = 1 and Ai[lug|f — 1; by rescaling and setting vy = ug||ug|;?, we
have [Jug|b = 1 and |Jvg]| — A1. Then {vy} is a minimizing sequence for (8), hence vy — v and vy — v
in L? for some v. Finally vy — v in Wy? as well because |[v]| > A; = limy, ||vg|. But this leads to a
contradiction, as v ¢ E' and the first eigenvalue is simple. O

Denote by e; the positive eigenvector relative to A\; and such that [[e1||, = 1; let Qg be as in (7) or (11);
without restrictions we may assume that 0 € Qg C Q. Let B, denote the ball in IR™ of radius r centered
in 0. For all m € IN so large that By, C (o, we define the functions ¢p, : @ — IR by

Cm(w) = m]x\ -1 fxcA,= BQ/m\Bl/m

Let ™ := (;peq be the “approximate first eigenfunction” and let E™ := span{e™} be the corresponding
approximate eigenspace.

Lemma 3 As m — oo we have
e —e inW and le™]|P < A +vmP"
for a suitable v > 0.
Proof. We have
le™ = eall = le1Vim + (Gm — 1) Verllp < llerVimllp + [1(Gm — DVer|lp < c(mP™™ +m™) — 0 ;
therefore €™ — e; and by the definition of €™ we also have |[e™||P < A\ +vmP~™. O

By the definition of X, for all § > 0 there exists w € W17 such that mingepap [ul] > X —68; we define
B3 := B for such w. We prove that if m is large, then the functional J has a linking geometry:



Lemma 4 Assume (3), (4) and either (9) or (10); then there exist o, 6, p > 0 such that

Jw)>a  YucdB,NE; .

Proof. By (3) and either (9) or (10) we have G(z,s) + ;%|s|p* < )‘;f"sp + ¢|s|P", for all s € IR; therefore
if ¢ is small, then for all u € Eg- we have

1 A—o . «
I = = [19uf = =2 [ —c [ > ellull = ol
pPJa p Q Q
and the result follows by choosing p small enough. O
Consider the family of functions
p&:U
wa) = —T (>0,

(7T 4 [2[7=1) "5

which achieve the best Sobolev constant S in the imbedding W1P(IR") C LP" (IR™) (see [17, 22]): take a
positive cut-off function n € Cg°(By ) such that n =1 in By, 1 < 1in By, and [[Vnlee < 3m. For
all € >0 let

ue(z) = n(z)uz(z) , (13)
then, as em — 0, the following estimates hold (see [10, 11, 13]):

n—p n
p—1

uellP < S™P +clem)>=r |, fue|Be = S™P — clem)FT (14)
Note that for all ¢ > 0 and m € IN we have
supp(us) Nsupp(e™) =0 ; (15)
consider the set )5, defined by:
Q, ={veW|u=a™+bu, la] <R, 0<b< R} .

Note that 0Q%, and 0B, N B+ link (see [20]) if R > p. Furthermore, by (15) and by the definition of
e™ it follows that if R and m are large enough, then J(u) < 0 for all u € 9Q)%,. Hence the functional J
satisfies all the assumptions of the linking theorem except for the PS condition.

Let I' := {h € C(Q5,,W); h(u) =u , Yu € 0Q5,}; by standard methods we obtain a PS sequence for J
at level
c= }Lrellfﬂggg?n J(h(u)) .
Moreover, since the identity map Id € I', we have
¢ < max J(u) .
uels,

We will prove Theorems 4 and 5 by showing that the PS sequence fulfills the assumptions of Lemma 1:
more precisely, we prove that for e small enough we have maxyeq: J(u) < %S”/ P,



4 Proof of Theorem 1

We follow the ideas of [5, 11, 13] and consider the family of functions defined in (13): we claim that if €
is small enough, then

1
—gn/p
max J(tug) < nS . (16)

Arguing by contradiction, assume that for all € > 0 there exists t. > 0 such that
1, /
J(teug) > =8S™P . (17)
n

As ¢ — 0, the sequence {t.} is upper and lower bounded by two positive constants and therefore it
converges, up to a subsequence; indeed by (14), if t. — 400 then J(t.u.) — —oo, while t. — 0 implies
J(teus) — 0: in both cases we contradict (17).

Again by (14), as ¢ — 0 we have

p*
||t5ug||p _ ||t5u5 P < Sn/p " <t§ 1 n _p(ﬂ;* _ 1)> Sn/p +O(€(n7p)/(p71)) < Sn/p +O(€(n7p)/(p71))
p p* n n p n
(18)
the second inequality following from max {xp . p(.rp* - 1)} =0.
x> n
By a direct computation, there exist c¢s > ¢; > 0 such that, for e small enough
e’ < |z| < e’ = a<taul(x)<b;
therefore, as B. C € for small ¢, by (4) and (6) we have
coel/P
/ G(z,teu:) > c,u/ T dr > epe™? (19)
Q c1el/p

If n > p?, we infer that there exists a function 7 = 7(¢) such that liII(l) 7(e) = 400 and such that for e
E—

small enough we have
| Glasteus) > 7(e) - lr om0
Q
if n = p?, from (18) we obtain

n/p n/p
S + O(EP) — cpe? < 5

J(teug) <

for suitable small € and large p. Hence, (17) cannot be true: if we choose € small enough, by (18) and
the estimate of [, G(x,t-u.) we have

1
J(tous) < —S™P
n

for all n > p2. Hence, (16) holds and we obtained a PS sequence (in C) for J at level a € (O, Sn/p): its

n
weak limit is positive, nontrivial and it solves (1) by Lemma 1.

10



5 Proof of Theorem 2

The proof follows the same steps as for Theorem 1, except for the estimate (19). By (7) there exists an
increasing function 7 such that lim,_, o 7(x) = +oo satisfying G(z,s) > 7(s) - s*» for a.e. & € Qp and
for all s > 0; hence,

/ Gz, tou) > T(ceP~™)/P)etnp(P—)/p /5 L > 1 (ce®T/PY )/ (1) (20)
o) 0

where we have used the fact that lrr|11<n teug(x) > PP,
z|<e

6 Proof of Theorem 3

We show that the PS sequence obtained by the mountain pass argument is at level below the nontrivial
threshold, by choosing a different direction than in the previous proofs. We follow an idea of [7], see
also [3]: let e; be the first positive eigenfunction of —A, in © and let u = te; for some t > 0; by Holder
inequality we obtain

_)\1_)\ )\1—)\

af? — 2= ults < Z2—2 |0/ u)lf — 2L |ju|? < (A=A
P np = p np p* = -

n

J(w) 2,

the last inequality following from

_ (n—p)/p
Va,b >0 max(ar — bmn/(n*p)) _ap <a(n P)) .
x>0 n nb

Then, if A € (A1 — A, A1), we have
1
max J(te]) < —S™P
t>0 n

and the existence of a solution follows as for Theorem 1.

7 Proof of Theorem 4

We first consider the case n > p? > 1.
Choose m large enough so that vmP~" < o, where v is as in Lemma 3 and o is as in (9). Then

Yw € E™ J(w) <0. (21)
We claim that there exists € > 0 such that
1
—qgn/p . 29
Jnax J(u) < nS : (22)
by contradiction assume that
1
Ve >0 max J(u) > =S"/P | (23)
ueQs, n

Note that the set {u € Q5,; J(u) > 0} is compact and the supremum in (23) is attained. Therefore, for
all € > 0 there exist w. € £™ and t. > 0 such that, for v. := w. + t.u., we have

1
= > — Tl/p
J(ve) 52%}52 J(u) > nS ,

11



that is L ) )
Sl = [ Glae) — el 2 28, We>o0. (24)

As in the proof of Theorem 1 we infer that ¢, is bounded between two positive constants. We estimate
the lower order term [, G(x,t.u.):

Lemma 5 There exists a function T = 7(e) such that lim 7(e) = +o00 and such that for e small enough

e—0

we have

/ Gl tou) > 7(c) - P/ -1
Q

Proof. If ¢ is small enough, there exist ¢; > 0 such that t.ui(z) € (0,6) for all = satisfying |z| >
1P~ D/P*; moreover, if z € B jom, then u.(r) = uZ(x). Finally, by (9) and (13) we obtain

L dr

1/2m eln=p)/(p=1)
et > f | o

1/2m
> )/ (-1) /

clel/P

r@*—n—p+t1)/(p-1) g,

and therefore

@*-n)/(p-1) 5
/ Gz, teue) > ce(n—p)/(p—1) € ifn>p
0

| log € if n = p?

and the function 7(e) is then given. O

If (24) held, by (15), (18), (21) and Lemma 5 we would get

sn/p

J(vz) < J(toue) < 4 (c — 7(e))em P/ =D .

n

and choosing ¢ small we would contradict (24). Therefore (22) holds.
The case p < n < p? follows by arguing as above and by taking into account the estimate (20).

8 Proof of Theorem 5

The proof of Theorem 5 follows the same lines as that of Theorem 4, although some modifications are
necessary and we need to take m large enough. We set

and we remark that e(m) = o(1/m) as m — oo, therefore the estimates (14) still hold. To keep in mind
the dependence of ¢ on m we denote v™, "™, w™ instead of v, e, we.

As for Theorem 4 we show that (22) holds for some m € IN: if not, (23) is true and for all m large there
exist v"" € @, (here we omit the superscript ¢), ¢, > 0 and w™ € E™ such that

1 1 « 1

—vmp—/Gx,vm——vmp*z—S”/P VmeM 26

S = Gl o) = Sl 2 (26)
where v = t,,,u" +w™. If (26) holds, then the sequences {w™} and {t,,} satisfy again

2>ty >c1 >0 and |lw™] <ec. (27)

12



Lemma 6 Assume (25) and let m — oo; then, there exists a real function ¢ such that

lim ¢(x) = 400 and / Gz, tymu™) > mn(P—n)/p¢(m) )
Q

r— 400

Proof. By (11) there exists an increasing function 7 such that lim, . 7(x) = 400 satisfying G(z, s) >
7(s) - 8% for a.e. € Qp and for all s > 0; hence,

/ G(l’,tmum) > 7_(Cg(p—n)/p)gﬁnp(p—n)/p /E Tn_ldT > 7-(Cg(P—n)/P)gn(n—p)/(np-H?—n) = m”(?‘”)/P¢(m) ,
Q 0

where we have used (25) and the fact that lim ‘rr|11<n teus () — +00. O
e—0 |z|<e

By (14), (25) and Lemma 6 we infer that there exists a constant C' > 0 such that if m is large enough
we have

J(tmu™) < lgn/p — Cm PPy () | (28)
n

where 1 satisfies limy_,o0 ¥(x) = +00.
By (10), Lemma 3 and the equivalence of the norms in E™ we get, for large m,

A

1 . _ .
J@™) < —[w™|F = —[[w™|E = olw™ ([ < er|lw™|E - mPT" = eallw™|F (29)

Consider the function h(z) = c;mP~™ - aP — ¢y - 2™/ (*=P): its derivative vanishes for x = em~ (=) /p*
and therefore, since (27) holds, we have h(||w™|,) < em™P~™)/P; then by (29) we obtain the existence of
a constant C > 0 such that if m is large enough we have

J(w™) < Cmre—m/p

Finally, taking into account (15) and (28) we obtain
1 1
J™) = J(tpu™) + J(w™) < Esn/p — Ome—n)/p (p(m) —1) < ESn/p :

for m sufficiently large: this contradicts (26) and the proof of Theorem 5 is complete.
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