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Abstract. Existence results available for the semilinear Brezis-Nirenberg
eigenvalue problem suggest that the compactness problems for the corres-
ponding action functionals are more serious in small dimensions. In space
dimension n = 3, one can even prove nonexistence of positive solutions in
a certain range of the eigenvalue parameter. In the present paper we study
a nonexistence phenomenon manifesting such compactness problems also in
dimension n = 4.

We consider the equation −∆u = λu + u3 in the unit ball of R
4 under

Dirichlet boundary conditions. We study the bifurcation branch arising from
the second radial eigenvalue of −∆. It is known that it tends asymptotically
to the first eigenvalue as the L∞-norm of the solution tends to blow up.
Contrary to what happens in space dimension n = 5, we show that it does
not cross the first eigenvalue. In particular, the mentioned Dirichlet problem
in n = 4 does not admit a nontrivial radial solution when λ coincides with
the first eigenvalue.
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1 Introduction and main result

In their celebrated paper, Brezis-Nirenberg [9] studied the following semilinear
eigenvalue problem { −∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω
(1)

where Ω ⊂ R
n (n ≥ 3) is a bounded domain and 2∗ = 2n

n−2 is the critical Sobolev
exponent. Since they were interested in positive solutions of (1), they assumed that
0 < λ < µ1, where µ1 denotes the first eigenvalue of −∆ in H1

0 (Ω). Subsequently,
many other papers studying (1) appeared and it seems almost impossible to give a
complete list of references. So, let us restrict our attention to radial sign-changing
solutions in the case where Ω = B (the unit ball). In this situation, (1) becomes an
ordinary differential equation and the space dimension n > 2 may be considered
as a real parameter. More precisely, putting r := |x| (so that 0 < r < 1) and
assuming that u = u(r), (1) reads

u′′(r) +
n− 1
r

u′(r) + λu(r) + |u(r)|4/(n−2)u(r) = 0 ,

u′(0) = u(1) = 0 , u(0) = ω ,

(2)

where, for our convenience, we overdetermined the problem by adding the “shoot-
ing condition” u(0) = ω. In general, (2) admits no solution since it involves 3
boundary conditions. However, for any ω > 0 and for a suitable λ = λ(ω), problem
(2) admits a solution uω with precisely one zero in [0, 1), the second zero being at
r = 1. We are here interested in studying the behaviour of the map ω �→ λ(ω).

Let µ1 = µ1(n) and µ2 = µ2(n) denote the first two (positive) eigenvalues µ
of the problem

ψ′′(r) +
n− 1
r

ψ′(r) + µψ(r) = 0 (0 < r < 1) , ψ′(0) = ψ(1) = 0 ,

so that the eigenfunction corresponding to µ1 is positive whereas the eigenfunction
corresponding to µ2 has exactly one zero in [0, 1). If n is an integer, µ1 and µ2
represent the first two radial eigenvalues of −∆ in H1

0 (B). It is well-known (cf.
e.g. Remark 4 in Section 3) that for any n > 2 we have

lim
ω→0

λ(ω) = µ2 .

Much richer appears the picture of the behaviour of λ(ω) as ω → +∞. As we
shall see, it strongly depends on the parameter n. Firstly, in “large dimensions”
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the bifurcation branch collapses to λ = 0. More precisely, we have

if n > 6 then lim
ω→∞λ(ω) = 0 . (3)

Statement (3) was established by Atkinson-Peletier [8, Theorem 4 (b)], see also
previous results by Cerami-Solimini-Struwe [11] for integer values of n ≥ 7. Subse-
quently, Atkinson-Brezis-Peletier [5] proved that the behaviour changes for n = 6:

if n = 6 then there exists µ ∈ (0, µ1) such that lim
ω→∞λ(ω) = µ . (4)

Concerning the second bifurcation branch for “small dimensions”, it is mentioned
in [5] between Theorems A and B that limω→∞ λ(ω) = 9

4π
2 while µ1 = π2, if

n = 3. We believe that the techniques developed by Atkinson-Peletier [6, 7] will
allow to prove in the full range 2 < n < 4 that the second bifurcation branch does
not reach µ1:

if 2 < n < 4 then there exists µ ∈ (µ1, µ2) such that lim
ω→∞λ(ω) = µ . (5)

But the most interesting cases seem to be when the bifurcation branch skips
precisely one eigenvalue. As shown in [5], this occurs in the “intermediate dimen-
sions”. More precisely, we have

if 4 ≤ n < 6 then lim
ω→∞λ(ω) = µ1 . (6)

Unfortunately, (6) nothing says about the “asymptotic monotonicity” of the map
ω �→ λ(ω). This was studied in [13] where it was shown that if 4 ≤ n ≤ 2+2

√
2 then

λ(ω) > µ1 for sufficiently large ω, whereas if 2 + 2
√

2 < n < 6 then λ(ω) < µ1 for
sufficiently large ω. Therefore, for any n > 2 + 2

√
2 the second bifurcation branch

eventually goes below the first eigenvalue µ1. Since the number n = 2 + 2
√

2
plays a crucial role in the description of (1), it was conjectured in [13] that the
second bifurcation branch does not cross µ1 if n ≤ 2 + 2

√
2. The aim of this

paper is to partly prove this conjecture. We show that the bifurcation branch in
dimension n = 4 does not reach the first eigenvalue, namely that λ(ω) > µ1 for all
ω > 0. We study dimension n = 4 for two crucial reasons. Firstly, because it is an
integer dimension so that a corresponding result for the elliptic problem (1) is also
obtained, see Corollary 1 below. Secondly, because in this case the nonlinearity
|u|2∗−2u simply becomes u3 which is analytic, and analytic nonlinearities are easier
to tackle with computer assisted proofs.

Our main result reads:

Theorem 1 Assume that n = 4 and let λ(ω) be defined as above. Then, for all
ω > 0 we have λ(ω) > µ1.

We prove Theorem 1 in three steps. In Section 2, by refining previous
estimates in [5, 6, 7], we prove Theorem 1 for ω sufficiently large (exactly for
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Figure 1 Second radial bifurcation branch λ �→ ω(λ) = u(0) for n = 4

ω ≥ 349). In Section 3, we use a comparison method and the variational charac-
terization of eigenvalues in order to show that λ(ω) > µ1 whenever ω ≤ √

µ2 − µ1.
Finally, in Section 4, we prove Theorem 1 for “intermediate” values of ω (i.e. for√
µ2 − µ1 ≤ ω ≤ 349) with the assistance of a computer. We recall here a possible

definition of computer assisted proof:

Definition 1 A proof is called computer assisted, if it consists in finitely many
elementary operations, but their number is so large that, although each step may
be written down explicitly, it is only practical to perform such operations with a
computer.

As a straightforward consequence of Theorem 1 (see also Remark 2 below),
we obtain

Corollary 1 Let B be the unit ball of R
4 and let µ1 be the first (radial) eigenvalue

of −∆ in H1
0 (B). Then the problem{ −∆u = µ1u+ u3 in B

u = 0 on ∂B .
(7)

admits no nontrivial radial solutions.

Let us recall that (7) does admit a nontrivial (nonradial nonpositive!) solu-
tion, see [12]. This result, together with Corollary 1, complements [10, Theorem
0.1] where the proof was not complete in the particular case of dimension n = 4,
when λ belongs to the spectrum of −∆. Moreover, Corollary 1 shows that the very
same proof cannot work in the class of radial functions and gives an explanation
why the eigenvalues had to be skipped in [2, 14, 16].

The above mentioned results (including Theorem 1) are illustrated in Figure
1, which is obtained numerically by means of the algorithm explained in Section 4.

With the same numerical procedure we obtained the following pictures con-
cerning other values of n. For the reader’s convenience, we also recall the values
of µ1 and µ2, according to [1].
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Figure 2 Second radial bifurcation branch for n = 3 and n = 5
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Figure 3 Second radial bifurcation branch for n = 6 and n = 7

n 3 4 5 6 7
µ1 π2 14.68 . . . 20.19 . . . 26.37 . . . 33.22 . . .
µ2 4π2 49.22 . . . 59.68 . . . 70.85 . . . 82.72 . . .

Remark 1 • It would be interesting to give a proof of (5) also for n ∈ (2, 4)\
{3}. Moreover, it would be nice to specify whether the branch approaches
the number µ from the left or from the right. The latter correspondingly
modified question is also interesting in dimension n = 6. As P. Quittner
mentioned to us, the asymptotic methods developed by Atkinson-Brezis-
Peletier [5, 6, 7] will presumably allow to solve these problems.

• P. Quittner pointed out to us that for µ close to µ2, ‖u‖ behaves like
(µ2 − µ)(n−2)/4. Our pictures do not display this behaviour since the scale
is not suitable and the numerical calculations become unstable for µ → µ2.
In this regime a computer assisted proof is not available and we refer to
the analytic result in Proposition 2.

2 Proof of Theorem 1, part 1

In this section we prove:

Proposition 1 For all ω ≥ 349, we have λ(ω) > µ1.
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Our proof of Proposition 1 consists in making more explicit several constants
obtained in the estimates in [5, 6, 7]. As we are basing our analysis on these papers,
we adopt their notation and we will often refer to formulas therein.

By means of scaling and of Emden-Fowler inversion

y(t) := λ−1/2u
(
2λ−1/2 t−1/2

)
,

equation (2) (for n = 4) becomes

y′′ + t−3(1 + y2)y = 0 (t > 0) , y(t) → γ as t → ∞ (8)

where γ = ωλ−1/2 > 0. In [5] it is shown that y has infinitely many zeros T1(γ) >
T2(γ) > ..., and that

lim
γ→∞T1(γ) = ∞ and lim

γ→∞Tj(γ) = τj−1 ∀j ≥ 2. (9)

Here τ1 > τ2 > ... are the zeros of the function

α(t) =
√
tJ1

(
2√
t

)
=

∞∑
k=0

(−1)k

k!(k + 1)!
t−k, (10)

where J1 is the first kind (regular) Bessel function of order 1. The first (smallest)
zero of J1 is 3.83170 . . . (see e.g. [1]) and therefore,

τ1 = 0.27244 . . . . (11)

Remark 2 The Emden-Fowler inversion generates a one-to-one correspondence
between solutions of problems (2) and (8). In particular, by continuous dependence
this shows that branches of solutions of (2) arising from an eigenvalue are con-
nected. Moreover, by the unique continuation principle (uniqueness of solutions
for the Cauchy problem), two different branches cannot intersect.

Note that the function α defined in (10) satisfies the differential equation

α′′ + t−3α = 0. (12)

As for the relative location of the respective zeros τk and Tk of α and y, we observe:

Lemma 1 For any γ > 0 and every k ∈ N one has that Tk > τk.

Proof. For k = 1, the statement follows from the fact that (2) has positive solutions
for some suitable ω > 0 precisely when λ ∈ (0, µ1). For k ≥ 2, the statement follows
from Sturm’s comparison result applied to equations (8) and (12). �

We now give a refinement of [5, (3.2)]:
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Lemma 2 For all t ∈ (0, T1) we have |y(t)| < 2γ
1 + γ2 (T1 + 1 − t).

Proof. Take f(y) = y+ y3 so that f is as in [7, (2.6)] with k = 3, q = 1 and p = 3.
Let y be the solution of (8), which is none other than [7, (2.8)–(2.9)]. Hence,
[7, Lemma 2.1] entails

∀t ≥ T1 : y(t) < z(t) :=
2γt

1 + γ2 + 2t
. (13)

By [7, (2.12)], we know that z satisfies the differential equation

z′′(t) = −1 + γ2

γ2 · 1
t3

· z3(t). (14)

Therefore, by making use of (8), we obtain for all t ≥ T1:

y′(t) =
∫ ∞

t

y(s) + y3(s)
s3

ds <
γ2

1 + γ2 z
′(t) +

∫ ∞

t

2γ
s2(1 + γ2 + 2s)

ds.

By replacing the exact value of z′(t) and taking into account that∫ ∞

T1

ds

s2(1 + γ2 + 2s)
<

1
1 + γ2

∫ ∞

T1

ds

s2
=

1
1 + γ2

1
T1

,

the previous inequality (when t = T1) yields

y′(T1) <
2γ3

(1 + γ2)2
+

2γ
1 + γ2

1
T1

<
2γ

1 + γ2 +
2γ

1 + γ2

1
T1

.

This estimate makes more precise the statement of [5, Lemma 4] (recall the limit in
(9)). From the last inequality and from [5, Lemma 2] we get that for all t ∈ (0, T1):

|y(t)| < |y′(T1)|(T1−t) <
(

2γ
1 + γ2 +

2γ
1 + γ2

1
T1

)
(T1−t) < 2γ

1 + γ2 (T1−t)+ 2γ
1 + γ2 ,

which proves the statement. �

Our next goal is to provide a suitable upper bound for T1. For this purpose
we need an estimate of y from below beyond T1. By means of the differential
equation (14) and integration by parts, we have for all t:∫ ∞

t

s− t

s3
z3(s) ds = − γ2

1 + γ2

∫ ∞

t

(s− t)z′′(s) ds

=
γ2

1 + γ2 (γ − z(t)) =
γ3

1 + γ2 + 2t
. (15)
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Furthermore, with a tedious calculation one can find∫ ∞

t

s− t

s3
z(s) ds = − 2γ

1 + γ2 +
2γ

(1 + γ2)2
(1 + γ2 + 2t) log

(
1 + γ2 + 2t

2t

)
. (16)

Next, note that by y(t) → γ (t → ∞) and y′′(t) = −t−3(y+y3), one deduces
that |y′(t)| ≤ C(γ)t−2. Hence, we obtain for t ≥ T1:

y(t) = γ −
∫ ∞

t

y′(s) ds = γ − [(s− t)y′(s)]∞t +
∫ ∞

t

(s− t)y′′(s) ds

= γ −
∫ ∞

t

s− t

s3
(
y(s) + y3(s)

)
ds

> γ −
∫ ∞

t

s− t

s3
z(s) ds−

∫ ∞

t

s− t

s3
z3(s) ds

= γ +
2γ

1 + γ2 − γ3

1 + γ2 + 2t

− 2γ
(1 + γ2)2

(1 + γ2 + 2t) log
(

1 + γ2 + 2t
2t

)

(17)

where we used (15) and (16).
We now refine [6, Theorem 3 II] with the following:

Lemma 3 For all γ ≥ e4 we have T1 < 2 log γ.

Proof. It suffices to show that

∀γ ≥ e4 ∀t ∈ [2 log γ,∞) : y(t) > 0. (18)

Inequality (17) shows that for all t ≥ T1:

y(t)
γ

≥ ψ(t) :=
3 + γ2

1 + γ2 − γ2

1 + γ2 + 2t
− 2(1 + γ2 + 2t)

(1 + γ2)2
log

(
1 + γ2 + 2t

2t

)
. (19)

Since y is positive at ∞ and γψ is a lower bound for y as long as y is positive we
have that y is positive on any interval [t,∞) where ψ > 0. With some calculations
one finds that

lim
t→∞ψ(t) = 1 (20)

and

ψ′′(t) = − 8γ2

(1 + γ2 + 2t)3
− 2
t2(1 + γ2 + 2t)

< 0. (21)

This, together with (20), proves (18) provided that

∀γ ≥ e4 : ψ (2 log γ) > 0. (22)
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We have

ψ (2 log γ) =
3 + 3γ2 + 12 log γ + 4γ2 log γ

(1 + γ2)(1 + γ2 + 4 log γ)

−2(1 + γ2 + 4 log γ)
(1 + γ2)2

log
(

1 + γ2 + 4 log γ
4 log γ

)

so that (22) holds if and only if

Ψ1(γ) :=
(

3
γ2 + 3 + 12

log γ
γ2 + 4 log γ

) (
1 +

1
γ2

)

−2 log
(

1 +
1 + γ2

4 log γ

) (
1
γ2 + 1 + 4

log γ
γ2

)2

> 0

for all γ ≥ e4. Since we assume γ ≥ e4 one has

log
(

1 +
1 + γ2

4 log γ

)
≤ log

(
17 + γ2

16

)
≤ 2 log

(
51
200

γ

)
≤ 2 log γ − 5

2

and may conclude:

Ψ1(γ) ≥ 8 +
16
γ2 +

8
γ4 + 48

log γ
γ2 + 48

log γ
γ4 + 48

log2 γ

γ4 − 32
log2 γ

γ2 − 64
log3 γ

γ4

≥ 8 − 32
(

4
e4

)2

+
16
γ2

(
1 − 4

log3 γ

γ2

)

≥ 7 +
16
γ2

(
1 − 44

e8

)
> 0.

We see that (22) indeed holds, so that (18) also follows and the lemma is proved.
�

Next, we prove a lower bound for y′(T1):

Lemma 4 For all γ ≥ 110 we have y′(T1) >
1.69
γ

.

Proof. Since γ ≥ 110, in view of Lemma 3 we also have γ > 2 log γ > T1. Beyond
T1, the solution y is concave and we obtain y′(T1) > 1

γ [y(γ) − z(T1)]. We make
use of [7, Lemma 2.2], according to which

y(t) >
γ2

1 + γ2

(
z(t) − 2

γ
log

(
1 +

1 + γ2

2t

))

and arguing as on p.156 in [7] (case q = k − 2) we get

γy′(T1) >
γ2

1 + γ2

[
2γ2

(1 + γ)2
− 2
γ

log
(1 + γ)2

2γ

]
− 2γT1

1 + γ2 + 2T1
. (23)
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In turn, by Lemma 3, this implies

γy′(T1) >
2γ4

(1 + γ2)(1 + γ)2
− 2γ

1 + γ2 log
(1 + γ)2

2γ
− 4γ log γ

1 + γ2

so that we have to prove that

∀γ ≥ 110 :
2γ4

(1 + γ2)(1 + γ)2
− 2γ

1 + γ2 log
(1 + γ)2

2γ
− 4γ log γ

1 + γ2 > 1.69.

This is equivalent to show that for all γ ≥ 110:

H1(γ) := 2γ4 − 4γ(1 + γ)2 log(1 + γ) − 2γ(1 + γ)2 log γ
+ (2 log 2) γ(1 + γ)2 − 1.69(1 + γ)2(1 + γ2) > 0.

Since we assume γ ≥ 110, we have

log(1 + γ)
γ

≤ log 111
110

≤ 1
23.3

,
log γ
γ

≤ log 110
110

≤ 1
23.4

,

1 + γ

γ
≤ 111

110
,

1 + γ2

γ2 ≤ 12101
12100

.

We may conclude

H1(γ) ≥ 2
(

110
111

)2

γ2(1 + γ)2 − 4
23.3

γ2(1 + γ)2 − 2
23.4

γ2(1 + γ)2

−1.69
12101
12100

(1 + γ)2γ2 ≥ 1
100

(1 + γ)2γ2 > 0,

and the statement follows. �

For α as in (10), define the function b as in [5, (4.6)].

b(t) := y′(t)α(t) − y(t)α′(t). (24)

Then

b(T1) = y′(T1)α(T1) = y′(T1)
√
T1 J1

(
2√
T1

)
. (25)

Lemma 4 combined with (25) enables us to refine [5, (4.10)] with the following

∀γ ≥ 110 : b(T1) >
1.69
γ

α(T1). (26)

Observe that α(T1) > 0 by Lemma 1.
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As in [5, (4.12)] we now conclude from the differential equations (8) for y
and (12) for α that

b(τ1) = b(T1) +
∫ T1

τ1

y3(s)
s3

α(s) ds . (27)

Since τ1 < T1 by Lemma 1 and hence 0 < α(t) < α(T1) for all t ∈ (τ1, T1),
an estimate of the integral in the right hand side of (27) by using Lemmas 2-3 and
(11) yields that for all γ ≥ 110:∣∣∣∣∣

∫ T1

τ1

y3(s)
s3

α(s)
α(T1)

ds

∣∣∣∣∣ ≤
∫ T1

τ1

|y(s)|3
s3

ds

≤
(

2γ
(1 + γ2)

(T1 + 1 − τ1)
)3 ∫ ∞

τ1

ds

s3
<

54γ3

(1 + γ2)3
(T1 + 1 − τ1)3

<
54γ3

(1 + γ2)3
(0.72756 + 2 log γ)3 . (28)

Inserting (28) and (26) into (27) yields

b(τ1) > α(T1)
[
1.69
γ

− 54γ3

(1 + γ2)3
(0.72756 + 2 log γ)3

]

> α(T1)
[
1.69
γ

− 54
γ3 (0.72756 + 2 log γ)3

]
> 0,

the last inequality being true for all γ ≥ 222. By (24) we get b(τ1) = −y(τ1)α′(τ1).
Since α′(τ1) > 0, we have so proved the following implications:

γ ≥ 222 =⇒ b(τ1) > 0 =⇒ y(τ1) < 0 . (29)

Since we wish to prove (29) for smaller values of γ, we need to improve some
of the previous estimates. Firstly, we complement Lemma 3 with

Lemma 5 For all γ ∈ [e9/2, 222] we have T1 <
3
2 log γ.

Proof. Let ψ be as in (19). By (20) and (21) it suffices to show that for all γ ∈
[e9/2, 222]:

ψ

(
3
2

log γ
)

=
3 + 3γ2 + 9 log γ + 3γ2 log γ
(1 + γ2) (1 + γ2 + 3 log γ)

−2
(
1 + γ2 + 3 log γ

)
(1 + γ2)2

log
(

1 +
1 + γ2

3 log γ

)
> 0.

(30)
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The estimate (30) holds true if and only if

Ψ2(γ) :=
(

3
γ2 + 3 + 9

log γ
γ2 + 3 log γ

) (
1 +

1
γ2

)

−2 log
(

1 +
1 + γ2

3 log γ

) (
1
γ2 + 1 + 3

log γ
γ2

)2

> 0

for all γ ∈ [e9/2, 222]. Since we assume γ ≥ e9/2 one has

log
(

1 +
1 + γ2

3 log γ

)
≤ log

(
14.5 + γ2

13.5

)
≤ 2 log (0.28γ) ≤ 2 log γ − 2.5

and may conclude by using also γ ≤ 222

Ψ2(γ) ≥ − log γ + 8 − 24
log2 γ

γ2 + 34
log γ
γ2 +

16
γ2

−36
log3 γ

γ4 + 21
log2 γ

γ4 + 35
log γ
γ4 +

8
γ4

≥ 2.5 − 24
4.52

e9
+

1
γ2

(
169 − 36

log3 γ

γ2

)

≥ 2.4 +
1
γ2

(
169 − 36

4.53

e9

)
≥ 2.4 +

168
γ2 > 0.

Hence, we see that (30) indeed holds on γ ∈ [e9/2, 222], so that the lemma is
proved. �

We now extend the statement of Lemma 4 to smaller values of γ:

Lemma 6 For all γ ∈ [91, 222] we have y′(T1) > 1.69
γ .

Proof. Since γ ∈ [91, 222] and 91 > e9/2, in view of Lemma 5 we have γ > 3
2 log γ >

T1. Therefore, the same arguments used in Lemma 4 lead to (23). Combining
Lemma 5 with (23) yields

y′(T1) >
2γ3

(1 + γ2)(1 + γ)2
− 2

1 + γ2 log
(1 + γ)2

2γ
− 3 log γ

1 + γ2 .

That means that we have to show that

H2(γ) := 2γ4 − 4γ(1 + γ)2 log(1 + γ) − γ(1 + γ)2 log γ
+ (2 log 2) γ(1 + γ)2 − 1.69(1 + γ)2(1 + γ2) > 0.

Since we assume γ ≥ 91, we have

log(1 + γ)
γ

≤ log 92
91

≤ 1
20.1

,
log γ
γ

≤ log 91
91

≤ 1
20.1

,
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1 + γ

γ
≤ 92

91
,

1 + γ2

γ2 ≤ 8282
8281

.

We may conclude

H2(γ) ≥ 2
(

91
92

)2

γ2(1 + γ)2 − 4
20.1

γ2(1 + γ)2 − 1
20.1

γ2(1 + γ)2

−1.69
8282
8281

(1 + γ)2γ2 ≥ 1
100

(1 + γ)2γ2 > 0.

The lemma is proved. �

Lemma 6 combined with (25) enables us to complement (26) with the
following

∀γ ∈ [91, 222] : b(T1) >
1.69
γ

α(T1). (31)

Recalling again the fact that 0 < α(t) < α(T1) for all t ∈ (τ1, T1), if we
estimate the integral in the right hand side of (27) by using (11) and Lemmas 2
and 5, we get for all γ ∈ [91, 222]:∣∣∣∣∣

∫ T1

τ1

y3(s)
s3

α(s)
α(T1)

ds

∣∣∣∣∣ < 54γ3

(1 + γ2)3

(
0.72756 +

3
2

log γ
)3

. (32)

Inserting (32) and (31) into (27) yields

b(τ1) >
α(T1)
γ

[
1.69 − 54

γ2

(
0.72756 +

3
2

log γ
)3

]
> 0

the last inequality being true for all γ ∈ [129, 222] (it suffices to show that the
term inside the square brackets is positive when γ = 129). By (24) we get b(τ1) =
−y(τ1)α′(τ1). Since α′(τ1) > 0, we have now proved the following implications:

γ ∈ [129, 222] =⇒ b(τ1) > 0 =⇒ y(τ1) < 0 . (33)

A third iteration of this procedure is in order:

Lemma 7 For all γ ∈ [e9/2, 129] we have T1 <
5
4 log γ.

Proof. Let ψ be as in (19). By (20) and (21) it suffices to show that for all γ ∈
[e9/2, 129]:

ψ

(
5
4

log γ
)

=
3 + 3γ2 + 15

2 log γ + 5
2γ

2 log γ
(1 + γ2)

(
1 + γ2 + 5

2 log γ
)

−2
(
1 + γ2 + 5

2 log γ
)

(1 + γ2)2
log

(
1 +

1 + γ2

5
2 log γ

)
> 0.

(34)
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Estimate (34) holds if and only if

Ψ3(γ) :=
(

3
γ2 + 3 +

15 log γ
2γ2 +

5
2

log γ
) (

1 +
1
γ2

)

−2 log
(

1 +
1 + γ2

5
2 log γ

) (
1
γ2 + 1 +

5 log γ
2γ2

)2

> 0

for all γ ∈ [e9/2, 129]. Since we assume γ ≥ e9/2 one has

log
(

1 +
1 + γ2

5
2 log γ

)
≤ log

(
12.25 + γ2

11.25

)
≤ 2 log (0.3γ) ≤ 2 log γ − 2.4

and may conclude by using also γ ≤ 129

Ψ3(γ) ≥ −3
2

log γ + 7.8 − 20
log2 γ

γ2 + 26
log γ
γ2 +

15.6
γ2

−25
log3 γ

γ4 + 10
log2 γ

γ4 + 27.5
log γ
γ4 +

7.8
γ4

≥ 0.51 − 20
4.52

e9
+

1
γ2

(
132.6 − 25

log3 γ

γ2

)

≥ 0.45 +
1
γ2

(
132.6 − 25

4.53

e9

)
≥ 0.45 +

132
γ2 > 0.

Hence, we see that (34) indeed holds on γ ∈ [e9/2, 129], so that the lemma is
proved. �

Using now Lemma 7, complementing (32) we obtain that for all γ ∈ [91, 129]:∣∣∣∣∣
∫ T1

τ1

y3(s)
s3

α(s)
α(T1)

ds

∣∣∣∣∣ < 54γ3

(1 + γ2)3

(
0.72756 +

5
4

log γ
)3

. (35)

Inserting (35) and (31) into (27) yields

b(τ1) >
α(T1)
γ

[
1.69 − 54

γ2

(
0.72756 +

5
4

log γ
)3

]
> 0

the last inequality being true for all γ ∈ [91, 129]. Similarly as above we have the
following implications:

γ ∈ [91, 129] =⇒ b(τ1) > 0 =⇒ y(τ1) < 0 . (36)

Summarizing, if we combine (29)–(33)–(36) we have

γ ≥ 91 =⇒ y(τ1) < 0 .
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On the other hand, by (9) and continuity of the maps γ �→ Tj(γ) (j ≥ 1), this
shows that

γ ≥ 91 =⇒ τ1 > T2 =⇒ λ > µ1 . (37)

We may now prove Proposition 1, namely that λ > µ1 whenever ω ≥ 349.
Assume for contradiction that λ ≤ µ1. Then, using (37), we have

√
λ γ = ω ≥ 349 > 91

√
µ1 ≥ 91

√
λ =⇒ γ ≥ 91 =⇒ λ > µ1 ,

a contradiction! �

Remark 3 One could gain the impression that with (finitely or possibly infinitely
many) further iterations, one could finally show that λ(ω) > µ1 for arbitrary
ω > 0. However, some numerical experiments show that this does not seem to be
the case, therefore it seemed convenient to let the computer complete the proof
for ω < 349, except for the case ω ∈ (0, 5.87 . . . ), see the next section.

3 Proof of Theorem 1, part 2

In this section we prove:

Proposition 2 For all ω ≤ √
µ2 − µ1, we have λ(ω) > µ1.

As above, µ1 and µ2 denote the first two radial eigenvalues of −∆ in H1
0 (B).

We begin with a simple observation on solutions of the equation

u′′(r) +
3
r
u′(r) + λu(r) + u3(r) = 0 for r > 0. (38)

Lemma 8 Let λ ≥ 0 and u be a nontrivial solution of (38), with u′(0) = 0, then

∀r > 0 : |u(r)| < |u(0)|.
Proof. We may assume that u(0) > 0. Consider the energy function

E(r) :=
1
2
u′(r)2 +

λ

2
u2(r) +

1
4
u4(r),

so that, using (38),

E′(r) = u′(r)
(
u′′(r) + λu(r) + u3(r)

)
= −3

r
u′(r)2.

This tells us that r �→ E(r) is decreasing. Since we also have E(r) ≥ 0 for all r,
the solution u is globally bounded. Moreover, in any further critical point R > 0
of the solution of (38), we have

λ

2
u2(R) +

1
4
u4(R) = E(R) < E(0) =

λ

2
u2(0) +

1
4
u4(0).

This immediately gives |u(R)| < u(0) and the statement follows. �
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As a straightforward consequence of Lemma 8, for all solutions of (38) one has

ω = max
[0,1]

|u| > |u(r)| ∀r ∈ (0, 1]. (39)

Proof of Proposition 2. Let ω ≤ √
µ2 − µ1 and let uω be a solution of (38) with

precisely one zero in the interval [0, 1). This means that uω = ϕ is the second
radial eigenfunction of 


−∆ϕ = λϕ+ u2

ωϕ in B

ϕ = 0 on ∂B

with eigenvalue λ = λ(ω). In what follows Hr denotes the space of radially sym-
metric functions in H1

0 (B). By means of the variational characterization of eigen-
values and (39) we have

λ(ω) = min
V ⊂Hr

dim V =2

max
ϕ∈V

‖ϕ‖
L2(B)=1

(∫
B

|∇ϕ|2 dx−
∫
B
u2

ωϕ
2 dx

)

> min
V ⊂Hr

dim V =2

max
ϕ∈V

‖ϕ‖
L2(B)=1

(∫
B

|∇ϕ|2 dx− ω2
)

= µ2 − ω2 ≥ µ1

since we assumed initially that ω ≤ √
µ2 − µ1. This completes the proof of

Proposition 2. �

Remark 4 The above proof may be extended to any space dimension n ≥ 3.
In particular, it states that λ(ω) ≥ µ2 − ω2 for all ω sufficiently small. In turn,
Lemma 1 states that λ(ω) < µ2 for all ω. Therefore, limω→0 λ(ω) = µ2.

4 Proof of Theorem 1, part 3

In this section we prove:

Proposition 3 For all
√
µ2 − µ1 ≤ ω ≤ 349, we have λ(ω) > µ1.

Since
√
µ2 − µ1 = 5.8767 . . . , we prove Proposition 3 for all ω ∈ [5, 349].

4.1 Transformation

In this subsection we transform the equation (2) (with ω = u(0)) in order to make
it suitable for the computer assisted proof when n = 4 and for the numerical study
of the dimensions n = 3, 5, 6, 7.
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Let t = ω
2

n−2 r and w(t) = ω−1u(r) so that u′(r) = ω
n

n−2w′(t), u′′(r) =
ω

n+2
n−2w′′(t). Then, (2) becomes


w′′(t) + n−1

t w′(t) + γ
4

2−nw(t) + |w(t)| 4
n−2w(t) = 0 t ∈ (0,∞)

w(0) = 1

w′(0) = 0

(40)

where γ = ωλ
2−n

4 and we want to determine the second zero z of the solution of
(40) as a function of γ. Note that z = ω

2
n−2 = γ

2
n−2

√
λ so that λ = z2γ

4
2−n and

ω = z
n−2

2 = γλ
n−2

4 .
Summarizing, in the case n = 4 we need to show that

5 ≤ γ
√
λ ≤ 349 =⇒ z > γ

√
µ1 . (41)

Since we already know that γ
√
λ ≤ 5 . . . and γ

√
λ ≥ 349 imply λ > µ1, by

continuity (41) follows if we prove the following

Proposition 4 For all γ satisfying 5 ≤ γ
√
µ1 ≤ 349, the second positive zero z

of the solution of (40) satisfies z > γ
√
µ1.

In order to prove Proposition 4, we solve the initial value problem (40) with
a rigorous computer assisted method, introduced in [3]. We describe here the
peculiarities of this equation and we refer to the above mentioned paper for the
details. We remark that equation (40) has also been used to make the numerical
experiments leading to the pictures concerning the cases n = 3, 5, 6, 7 displayed in
the introduction.

4.2 Technical lemmas

In this subsection we recall the functional analytic background introduced in [3],
to which we refer for the proofs. Let R > 0, let HR be the space of analytic
functions in the open disk DR = {z ∈ C : |z| < R} and let XR and YR be the
subspaces of HR with finite norm

‖u‖XR
=

∞∑
k=0

|uk|Rk and ‖u‖YR
= sup

t∈DR

|u(t)|

respectively, where

u(t) =
∞∑

k=0

ukt
k (42)

and uk ∈ R. In the sequel, we denote by ZR either XR or YR, and by ‖ · ‖ZR
the

respective norm. The following lemma is straightforward:
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Lemma 9 The spaces ZR are Banach algebras, i.e. for all u, v ∈ ZR we have
uv ∈ ZR and ‖uv‖ZR

≤ ‖u‖ZR
‖v‖ZR

.

Remark 5 In particular, this implies that ‖um‖ZR
≤ ‖u‖m

ZR
for all m ∈ N and

‖eu‖ZR
≤ e‖u‖ZR .

The derivative operator DR : ZR → HR is unbounded, but if we choose R′ < R
we may define DR,R′ : ZR → ZR′ and we have the following

Lemma 10 ‖DR,R′‖ ≤ CR,R′ , where CR,R′ =
(
eR′ log R

R′
)−1

when ZR = XR and
CR,R′ = (R−R′)−1 when ZR = YR.

Since we want the computer to handle functions in ZR, we need to represent
such functions by using only a finite set of representable numbers [15]. Our choice
is to write functions in ZR as

u(t) =
N−1∑
k=0

ukt
k + tNEu(t) (43)

where Eu ∈ ZR. We store 2N + 1 representable numbers: N pairs represent lower
and upper bounds for the value of the (real) coefficients {uk}, while the last
number is an upper estimate of the norm of Eu.

Lemma 11 Let 0 < R′ < R. If u ∈ ZR is represented as in (43), then u′ ∈ ZR

is represented as

u′(t) =
N−1∑
k=0

vkt
k + tNEv(t) ,

where vk = (k + 1)uk+1 for k = 0, . . . , N − 2, vN−1 = [−N‖Eu‖ZR
, N‖Eu‖ZR

],
‖Ev‖XR

≤ ‖Eu‖XR
(N/R+ CR,R′) and ‖Ev‖YR

≤ ‖Eu‖YR
(2N/R+ CR,R′).

4.3 The first step

An easy computation shows that, when γ ≥ 1, the solution of (40) can be extended
analytically at least to the disk centered at 0 of radius R = 1. For this reason, for
the first step we set R = 11/10 and

X̃R = {w ∈ XR : w(0) = 1, w(t) = w(−t)} .

Let L : X̃R → HR and fγ : X̃R → XR be defined by

Lw = w′′ +
3
t
w′ and fγ(w) = −γ−2w − w3 ,
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and consider the operator

Fγ := (L−1fγ) : X̃R → X̃R .

The following lemma is straightforward:

Lemma 12 The operator L is invertible and solutions of equation (40) in the
interval (0, R) (more precisely, their analytic extension in DR) correspond to fixed
points of the operator Fγ .

If

w(t) =
∞∑

k=0

wkt
k ,

with w2k+1 = 0 for all integers k, then

Lw =
∞∑

k=0

(k + 2)(k + 4)wk+2t
k ;

inverting this relation we get

L−1w = 1 +
∞∑

k=0

wkt
k+2

(k + 2)(k + 4)
.

Let B(0,K) = {w ∈ X̃R : ‖w‖XR
≤ K}, then

Lemma 13 The Lipschitz constant of Fγ restricted to B(0,K) is at most

R2

8
(
γ−2 + 3K2) .

Proof. We have

∥∥L−1w
∥∥

XR
=

∞∑
k=0

|wk|Rk+2

(k + 2)(k + 4)
≤ R2

8

∞∑
k=0

|wk|Rk =
R2

8
‖w‖XR

.

The statement follows considering that f ′
γ(w) = −γ−2 − 3w2 and that XR is a

Banach algebra. �

Assume that we have an approximate solution w̄(t) =
∑N−1

k=0 w̄kt
k, where

{w̄k} are interval values satisfying w̄0 = [1, 1] and w̄2k+1 = [0, 0] for all k =
0, . . . , N/2 − 1 (since 0 and 1 are representable numbers, cf. [15], we may choose
intervals of width 0 for w̄0 and w̄1). The following lemma yields a true solution
close to w̄:
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Lemma 14 Let w̄(t) =
∑N−1

k=0 w̄kt
k. If there exist ε, ρ > 0 such that ‖Fγ(w̄) −

w̄‖XR
< ε and the restriction of Fγ to the ball B(w̄, ρ) has Lipschitz constant

L(Fγ) ≤ 1 − ε/ρ, then there exists a fixed point of Fγ in B(w̄, ρ).

Remark 6 Typical values of the constants mentioned above are as follows: K �
1.2, L � 0.8, ε, ρ � 10−7. The actual values of the constants occurring in Lemma
14 can be obtained from the function Basics.Integrate of the Ada program.

4.4 Second step

By applying Lemmas 10 and 11 we rigorously compute W0 := w(1) and W1 :=
w′(1). To proceed, it is convenient to make another change of variable. Let V (s) :=
tw(t) where s = log t. The differential equation (40) together with the initial
conditions in t = 1 transforms into


V ′′ = (1 − γ−2e2s)V − V 3

V (0) = W0

V ′(0) = W0 +W1.

(44)

Fix R > 0 and consider the space YR; let

ŶR = {V ∈ YR : V (0) = W0, V
′(0) = W0 +W1}

and let Cγ : ŶR → ŶR be defined by

Cγ(V ) = D−2[(1 − γ−2e2s)V − V 3] ,

where D−2 : YR → ŶR is the inverse of the second derivative. It is clear that the
analytic extension in DR of the solution of the initial value problem (44) is a fixed
point of the operator Cγ . The analogue of Lemma 14 reads:

Lemma 15 Let v̄(t) =
∑N−1

k=0 v̄kt
k. If there exists ε, ρ > 0 such that ‖Cγ(v̄) −

v̄‖YR
< ε and the restriction of Cγ to the ball B(v̄, ρ) has Lipschitz constant

L(Cγ) ≤ 1 − ε/ρ, then there exists a fixed point of Cγ in B(v̄, ρ).

To proceed, we need an upper bound for the Lipschitz constant of Cγ :

Lemma 16 Let BK = {v ∈ ŶR , ‖v‖YR
≤ K}. The Lipschitz constant L(Cγ) of

the operator Cγ restricted to BK satisfies

L(Cγ) ≤
[
max
|s|≤R

(
1 − γ−2e2s

)
+ 3K2

]
R2

2
.
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Proof. The statement follows when considering ‖D−2‖ = R2

2 ,

∂

∂V

(
(1 − γ−2e2s)V − V 3) = (1 − γ−2e2s) − 3V 2

and the definition of the norm in YR. �

In order to solve equation (44), we proceed as follows. We compute an
approximate solution v̄ as a truncated power series, we compute its norm and
by Lemma 16 we estimate R in such a way that Cγ has Lipschitz constant not
larger than 0.95 in a ball of radius equal to the norm of the approximate solution.
Then we compute an upper bound for ‖Cγ(v̄) − v̄‖YR

and we choose ρ > 0 such
that the assumptions of Lemma 15 are satisfied. Finally, by using again Lemmas
10 and 11 we compute V (T ) and V ′(T ) for some T close to, but less than R.

4.5 Successive steps and proof of Proposition 4

We can now proceed by setting V0 = V (T ) and V1 = V ′(T ) and by solving

V ′′ = (1 − γ−2e2(T+s))V − V 3

V (0) = V0

V ′(0) = V1

with the method described above (up to small adjustments). It is straightforward
to iterate the procedure as many times as necessary, in order to obtain a lower
bound for the second zero of the solution.

Finally, we partition the interval [5, 349] into the union of small intervals.
For each such interval we solve the equation (40) as described above, until we
reach the second zero z and we check the inequality z > γ

√
µ1, which proves

Proposition 4. See the Ada files [4] for the details of the proof.

Acknowledgement. We are grateful to P. Quittner for several interesting and
useful remarks.
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