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ABSTRACT. We use a nonsmooth critical point theory to prove existence
results for a variational system of quasilinear elliptic equations in both the
sublinear and superlinear cases. We extend a technique of Bartsch to ob-
tain multiplicity results when the system is invariant under the action of a
compact Lie group. The problem is rather different from its scalar version,
because a suitable condition on the coeflicients of the system seems to be
necessary in order to prove the convergence of the Palais-Smale sequences.
Such condition is in some sense a restriction to the “distance” between the
quasilinear operator and a semilinear one.

1. INTRODUCTION

We consider the following kind of systems of m > 1 quasilinear elliptic equa-
tions in an open set (not necessarily bounded) Q@ C R™, n > 3:

da; oF
_;D (a;;(z, w)Dug) + Zau’: (z,u)Dyw Dy = au’f(m,u)

where u : 2 — R™, the indices i, j run from 1 to n, the indices k, [ run from 1 to
m and the assumptions on a,; and F' are given in next section. In the sequel the

sum over repeated indices is understood and we assume a more concise vectorial

0 _0_
Oul’ """ Oum

by (-,-); the system takes the form

notation by setting V = { } and denoting the scalar product in R™

(1.1) —Dj(a;;(x,u)Du) + %Vaij(a:, u)(D;u, Dju) = VF(x,u).

In order to prove the existence of weak solutions of (1.1) in a suitable functional
space E/, we look for critical points of the functional J : E — R defined by

(1.2) () = /Q %aij(m,uﬂDiu,Djw—F(m,u);
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in fact this functional is not locally Lipschitz continuous if the coefficients a;;
depend on wu; however, as pointed out in [1, 8], the Gateaux-derivative of J
exists in the smooth directions, i.e. it is possible to evaluate

J'(u)[¢] = /Qaz'j(%u)(Dan D;¢) + %(Vaij(ﬂ%u)a ¢)(Dyu, Dju) — (VF(z,u), ¢)

for allu € F and ¢ € C°(£2, R™). By using the nonsmooth critical point theory
developed in [12, 14] it is possible to define critical points in a generalized
sense: according to this theory, a critical point u of J satisfies J'(u)[¢] = 0 for
all smooth ¢ with compact support, hence it solves (1.1) in distributional sense
and, a posteriori, it is a weak solution.

The study of this system is motivated by its applications to some problems
in differential geometry. The following example has been pointed out in [20]:
let M be a Riemannian manifold, let s : M — R™ and consider a Lagrangian
integral

B(s) = /N Lo, s(o).ds(a)dpn

where

e, s(a) ds(z) = 9()Gi(r, () 5 D 2,

then the functional J looks like F(s) in local coordinates. More generally, the
functional J may represent some Lagrangian integral for functions defined on a
manifold whose metric tensor depends on the function itself. See also [16, 17]
for more examples and details.

The nonsmooth critical point theory has been widely used for the study of
scalar equations of the kind of (1.1), see e.g. [2, 8, 9, 11]; this class of equations
has also been studied in [1, 18, 21] with different approaches. To our knowledge,
systems have only been considered in [19], where a nonlinear eigenvalue prob-
lem in a bounded set is treated. The study of a system is more delicate than
the study of a single equation; in particular the verification of the generalized
Palais-Smale condition cannot be carried on by means of the same arguments
used for an equation. Since we assume the Nemitsky operator to be compact,
the problem does not arise from a lack of some compact embedding, but from
a strong coupling of the equations in (1.1) due to the presence of a quasilinear
operator. For this reason, (1.1) is also more difficult to study than a semilinear
system; more precisely, in the semilinear version of this problem the coupling
of the equations is only given by the Nemitsky operator, while in system (1.1)
the terms a;; as well depend on u and therefore the coupling is stronger. Such a
coupling is controlled by the gradient Va,; which is precisely the term responsi-
ble of the loss of smoothness of the functional. Moreover, this vector measures
the “change of coercivity” of the quasilinear differential operator as well, hence
one does not expect the behavior of such an operator to be too different from a
semilinear one if Va,; is small in some sense. Therefore, one can try to recover




existence and multiplicity results similar to those well known for the semilin-
ear operators by assuming that Va,; is small, but even in this case standard
methods do not apply directly and to prove the Palais-Smale condition we in-
troduce a new kind of test functions which are strictly related to the growth of
ellipticity of the quasilinear operator. On the other hand, when the functional
J admits a mountain pass geometry, the Palais-Smale condition may also be
proved by a variant of the method introduced in [19] which we extend to un-
bounded domains: this method too requires Va;; to be small, but in a quite
different fashion.

Multiplicity results are obtained when the system is invariant under the action
of a compact Lie group: the smooth case is widely treated in the book of Bartsch
[3]. We extend some results to our nonsmooth framework and we apply them
to the system (1.1) in both the sublinear and superlinear case; more precisely,
either we give a lower bound to the number of solutions or we prove the existence
of infinitely many solutions, depending on the assumptions we take on the
system. The standard multiplicity result of Bartsch (see Theorem 2.25 in [3])
comes as a corollary.

This paper is organized as follows: in Section 2 we state our main existence
results in the cases where the term VF(z,-) in (1.1) is either sublinear or su-
perlinear. In Section 3 we state multiplicity results for the system under the
additional assumption that it is invariant with respect to the action of a com-
pact Lie group. In Section 4 we briefly recall some definitions of nonsmooth
critical point theory and state the abstract version of the theorems we use; in
particular we give the nonsmooth version of a multiplicity theorem of Bartsch.
In Sections 5 and 6 we prove the boundedness and convergence of Palais-Smale
sequences. In Sections 7 and 8 we give the proofs of our results. Finally in the
Appendix we give some examples and remarks.

2. EXISTENCE OF A SOLUTION

Denote by D = D"?(2, R™) the closure of C°(2) (the space of smooth vector
functions with compact support in Q) with respect to the norm induced by the
scalar product (¢, ¢) = [,(Di), Di¢). If Q is bounded, then D = Hj(Q, R™).

The following condition (Al) is standard in this kind of problems and it
is assumed throughout the paper: the matrix [a;;(z, s)] satisfies an ellipticity
property and the matrix [(s, Va;;(z, s))] is semipositive definite. More precisely:

(A1) The matrix [a;;(z, s)] satisfies assumption (A1) if

Q55 = Qi
a;j(x,s) € L*(Q x R™ R)

(2.1) Vai(x,s) € L=®(Q2 x R™, R™)
a;;(x,-) € CY(R™) for a.e. x € Q

|1|1nr1 a”(:c s) = A;j(x) for a.e. x € Q



and there exists v > 0 such that for a.e. x € (2, all s € R™ and all £ € R”

(2.2) aij(z,8)&E > vIE]?
and
(2.3) (s, Vaij(z, 5))&&; = 0.

The following assumption (A2) is the first kind of control required on the
matrix [a;;(z,s)] and it can be used for both the superlinear and sublinear
cases. In Theorem 2.3 below we replace it with another assumption, which is
simpler (but not weaker) and only works for the superlinear case.

(A2) Assumption (A2) holds if there exist K > 0 and a function ¢ :
[0,400) — [0,+00) continuously differentiable almost everywhere and satis-

tying

( (i) ¥(0) =0 and hm w()

ii) ()>0forae tE[O +oo)
iii) 1// is bounded and non-increasing

iv) Z Do La(x, 8)6&| < 207 (|s])ay; (@, s)&&; for all s € R™
for all £ € R® and for a.e. x € .

(
(
2.4) ¢ (
(

\

In some sense, 1) is a measure of the growth of ellipticity of the differential
operator; we assume that such growth is “not too large” and we refer to the
appendix for some examples.

(F0) The function F : Q x R™ — R satisfies assumption (F0) if it is measur-
able with respect to the first n variables and C! with respect to the other ones;
furthermore

F(z,0) =0 for a.e. z € Q.

We first consider the sublinear case.
(F1) The function F satisfies (F1) if F'(z,s) = b(x)|s|* + Fi(z, s) where

(2.5) be L3 (Q,R)

and Fj satisfies the following: there exist o € L%(Q,R) and 3 € Lz (Q,R)
such that

(2.6) \VFi(z,8)| < a(z) + B8(x)|s| for all s € R™ and for a.e. z € Q,

(2.7) A C)]

] 5] = 0 uniformly w.r.t. z € Q,
$|—o0 S



(2.8) Fi(z,s) — 400 if |s| — oo for a.e. x € Q,
(2.9) 2F(z,s) — (s, VFi(z,s)) — 400 if |s| — oo for a.e. x € Q,
(2.10)  2Fi(x,8) — (s, VFi(z,s)) > 0 for a.e. z € Q and for all s € R™,

(2.11) Fi(xz,s) >0 for a.e. x € 2 and for all s € R™.

Under the above assumptions we prove:

Theorem 2.1. Assume (A1), (A2), (FO) and (F1). Then (1.1) admits a weak
solution u € D.

Remark 2.1. If VFi(z,0) = 0 it is not possible to exclude that the solution
obtained with the previous theorem is trivial, but a nontrivial solution could be
obtained by using the Morse theory as in [11].

Next we consider the case where the functional has a mountain pass geometry.
(F2) We say that the function F satisfies (F2) if F((z,s) = Fy(z, s) and there
exists p € (2,2*) such that

(2.12) 0 < pFy(z,s) < (s, VFy(z,s)) for all s € R™ and for a.e. x € Q,

Fy(x,s)#£0 and there exist ¢ € (2,2%), 6 € (2,q), o € zze=nt () and g €
2n
Lz+=m4 () such that

(2.13)
IVEy(x,8)| < a(x)|s]™ + B(x)|s]*  for all s € R™ and for a.e. x € Q.

The following assumption is standard for superlinear problems: it relates the
properties of the matrix [a;;] with the function F5 and it will be used to prove
that the Palais-Smale sequences are bounded.

(AF) We say that assumption (AF) is satisfied if there exists v € (0,p — 2)
such that (p as in (F2))

(2.14)
(s,Va(z,s))&& < vai(x,s)&E for ae. x € Q, for all s € R™ and £ € R™ .

Theorem 2.2. Assume (A1), (A2), (AF), (F0) and (F2). Then (1.1) admits
a nontrivial weak solution u € D.



We also prove a similar existence result under different assumptions; we first
replace (F2) with
(F3) We say that the function F satisfies (F3) if F'(x, s) = Fy(x, s), F} is not
trivial, there exists p € (2,2*) such that (2.12) holds and there exist g € (2,2*)
2n
and § € Lz+e=m4(Q) N L>(2) such that

(2.15) |V Ey(x,s)| < B(x)]s|7 for all s € R™ and for a.e. € Q.

Then it is possible to replace (A2) with a different assumption on [Va;;| (see

[19]):
(AL) The matrix [Va;;] satisfies (Ar) if |Va;;(z,s)| < L for all s € R™ and
a.e. r € (L

Our last existence result reads:

Theorem 2.3. Assume (A1), (AF), (F0), (F3). There exists a constant L > 0
such that if [Vai;] satisfies (Ar), then (1.1) admits a nontrivial weak solution
u € DN LXQ).

3. MULTIPLICITY RESULTS

In this section we consider the case when equation (1.1) is invariant with
respect to an action of some compact Lie group. In order to proceed we recall
some definitions and known results from representation theory. More informa-
tion can be found in [3, 6].

Definition 3.1. Let G be a compact Lie group; G is said to be solvable if there
exists a sequence Go C G1 C ... C G, = G of subgroups of G such that Gy is
a mazximal torus of G, G;_1 is a normal subgroup of G; and G;/G; 1 = Z/p;,
1 <i <r. Here the p;’s are prime numbers.

Remark 3.1. If G is abelian, then G is isomorphic to the product of a torus
with a finite abelian group [6, Corollary 1.3.7]. In particular, all abelian compact
Lie groups are solvable.

Definition 3.2. Fiz a compact Lie group G. A Hilbert space (E, (-,-)) is called
a G— Hilbert space if there exists a continuous action

GxFE— FE (9,z) — gz

preserving the scalar product, i.e. {(gx,gy) = (x,y) for all x,y € E and all
geq.

Definition 3.3. Let E, E be two G— Hilbert spaces. A subset B of E is said to
be invariant if gB C B for all g € G. A functional I : E — R is invariant if
I(gx) = I(z) for all g,x, and a function f : E — E is equivariant if f(gx) =
gf(x) for all g,x.



Definition 3.4. The space E¢ := {x € E : gv = x for all g € G} is called
the fixed point space of (the representation of) G, and the orbit of x is defined
by O¢(z) :={gz : g € G}. We say that x,y € E are geometrically distinct if
y ¢ Og(x).

Definition 3.5. Let V' be a finite-dimensional representation space of G. V is
called admissible if for each open, bounded and invariant neighborhood U of 0
in V¥ (k> 1) and each equivariant map f : U — V*=1, f=10)NoU # 0. The
corresponding representation p will also be called admissible.

It is known (see [3, Theorem 3.7]) that V' is admissible if and only if there
exist subgroups K C H of G such that K is normal in H, H/K is solvable,
VE £ 0 and VH = 0; moreover, if G is solvable, then any finite-dimensional
representation space V with V¢ = 0 is admissible.

Consider now a representation of GG in R™: then a natural representation of

G in D or H is given by g(u)(x) := g(u(x)).

Definition 3.6. Let G be a compact Lie group, X a G— Hilbert space, V = R™
an admissible representation space for G and ¥ = {A C X : A is closed and
invarianty. We define an index v : ¥ — N U {+oc} in the following way:
v(A) is the smallest integer k such that there exists an equivariant map ¥ :
A — {z € (R™* : |z| = 1}. More precisely, the map V satisfies V(gzr) =
(W1(g2), ..., Wn(gz)) = (9¥1(2), ..., g¥k(2)).

Remark 3.2. The index 7 corresponds to the A-genus defined in [3] with A =
{z € V :|z| = 1}, and therefore it satisfies the usual properties of indices.

In order to establish the geometrical properties of the functional J in the sub-
linear case, we consider the linear self-adjoint operator L* : D — D implicitly

defined by
(3.1) (L%, v) = /Q Ay (@)D, Dyv) — () (u, 0).

It is well known (see [15] for an extensive treatment of the topic) that, under the
assumptions we take on A;; and b, the whole spectrum ¢(L>) but a finite set
of eigenvalues with finite multiplicity is contained in some interval [fmin, fmax]
with 0 < pimin < fmax < +00. As L™ is self-adjoint, there exist orthogonal
subspaces D1, D and D~ of D such that D = DT @DY@ D~ and L™ is positive
definite on DY, negative definite on D~ and D° = ker L*; by a symmetry
argument the (finite) dimensions of D~ and D° are both multiples of m: we set
g = (dimD° + dimD~) /m.

In order to exploit the symmetry of the equation, we need to consider its
linearization in 0. Let a = 0 in (2.6), we have Fi(z,0) = 0 and VF;(z,0) = 0,
set

fo(z) = limsup —2FT£T;’ s)

s—0



and define the linear self-adjoint operator L° : D — D by
(Lu,v) = / a;j(x,0)(Dsu, Djvy — (b(x) + fo(z))(u,v).
Q

The operator L has the same properties of L>: in particular the codimension
of its positive subspace is a multiple of m, which we denote by pm. We prove
the following:

Theorem 3.1. Assume (A1), (A2), (F0), (F1) (with « = 0) and assume that
equation (1.1) is invariant under some admissible representation of a compact

Lie group G. Let p and q be defined as above. If ¢ > p, then (1.1) admits at
least ¢ — p geometrically distinct weak solutions in D.

The next theorems handle the case where the functional has a mountain pass
geometry.

Theorem 3.2. Assume (A1), (A2), (AF), (F0), (F2) and assume that (1.1)
is invariant under some admissible representation of a compact Lie group G.
Then (1.1) admits infinitely many geometrically distinct weak solutions in D.

Theorem 3.3. Assume (A1), (AF), (F0), (F3) and assume that (1.1) is in-
variant under some admissible representation of a compact Lie group G. There
ezists a sequence {Ly} C (0,4+00) such that if [Va;;] satisfies (A, ), then (1.1)
admits at least k geometrically distinct weak solutions in D N L*>(2).

Remark 3.3. In general the sequence {L;} may vanish, therefore in order to
obtain more solutions we need (1.1) to be closer to a semilinear system. On
the other hand both Theorems 3.2 and 3.3 imply that (1.1) admits infinitely
many geometrically distinct solutions if Va;;(z,s) = 0, that is the standard
multiplicity result in the semilinear case.

4. VARIATIONAL SETTING

We briefly recall some basic definitions of the nonsmooth critical point theory
introduced in [12, 14].

Definition 4.1. Let (X, d) be a metric space, I € C(X,R) and let x € X. We
denote by |dI|(z) the supremum of the o € [0,+00) such that there exist 6 > 0
and a continuous map
H : B(z,6) x [0,6] — B(x,20)
such that for all y € B(z,6) and for all t € [0, 6] we have
d(H(y,t),y) <t and I(H(y,1)) < I(y) — ot
where B(z,r) :={y € X, d(x,y) <r}; |dl|(x) is called the weak slope of I at

x.

Definition 4.2. Let (X, d) be a metric space and I € C(X,R); a point x € X
is said to be critical for I if |dI|(x) = 0. A real number c is said to be a critical
value for I if there exists x € X such that I(x) = ¢ and |dI|(x) = 0.



The compactness condition of Palais-Smale (PS) has been defined in this
context (see [14]). We prove that it holds in the superlinear case, but we do not
know if it is satisfied in the sublinear case. In the latter case we prove instead
that the functional .J satisfies a weaker condition which is due to Cerami [10] in
the smooth context; in our framework Palais-Smale-Cerami (PSC) sequences,
PSC condition and the Y-differentiability have been defined in [2] as follows:

Definition 4.3. Let X be a Banach space and let I € C(X,R). A sequence
{Zm} C X is called a PSC sequence if there exists K > 0 such that |I(z;,)| < K
and (1 + ||z |dI|(2m) — 0.

Definition 4.4. Let X be a Banach space and let I € C(X,R). I satisfies the
PSC condition if all its PSC' sequences are precompact.

Definition 4.5. Let X be a Banach space, let I € C(X,R) and let Y be a
dense subspace of X. If the directional derivative of I exists for all x in X in
all the directions y € Y we say that I is weakly Y-differentiable and we call
weak Y-slope in x the extended real number

11y (@)l = sup{l'(z)[¢] : ¢ €Y, [|p]lx =1}
We can now state the version of the saddle point theorem which we use:
Theorem 4.1. Let D =V & W, where V # {0} is finite dimensional; let J be

defined as in (1.2) and assume that

(i) J satisfies the PSC condition
(ii) there exists § € R such that J(x) > B for allz € W
(iii) there exist « < B and R > 0 such that J(z) < « for all z € 0Bg[(V

Then (1.1) has a weak solution u € D.
Proof. The functional J is of the type

T(u) = /Q L(z,u, Vu)dz,

where L : ) x R™ x R™" — R satisfies the following assumptions:

L(z, s,&) is measurable with respect to x for all (s,§) € R™ x R™"
L(z,s,§) is of class C! with respect to (s,€) for a.e. z €

and there exist h; € L'(,R), hy € L}, (,R), hy € L2 (Q,R) and ¢ > 0 such

loc loc

that for all (s,&) € R™ x R™ and a.e. z € Q the following inequalities hold:
IL(z,5,€)| < ha(x) +c(|s] 72 + [¢])
5e(x,5,)| < ha(@) + ha()(|s]7=2 + [¢]*)
22 (2, 5,6)| < hale) + his(a) (5[ +1€).

With the above growth conditions and by adapting Theorem 1.5 in [8] to our
case, we infer that J is continuous, weakly C2°(§2)—differentiable and that the



weak slope gives an upper estimate of the weak C2°(§2)—slope, i.e.
(4.1) |dJ|(u) = [[Jgee ()]

In particular, if w is a critical point of J, then equation (1.1) is satisfied in
distributional sense. Therefore, as D;(a;;(x,u)D;u) + VF(x,u) € D*(the dual
space of D) we also have Va;;(z,u)(D;u, Dju) € D*and the system is solved in
a weak sense. To complete the proof it suffices to reason as for Theorems 3 and
5 in [2]. O

Analogously one can prove the following version of the mountain pass theo-
rem:
Theorem 4.2. Let J be defined as in (1.2) and assume that

(i) J satisfies the PS condition
(ii) there exist a,r € (0,+00) such that J(x) > « for all x € OB,
(iii) there exist R > r and y € OBg such that J(y) < 0.

Then equation (1.1) has a nontrivial weak solution u € D.
The following Lemma extends a result in [5]:

Lemma 4.1. Let Q be (any) open set in R™ let T € [DY*(Q, R™)]"NLE (O, R™)
and u € DY2(Q, R™) satisfying (T, u) > f in Q for some function f € L*(Q,R).

Then (T,u) € L'(, R) and the duality product (T, u) equals [,(T,u).
Proof. The proof follows by inspection of the proof in [5]. O
Remark 4.1. The previous Lemma and conditions (2.2)-(2.6) imply that
(u, Vag;(r,u))(Diu, Dju) € L*(Q,R)
for all uw € D and therefore J'(u)[u] is well defined, see [8, 9] for details.

In order to deal with a symmetric functional, we adapt some results of Bartsch
[3] to our case.

Theorem 4.3. Let G be a compact Lie group and let X be a G— Hilbert space.
Consider an admissible representation of G on R™, and assume that X = @, X;
where X; ~ R™ and each X; is isomorphic to R™ as a representation of G. Let
1 : X — R be a continuous G—invariant functional satisfying the PSC condition
and 1(0) = 0; assume moreover that there ezist two integers p and q (q > p),
such that

(i) There exist p, 3 > 0 such that I(z) > B for allz € 0B, D Xi.

i=p+1

q
(ii) There exists R > p such that I(x) <0 for all x € O0Br( P X.
i=1

Then I admits at least ¢ — p critical orbits.



Proof. The smooth version of this theorem is Theorem 2.25 in [3]. The proof
follows the same lines, with two distinctions: 1. The classical deformation
lemma does not hold in the framework of nonsmooth critical point theory, but
an equivariant deformation is provided by Theorem 1.2.5 in [9] for functionals
satisfying PS and can be easily extended to functionals only satisfying PSC. 2.
In the mentioned theorem it is assumed that condition (ii) holds for all integers
g (mountain pass case), but the saddle point case is an easy variant. [l

Another variant of the same theorem is the following (see also Theorem 1.5
in [8] where a Z, symmetry is considered).

Theorem 4.4. Let G be a compact Lie group and let X be a G— Hilbert space.
Consider an admissible representation of G on R™, and assume that X = P, X,
where X; ~ R™ and each X; is isomorphic to R™ as a representation of G. Let
I: X — R be a continuous G—invariant functional, 1(0) = 0; assume moreover
that there exists an integer p such that

(i) There exist p, 3 > 0 such that I(x) > 8 for allz € 0B,(| @ Xi.
1=p+1
(ii) For every integer k there exists R > p such that I(x) < 0 for all z €

k
OBr( P X..
=1

Then there exists a diverging sequence {cx} C [B,+00) such that for every
integer k there exists a PS sequence {ul'} at level cy.

5. BOUNDEDNESS OF PS SEQUENCES

5.1. The sublinear case. For all w C Q and p > 1 we set w® = Q\ w,
1/ 1/

lull oy = ([ [ul”) " and [Jull, = (fg, [ul?) "

Lemma 5.1. Assume (F0) and (F1). If {u"} C D is a sequence such that
|uP|| — oo, then

[[u”[?

Proof. Let {u"} C D be such that ||u"|| — co; we claim that there exists a
sequence {e"} C RT such that " — 0 and, for a.e. x € Q

B(x)
2
Consider h € N and x € Q, let v be the segment connecting 0 to u"(x) and let

v (z) = azgzg': we have

— 0 as h — 0.

(5.1) |Fi(,u"(2))] < afa)llu”|2 + =[] + "u (@)

[Fyau(@))] = < [ VRt ) o o)

/(VF1 (x,s),ds)

v

IN

[uh ()]
/ |VF1 (:E, tvh(a:))| dt.
0



If |u(z)| < ||u”||*2, by (2.6) we have

u ()] [l (|1/2
[ wREaehas [T e+ s < alla e+ ED e,
0 0

and if [u"(z)| > ||u"|'/?, by Holder inequality we get

@) 1 F (g 40" i@ Y )
/ M tdt < / 2dt . /
72 t 2 172

< Jul(@)2 e (@),

1/2
VF (2, to") |?
1(? . )‘ t]

where " depends on ||u”|| and by (2.7) ¢* — 0 as h — co; combining this with
the previous inequality we obtain (5.1). If  is bounded, then we are done by
integrating (5.1) on Q; otherwise choose € > 0 and let w C € be a bounded
open set such that ||6||L%(wc) < g, where w® = Q\ w. By (2.6), Holder inequality

and the continuous embedding D C L?" () we have
/ F 1 ('T ) uh)

furthermore, by integrating (5.1) on w we have

lﬂ@ﬂ%

and these two inequalities yield the result by the arbitrariness of ¢. O

IN

1
e, o 1 oy + 51180 o 1

< cllu]l + ecllu

< cllul + " lu* 2y

Lemma 5.2. Assume (A1), (F0) and (F1). There exist a bounded set w C §2
and n > 0 such that for all sequences {u"} C D satisfying sup J(u") < oo and
|uP|| — oo the following inequality holds:

[u" | < nllu" 22
(if 2 itself is bounded, then the statement holds for w = Q).

Proof. Fix ¢ > 0 and choose w; so that ||b]| , (wey < 55 the restriction of b to w; is

in L (w,), therefore there exist two functions by and b such that by € L™(w,),
by € L>(w,), ||bs < 5 and b(x) = bo(x) + bs(z) for a.e. x € w.. Now let

||L%(w5)
| bs(z) ifx€w. | by(z) ifzeEw.
bW”—{m@ ifrgw o 5“@—{0 i 7 ¢ ..

So far we have proved that for all € > 0 there exist an open bounded set w. and
two functions b; € L2 () and by € L=(2) such that b = by + by, [b1][2 < & and



suppbs C w,; hence for all u € D we have

/Q br)[uf?| < / @)l + [ [ba()ul?

< ol g ullZn + lb2lloo |l Z2,) < cellull® + l1balloollullZ2e.. -

Then, by (2.2) and Lemma 5.1 we obtain
(5.2) J(u") = cllu"|]* — cellu"||* = [|ballsollu” |72 + ollu"]?)
and the result follows by choosing € small enough and setting w = w. (I

Lemma 5.3. Assume (A1), (F0) and (F1). Then all the PSC sequences for J
are bounded in D.

Proof. By contradiction, let {u"} be a diverging PSC sequence; by Remark 4.1
for h large we can evaluate J'(u")[u"] — 2J(u") and taking into account (2.3)
and (4.1) we have

(5.3) o(1) > /Q 2 (z, u) — (VY (2, uh), ).

Let v"(z) = %, then there exists v € D such that, up to a subsequence,

v" — v and therefore v" — v in L2 and v"(z) — v(z) for a.e. z € Q; Lemma

5.2 implies that v # 0. By (2.9) we infer that 2F (z, u") — VFy(z,u")u" — +o0
on a subset of Q with positive measure, hence by (2.10) and Fatou Lemma we
infer

/[2F1(:c,uh) — (VF(2,u"),u")] — 400,
0
which contradicts (5.3). O

5.2. The superlinear case. Let A;; be as in (2.1) and define the (smooth)
functional

JOO(U) = —/AZ]($)<DZU,D]U> —/FQ(QS',’U,)
2 Jo Q
By (2.12) the function Fy(z,-) is superquadratic at +oo and we can choose
v € D satistying J(0) < 0; now define
[:={y e C([0,1]; D), 7(0) =0, ~(1) = v}
and

M := inf max Joo(y(t)).

vel't€[0,1]

We prove that J admits a bounded PS sequence and give an estimate of the
norm:



Lemma 5.4. Assume (A1), (AF), (F0) and (F2). There exists a PS sequence
{u"} C D satisfying

2Mp
vip—2-17)
Remark 5.1. Recall that (F3) implies (F2).

lim [Ju"||* <
h—+400

Proof. First note that J(0) = 0. Next, observe that there exist p, R > 0 such
that J(u) > R for all ||u|| = p: indeed, by (2.2), (2.13), Holder inequality and
Sobolev embedding Theorem we infer

J(u) > Ci||ul|* = Colju|® — Cs|lul|?  for allu € D
(note that if (F'3) is assumed, then Cy = 0), which yields p and R. Let

:= inf J(y(t
o := inf max (v(1))

then we have @ < M because J < J,. We obtain a PS sequence for J at
level o by applying the mountain pass Lemma in the nonsmooth version [14]:
we claim that such a sequence satisfies the above estimate. Since {u"} C D
satisfies |J(u")| < M + o(1), by (2.12) we get

1 1
i3 [ o) (Dt Dyl = [ (Vi) o) < M+ o(1)
Q Q

by (2.14) we can evaluate J'(u")[u"] and as {u"} is a PS sequence we have
[/ (u")[u"]| < of]lu"]]) -
Therefore, by (2.14) and computing 1" — +.J'(u")[u"] we get
_9_
P23 [ (o) D, Diu) < of ) + M +o(1)
P Q
by (2.2) this proves that {u"} is bounded and that

—2_ -2
Eii_ﬂquégﬁ_l/%@wW&WDWWSM+dU7
D p Q

that is, the required estimate. [l
6. COMPACTNESS OF PS SEQUENCES
6.1. The case of assumption (A2).

Lemma 6.1. Assume (A1) and (A2), let {u"} C D be a bounded sequence and
set

1
w" = —Dj(ai;(w, u") D) + §Vaij(x,uh)<Diuh, Dju™).

If {w"} C D* and it is strongly convergent to some w, then {u"} is precompact.



Proof. Since {u"} is bounded, then u" — wu for some u up to a subsequence.
Each component u satisfies (2.5) in [7] and since Theorem 2.1 in the same
paper can be extended to unbounded domains, we infer that Dul — D;u; a.e.
in Qforalll=1,...,m (see also [13]). We first prove that

(6.1) /QCLij(.T,U)(DZ’U, Djuy + % /Q(Va,»j(a:,u),uMDiu, Dju) = w(u]

where wlu] represents the duality product between w € D* and u € D. With
some abuse of notation we denote by 1 the odd extension to the whole real
line of the function defined in (2.4) and let v" = pexp[(u) — ¥ (u)], where
peDNL® ¢>0and

exp[t(u) — ¥(u")] = (exp[to(ur) — (i), , exp[tr(um) — ¥ (uy,))).

For all h we have <8k = %)
/Q s (2, ") D (Dyop + o0 (uy) D) explip () — (ul)]
43 [ Buan(oat) explu(un) ~ v Dt Dyl
Q

- / sy (@, u) Dt Dyl () explp(un) — ()] = w[o");

let us study the behavior of each term of the previous equality as h — oo. First
of all, as v — v = (p,...,p), then

(6.2) w" "] — wlv].

h

Next, since u” — u, by Lebesgue Theorem we obtain

03 [ aylo ) Dad(Dyp + 0! Dyu) expli(un) — b)) -
| st Dan(Dye + ) D),
Finally, note that by (A2), for all £ € R” we get
|Oaij (z, u) explp(ur) — P(uf)]€:&;] < Z |Oaij(z, u")Ei&;| €27
k
next, by using (iv) of (2.4), we infer
3 O (w, uh)&gs| €€ < 267 (Ju ) ayy (v, u") g
k

moreover we have

25! (|uP))ag; (2, uM) €&y < 200 (up) explip(ur) — h(up)]ag (z, u™)EE;.



The last three inequalities yield
1
5Okaij(, u) explip(ug) — ¢ (uy)| Dauy Dy

< ajj(z,u") D) Djul ! (uf!) explo(w) — ¥ (uf!)).

Hence, we can apply Fatou Lemma to obtain

lim sup {% / Onas;(z, u") explp(uy) — w(ul)] Diuf Dyul o
o

h—oo

— [ st Dad Dy ) el ) W)]so} <

1
- Z Opa;(z, u) DiwyDjup — | ai;(x, w) Dy Dywd’ (uy) g,
2 Jo k Q

which, together with (6.2) and (6.3), yields

1
/QGij(.T,U)(DiU, Djv) + 3 /Q(Vaij(a:,u), v){D;u, Dju) > wv]

for all test functions v = (¢, ...,¢) with ¢ € DN L™, ¢ > 0. We obtain the
opposite inequality by using the test functions v = @ exp[tp(u”) — ¥ (u)] (with
¢ > 0) and therefore we have

/Qaz‘j(ﬂf,u)<Diu, Djv) + % /Q<Vaij($,u),v>(Diu,Dju> = w(v]

for all v = (¢, ..., ) with ¢ € DN L*>® (and not necessarily ¢ > 0). Consider
now the test functions

V" = p(orexplor(P(ur) = P(ur)))s - - om explom (¥ (um) — ¥ (up,)))),

where ¢ € DN L™, ¢ > 0 and 0; = 1 for all [. By taking all possible choices
of o; and by reasoning as in the previous steps we infer

1

[ ) (D Do) + 5 [ (Fass(a ), ) (Diw Dy = wlo
Q Q

for all test functions v = (o1¢, . .., omp) (not necessarily ¢ > 0), and since every

function v € D N L™ can be written as a linear combination of such functions,

by a density argument we infer (6.1). Now, by taking the same steps as in the

proof of inequality (2.3.10) in [8] we get

(6.4) liinsup/gaij(x,uh)(Diuh,Djuh> < /Qaij(x,u)u?iu, Dju).
Finally, by (2.2) we have

vl|u —ul]? < / a;j(z,u") (D", Dju") — 2(D”, Dju) + (Dyu, Dyu)) -
Q



hence, by Lebesgue Theorem and (6.4) we obtain

lim sup||u” — ul[* <0
h—o0

which proves that " — u in D. [l

With the result of the previous lemma we can prove the compactness of PSC
sequences:

Lemma 6.2. Assume (A1), (A2), (F0) and (F1); let {u"} C D be a PSC
sequence for the functional J. Then {u"} is precompact.

Proof. Let {u"} be a PSC sequence, by Lemma 5.3 we know that {u"} is
bounded and that v* — w for some u up to a subsequence. By a standard
procedure (see e.g. Theorem 2.2.7 in [9]) up to a further subsequence we have
b(z)u" — b(x)u and VFy(z,u") — VFy(z,u) in L%(Q;Rm); then {u"} sat-
isfies the assumptions of Lemma 6.1 and therefore it has a converging subse-
quence. O

Similarly, we can prove

Lemma 6.3. Assume (A1), (A2), (AF), (F0) and (F2) and let {u"} C D be
a PS sequence for the functional J. Then {u"} is precompact.

6.2. The case of assumption (Ap).

Lemma 6.4. Assume (A1), (F0) and (F3). Let {u"} be a PS sequence satisfy-
ing ||u"|| < K for some K > 0; then, there exists u € DN L™ such that u" — u
(up to a subsequence) and

[ufloe < c(K)
for some function ¢ which is non-decreasing with respect to K.

Proof. 1t follows the same lines of Lemma 3.3 in [19]. For all » > 0, n > 0 define

the test functions

uh

ey = o mind o n}

which we only denote by " for simplicity. The sequence {¢"} is uniformly
bounded in D and {¢"} C DN L>, hence by (4.1) we have J'(u")[¢"] — 0 and
if we define

1
Ay = /Qaz'j(flf,uh)wiuh, D;g") + 2 /QW%(% u"), " )(Diu", Dyu")

A= [ (VFwat). o
Q

we have

(6.5) A —Ab 0.



Let v = min{|u"|, n}, then, by reasoning as in the proof of Lemma 3.3 in [19]
(taking A* = 0) we obtain

h 2 (r+2)/2)2 —2||, h||r+2
AT 2 4v(r +2) 7| () 2P > e+ 2) 7 g7 ) -
and, by (2.15)

Al < / B() [u 1 ()

Note that B(z)(ul)" — B(z)(u,)""* for ae. z € Q and |B(z)(u) | <
n”lﬂ(m) € L7 # so by Lebesgue Theorem B(z)(up)t — 5( )( uy)"

in LoT0=ma, If Q s unbounded, let €2, C 2 be a bounded set satisfying
2n

Jorg, (B(x))7C=07 < e, otherwise choose Q. = Q. As u" — w in L7 ()

we have

o) |77 ()" = Bl ()"

<o [ ) (e )+ | | Bl = pe

< ce+o(1),

therefore hm Al < c [, B(x)|u]T (u,)" ™! by the arbitrariness of €. The previous

estimates and (6.5) yield

lugllit2, g sy < ol +2)? / B(@) ul ™ ()"

and by letting n — oo

lullntay ey < er +2)° / B@)ul™ < c(r +2)ull 457
Now choosing r = ry = 2* — ¢ we have

||u||n§2*qj13-2g < fJull3

2*

next define by induction r;;; = —=5(r; + 2) — ¢ and conclude the proof by
following the same steps as in the proof of Lemma 3.3 in [19]. O

In particular, from Lemma 6.4, we infer that the PS sequence {u"} found in
Lemma 5.4 admits a weak limit (up to a subsequence) u € D N L™ such that

2Mp .
(6.6) ||U||oo <c ( m) =U.

To apply the mountain pass Lemma we need now to prove the convergence
of such PS sequence: the proof of the next result follows closely the proof of
Lemma 3.4 in [19], but our setting is in a (possibly) unbounded domain and
with different assumptions on F', therefore we give some details.



Lemma 6.5. Assume (A1), (F0) and (F3); let {u"} be the PS sequence ob-
tained by Lemma 5.4. There exists a constant L > 0 such that if (Ar) holds,
then {u"} is precompact.

Proof. Let u be the weak limit of {u"}; by Lemma 5.4 we know that u € DN L™
and therefore it is an admissible test function, we can evaluate J'(u")[u" — u
and J'(u")[u" — u] — 0. By (2.13) we have

(6.7) lim [ (VEy(z,u"),u" —u) =0.

h—o0 Q

In what follows w(8) denotes a generic function vanishing as 6 — 0. For all
§ > 0let Q% C Q be a bounded set (if € itself is bounded, then let Q¢ = Q)
such that [, o |Vu|? < 6, then

/Q\m(Vaij(az,uh) u" — u) (D", Dju) =

/Q L (Tate )i — (D — ), D (" — ) + w(6):

now let s C Q° satisfy |Qs] < ¢ and u" — w uniformly on Q°\ Qs (such set
exists by Egorov Theorem), then

/96\9 (Vag (v, u"), u" — u) (D, Dju") =

| (Ve ). af — (D’ — ), D"~ w) + of1):
Q\Qs
finally we have
/ (Vagj(z,u"),u" — u) (D", Diu") =
Qs
/ (Vag (@, u"), u" — u)(D;(u" —u), D;j(u" — u)) + w(8).
Qs

These three equalities yield

(6.8) /Q (Vag;(z, u), o — u)(Ds, D)y =

/Q(Va,»j(m, ul), u — u) (D;(u" — u), Dj(uh —u)) +w(d) + o(1).



By (2.2) we have

v —ul < [ ol )D (= ). D"~ )
_ /Q ass (2, u) Dy, Dy (i — ) + o(1)
1(. h h 1 h h h h
by (6.7) = J'(u")[u" —u] — E/Q<Vaij(x,u ), u" — w)(D;u", Dju") 4+ o(1)
by (6.8) — —% /QW%(Q;, )i — ) (Dy(d® — ), Ds (" — w)) + w(8) + o(1)
by (2.14) < %/g}(Vaij(x,uh),uﬂDi(uh — ), Dj(u" — u)) +w(8) + o(1)

by (66) < Ul[Vale [ V(" = 0l +w(6) +o1)
Q
and since 6 may be chosen arbitrarily small, if L < % we have u" — u in the
norm topology. O

7. PROOFS OF THE SUBLINEAR THEOREMS

Recall that in Section 3 we defined gm to be the number of nonpositive
eigenvalues of L*™ counted with their multiplicity. We first consider the case
g > 1 and we prove that the geometrical requirements of the saddle point
theorem hold.

Proposition 7.1. Assume (A1), (F0) and (F1). Then

(i) there exists B € R such that for all u € D we have J(u) > p.
(ii) there exist a < 3 and R > 0 such that if u € D~ & DY and ||u|| = R, then
J(u) < a.

Proof. Since J(u") is bounded on bounded subsets of D, then (i) holds if
J(u") — +4oo for every sequence {u"} C DT such that ||u"|| — oo. Con-
sider a diverging sequence {u"} C D*: by Lemma 5.1 [, Fi(z, u")/||u"|?
therefore it suffices to prove that for h large enough

(7.1) /Q ais (2, u") (D, Dy — /Q b@)" 2> e >0,

— 0,

where v" = HZ_:H There exists v € D, |[v]| < 1, such that v — v and [, bjo"|* —

o, blv|* on a subsequence, since b € L2. To prove (7.1) we use the same device as
in [11]. Let I, = [, a;;(x, u)(D;v", D;u"); as {I,} is bounded, on a subsequence
[, — [ and two cases may occur:

L. 1> [, Aj(z)(Dsv, Djv). In this case inequality (7.1) follows because v €
D+.



2. 1 < [, Aij(x)(Dywv, Djv). Then by (2.2) we have
Ul — ol < /aij(m,uhﬂDi(vh _ ), D, (0" —v))
Q
= / aij(:c,uh) (<Di’l)h, Dj’Uh> - 2<Di’0h, Dj’U> + <Di’U, Dj’U>) X
Q

but Djv" — Dyv in L? and ay;(z,u")Dju — A;;(x)Djv in L? by Lebesgue
dominated convergence theorem, therefore

/&ij(ﬂf,uh)<Di’0h,D]”U> —>/Aij($)<DiU,DjU>,
Q Q

/Q aij(z,u") (D, Djv) — /Q Aij(2){Dsv, Djv) |

hence v" — v in D and (7.1) follows.
To prove (ii) it suffices to prove that if {u"} C D~ @ DV is a diverging sequence,
then Jy(u") — —oo. Since dimD~ + dimD°? < +oo and (2.8) holds, then
Fi(z,u") — +00 on a subset of  with positive measure; by (2.11) and Fatou
Lemma we infer

/E@W%Hm;
Q

the result follows by compactness taking into account (2.3) and the fact that if
u® € D~ @ DY, then the quadratic part of the functional is nonpositive. [l

Proof of Theorem 2.1. By Lemma 6.2 and the above propositions, the
assumptions of Theorem 4.1 are fulfilled and Theorem 2.1 is proved if ¢ > 1.

If g = 0, then L is positive definite in D, and by the same arguments as in the
proofs of the previous propositions we infer that J is coercive; furthermore the
functional satisfies the PSC condition, therefore it admits a minimum u. By a
standard argument of nonsmooth critical point theory [14] we have |dJ|(u) = 0,
hence u is a weak solution of (1.1) and the proof of Theorem 2.1 is complete.

Proof of Theorem 3.1. By the definition of the operator L° there exists
an invariant subspace Dy C D of codimension pm such that (L%u,u) > c||u||?
for some ¢ > 0 and for all u € Dy . Furthermore, by (2.10) we have

<V [Fl(%s}} ,S> _ (VE(z,5),5) — 2F(z, 5) <0

Kl Kl

which together with the semipositivity condition (2.3) yields

I = 5 [ asle.0)D Dyu) = (0a) + foa))luf = 520w

for all u € D, which proves that

fiminf 2 o 0,

u—0, uED(JJr ||U||2



therefore the hypotheses of Theorem 4.3 are fulfilled and the proof of Theorem
3.1 is complete.

8. PROOFS OF THE SUPERLINEAR THEOREMS

Proof of Theorem 2.2. In the proof of Lemma 5.4 we proved that J has a
mountain pass geometry; moreover, by Lemma 6.3 the functional satisfies the
PS condition. The result then follows by applying Theorem 4.2.

Proof of Theorem 2.3. Also in this case J has a mountain pass geometry
and a PS sequence may be constructed by the standard infmax procedure; if
sup |[Va;;(x, s)| is sufficiently small, by Lemma 6.5 we infer that the functional
J satisfies the PS condition at the infmax level and the result follows again by
applying Theorem 4.2.

Proof of Theorem 3.2. By Lemma 6.3, the functional J satisfies the PS
condition; therefore Theorem 4.3 applies and yields the result.

Proof of Theorem 3.3. Observe that the assumptions of Theorem 4.4 are
satisfied with p = 0, so we have a sequence {c;} such that for all k there exists
a PS sequence {uy} for J at level ¢;. Moreover, by definition of J,, and by
Lemma 2.30 in [3] there exists a diverging sequence {c°} of critical levels of
Joo; by the infmax characterization of the levels {¢;} and {¢°} and by (2.3) we
have ¢;, < ¢;° for all k. Hence, by the same argument of Lemma 5.4 we obtain
a sequence {M;} such that [|uf|| < M for all k. Now fix an integer k: then
Lemmas 6.4 and 6.5 yield a constant Ly, such that if |Va;;(z,s)| < Ly for a.e.
x € 2 and for all s € R™ then {u}} is precompact for all r = 1, ..., k; if all the
¢, are different we obtain k distinct critical levels while if ¢, = ¢,,1 for some
r < k — 1 we obtain infinitely many geometrically distinct critical orbits.

9. APPENDIX: EXAMPLES AND FURTHER REMARKS
Example 9.1. Assume that there exists M > 0 such that
Va(xz,s) =0 if |s| > M
and, for all £ € R,

1 .
; |aka¢j($;5‘)§i§j| < %—Maij(xaé‘)&fj if |s| < M.

Then (2.4) holds with K = 1 and

L oifo<t< M
_ o HUVSTS
W)—{i if £ > M.

4

Example 9.2. Take a;;(, s) = a;;(s) = (v+arctan(|s|?))é;; with v > e/m(v/3+
7). Then there exist K > 0 and a function 1 satisfying (2.4). Indeed by the



assumption on v we have

v 4 g1/ 1474 de
Therefore, there exists K > 0 such that
= Ke 1K,

v 4 s 147

@[£+/j —

For such K define the function v such that

e if 0<t<3 4
Vmett 4 ! - =
w(t) = V3 : T_q if > 3-1/4
v T+ | mmdr it 123
3—1/4

Then, (i) (ii) of (2.4) are readily verified; moreover ¢ (t) < 0, which proves (iii);
finally,

281€
1+ |s]*

\3k&ij(3)fifj’ = ‘ ’5‘2

which yields

Y l0raii(s)6:¢5] < 2y/mls|
k

1+ s

€17 < 2e74)/(|s])(v + arctan(]s|*))[¢]*

and proves (iv) of (2.4).

Example 9.3. More generally, consider the (continuous) function 3 : [0, +00) —
[0, 4+00) defined by

B(t) = o Z (esssup max maX|akCLij(I,u>§i§j|) ;

£\ oen =t g1

clearly, 5(0) = 0, 8 admits a global maximum point and tliin B(t) = 0. Next,
define the function « : [0, +00) — [0, +00) by

(0. alt) = max 4
If
(9.2) /O+°° a(r)dr < i,

then there exist K > 0 and a function ¢ € C'(R) satisfying (2.4). Indeed, by
(9.2) there exists K > 0 such that

+oo
/ a(r)dr = Ke *;
0



for such K define the function
t
B(E) = et / a(r)dr
0

Conditions (i) and (ii) of (2.4) are readily verified; condition (iii) follows from
the fact that a is non-increasing on R, . Finally, (iv) follows from the definition
of ain (9.1) and from (2.2).

Example 9.4. An example of a sublinear term satisfying (F0) and (F1) is given
by Fi(z,s) = [s[*(1 + [s[*) e,

Remark 9.1. Under the assumptions of Theorem 2.1 the equation is said to
be resonant when the corresponding linear operator at infinity has a nontrivial
kernel; the resonant case is more difficult to handle because no a priori estimates
are available. Our proof holds both in the resonant and in the nonresonant cases.

Remark 9.2. If Q) is a bounded set, then assumptions (2.12) and (2.14) may
be weakened by requiring that they only hold for sufficiently large values of |s|.

Remark 9.3. If in Theorems 2.2 and 3.2 one takes assumption (F3) instead of
the weaker (F2), then by Lemma 6.4 the solution(s) are essentially bounded.
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