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Abstract

Fluid flows around an obstacle generate vortices which, in turn, generate forces on the obstacle. This
phenomenon is studied for planar viscous flows governed by the stationary Navier-Stokes equations
with inhomogeneous Dirichlet boundary data in a (virtual) square containing an obstacle. In a
symmetric framework the appearance of forces is strictly related to multiplicity of solutions. Precise
bounds on the data ensuring uniqueness are then sought and several functional inequalities (concerning
relative capacity, Sobolev embedding, solenoidal extensions) are analyzed in detail: explicit bounds are
obtained for constant boundary data. The case of “almost symmetric” frameworks is also considered.
A universal threshold on the Reynolds number ensuring that the flow generates no lift is obtained
regardless of the shape and the nature of the obstacle. Based on the asymmetry/multiplicity principle,
the performance of different obstacle shapes is then compared numerically. Finally, connections of the
results with elasticity and mechanics are emphasized.
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1 Introduction

The whole science of flight is based on the understanding and control of the lift force, the resistance
component orthogonal to the aircraft direction of motion, see e.g. [3, Chapter 1]. The modern theory of
lift, developed in the fundamental works of Kutta [54] and Zhukovsky [76] at the beginning of the 20th
century (see also [3] for the English translation), relies on the principle that a cambered surface produces
lift through its ability to generate vortices about itself, see Figure 1.1 for a wind tunnel experiment.

Figure 1.1: Left: vortices around a plate obtained in wind tunnel experiments at the Politecnico di
Milano. Right: the planar domain Ω in (1.1) with a smooth obstacle K.

The celebrated d’Alembert paradox [60] shows that the lift is characteristic of viscous fluids so that
the full evolution of aerodynamics was possible only after a precise comprehension of viscosity. Vortices
in fluid dynamics appear both for turbulent flows with large Reynolds number and whenever a fluid
surrounds an obstacle. The vortices generate a lift force acting on the obstacle orthogonally to the
direction of the flow so that, if one considers a rigid obstacle having the shape of a 3D cylinder (the
cartesian product of a planar compact set K with a bounded interval, as in the left picture of Figure
1.1), it is convenient to restrict the attention to the cross-section K of the cylinder.

In the plane R2 we consider an obstacle, represented by an open bounded simply connected domain K
with Lipschitz boundary ∂K, and a big squared boxQ containing the obstacle and such that ∂Q∩∂K = ∅.
More precisely, we consider the domains

Q = (−L,L)2 , Ω = Q \K
(
L� diam(K)

)
, (1.1)

where Ω should be seen as a sufficiently large (bounded) region surrounding K. The boundary of Ω is
split into two parts, ∂Ω = ∂K∪∂Q, and the outward unit normal n̂ is defined a.e. on ∂Ω. This geometry
appears to be the best choice to model, for instance, the motion of the wind around the cross-section
of a bridge for which one needs a (squared) photo of the flow in a sufficiently large neighborhood, as in
the left picture in Figure 1.1 but on a larger scale. A sketch of this geometry is illustrated in the right
picture in Figure 1.1 (not in scale and with smooth ∂K).

In this paper we provide the tools for the full theory of planar stationary flows of viscous fluids
around an obstacle, assuming that they are governed by the steady Navier-Stokes equations

− η∆u+ (u · ∇)u+∇p = f, ∇ · u = 0 in Ω, (1.2)

where u : Ω → R2 is the velocity vector field, p : Ω → R is the scalar pressure, f : Ω → R2 denotes an
external forcing term and η > 0 is the kinematic viscosity. To (1.2) we associate the boundary data

u = (U, V ) on ∂Q, u = (0, 0) on ∂K, (1.3)

for some given (U, V ) ∈ H1/2(∂Q) satisfying the compatibility condition (zero flux across ∂Q)∫ L

−L
[U(L, y)− U(−L, y)] dy +

∫ L

−L
[V (x, L)− V (x,−L)] dx = 0. (1.4)
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The boundary conditions (1.3) model the inflow/outflow of fluid across the boundary ∂Q with velocity
(U, V ), and with no-slip condition on the obstacle K where viscosity yields zero velocity of the flow. The
inhomogeneous boundary datum (U, V ) on ∂Q is mandatory since, as explained above, Q represents a
virtual box (a planar region where the flow is analyzed) and not a region with solid boundary (contrary
to the obstacle). For some of our results we focus the attention on the case where (U, V ) ∈ R2 is constant
on ∂Q; this choice is motivated by the fact that Q is much larger than K and possible effects of the
vortex shedding created by the obstacle are not detectable far away from it.

It is well-known [39] that uniqueness for (1.2)-(1.3) is ensured only whenever the data f and (U, V )
are “small” compared to the viscosity η, see also Theorem 3.1 below. The proof relies on a priori bounds
which lead to a contradiction if one assumes the existence of multiple solutions of (1.2)-(1.3). While
in the case of homogeneous Dirichlet boundary conditions (U, V ) = (0, 0) the a priori bounds may be
obtained by testing the equation with the solution itself, in the inhomogeneous case (U, V ) 6= (0, 0) they
are extremely delicate because the solution of (1.2)-(1.3) is not an admissible test function. The standard
approach is to transform the inhomogeneous Dirichlet problem into a homogeneous one by determining
a solenoidal extension of the boundary velocity, namely one needs to find a vector field w such that

∇ · w = 0 in Ω, w = (U, V ) on ∂Q, w = (0, 0) on ∂K. (1.5)

This problem, whose interest and applicability go far beyond fluid mechanics, has a long story, starting
from the pioneering works by Cattabriga [18] and Ladyzhenskaya-Solonnikov [56, 57]; see also the book
by Galdi [39, Section III.3]. Finding explicit bounds for solutions of (1.5) is an extremely difficult task
and usually requires to introduce cutoff functions. Instead, when (U, V ) ∈ R2, in Section 2.4 we construct
a merely C1-extension by combining classical arguments [56, p.130] with suitable bounds for the relative
capacity of the obstacle and repeated applications of the Maximum Principle for harmonic functions.

Finding explicit theoretical bounds for the critical Reynolds number, i.e. for the stability of the
steady flow of a viscous fluid, constitutes a fundamental problem in fluid mechanics, see [59, Chapter
III], closely related to the onset of turbulence from a laminar regime [58]. As we shall see in Section 3.3,
in a symmetric framework the appearance of effective lift forces exerted by the fluid on the obstacle K
is strictly related to non-uniqueness of solutions of (1.2)-(1.3). Therefore, for the uniqueness threshold
of (1.2)-(1.3), explicit bounds are needed, as precise as possible. In turn, the uniqueness threshold is
obtained through a priori bounds for the solutions of (1.5) but, so far, no such bounds are available in
the literature. Obtaining explicit bounds for (1.5) and several related functional inequalities is precisely
the first purpose of the present paper.

In Section 2 we obtain several bounds on the relative capacity of the obstacle K with respect to Q
and on some Sobolev embedding constants; moreover, we suggest a new way to bound the solenoidal
extension w in (1.5). For the relative capacity, we first prove a general statement (valid in any space
dimension) that gives exact values for “weighted capacities”, see Theorem 2.1. Then we seek bounds for
the relative capacity of the obstacle. In [43], the first author defined the space of web functions, namely
the subspace of H1

0 (Ω) comprising functions which only depend on the distance from the boundary
∂Ω. These functions were previously introduced by Szegö [74] in a slightly different context. The
main novelty in [43] was the possibility of obtaining bounds for some constants arising in variational
problems, see [24, 26] and also [25] for bounds on the capacity. In our context of non simply connected
domain, we cannot use web functions and we introduce instead the subset of pyramidal functions, see
(2.8), in order to obtain bounds for the relative capacity of the obstacle. We also need to bound the
Sobolev constant for the embedding H1(Ω) ⊂ L4(Ω), which arises naturally due to the convective term
in (1.2): here we have to face both the difficulties of dealing with a non simply connected domain and of
inhomogeneous boundary data, especially because we seek precise estimates. For this reason, we use an
optimal Gagliardo-Nirenberg inequality by del Pino-Dolbeault [27] with some adjustments: we combine
it with Hölder and Poincaré inequalities in the case of zero traces and with a delicate ad hoc argument
for nonzero traces, see Theorem 2.3. Nowadays numerics can give precise bounds, but only for given
specific geometries. On the contrary, our theoretical bounds are independent of the geometry; we also
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show that they are fairly precise, see Remark 2.1 and Corollary 2.2. For this reason, and for possible
further developments, we embed our results in a general theory which goes beyond the applications given
in this paper.

The second main purpose of the present work is to obtain precise statements about the lift exerted
by the solutions of (1.2)-(1.3) on the obstacle K. To this end, we need the bounds obtained in the first
part: in particular, we use the pyramidal capacity approach in order to obtain bounds for the solutions
of (1.5). The existence of symmetric solutions of the stationary Navier-Stokes equations has been proved
in smooth symmetric domains in the pioneering work by Amick [5] and, subsequently, by several other
authors [34, 35, 53, 61, 63]. As already mentioned, our focus is different, we connect symmetric solutions
with uniqueness and with the computation of the lift. In Theorem 3.4 we study (1.2)-(1.3) in a perfectly
symmetric situation, where a symmetric solution always exists and possible non-uniqueness is strictly
related to the existence of asymmetric solutions. In Section 3.3 we define the drag and the lift, namely the
forces exerted by the fluid governed by (1.2) on the bluff body represented by the obstacle K. We focus
most of our attention on the lift force since it is responsible for the instability of K, as in civil engineering
structures where it leads to dangerous oscillations. In regime of uniqueness, we prove that there is no
lift in a symmetric situation and that the lift is small in an “almost symmetric” situation, see Theorem
3.7. This means that instability and/or non-uniqueness may appear only in asymmetric situations or
with large data. Theorem 3.9 uses all the just mentioned results and gives an explicit universal bound
such that, if a constant inflow velocity of the fluid is below this bound, then the obstacle is not subject
to a lift force. In turn, this result also yields explicit bounds for the threshold of stability of a bluff body
immersed in a viscous fluid.

While our bounds do not depend on the shape of the obstacle, one expects that the threshold of
stability does depend on the shape. However, there is no available theory able to analyze the shape
dependence of the lift, see [10] for related results about the drag. Therefore, in Section 3.5 we proceed
through Computational Fluid Dynamics (CFD) by using the OpenFOAM toolbox. We use an asymme-
try/multiplicity principle (see Corollary 3.2) in order to compute the performance of several obstacles
having the same measure but different shapes. The idea is to numerically detect non-uniqueness for
(1.2)-(1.3) by finding asymmetric solutions in a symmetric framework. The obtained numerical results
give strong hints on which could be the best shape yielding the largest inflow velocity (U, V ) ensuring
that the lift is zero. They also strengthen a conjecture by Pironneau [68, 69] claiming that the inward
face should look like a “rugby ball”, see in particular [68, Figure 3], in order to minimize the drag. In
fact, the numerical bounds for stability should not be compared with the theoretical ones obtained in
Section 2, because the latter are found for a very large class of obstacles.

Finally, we mention that the functional inequalities discussed in Section 2, in particular the bound
for solenoidal extensions, have several applications in different areas of mathematical physics. A whole
bunch of inequalities arises both in fluid mechanics and elasticity [7, 23, 33, 50, 52], and they are all linked
to each other. This is why Section 4 is devoted to some physical applications of our results. In Section 4.1
we embed our 2D results in a 3D framework where, in fact, the Navier-Stokes equations admit solutions
depending only on two variables. We then apply our results to the stability of suspension bridges [44]:
in Corollary 4.1 we state a sufficient condition on the wind velocity ensuring that the bridge will not
oscillate. In Section 4.2 we show that the bifurcation phenomenon for the Navier-Stokes equations,
related to the loss of symmetry, has a counterpart in a model of a buckled elastic plate.

This paper is organized as follows. In Section 2 we state and prove some functional inequalities with
explicit constants, in particular: inequalities for the relative capacity, for the embedding H1(Ω) ⊂ L4(Ω),
and a priori bounds for (1.5). In Section 3 we set up the main tools for the study of (1.2)-(1.3), we analyze
in detail symmetric and almost symmetric situations, we relate the appearance of lift with multiplicity
of solutions; we provide numerical results giving some hints on which could be the most stable obstacle
shape. Section 4 is devoted to some physical applications and interpretations of our results, while Section
5 contains some concluding remarks and several open problems.
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2 Functional inequalities

Although we shall deal both with scalar and vector fields (or matrices), all the functional spaces will be
denoted in the same way (except for Section 4.1).

2.1 Relative capacity and pyramidal functions

Let Ω be as in (1.1). The relative capacity of K with respect to Q is defined by

CapQ(K) = min
v∈H1

0(Q)

v=1 inK

∫
Q
|∇v|2 (2.1)

and the relative capacity potential ψ, which achieves the minimum in (2.1), satisfies

∆ψ = 0 in Ω = Q \K, ψ = 0 on ∂Q, ψ = 1 in K, CapQ(K) = ‖∇ψ‖2L2(Ω). (2.2)

We start with a general result concerning weighted relative capacities, that will be employed in
Section 2.4. We state it in the framework of our model but the result remains true for all relative
capacity problems, in any space dimension.

Theorem 2.1. Let Ω be as in (1.1) and let ψ ∈ H1(Ω) be the relative capacity potential of K with
respect to Q, as in (2.2). For any function g ∈ C([0, 1];R) we have∫

Ω
g(ψ) |∇ψ|2 =

(∫ 1

0
g(t) dt

)
CapQ(K). (2.3)

Proof. Notice that an integration by parts yields

CapQ(K) = −
∫

Ω
ψ∆ψ +

∫
∂Ω
ψ
∂ψ

∂n
=

∫
∂K
∇ψ · n̂ , (2.4)

where n̂, the outward unit normal to ∂Ω, is directed towards the interior of K. Consider any closed
curve Γ ⊂ Ω that (strictly) encloses K, and define by ΩΓ ⊂ Ω the region delimited by ∂K and Γ. Since
ψ is harmonic in ΩΓ, the Divergence Theorem yields

0 =

∫
ΩΓ

∆ψ =

∫
∂ΩΓ

∂ψ

∂n
= −

∫
Γ
∇ψ · n̂+

∫
∂K
∇ψ · n̂ ,

so that, in view of (2.4), we have

CapQ(K) =

∫
Γ
∇ψ · n̂ . (2.5)

In particular, given 0 < α < 1 and denoting by Γα the α-level line of ψ (which, owing to the Maximum
Principle, encloses K), thanks to (2.5) we have∫

ψ−1([α,1))

|∇ψ|2 = −
∫

ψ−1([α,1))

ψ∆ψ − α
∫

Γα

∇ψ · n̂+

∫
∂K
∇ψ · n̂ = (1− α)CapQ(K).

In turn, this implies that∫
ψ−1([α,β])

|∇ψ|2 = (β − α) CapQ(K) for any 0 < α < β < 1. (2.6)
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Given g ∈ C([0, 1];R) and n ≥ 2, take any partition {a1, . . . , an} of the interval [0, 1], where a0 = 0
and an = 1. In view of (2.6) we then have

∫
Ω
g(ψ) |∇ψ|2 =

n∑
i=1

 ∫
ψ−1([ai−1,ai])

g(ψ) |∇ψ|2
 ≤ n∑

i=1

(
max

s∈[ai−1,ai]
g(s)

) ∫
ψ−1([ai−1,ai])

|∇ψ|2


= CapQ(K)

n∑
i=1

(ai − ai−1) max
s∈[ai−1,ai]

g(s)

and, similarly, ∫
Ω
g(ψ) |∇ψ|2 ≥ CapQ(K)

n∑
i=1

(ai − ai−1) min
s∈[ai−1,ai]

g(s) .

The statement follows by letting n→∞ in the two last inequalities. 2

The exact value of the relative capacity is in general not known. In the next result, which has its own
interest regardless of the applications considered in the present work, we give lower and upper bounds
of it in a particular situation. The same idea will also be used to bound the gradients of some solenoidal
extensions, see Theorem 2.5 in Section 2.4.

Theorem 2.2. Consider the square Q = (−L,L)2 and the rectangle R = (−a, a) × (−d, d), where
a, d ∈ (0, L). Then

2π

log(L)− log
(√

ad
) ≤ CapQ(R) ≤ 4

(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

. (2.7)

Proof. Divide the domain Q \ R into four trapezia T1, T2, T3, T4 as in the left picture in Figure 2.1.

Figure 2.1: The domain Q \ R (left) and the level lines of pyramidal functions (right).

By pyramidal function we mean any function having the level lines as in the right picture of Figure
2.1, namely level lines parallel to ∂Q (and ∂R) in each of the trapezia. In particular, pyramidal functions
are constant on ∂R and constitute the following convex subset of H1

0 (Q):

P(Q) = {u ∈ H1
0 (Q) | u = 1 in R, u = u(y) in T1 ∪ T3, u = u(x) in T2 ∪ T4} . (2.8)

Since P(Q) ⊂ H1
0 (Q), the relative capacity (2.1) may be upper bounded through the inequality

CapQ(R) ≤ min
v∈P(Q)

∫
Q
|∇v|2 . (2.9)

We are so led to find the minimum in (2.9) and this is equivalent to solve a classical problem in calculus
of variations. Precisely, any V φ ∈ P(Q) is fully characterized by a (continuous) function

φ ∈ H1([0, 1];R) such that φ(0) = 1 , φ(1) = 0 , (2.10)
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giving the values of V φ on the oblique edges of the trapezia. For instance, consider the right trapezia
T5, T6 ⊂ Q being, respectively, half of the trapezia T1 and T2, defined by

T5 =

{
(x, y) ∈ Q

∣∣∣ d < y < L, 0 < x < a+
L− a
L− d(y − d)

}
, (2.11)

T6 =

{
(x, y) ∈ Q

∣∣∣ a < x < L, 0 < y < d+
L− d
L− a(x− a)

}
. (2.12)

Since V φ is a function of y in T1 and a function of x in T2, φ and V φ are linked through the formulas

V φ(x, y) = φ

(
y − d
L− d

)
∀(x, y) ∈ T5, V φ(x, y) = φ

(
x− a
L− a

)
∀(x, y) ∈ T6. (2.13)

Whence,

∂V φ

∂y
(x, y) =

1

L− dφ
′
(
y − d
L− d

)
∀(x, y) ∈ T5,

∂V φ

∂x
(x, y) =

1

L− aφ
′
(
x− a
L− a

)
∀(x, y) ∈ T6. (2.14)

We then seek the optimal φ minimizing the Dirichlet integral over Q of the pyramidal function V φ.
For symmetry reasons, the contribution of |∇V φ| over T1 ∪T3 is four times the contribution over T5,

whereas the contribution of |∇V φ| over T2 ∪ T4 is four times the contribution over T6. By taking into
account all these facts, in particular (2.14), we infer that

∫
Q\R
|∇V φ|2 = 4

∫ L

d

∫ a+
L−a
L−d (y−d)

0

∣∣∣∣∂V φ

∂y

∣∣∣∣2 dx dy + 4

∫ L

a

∫ d+
L−d
L−a (x−a)

0

∣∣∣∣∂V φ

∂x

∣∣∣∣2 dy dx
= 4

∫ L

d

[
a+

L− a
L− d(y − d)

] ∣∣∣∣∂V φ

∂y

∣∣∣∣2 dy + 4

∫ L

a

[
d+

L− d
L− a(x− a)

] ∣∣∣∣∂V φ

∂x

∣∣∣∣2 dx
= 4

∫ 1

0

(
a+ (L− a)s

L− d +
d+ (L− d)s

L− a

)
φ′(s)2 ds

= 4
(L− a)2 + (L− d)2

(L− a)(L− d)

∫ 1

0

[
a(L− a) + d(L− d)

(L− a)2 + (L− d)2
+ s

]
φ′(s)2 ds . (2.15)

Minimizing (2.15) among functions φ satisfying (2.10) yields the Euler-Lagrange equation

d

ds

[(
a(L− a) + d(L− d)

(L− a)2 + (L− d)2
+ s

)
φ′(s)

]
= 0 =⇒ φ′(s) =

C
a(L−a)+d(L−d)
(L−a)2+(L−d)2 + s

∀s ∈ [0, 1]

so that

φ(s) = C log

(
s+

a(L− a) + d(L− d)

(L− a)2 + (L− d)2

)
+D ∀s ∈ [0, 1],

for some constants C,D to be determined by imposing the conditions φ(0) = 1 and φ(1) = 0. We find

C =

[
log

(
a(L− a) + d(L− d)

L(L− a) + L(L− d)

)]−1

< 0

and, by inserting this into (2.15), we obtain

min
v∈P(Q)

∫
Q
|∇v|2 = 4

(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

. (2.16)

The upper bound in (2.7) follows from (2.9) and (2.16).
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The lower bound in (2.7) is obtained through symmetrization. Let ψ ∈ H1
0 (Q) be the relative capacity

potential of R with respect to Q (see (2.2)), that is:

∆ψ = 0 in Q \ R, ψ = 0 on ∂Q, ψ = 1 in R, CapQ(R) = ‖∇ψ‖2L2(Q). (2.17)

From the maximum principle we know that 0 ≤ ψ ≤ 1 in Q \ R, and hence in Q. Let Q∗ ⊂ R2 be
the disk centered at the origin of radius r2 = 2L/

√
π, and R∗ ⊂ R2 be the disk centered at the origin

of radius r1 = 2
√
ad/π (so that |Q∗| = |Q| and |R∗| = |R|). The symmetric decreasing rearrangement

ψ∗ ∈ H1
0 (Q∗) of ψ satisfies ψ∗ = 0 on ∂Q∗, ψ∗ = 1 in R∗, ‖∇ψ∗‖L2(Q∗) ≤ ‖∇ψ‖L2(Q) (see [70] for more

details), so that, by (2.17),
CapQ∗(R∗) ≤ ‖∇ψ∗‖2L2(Q∗) ≤ CapQ(R). (2.18)

The relative capacity potential of R∗ with respect to Q∗, denoted by ϕ ∈ H1
0 (Q∗), is the radial function

ϕ(ρ) =
log(ρ)− log(r2)

log(r1)− log(r2)
∀ρ ∈ [r1, r2], ϕ(ρ) = 1 ∀ρ ∈ [0, r1],

so that

CapQ∗(R∗) = ‖∇ϕ‖2L2(Q∗) =
2π

log(L)− log
(√

ad
) .

Combined with (2.18), this concludes the proof of the lower bound. 2

Remark 2.1. When d = a, the inequalities in (2.7) become

2π

log(L)− log(a)
≤ CapQ(R) ≤ 8

log(L)− log(a)
,

so that CapQ(R) is estimated with a relative error of (8−2π)/(2π) ≈ 0.27. Moreover, by using the same
symmetrization method as in the proof of Theorem 2.2 we see that, for a general obstacle K ⊂ Q, one
obtains the following lower bound for the relative capacity:

CapQ(K) ≥ 4π

log(|Q|)− log(|K|) . (2.19)

2.2 Bounds for some Sobolev constants

Let Ω be as in (1.1). We consider both the Sobolev space H1
0 (Ω) and the space of functions vanishing

only on ∂K, which is a proper connected part of ∂Ω having positive 1D-measure:

H1
∗ (Ω) = {v ∈ H1(Ω) | v = 0 on ∂K} .

This space is the closure of C∞c (Q \K) with respect to the norm v 7→ ‖∇v‖L2(Ω): since |∂K|1 > 0 (the
1D-Hausdorff measure), the Poincaré inequality holds in H1

∗ (Ω), which means that v 7→ ‖∇v‖L2(Ω) is
indeed a norm on H1

∗ (Ω), see [28]. Then we introduce the following proper subspace of H1
∗ (Ω):

H1
c (Ω) = {v ∈ H1

∗ (Ω) | v is constant on ∂Q} .

This space may be rigorously characterized by using the relative capacity potential ψ of K with respect
to Q, see (2.2); it has the geometric characterization

H1
c (Ω) = H1

0 (Ω)⊕ R(ψ − 1) , H1
0 (Ω) ⊥ R(ψ − 1) , (2.20)

so that H1
0 (Ω) has codimension 1 within H1

c (Ω) and the “missing dimension” is spanned by the function
ψ − 1. To see this, determine the orthogonal complement of H1

0 (Ω) within H1
c (Ω) as follows:

v ∈ H1
0 (Ω)⊥ ⇔ v ∈ H1

c (Ω) ,

∫
Ω
∇v · ∇w = 0 ∀w ∈ H1

0 (Ω) ⇔ v ∈ H1
c (Ω) , 〈∆v, w〉Ω = 0 ∀w ∈ H1

0 (Ω)

8



so that v is weakly harmonic and, since v ∈ H1
c (Ω), it is necessarily a real multiple of ψ − 1.

For later use, let us introduce

µ0 = the first zero of the Bessel function of first kind of order zero ≈ 2.40483 . (2.21)

Then we define the three Sobolev constants

S = min
v∈H1

∗(Ω)\{0}

‖∇v‖2L2(Ω)

‖v‖2
L4(Ω)

, S0 = min
v∈H1

0 (Ω)\{0}

‖∇v‖2L2(Ω)

‖v‖2
L4(Ω)

, S1 = min
v∈H1

c (Ω)\{0}

‖∇v‖2L2(Ω)

‖v‖2
L4(Ω)

. (2.22)

Since H1
0 (Ω) ⊂ H1

c (Ω) ⊂ H1
∗ (Ω), we have S ≤ S1 ≤ S0. Our first result in this section provides explicit

lower bounds for these embedding constants.

Theorem 2.3. Let Ω be as in (1.1). For any u ∈ H1
0 (Ω) one has

‖u‖2L4(Ω) ≤
2L√
3π3/2

min

{
1,

√
2π

µ0

√
1− |K||Q|

}
‖∇u‖2L2(Ω) . (2.23)

For any u ∈ H1
c (Ω) one has

‖u‖2L4(Ω) ≤
4L

3π

√
1− |K||Q|

(
1 +

√
3

8
log

( |Q|
|K|

))3/2

×
[

1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Q| − |K| log3/2

( |Q|
|K|

)]1/2

‖∇u‖2L2(Ω).

(2.24)

The inequalities (2.23) and (2.24) hold both for scalar functions and for vector fields.

Proof. We first show that it suffices to prove the inequalities for scalar functions. Indeed, assume that
(2.23) has been proved for scalar functions and let u = (u1, u2) ∈ H1

0 (Ω) be a vector filed. Then, by the
Hölder inequality and the scalar version of (2.23), we obtain

‖u‖4L4(Ω) =

∫
Ω

(
|u1|2 + |u2|2

)2
=

∫
Ω
|u1|4 + 2

∫
Ω
|u1|2|u2|2 +

∫
Ω
|u2|4

≤
(
‖u1‖2L4(Ω) + ‖u2‖2L4(Ω)

)2
≤ 4L2

3π3

(
‖∇u1‖2L2(Ω) + ‖∇u2‖2L2(Ω)

)2
=

4L2

3π3
‖∇u‖4L2(Ω),

which proves the first inequality (2.23) also for vector fields. One proceeds similarly for the second
inequality in (2.23) and for (2.24). Therefore, from now on, we assume that u is a scalar function.

For scalar functions w ∈ H1
0 (Q), we start by recalling that del Pino-Dolbeault [27, Theorem 1]

obtained the optimal constant for the following Gagliardo-Nirenberg inequality in R2:

‖w‖2L4(Q) ≤
(

2

3π

)1/4

‖∇w‖1/2
L2(Q)

‖w‖3/2
L3(Q)

∀w ∈ H1
0 (Q). (2.25)

Since functions in H1
0 (Q) may be extended by zero outside Q, they can be seen as functions defined over

the whole plane. We point out that (2.25) follows from a somehow “magic combination” of exponents:
for general exponents, the optimal constant in the Gagliardo-Nirenberg inequality is not known, this is
why the L3-norm appears. By combining (2.25) with the following form of the Hölder inequality

‖w‖3L3(Q) ≤ ‖w‖L2(Q)‖w‖2L4(Q) ∀w ∈ L4(Q) ,
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we obtain

‖w‖2L4(Q) ≤
(

2

3π

)1/2

‖∇w‖L2(Q)‖w‖L2(Q) ∀w ∈ H1
0 (Q) . (2.26)

Then we observe that cos(πx2L) cos(πy2L) is an eigenfunction of the eigenvalue problem −∆v = λv in Q
under Dirichlet boundary conditions. Since it is positive, it is associated to the least eigenvalue which is
then given by λ = π2/2L2. Therefore, the Poincaré inequality reads

‖w‖2L2(Q) ≤
2L2

π2
‖∇w‖2L2(Q) ∀w ∈ H1

0 (Q)

which, combined with (2.26), yields the first bound in (2.23) since any function u ∈ H1
0 (Ω) can be

extended by 0 in K, thereby becoming a function in H1
0 (Q).

In order to obtain the second bound in (2.23), we go back to (2.26) and we use the Faber-Krahn
inequality, see [70]. We point out that the same extension argument as above enables us to compute
all the norms in (2.26) in Ω instead of Q. Therefore, we may bound the L2(Ω)-norm in terms of the
gradient by using the Poincaré inequality in Ω∗, namely a disk having the same measure as Ω. Since
|Ω| = |Q| − |K|, the radius of Ω∗ is given by

R =
2L√
π

√
1− |K||Q|

that we write in this “strange form” for later use. Since the Poincaré constant (least eigenvalue) in the
unit disk is given by µ2

0, see (2.21), the Poincaré constant in Ω∗ is given by µ2
0/R

2, which means that

min
w∈H1

0 (Ω)

‖∇w‖L2(Ω)

‖w‖L2(Ω)
≥ min

w∈H1
0 (Ω∗)

‖∇w‖L2(Ω∗)

‖w‖L2(Ω∗)
=
µ0

R
.

Therefore,

‖w‖L2(Ω) ≤
R

µ0
‖∇w‖L2(Ω) =

2L

µ0
√
π

√
1− |K||Q| ‖∇w‖L2(Ω) ∀w ∈ H1

0 (Ω)

which, inserted into (2.26) (with Q replaced by Ω), gives the second bound in (2.23).
Let us now prove (2.24) and we restrict our attention to functions u ∈ H1

c (Ω)\H1
0 (Ω): this restriction

will be justified a posteriori because, if we manage proving (2.24) for these functions, then it will also hold
for functions in H1

0 (Ω) since the constant in (2.23) is smaller, see also Figure 2.2 below. For functions
u ∈ H1

c (Ω) \H1
0 (Ω), it suffices to analyze the case where u ≥ 0 in Ω (by replacing u with |u|), u = 1 on

∂Q (by homogeneity), and we define a.e. in Q the function

v(x, y) =

{
1− u(x, y) if (x, y) ∈ Ω
1 if (x, y) ∈ K,

so that v ∈ H1
0 (Q) and v satisfies (2.25). Let us put

A = A(u)
.
=

(
2

3π

)1/2

‖∇v‖L2(Q) =

(
2

3π

)1/2

‖∇u‖L2(Ω),

so that (2.25) reads∫
Q
|v|4 ≤ A

∫
Q
|v|3 =⇒

∫
Ω

[
|1− u|4 +

|K|
|Ω| −A

(
|1− u|3 +

|K|
|Ω|

)]
≤ 0. (2.27)

The next step consists in finding α ∈ (0, 1) and β > 0 (having ratio independent of u) for which

(1− s)4 −A|1− s|3 + (1−A)
|K|
|Ω| ≥ αs

4 − βA4 ∀s ≥ 0. (2.28)
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Since s 7→ (1− s)4 − A|1− s|3 + γ is symmetric with respect to s = 1, for any γ ∈ R, it suffices to find
α ∈ (0, 1) and β > 0 ensuring (2.28) for every s ≥ 1. Thus, for all such α and β we define the function

ϕ(s) = (s− 1)4 −A(s− 1)3 − αs4 + (1−A)
|K|
|Ω| + βA4 ∀s ≥ 1,

and we seek α ∈ (0, 1) and β > 0 in such a way that ϕ has a non-negative minimum value at some s > 1.
Equivalently, we seek γ > 3/4 such that ϕ(s) attains its minimum at s0 = 1 + γA, that is,

ϕ′(s0) = A3γ2(4γ − 3)− 4α(1 + γA)3 = 0 ⇐⇒ α =
A3

4

γ2(4γ − 3)

(1 + γA)3
∈ (0, 1), (2.29)

which fixes α in dependence of u. By imposing ϕ(s0) ≥ 0 and (2.29), we obtain a lower bound for β:

β ≥ γ3

4
+
γ2(4γ − 3)

4A
+
A− 1

A4

|K|
|Ω| .

This condition is certainly satisfied if we choose

β =
γ3

4
+
γ2(4γ − 3)

4A
+

1

A3

|K|
|Ω| . (2.30)

With the above choices of α and β we obtain the ratio

β

α
=

4

A3

(1 + γA)3

γ2(4γ − 3)

[
γ3

4
+
γ2(4γ − 3)

4A
+

1

A3

|K|
|Ω|

]
, (2.31)

which depends on u and on γ > 3/4. If we choose γ = 1 we obtain

β

α
=

(
1 +

1

A(u)
+

4

A(u)3

|K|
|Ω|

)(
1 +

1

A(u)

)3

, (2.32)

where we emphasized the dependence of A on u. In order to obtain an upper bound for the ratio β/α
independent of u, we use (2.19) which states that

A(u) ≥
√

2

3π
CapQ(K) ≥

√
8

3

1√
log
(
|Q|
|K|

) ∀u ∈ H1
c (Ω) s.t. u = 1 on ∂Q, u ≥ 0 in Ω.

Hence, from (2.32) we obtain the following uniform bound (independent of u)

β

α
≤
(

1 +

√
3

8
log

( |Q|
|K|

))3 [
1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Ω| log3/2

( |Q|
|K|

)]
.

In turn, from (2.27), by replacing s with u in (2.28) and integrating, we obtain

‖u‖4L4(Ω) ≤
β

α
A(u)4|Ω|

≤ 4|Ω|
9π2

(
1 +

√
3

8
log

( |Q|
|K|

))3 [
1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Ω| log3/2

( |Q|
|K|

)]
‖∇u‖4L2(Ω),

for every u ∈ H1
c (Ω) such that u = 1 on ∂Q and u ≥ 0 in Ω. The bound (2.24) follows by taking the

squared roots in the last inequality. 2

Several remarks about Theorem 2.3 are in order.

11



Remark 2.2. The interpolation inequality by Ladyzhenskaya [55] (or [56, Lemma 1, p.8]) states that

‖w‖2L4(Ω) ≤
√

2‖∇w‖L2(Ω)‖w‖L2(Ω) ∀w ∈ H1
0 (Ω).

Subsequently, Galdi [39, (II.3.9)] improved this Gagliardo-Nirenberg-type inequality by showing that

‖w‖2L4(Ω) ≤
1√
2
‖∇w‖L2(Ω)‖w‖L2(Ω) ∀w ∈ H1

0 (Ω).

Thanks to the result by del Pino-Dolbeault [27], with (2.26) we improved further the constant of this
inequality by around 35%: indeed,

√
2/3π ≈ 0.65/

√
2. Finally, consider the entire function w(x, y) =

(1+x2 +y2)−1; by computing its norms, we see that the optimal constant in this inequality is larger than
(2π)−1/2, showing that (2.26) cannot be improved by more than 15%.

Remark 2.3. The “break even” in the bound (2.23) occurs when |K|/|Q| = 1 − µ2
0/2π ≈ 0.08: for

smaller |K| the first bound is better, for larger |K| the second bound is better. Note that the constant in
(2.23) tends to 0 whenever |K| → |Q| (the obstacle tends to fill the box) and remains uniformly bounded
when |K| → 0. On the contrary, the constant in (2.24) blows up when |K| → 0: this is not just a
consequence of our proof, also the optimal constant blows up, see Theorem 2.4 below.

Remark 2.4. The constant in (2.23) depends on the size of the surrounding box Q but it is mostly
independent of the obstacle K (of its shape and of its position inside the box), it only weakly depends
on its measure (in fact, its relative measure within Q); for this reason, we conjecture that it can be
improved. The constant in (2.24) does not depend on the shape of K, nor on its position inside Q but it
strongly depends on its measure; we believe that if K is close to ∂Q, (2.24) can be significantly improved.
However, for our fluid-obstacle model to be reliable, we need to avoid “boundary effects” and maintain
the obstacle K far away from ∂Q (the boundary of the photo, see the Introduction).

Remark 2.5. Some steps in the proof of (2.24) may be performed differently. For instance, one could
have noticed that maxA>0(A−1)/A4 = 27/256, yielding a different bound for β in (2.30). Also the choice
of γ = 1 could be slightly modified. Nevertheless, the overall (small) improvements would not justify the
great effort required and the final form of (2.24) would have a more unpleasant form. Moreover, these
variants would not improve the bounds in Theorem 3.9 below.

Theorem 2.3 yields the following lower bounds for the Sobolev constants:

Corollary 2.1. Let Ω be as in (1.1). Let S0 and S1 be as in (2.22). Then:

S0 ≥
√

3π3/2

2L
max

1,
µ0√
2π

√√√√√ |Q|
|K|

|Q|
|K| − 1

 ,

S1 ≥
3π

4L

√√√√ |Q|
|K|

|Q|
|K| − 1

(
1 +

√
3

8
log

( |Q|
|K|

))−3/2
1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

1
|Q|
|K| − 1

log3/2

( |Q|
|K|

)−1/2

.

By dropping the multiplicative term 1/L, the remainder of the lower bound for S1 in Corollary
2.1 can be treated as a function of |Q|/|K| ∈ [1,∞). This function vanishes like [log (|Q|/|K|)]−1 as
|Q|/|K| → ∞, see its plot in Figure 2.2 where we also compare it with the (larger) lower bound for S0,
that becomes constant when |Q|/|K| ≈ 12.5, see Remark 2.3.

It is then natural to wonder whether the lower bounds obtained in Corollary 2.1 are meaningful. This
can be verified through suitable upper bounds. For S0 we take the function w(x, y) = cos(πx2L) cos(πy2L),
defined for (x, y) ∈ Q, so that w ∈ H1

0 (Q) and

‖w‖2L4(Q) =
3L

4
, ‖∇w‖2L2(Q) =

π2

2
=⇒ S0 ≤

2π2

3L
,

showing that the first lower bound for S0 is quite accurate. An upper bound for S1 is given in the next
statement.
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Figure 2.2: Behavior of the lower bounds for S0 (red) and S1 (blue) as functions of |Q|/|K|.

Theorem 2.4. Let Ω be as in (1.1) and assume that

∃ 0 < d ≤ a < L such that R = (−a, a)× (−d, d) ⊃ K . (2.33)

Then

S1 ≤
2
√

2
[
(L− a)2 + (L− d)2

]2
(L− a)(L− d)

√
a(L− a) + d(L− d)

θ√
2L(2L− a− d)(d− a)2θ1 + (L− a)(L− d) [a(L− a) + d(L− d)] θ2

,

where

θ =

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

, θ1 = (1− 4θ + 12θ2 − 24θ3 + 24θ4)

[
L(L− a) + L(L− d)

a(L− a) + d(L− d)

]
− 24θ4,

θ2 = (2− 4θ + 6θ2 − 6θ3 + 3θ4)

[
L(L− a) + L(L− d)

a(L− a) + d(L− d)

]2

− 3θ4.

Proof. Let P(Q) be as in (2.8), let V φ ∈ P(Q) be defined by (2.13) with

φ(s) = log

(
(L− a)2 + (L− d)2

L(L− a) + L(L− d)
s+

a(L− a) + d(L− d)

L(L− a) + L(L− d)

)/
log

(
a(L− a) + d(L− d)

L(L− a) + L(L− d)

)
∀s ∈ [0, 1],

with V φ extended by 1 in R \K. From (2.15) and (2.16) we know that:

‖∇V φ‖2L2(Ω) = 4
(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

.

For symmetry reasons, the contribution of |1 − V φ|4 over T1 ∪ T3 is four times the contribution over
the trapezium T5 defined in (2.11), whereas the contribution of |1− V φ|4 over T2 ∪ T4 is four times the
contribution over the trapezium T6 defined in (2.12). Then∫

Q\R
|1− V φ|4 = 4

∫ L

d

∫ a+
L−a
L−d (y−d)

0
|1− V φ(y)|4dx dy + 4

∫ L

a

∫ d+
L−d
L−a (x−a)

0
|1− V φ(x)|4dy dx

= 4

∫ L

d

[
a+ L−a

L−d(y − d)
]
|1− V φ(y)|4 dy + 4

∫ L

a

[
d+ L−d

L−a(x− a)
]
|1− V φ(x)|4 dx

= 4

∫ 1

0
[a(L− d) + d(L− a) + 2(L− a)(L− d)s] |1− φ(s)|4 ds.

Using that V φ ≡ 1 in R \K and the change of variable t = 1− φ(s), for s ∈ [0, 1], we then obtain

‖1− V φ‖4L4(Ω) = 2
a(L− a) + d(L− d)

[(L− a)2 + (L− d)2]
2

{
2L(2L− a− d)(d− a)2θ1 + (L− a)(L− d) [a(L− a) + d(L− d)] θ2

}
.
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We finally notice that if v ∈ P(Q), then 1− v ∈ H1
c (Ω) with v = 1 on ∂Q. Therefore,

S1 ≤ min
v∈P(Q)

‖∇v‖2L2(Ω)

‖1− v‖2
L4(Ω)

≤
‖∇V φ‖2L2(Ω)

‖1− V φ‖2
L4(Ω)

,

which concludes the proof. 2

In the case where the obstacle is a square, Theorem 2.4 enables us to evaluate the precision of the
lower bound for S1 given in Corollary 2.1.

Corollary 2.2. If 0 < a < L and Ω = (−L,L)2 \ (−a, a)2, then

S1 ≥
1

L

3π
4
L
a√(

L
a

)2 − 1

(
1 +

√
3

2
log1/2

(
L

a

))−3/2 [
1 +

√
3

2
log1/2

(
L

a

)(
1 +

3(
L
a

)2 − 1
log

(
L

a

))]−1/2

,

S1 ≤
1

L

4
√

2
L

a
log

(
L

a

)
√[

2 log4

(
L

a

)
− 4 log3

(
L

a

)
+ 6 log2

(
L

a

)
− 6 log

(
L

a

)
+ 3

](
L

a

)2

− 3

.

By dropping the multiplicative term 1/L, the remainder of the lower and upper bounds for S1 in
Corollary 2.2 can be treated as a function of L/a ∈ (1,∞). The ratio between the bounds tends to
4/π ≈ 1.273 as L/a→∞ so that, since we are interested in small obstacles compared to the size of the
photo (a� L), Corollary 2.2 shows that the obtained bounds are quite precise. The plots in Figure 2.3
describe the overall behavior.

2 4 6 8 10

L

a

2

4

6

8

10

2 4 6 8 10

L

a

8

10

12

14

16

18

20

Figure 2.3: On the left: behavior of the lower and upper bounds for S1 from Corollary 2.2, as a function
of L/a. On the right: ratio between the upper and lower bounds for S1 as a function of L/a.

2.3 Functional inequalities for the Navier-Stokes equations

In this section we quickly recall some well-known functional spaces and inequalities, by adapting them
to our context. Let us introduce the two functional spaces of vector fields

V∗(Ω) = {v ∈ H1
∗ (Ω) | ∇ · v = 0 in Ω} and V(Ω) = {v ∈ H1

0 (Ω) | ∇ · v = 0 in Ω},

which are Hilbert spaces if endowed with the scalar product (u, v) 7→ (∇u,∇v)L2(Ω). We also introduce
the trilinear form

β(u, v, w) =

∫
Ω

(u · ∇)v · w ∀u, v, w ∈ H1(Ω), (2.34)
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which is continuous in H1
∗ (Ω)×H1

∗ (Ω)×H1
∗ (Ω) and satisfies (see e.g. [39, Section IX.2])

|β(u, v, w)| ≤ 1

S ‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀u, v, w ∈ H1
∗ (Ω), (2.35)

|β(u, v, w)| ≤ 1√SS0
‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀u, v ∈ H1

∗ (Ω), w ∈ H1
0 (Ω), (2.36)

where S and S0 are as in (2.22). Moreover,

β(u, v, w) = −β(u,w, v) for any u ∈ V∗(Ω), v ∈ H1(Ω), w ∈ H1
0 (Ω),

β(u, v, v) = 0 for any u ∈ V∗(Ω), v ∈ H1
0 (Ω).

(2.37)

Since integration by parts will be performed repeatedly in the course, we recall a generalized Gauss
identity from [39, Theorem III.2.2]. Since Ω in (1.1) is a bounded Lipschitz domain, its boundary ∂Ω
has in a.e. point an outward unit normal n̂. Then, for every r, s ∈ (1,∞) such that 1

r + 1
s = 1 one has∫

Ω

u(∇ · v) dx+

∫
Ω

∇u · v dx = 〈v · n̂, u〉∂Ω ∀u ∈W 1,s(Ω) , v ∈ Er(Ω), (2.38)

where Er(Ω)
.
= {v ∈ Lr(Ω) | ∇ · v ∈ Lr(Ω)} and the “boundary term” 〈·, ·〉∂Ω represents the duality

between W−
1
r
,r(∂Ω) and W

1
r
,s(∂Ω); it is well-defined because

v · n̂|∂Ω ∈W−
1
r
,r(∂Ω) and u|∂Ω ∈W

1
r
,s(∂Ω).

For later use, we remark that for constant boundary data one has

(U, V ) ∈ R2 =⇒ ‖(U, V )‖H1/2(∂Q) = ‖(U, V )‖L2(∂Q) = 2
√

2L
√
U2 + V 2 . (2.39)

We now recall a combination of results by Hopf [49] and Ladyzhenskaya-Solonnikov [57] (see also [39,
Lemma IX.4.2]), that we also state for domains Ω that are symmetric with respect to the x-axis, namely
(x, y) ∈ Ω if and only if (x,−y) ∈ Ω.

Proposition 2.1. Let Ω be as in (1.1) and let n̂ be the a.e.-defined outward unit normal to ∂Ω. Let
W ∈ H1/2(∂Ω) be such that ∫

∂Q

W · n̂ ds =

∫
∂K

W · n̂ ds = 0. (2.40)

Then for all ε > 0 there exists a solenoidal extension Aε ∈ H1(Ω) satisfying

Aε = W on ∂Ω, ‖Aε‖H1(Ω) ≤Mε‖W‖H1/2(∂Ω), |β(v,Aε, v)| ≤ ε‖∇v‖2L2(Ω) ∀v ∈ V(Ω), (2.41)

for some constant Mε > 0 that depends on ε and Ω. If Ω is symmetric with respect to the x-axis and
W = (W1,W2) is such that W1 is y-even and W2 is y-odd, then the solenoidal extension Aε = (A1

ε, A
2
ε)

can be chosen so that A1
ε is y-even and A2

ε is y-odd, with no increment of the H1-norm.

Proof. Given ε > 0 and a boundary datum W ∈ H1/2(∂Ω) satisfying (2.40), the existence of a vector
field Aε ∈ H1(Ω) verifying (2.41) is proved (e.g.) in [39, Lemma IX.4.2]; indeed, (2.40) assumes “no
separated sinks and sources of fluid inside Q”, see [39, Formula (IX.4.7)].

Under the symmetry assumptions given in the statement, it can be seen that the vector field

Bε(x, y)
.
=

1

2

(
A1
ε(x, y) +A1

ε(x,−y), A2
ε(x, y)−A2

ε(x,−y)
)

for a.e. (x, y) ∈ Ω,

is y-even in its first component, y-odd in its second component and still verifies (2.41). Indeed, the
solenoidal condition is readily verified, as well as the boundary condition. The H1-bound follows from
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the fact that ‖Bε‖H1(Ω) ≤ ‖Aε‖H1(Ω); in turn, this follows from a direct computation (and using the
Young inequality) or by observing that Bε is the “symmetrized” of Aε. Finally, the bound on β follows
by arbitrariness of v: in particular, it holds for the symmetric and/or skew-symmetric parts of any
v ∈ V(Ω). 2

As usual, the pressure p in (1.2) is defined up to an additive constant; therefore, we take it to have
zero mean value and we introduce the space

L2
0(Ω) =

{
g ∈ L2(Ω)

∣∣∣ ∫
Ω
g = 0

}
.

For any g ∈ L2
0(Ω) we define its gradient ∇g ∈ H−1(Ω) as follows:

〈∇g, ψ〉Ω = −
∫

Ω
g (∇ · ψ) ∀ψ ∈ H1

0 (Ω).

Bogovskii [15] showed that, given any q ∈ L2
0(Ω), there exists ψ ∈ H1

0 (Ω) such that ∇ · ψ = q in Ω and

‖∇ψ‖L2(Ω) ≤ CB(Ω)‖q‖L2(Ω), (2.42)

where the constant CB(Ω) > 0 depends only on Ω. Then we obtain the bound

‖∇g‖H−1(Ω) = sup
ψ∈H1

0(Ω)

‖∇ψ‖
L2(Ω)

=1

∣∣∣∣∫
Ω
g (∇ · ψ)

∣∣∣∣ ≥ 1

CB(Ω)
sup

q∈L2
0(Ω)

‖q‖
L2(Ω)

=1

∣∣∣∣∫
Ω
gq

∣∣∣∣ =
1

CB(Ω)
‖g‖L2(Ω),

that is,
‖g‖L2(Ω) ≤ CB(Ω)‖∇g‖H−1(Ω) ∀g ∈ L2

0(Ω). (2.43)

2.4 Gradient bounds for solenoidal extensions

The presence of inhomogeneous boundary conditions in (1.3) constitutes a major difficulty when trying
to obtain a priori bounds for the solutions of (1.2) and a quantitative statement for its uniqueness.
Furthermore, as will be apparent in the proof of Theorem 3.1 below, the fundamental step lies in the
determination of a solenoidal extension v0 of the data (U, V ) ∈ H1/2(∂Q), namely a solution of (1.5)
and a bound for its norm. The choice of v0 influences the explicit form of the uniqueness bound and,
therefore, what is needed is precisely an explicit form of v0.

A classical way to build solenoidal extensions in case of constant velocity at infinity, in the unbounded
region outside an obstacle, consists in adding to the constant vector the curl of some cutoff function,
see [56, p.130] and also [39, Section IX.4]. Nevertheless, since we aim to obtain explicit extensions, this
is not precise enough. In this section we are not considering a general cutoff function but, instead, we
construct by hand a suitable C1-extension by using repeatedly the Maximum Principle for harmonic
functions, combined with the pyramidal capacity approach developed in Section 2.1.

Assume (2.33) and consider the stadium

J = R∪
{

(x, y) ∈ R2 | (x− a)2 + y2 < d2 , x ≥ a
}
∪
{

(x, y) ∈ R2 | (x+ a)2 + y2 < d2 , x ≤ −a
}
,

see Figure 2.4. If a + d < L, then J ⊂ Q and we put ΩJ = Q \ J and let Ψ ∈ H1
0 (Q) be the (scalar)

Figure 2.4: Stadium-shaped region J enclosing the rectangle R.
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relative capacity potential of J with respect to Q, that is,

∆Ψ = 0 in ΩJ , Ψ = 0 on ∂Q, Ψ = 1 in J , CapQ(J ) = ‖∇Ψ‖2L2(Q). (2.44)

SinceQ is a square and ∂J is of class C1,1, elliptic regularity arguments show that Ψ ∈ H2(ΩJ )∩C1,1(ΩJ ).
Since Ψ is harmonic, we also know that Ψ ∈ C∞(ΩJ ).

Take a function ϕ ∈ H2(ΩJ ) and, for (U, V ) ∈ R2, define the solenoidal vector field

W ∈ H1(ΩJ ) , W (x, y) =

Uϕ(x, y) + (Uy − V x)
∂ϕ

∂y
(x, y)

V ϕ(x, y)− (Uy − V x)
∂ϕ

∂x
(x, y)

 ∀(x, y) ∈ ΩJ .

Then we have

|∇W |2 = 4(Uy − V x)

[
∂2ϕ

∂x∂y

(
U
∂ϕ

∂x
− V ∂ϕ

∂y

)
+ U

∂ϕ

∂y

∂2ϕ

∂y2
− V ∂ϕ

∂x

∂2ϕ

∂x2

]

+ 2

(
U
∂ϕ

∂x
− V ∂ϕ

∂y

)2

+ 4U2

(
∂ϕ

∂y

)2

+ 4V 2

(
∂ϕ

∂x

)2

+ (Uy − V x)2

[(
∂2ϕ

∂x2

)2

+ 2

(
∂2ϕ

∂x∂y

)2

+

(
∂2ϕ

∂y2

)2
]

in ΩJ .

(2.45)

We impose restrictions on ϕ for the vector field W to satisfy some symmetry properties and the
boundary conditions W = (0, 0) on ∂J and W = (U, V ) on ∂Q. We take a function ϕ such that

ϕ = 1 on ∂Q , ϕ = 0 on ∂J , ∇ϕ = 0 on ∂ΩJ , ϕ is both x-even and y-even. (2.46)

For the first term in (2.45) we note that

4

∫
ΩJ

(Uy − V x)

[
∂2ϕ

∂x∂y

(
U
∂ϕ

∂x
− V ∂ϕ

∂y

)
+ U

∂ϕ

∂y

∂2ϕ

∂y2
− V ∂ϕ

∂x

∂2ϕ

∂x2

]

= 4

∫
ΩJ

(Uy − V x)

[
U

2

∂

∂y
|∇ϕ|2 − V

2

∂

∂x
|∇ϕ|2

]
= −2(U2 + V 2)

∫
ΩJ

|∇ϕ|2 ,

where the second equality follows from (2.46) and an integration by parts. Thus, integrating (2.45) and
putting together the first two lines, yields

‖∇W‖2L2(ΩJ ) = 2

∫
ΩJ

[
U
∂ϕ

∂y
−V ∂ϕ

∂x

]2

+

∫
ΩJ

(Uy − V x)2

[(
∂2ϕ

∂x2

)2

+2

(
∂2ϕ

∂x∂y

)2

+

(
∂2ϕ

∂y2

)2
]
.

Concerning the second integral, we notice that, by the symmetry assumption in (2.46) we deduce∫
ΩJ

xy

[(
∂2ϕ

∂x2

)2

+ 2

(
∂2ϕ

∂x∂y

)2

+

(
∂2ϕ

∂y2

)2
]

= 0 .

Hence, we obtain

‖∇W‖2L2(ΩJ ) = 2

∫
ΩJ

[
U
∂ϕ

∂y
−V ∂ϕ

∂x

]2

+

∫
ΩJ

(U2y2 + V 2x2)

[(
∂2ϕ

∂x2

)2

+2

(
∂2ϕ

∂x∂y

)2

+

(
∂2ϕ

∂y2

)2
]
.
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Then, we bound the second integral by

L2(U2 + V 2)

∫
ΩJ

[(
∂2ϕ

∂x2

)2

+2

(
∂2ϕ

∂x∂y

)2

+

(
∂2ϕ

∂y2

)2
]
.

Moreover, if we had the additional regularity that ϕ ∈ C3(ΩJ ) ∩ C1(ΩJ ), then a double integration by
parts and (2.46) (vanishing of the gradient on the boundary) would show that∫

ΩJ

(
∂2ϕ

∂x∂y

)2

=

∫
ΩJ

∂2ϕ

∂x2

∂2ϕ

∂y2
;

by density, this identity is also verified under the sole regularity assumption ϕ ∈ H2(ΩJ ). Whence,

‖∇W‖2L2(ΩJ ) ≤ 2

∫
ΩJ

[
U
∂ϕ

∂y
−V ∂ϕ

∂x

]2

+ L2
(
U2 + V 2

) ∫
ΩJ

(∆ϕ)2 . (2.47)

We now make a specific choice of the function ϕ satisfying all the restrictions in (2.46). For this, we
consider a function h ∈ C4([0, 1];R) and take ϕ(x, y) = h(Ψ(x, y)), for all (x, y) ∈ ΩJ , where Ψ is as in
(2.44). The vector field W then becomes

W (x, y) =

Uh(Ψ(x, y)) + (Uy − V x)h′(Ψ(x, y))
∂Ψ

∂y
(x, y)

V h(Ψ(x, y))− (Uy − V x)h′(Ψ(x, y))
∂Ψ

∂x
(x, y)

 ∀(x, y) ∈ ΩJ .

By imposing the boundary conditions W = (0, 0) on ∂J and W = (U, V ) on ∂Q, we find
Uh(0) + (Uy − V x)h′(0)

∂Ψ

∂y
(x, y) = U

V h(0)− (Uy − V x)h′(0)
∂Ψ

∂x
(x, y) = V

on ∂Q,


Uh(1) + (Uy − V x)h′(1)

∂Ψ

∂y
(x, y) = 0

V h(1)− (Uy − V x)h′(1)
∂Ψ

∂x
(x, y) = 0

on ∂J .

As a consequence, we take h ∈ C4([0, 1];R) such that h(0) = 1 and h(1) = h′(0) = h′(1) = 0. In
particular, this implies that ∇ϕ = 0 on ∂ΩJ . Moreover, by symmetry and uniqueness, the capacity
potential Ψ is both x-even and y-even and, hence, ϕ = h(Ψ) inherits the same properties. Therefore, all
the conditions in (2.46) are fulfilled and (2.47) holds. Moreover, in view of (2.44), we notice that

∆ϕ = h′′(Ψ)|∇Ψ|2 + h′(Ψ)∆Ψ = h′′(Ψ)|∇Ψ|2 in ΩJ

so that (2.47) becomes

‖∇W‖2L2(ΩJ ) ≤ 2

∫
ΩJ

h′(Ψ)2

(
U
∂Ψ

∂y
− V ∂Ψ

∂x

)2

+ L2
(
U2 + V 2

) ∫
ΩJ

h′′(Ψ)2|∇Ψ|4 . (2.48)

By the symmetry properties of Ψ, we have that Ψx is y-even, Ψy is y-odd and h′(Ψ)2 is even, so that∫
ΩJ

h′(Ψ)2 ∂Ψ

∂x

∂Ψ

∂y
= 0.
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This fact, together with Theorem 2.1, shows that the first integral in (2.48) can be estimated as∫
ΩJ

h′(Ψ)2

(
U
∂Ψ

∂y
− V ∂Ψ

∂x

)2

≤ max{U2, V 2} ‖h′‖2L2([0,1]) CapQ(J ) . (2.49)

For the second integral in (2.48), we notice that−∆(|∇Ψ|2) ≤ 0 in ΩJ , since Ψ is harmonic. Therefore
|∇Ψ| attains it maximum value on ∂ΩJ = ∂Q ∪ ∂J and one finds that∫

ΩJ

h′′(Ψ)2|∇Ψ|4 ≤ ‖∇Ψ‖2L∞(∂ΩJ )

∫
ΩJ

h′′(Ψ)2|∇Ψ|2 = ‖∇Ψ‖2L∞(∂ΩJ ) ‖h′′‖2L2([0,1]) CapQ(J ) ,

where we used again Theorem 2.1. Combined with (2.48) and (2.49), the last inequality yields

‖∇W‖2L2(ΩJ ) ≤
(
U2 + V 2

) [
2 ‖h′‖2L2([0,1]) + L2 ‖∇Ψ‖2L∞(∂ΩJ ) ‖h′′‖2L2([0,1])

]
CapQ(J ) . (2.50)

The task is now to lower as much as possible the right hand side of (2.50). Of course, we need also to
estimate the gradient of Ψ on the boundary of ΩJ . Once this will be done, see below, it will be apparent
that the larger term in (2.50) is the second and, therefore, we are led to minimize the quantity ‖h′′‖L2([0,1])

among functions h ∈ C4([0, 1];R) such that h(0) = 1 and h(1) = h′(0) = h′(1) = 0. The Euler-Lagrange
equation for this minimization problem reads h(4) = 0 in (0, 1) and we find h(t) = 2t3 − 3t2 + 1, for
t ∈ [0, 1], which yields

‖h′‖2L2([0,1]) =
6

5
, ‖h′′‖2L2([0,1]) = 12 ,

so that (2.50) becomes

‖∇W‖2L2(ΩJ ) ≤ 12
(
U2 + V 2

) [1

5
+ L2 ‖∇Ψ‖2L∞(∂ΩJ )

]
CapQ(J ) . (2.51)

Let us now estimate ‖∇Ψ‖L∞(∂ΩJ ). By the Maximum Principle we have that 0 ≤ Ψ ≤ 1 in ΩJ , so

that the function L−x
L−a−d −Ψ, which is harmonic in ΩJ , is non-negative on ∂ΩJ . A further application

of the Maximum Principle then yields the inequality

0 ≤ Ψ(x, y) ≤ L− x
L− a− d ∀(x, y) ∈ ΩJ .

By comparison we then deduce

− 1

L− a− d ≤
∂Ψ

∂x
(L, y) ≤ 0 for a.e. y ∈ (−L,L).

Since the tangential derivative of Ψ is zero on ∂Q, the last inequality and the symmetry of Ψ imply

|∇Ψ(±L, y)| ≤ 1

L− a− d for a.e. y ∈ (−L,L).

Applying the same comparison method to the harmonic function L−y
L−d −Ψ one also obtains the bound

|∇Ψ(x,±L)| ≤ 1

L− d <
1

L− a− d for a.e. x ∈ (−L,L)

and, therefore, we finally infer

‖∇Ψ‖L∞(∂Q) ≤
1

L− a− d . (2.52)

In order to estimate ‖∇Ψ‖L∞(∂J ), we consider, for any x0 ∈ [−a, a], the harmonic function

Hx0(x, y) =
log
(
(L− |x0|)2

)
− log

(
(x− x0)2 + y2

)
log ((L− |x0|)2)− log (d2)

∀(x, y) ∈ ΩJ , (2.53)

19



which equals 1 on the circle (x− x0)2 + y2 = d2 and vanishes on the circle (x− x0)2 + y2 = (L− |x0|)2

that is contained in Q. Then Ψ−Hx0 is harmonic in ΩJ and Ψ−Hx0 ≥ 0 on ∂ΩJ . Moreover, we also
have Ψ −Hx0 = 0 in every point of the circle (x − x0)2 + y2 = d2 tangent to ∂J . Therefore, again by
the Maximum Principle, we infer first that Ψ ≥ Hx0 in ΩJ and then that

|∇Ψ(x0, y)| ≤ |∇Hx0(x0, y)| =
[
d log

(
L− a
d

)]−1

∀x0 ∈ (−a, a) , |y| = d ,

|∇Ψ(x, y)| ≤ |∇Hx0(x, y)| =
[
d log

(
L− a
d

)]−1

if x0 ∈ {−a, a} , (x− x0)2 + y2 = d2 , |x| ≥ a.

These two bounds cover the whole ∂J and, therefore,

‖∇Ψ‖L∞(∂J ) ≤
[
d log

(
L− a
d

)]−1

,

which, together with (2.52), implies

‖∇Ψ‖L∞(∂ΩJ ) ≤ max

{
1

L− a− d ,
[
d log

(
L− a
d

)]−1
}

=

[
d log

(
L− a
d

)]−1

, (2.54)

since L > a+ d. We plug (2.54) into (2.51) and, since J ⊂ [−a− d, a+ d]× [−d, d], by the monotonicity
of the capacity, we may apply Theorem 2.2 to [−a− d, a+ d]× [−d, d] and state the following result.

Theorem 2.5. Assume (2.33) with L > a + d and let (U, V ) ∈ R2. Then, there exists a vector field
W ∈ H1

c (Ω) satisfying
∇ ·W = 0 in Ω, W = (U, V ) on ∂Q,

together with the estimate

‖∇W‖2L2(Ω) ≤ 48
(
U2 + V 2

) [(L− a− d)2 + (L− d)2
] [1

5
+ L2

(
d log

(
L− a
d

))−2
]

(L− a− d)(L− d) log

(
L(L− a− d) + L(L− d)

(a+ d)(L− a− d) + d(L− d)

) .

3 The planar Navier-Stokes equations around an obstacle

3.1 Existence, uniqueness and regularity

Let us first define what is meant by weak solution of problem (1.2)-(1.3).

Definition 3.1. Given f ∈ H−1(Ω) and (U, V ) ∈ H1/2(∂Q) satisfying (1.4), we say that a vector field
u ∈ V∗(Ω) is a weak solution of (1.2)-(1.3) if u verifies (1.3) in the trace sense and

η(∇u,∇ϕ)L2(Ω) + β(u, u, ϕ) = 〈f, ϕ〉Ω ∀ϕ ∈ V(Ω). (3.1)

Then we state a result which is essentially known, see e.g. [39, Section IX.4]. Nevertheless, for three
important reasons we give here a proof by emphasizing several steps. First we are concerned with both
nonzero forcing and boundary data, second the a priori bounds are needed in the proof of Theorem 3.6,
third the quantitative bounds for uniqueness will play a crucial role in Section 3.4.
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Theorem 3.1. Let Ω be as in (1.1). For any f ∈ H−1(Ω) and (U, V ) ∈ H1/2(∂Q) satisfying (1.4) there
exists a weak solution (u, p) ∈ V∗(Ω)× L2

0(Ω) of (1.2)-(1.3) and any weak solution (u, p) satisfies the a
priori bound ‖∇u‖L2(Ω) ≤ C1

(
‖(U, V )‖2

H1/2(∂Q)
+ ‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω)

)
,

‖p‖L2(Ω) ≤ C2

(
‖∇u‖2L2(Ω) + ‖∇u‖L2(Ω) + ‖f‖H−1(Ω)

)
,

(3.2)

for some C1, C2 > 0 that depend on Ω and η. Moreover, there exists δ = δ(η,Ω) > 0 such that if

‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω) < δ, (3.3)

then the weak solution (u, p) of (1.2)-(1.3) is unique and also satisfies the estimate ‖∇u‖L2(Ω) < S0η.

Proof. Existence of a weak solution (u, p) ∈ V∗(Ω)×L2
0(Ω) of (1.2)-(1.3) satisfying the a priori bounds

(3.2) follows from [39, Theorem IX.4.1]. We give here the proof of the a priori bounds and uniqueness
for small data because we need to make explicit the dependence of C1 and C2 appearing in (3.2) on the
Sobolev constants S and S0 in (2.22), and on the solenoidal extension of the boundary datum. Indeed,
Proposition 2.1 ensures the existence of a solenoidal vector field u0 ∈ V∗(Ω) satisfying

u0 = (U, V ) on ∂Q, ‖∇u0‖L2(Ω) ≤M‖(U, V )‖H1/2(∂Q), |β(v, u0, v)| ≤ η

2
‖∇v‖2L2(Ω) ∀v ∈ V(Ω),

for some M > 0 depending on Ω. Define ξ = u− u0 ∈ V(Ω), and replace u = ξ + u0 into (1.2) to obtain

− η∆ξ + [(ξ + u0) · ∇](ξ + u0) +∇p = η∆u0 + f, (3.4)

with η∆u0 + f ∈ H−1(Ω). Here, (3.4) is understood in the weak sense, see (3.1); we test it with ξ and
we integrate by parts over Ω in order to obtain

η‖∇ξ‖2L2(Ω) ≤ (η‖∇u0‖L2(Ω) + ‖f‖H−1(Ω))‖∇ξ‖L2(Ω) − β(ξ + u0, ξ + u0, ξ). (3.5)

By (2.36)-(2.37) we have β(ξ + u0, ξ + u0, ξ) = β(ξ + u0, u0, ξ) and the estimate

|β(ξ + u0, u0, ξ)| ≤
η

2
‖∇ξ‖2L2(Ω) +

1√SS0
‖∇ξ‖L2(Ω)‖∇u0‖2L2(Ω), (3.6)

where we have used the definition of S and S0 given in (2.22). By plugging (3.6) into (3.5) we deduce

‖∇u‖L2(Ω) ≤ ‖∇ξ‖L2(Ω) + ‖∇u0‖L2(Ω) ≤
2√SS0 η
‖∇u0‖2L2(Ω) + 3‖∇u0‖L2(Ω) +

2

η
‖f‖H−1(Ω),

and then the inequality ‖∇u0‖L2(Ω) ≤M‖(U, V )‖H1/2(∂Q) yields (3.2)1 in the following way:

‖∇u‖L2(Ω) ≤
2M2

√SS0 η
‖(U, V )‖2

H1/2(∂Q)
+ 3M‖(U, V )‖H1/2(∂Q) +

2

η
‖f‖H−1(Ω). (3.7)

The a priori bound for the pressure in (3.2)2 is obtained after noticing that

∇p = η∆u− (u · ∇)u+ f in the sense of H−1(Ω),

and applying (2.43) with some embedding inequalities.
The quantitative uniqueness statement relies on a different kind of a priori bound, based on a given

solenoidal extension, that is,

v0 ∈ V∗(Ω), v0 = (U, V ) on ∂Q, ‖∇v0‖L2(Ω) ≤ C‖(U, V )‖H1/2(∂Q) , (3.8)
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where the constant C = C(Ω) > 0 is independent on the boundary data, see [57]. Then we seek solutions
u of (1.2)-(1.3) in the form u = ξ + v0 so that ξ ∈ V(Ω) satisfies

− η∆ξ + [(ξ + v0) · ∇](ξ + v0) +∇p = η∆v0 + f, (3.9)

with η∆v0 + f ∈ H−1(Ω). Here, (3.9) is intended in the weak sense, see (3.1); we test it with ξ and we
integrate by parts in Ω in order to obtain

η‖∇ξ‖2L2(Ω) ≤ (η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω))‖∇ξ‖L2(Ω) − β(ξ + v0, ξ + v0, ξ). (3.10)

In view of (2.36)-(2.37) we have β(ξ + v0, ξ + v0, ξ) = β(ξ + v0, v0, ξ) and the estimate

|β(ξ + v0, v0, ξ)| ≤ ‖ξ‖L4(Ω)‖∇v0‖L2(Ω)

(
‖ξ‖L4(Ω) + ‖v0‖L4(Ω)

)
≤
‖∇ξ‖L2(Ω)√S0

‖∇v0‖L2(Ω)

(‖∇ξ‖L2(Ω)√S0
+ ‖v0‖L4(Ω)

)
, (3.11)

where we used the definition of S0 given in (2.22). Inserting (3.11) into (3.10) yields

η‖∇ξ‖L2(Ω) ≤
‖∇v0‖L2(Ω)

S0
‖∇ξ‖L2(Ω) +

‖∇v0‖L2(Ω)‖v0‖L4(Ω)√S0
+ η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω).

Let C be as in (3.8); if the boundary datum is small enough so that

C‖(U, V )‖H1/2(∂Q) < S0η , (3.12)

then, for the chosen extension v0, one also has ‖∇v0‖L2(Ω) < S0η and we infer that

‖∇ξ‖L2(Ω) ≤

‖∇v0‖L2(Ω)‖v0‖L4(Ω)√S0
+ η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω)

η −
‖∇v0‖L2(Ω)

S0

. (3.13)

This is the sought a priori bound for solutions of (3.1), up to the additive solenoidal extension v0 of the
boundary data. We emphasize that it has been obtained under the smallness assumption (3.12).

Assuming (3.12), take two weak solutions u, v ∈ H1
∗ (Ω) of (1.2)-(1.3), with possibly different pressures

that are, however, ruled out by L2-orthogonality of the gradients with V(Ω). Indeed, subtract the
equations (3.1) corresponding to u and v in order to obtain

η(∇w,∇ϕ)L2(Ω) + β(u,w, ϕ) + β(w, v, ϕ) = 0 ∀ϕ ∈ V(Ω),

where w
.
= u− v ∈ V(Ω). By taking ϕ = w, defining ξ = v − v0 and using (2.36) and (3.13), we derive

η‖∇w‖2L2(Ω) = −β(w, v, w) = β(w,w, v) ≤ ‖w‖L4(Ω)‖∇w‖L2(Ω)‖v‖L4(Ω) ≤
‖∇w‖2L2(Ω)√S0

‖v‖L4(Ω)

≤
‖∇w‖2L2(Ω)√S0

(
‖ξ‖L4(Ω) + ‖v0‖L4(Ω)

)
≤
‖∇w‖2L2(Ω)√S0

(‖∇ξ‖L2(Ω)√S0
+ ‖v0‖L4(Ω)

)
≤ ‖∇w‖2L2(Ω)

η(‖∇v0‖L2(Ω) +
√S0 ‖v0‖L4(Ω)) + ‖f‖H−1(Ω)

ηS0 − ‖∇v0‖L2(Ω)
,

(3.14)

which shows that w = 0 provided that

η
(
2‖∇v0‖L2(Ω) +

√
S0 ‖v0‖L4(Ω)

)
+ ‖f‖H−1(Ω) < S0η

2 . (3.15)
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In conclusion, unique solvability of (1.2)-(1.3) is achieved whenever both (3.12) and (3.15) hold. Since
the most restrictive is the latter, and since ‖v0‖L4(Ω) ≤ ‖∇v0‖L2(Ω)/

√
S, uniqueness is ensured whenever

η

(
2 +

√
S0

S

)
‖∇v0‖L2(Ω) + ‖f‖H−1(Ω) < S0η

2 . (3.16)

In turn, by (3.8), (3.16) certainly holds if

ηC
2
√
S +
√S0√
S

‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω) < S0η
2 . (3.17)

Therefore, an explicit expression for δ in (3.3) is given by

δ(η,Ω) = min

{
η

C

S0

√
S

2
√
S +
√S0

, S0η
2

}
. (3.18)

Finally, we have to prove the gradient bound for the unique solution whenever the inequality

‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω) < min

{
η

C

S0

√
S

2
√
S +
√S0

, S0η
2

}

holds. This inequality implies (3.17) which, together with (3.8), implies

‖∇v0‖L2(Ω) < η
√
SS0 ; (3.19)

we point out that (3.19) slightly improves (3.12) since S ≤ S0. For the same reason, and since (3.19)
holds, we may write a “slightly worse” bound than (3.13), namely

‖∇ξ‖L2(Ω) ≤

‖∇v0‖2L2(Ω)√SS0
+ η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω)

η −
‖∇v0‖L2(Ω)√SS0

.

Hence, recalling that u = ξ + v0, by (3.16) we have that

‖∇u‖L2(Ω) ≤ ‖∇ξ‖L2(Ω) + ‖∇v0‖L2(Ω) ≤
2η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω)

η −
‖∇v0‖L2(Ω)√SS0

< S0η .

This proves the gradient bound and completes the proof. 2

Remark 3.1. Theorem 3.1 guarantees unique solvability of (1.2)-(1.3) under a smallness assumption on
the data, which in turn yields the bound ‖∇u‖L2(Ω) < S0η. Conversely, the existence of such a “small”
solution ensures unique solvability, see [39, Theorem IX.2.1].

The constant δ in (3.3) depends on Ω through the embedding constants S and S0 and through
the solenoidal extension constant C in (3.8). Theorem 3.1 guarantees the uniqueness of the solution
whenever the data (U, V ) and f are small also with respect to the kinematic viscosity η. If this smallness
assumption is violated one expects multiplicity results, see [75] and also [39, Theorem IX.2.2] for a
slightly more general situation: at a certain Reynolds number a bifurcation occurs.
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What is left open in the proof of Theorem 3.1 is the choice of the particular solenoidal extension v0.
We can find an explicit form of v0 in the case where the boundary data are constant (so that (1.4) is
automatically fulfilled). To this end, for 0 < d ≤ a < L such that L > a+ d, we introduce the constants

γ0 =

√
3π3/2

2L
max

{
1,

µ0√
2π

√
|Q|

|Q| − |K|

}
,

γ1 =
3π

4L

√
|Q|

|Q| − |K|

[
1 +

√
3

8
log

( |Q|
|K|

)]− 3
2
[

1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Q| − |K| log3/2

( |Q|
|K|

)]− 1
2

,

γ2 = 48

[
(L− a− d)2 + (L− d)2

] [1

5
+ L2

(
d log

(
L− a
d

))−2
]

(L− a− d)(L− d) log

(
L(L− a− d) + L(L− d)

(a+ d)(L− a− d) + d(L− d)

) ,
with µ0 > 0 as in (2.21). Notice that γ0 and γ1 represent, respectively, lower bounds for the Sobolev
constants S0 and S1, see Corollary 2.1. On the other hand, γ2 controls the norm of the solenoidal
extension given in Theorem 2.5. Then, if we additionally assume that f = 0, Theorem 3.1 may be
strengthened as follows.

Theorem 3.2. Let Ω be as in (1.1) and assume (2.33) with L > a+d. For any (U, V ) ∈ R2 there exists
a weak solution (u, p) ∈ V∗(Ω)× L2

0(Ω) of (1.2)-(1.3) with f = 0. If, moreover,√
U2 + V 2 <

η√
γ2

γ0
√
γ1√

γ0 + 2
√
γ1
,

then the weak solution of (1.2)-(1.3) is unique.

Proof. Existence of a weak solution (u, p) ∈ V∗(Ω) × L2
0(Ω) of (1.2)-(1.3) with f = 0 follows from

Theorem 3.1, noticing that the compatibility condition (1.4) is automatically fulfilled. Also, Theorem
2.5 guarantees the existence of a vector field W ∈ H1

c (Ω) satisfying

∇ ·W = 0 in Ω, W = (U, V ) on ∂Q, ‖∇W‖L2(Ω) ≤
√
γ2 (U2 + V 2). (3.20)

We go back to the proof of Theorem 3.1, where the expression for δ in (3.15) now becomes

2‖∇W‖L2(Ω) +
√
S0 ‖W‖L4(Ω) < S0η . (3.21)

By (2.22) we observe that (3.21) is certainly fulfilled if(
2 +

√
S0

S1

)
‖∇W‖L2(Ω) < S0η .

In turn, thanks to (3.20) and Corollary 2.1 we see that the latter inequality is implied by√
U2 + V 2 <

η√
γ2

S0
√
γ1√S0 + 2
√
γ1
. (3.22)

The proof is complete after noticing that the right-hand side of (3.22) is increasing with respect to S0,
and using the lower bound for S0 given in Corollary 2.1. 2
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Remark 3.2. Theorem 3.2 not only gives a lower bound for δ in terms of η and Ω; since η and
K are fixed, it also estimates the critical Reynolds number ensuring unique solvability of (1.2)-(1.3)
with zero external forcing. Nevertheless, the method provided in the proof of Theorem 3.2 leads to an
overestimation of the critical boundary velocity, since some of the inequalities employed are far from being
sharp. Similar considerations, following a different approach for the computation of the critical Reynolds
number ensuring the stability of a steady laminar flow, were already pointed out by Landau-Lifshitz in
1959, see [59, Chapter III].

Regularity results for (1.2)-(1.3) are usually presented under the no-slip boundary condition on the
whole boundary ∂Ω, that is, when U = V = 0 on ∂Q. In this case, if f ∈ L2(Ω), the regularity of a
weak solution (u, p) ∈ H1

0 (Ω) × L2(Ω) of (1.2)-(1.3) can be upgraded up to
[
H2(Ω) ∩H1

0 (Ω)
]
×H1(Ω)

whenever Ω is of class C2 (see [39, Theorem IX.5.2]). If Ω were a convex polygon, the same result holds,
see [51]. But since we consider obstacles K having a merely Lipschitz boundary, the domain Ω may
possess reentrant corners, a fact that introduces singularities in the solution, which may exhibit blow-up
of the pressure and of the vorticity near the non-convex vertices, see [20]. Nevertheless, even if we remain
with the minimal regularity H1(Ω)×L2(Ω), the normal component of the trace of functions in Er(Ω) can
be treated through (2.38). Furthermore, standard elliptic regularity arguments show that the solution
of (1.2)-(1.3) is more regular far from K, a property that we make precise in the next statement. Since
we were unable to find a unique reference for its proof, in particular because of the use of solenoidal
extensions, for the sake of completeness we include it below by combining several known results adapted
to the particular geometry of Ω in (1.1).

Theorem 3.3. Let Ω be as in (1.1). For f ∈ L2(Ω) and (U, V ) ∈ R2, let (u, p) ∈ V∗(Ω) × L2(Ω) be
a weak solution of (1.2)-(1.3). Then, for any open set Ω0 ⊂ Ω such that ∂Ω ∩ ∂Ω0 = ∂Q and with an
internal boundary of class C2, one has (u, p) ∈ H2(Ω0) × H1(Ω0). Moreover, there exists a constant
C > 0, depending on η and Ω0, such that:

‖u‖H2(Ω0) + ‖p‖H1(Ω0) ≤ C
(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
. (3.23)

Proof. From (2.39) and (3.2) we know that‖∇u‖L2(Ω) ≤ C
(
|(U, V )|2 + |(U, V )|+ ‖f‖L2(Ω)

)
,

‖p‖L2(Ω) ≤ C
(
‖∇u‖2L2(Ω) + ‖∇u‖L2(Ω) + ‖f‖L2(Ω)

)
,

where, from now on, C > 0 will denote a generic constant depending on η and Ω0. In particular, we
have that (u · ∇)u ∈ L3/2(Ω) with

‖(u · ∇)u‖L3/2(Ω) ≤ ‖∇u‖L2(Ω)‖u‖L6(Ω) ≤ C‖∇u‖2L2(Ω) ≤ C
(
|(U, V )|2 + |(U, V )|+ ‖f‖L2(Ω)

)2
, (3.24)

by the embedding H1(Ω) ⊂ L6(Ω) and the generalized Poincaré inequality from [28]. Then the couple
(u, p) also weakly solves the Stokes equations

− η∆u+∇p = f − (u · ∇)u , ∇ · u = 0 in Ω. (3.25)

Consider a (non simply connected) C2-domain Ω1 ⊂ Ω such that Ω1 ⊂ Ω and with the exterior
boundary “close” to ∂Q, while the interior boundary lies between ∂Ω0 and ∂K: roughly speaking, Ω1

is wider than Ω0 close to K and smaller than Ω0 close to ∂Q. Clearly, the constants C that depend
directly on Ω1 also depend indirectly on Ω0. The Stokes equations (3.25) are also satisfied in Ω1, so from
(3.24) and [39, Theorem IV.4.1] we know that

‖u‖W 2,3/2(Ω1) + ‖p‖W 1,3/2(Ω1) ≤ C
(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
.
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With this additional regularity of u, we infer that (u · ∇)u ∈ L2(Ω1) and, by repeating the above
argument, we obtain

‖u‖H2(Ω1) + ‖p‖H1(Ω1) ≤ C
(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
. (3.26)

This gives the required bound in Ω1, namely far away from ∂Q and from the obstacle. In order to
reach ∂Q, we employ a localization argument which covers the residual domain Ω∗

.
= Ω0 \Ω1: since it is

precompact, it can be covered by a finite number of open disks {θi}mi=1, for some m ≥ 1:

Ω∗ ⊂
m⋃
i=1

θi.

By reducing the radius of the disks {θi}mi=1 (if necessary), we may assume that θi does not intersect the
internal boundary of Ω1, for all i ∈ {1, . . . ,m} (in particular, θi ∩ ∂K = ∅).

Next, we introduce a partition of unity subordinate to the open cover {θi}mi=1, that is, we consider a
family of functions {φi}mi=1 ⊂ C∞0 (R2) such that:

φi ∈ C∞0 (θi), 0 ≤ φi(x, y) ≤ 1 ∀(x, y) ∈ Ω∗, ∀i ∈ {1, . . . ,m};
m∑
i=1

φi(x, y) = 1 ∀(x, y) ∈ Ω∗.

Therefore, we have

u(x, y) =
m∑
i=1

φi(x, y)u(x, y), p(x, y) =
m∑
i=1

φi(x, y)p(x, y) for a.e. (x, y) ∈ Ω∗,

and it suffices to prove that φiu ∈ H2(Ω∗ ∩ θi) and φip ∈ H1(Ω∗ ∩ θi), for every i ∈ {1, . . . ,m}. In order
to achieve this, we notice that, since Q is convex and φi has compact support in θi, there exists a convex
polygon ζi such that supp(φi) ∩ Ω∗ ⊂ ζi, see Figure 3.1.

Figure 3.1: Construction of the open set ζi ⊂ (θi ∩ Ω∗).

Defining u
.
= u− (U, V ), one notices that (φiu, φip) ∈ H1

0 (ζi)× L2(ζi) and ∇ · (φiu) = ∇φi · u ∈ H1
0 (ζi).

Thus, [39, Theorem III.3.3] guarantees the existence of a vector field vi ∈ H2(ζi) ∩H1
0 (ζi) such that

∇ · vi = ∇φi · u in ζi, ‖vi‖H2(ζi) ≤ ci‖∇φi · u‖H1(ζi), (3.27)

for some constant ci > 0 depending only on θi. Since (u, p) is a solution of (1.2)-(1.3), we deduce that
the pair (φiu− vi, φip) ∈ H1

0 (ζi)× L2(ζi) satisfies the Stokes system

−η∆(φiu− vi) +∇(φip) = ωi + η(∆φi)(U, V ) + η∆vi, ∇ · (φiu− vi) = 0 in ζi,
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with ωi
.
= φi[f − (u · ∇)u] − η[(∆φi)u + 2(∇φi · ∇)u] + p∇φi ∈ L3/2(ζi) ⊂ H−1/3(ζi). Then, since

ζi is a convex polygon, we may “interpolate” the basic regularity of the Stokes equation (H−1-source
implies H1×L2-solution) with the improved regularity from [51, Theorem 2] (L2-source implies H2×H1-
solution) to infer that φiu ∈ H5/3(ζi). As H5/3(ζi) ⊂ L∞(ζi), we finally have ωi ∈ L2(ζi). Applying
again [51, Theorem 2] we infer that (φiu, φip) ∈ H2(ζi)×H1(ζi) and the existence of Ci > 0 (depending
only on θi) such that

‖φiu− vi‖H2(ζi) + ‖φip‖H1(ζi) ≤ Ci
(
‖ωi‖L2(ζi) + η|(U, V )| ‖∆φi‖L2(ζi) + η‖∆vi‖L2(ζi)

)
.

In view of (3.27), this implies

‖φiu‖H2(Ω∗∩θi) + ‖φip‖L2(Ω∗∩θi) ≤ Ci
(
‖ωi‖L2(Ω∗∩θi) + |(U, V )| ‖φi‖H2(Ω∗∩θi) + ‖∇φi · u‖H1(Ω∗∩θi)

)
,

where Ci > 0 now denotes a constant depending on η and θi. By summing over i ∈ {1, . . . ,m} we get

‖u‖H2(Ω∗) + ‖p‖H1(Ω∗) ≤
m∑
i=1

Ci
(
‖ωi‖L2(Ω∗∩θi) + |(U, V )| ‖φi‖H2(Ω∗∩θi) + ‖∇φi · u‖H1(Ω∗∩θi)

)
≤ C

[
‖∇u‖L2(Ω0)

(
‖∇u‖L2(Ω0) + 1

)
+ ‖p‖L2(Ω0) + ‖f‖L2(Ω0) + |(U, V )|

]
≤ C

(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
,

(3.28)

after applying the Poincaré-type inequalities to u = u− (U, V ), using that {φi}mi=1 ⊂ C∞0 (R2) and (3.2).
The proof is complete after putting together (3.26) and (3.28). 2

Remark 3.3. If the obstacle K has a C2 boundary, then the arguments of Theorem 3.3 enable to prove
that weak solutions of (1.2)-(1.3) in Ω belong to H2(Ω)×H1(Ω).

3.2 Symmetry and almost symmetry

Turbulence in fluids with large Reynolds number may be detected by refined numerical simulations using
Computational Fluid Dynamics [36], see Figure 3.2 where the dependence of the flow on the Reynolds
number is emphasized in a symmetric domain.
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Figure 3.2: CFD simulation of a flow around a square cylinder (top line Re= 30, bottom line Re= 200)
by Fuka-Brechler [36], reproduced with courtesy of the authors.

The pattern displayed in Figure 3.2 will be essential to comment the results throughout the paper.
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We consider here domains Ω being symmetric with respect to the x-axis. Moreover, we initially
assume that the boundary data in (1.3) satisfy

U(x,−y) = U(x, y) and V (x,−y) = −V (x, y) ∀(x, y) ∈ ∂Q. (3.29)

Concerning the source f = (f1, f2) ∈ H−1(Ω), we recall that a distribution is called even (resp. odd)
if its kernel contains the space of odd (resp. even) test functions. In this symmetric framework, we
complement Theorem 3.1 with the following result; see [38] for a related work in unbounded domains.

Theorem 3.4. Let Ω be as in (1.1), K being symmetric with respect to the x-axis. Suppose that
f = (f1, f2) ∈ H−1(Ω) and that (U, V ) ∈ H1/2(∂Q) satisfy (1.4). Assume moreover that f1 is y-even, f2

is y-odd, and (U, V ) verifies (3.29). Then:
• there exists (at least) one weak solution (u1, u2, p) ∈ V∗(Ω)2 × L2

0(Ω) of (1.2)-(1.3) satisfying the
symmetry property

u1(x,−y) = u1(x, y), u2(x,−y) = −u2(x, y), p(x,−y) = p(x, y) for a.e. (x, y) ∈ Ω; (3.30)

• if (u1, u2, p) ∈ H1(Ω)2 × L2
0(Ω) is a weak solution of (1.2)-(1.3), then also (v1, v2, q) with

v1(x, y) = u1(x,−y), v2(x, y) = −u2(x,−y), q(x, y) = p(x,−y) for a.e. (x, y) ∈ Ω (3.31)

solves (1.2)-(1.3);
• if (3.3) holds, then the unique weak solution of (1.2)-(1.3) satisfies (3.30).

Proof. By Proposition 2.1, there exists a symmetric solenoidal extension v̂ ∈ H1(Ω) of the boundary
data (U, V ) ∈ H1/2(∂Q) such that∇ · v̂ = 0 in Ω, v̂ = (U, V ) on ∂Q, v̂ = (0, 0) on ∂K

|β(z, v̂, z)| ≤ η

2
‖∇z‖2L2(Ω) ∀z ∈ V(Ω); v̂1 is y-even, v̂2 is y-odd.

(3.32)

We introduce the space

Z(Ω) = {v ∈ V(Ω) | v satisfies the symmetry property (3.30)},

which is a closed subspace of V(Ω) and therefore it constitutes a Hilbert space under the Dirichlet scalar
product. To prove the existence of a weak symmetric solution (u, p) ∈ V∗(Ω) × L2

0(Ω) of (1.2)-(1.3)
amounts to show the existence of (û, p) ∈ Z(Ω)× L2

0(Ω) such that

− η∆û+ (û · ∇)û+ (û · ∇)v̂ + (v̂ · ∇)û+∇p = f + η∆v̂ − (v̂ · ∇)v̂ in Ω (3.33)

in weak sense, then the solution will be given by u = û + v̂ and p will have the required symmetry
property as a consequence of (3.33). Fix v0 ∈ Z(Ω) and consider the linearized version of (3.33), namely

−η∆û+ (v0 · ∇)û+ (û · ∇)v̂ + (v̂ · ∇)û+∇p = f + η∆v̂ − (v̂ · ∇)v̂, ∇ · û = 0 in Ω.

By a symmetric weak solution of this problem we understand a function û ∈ Z(Ω) such that

η(∇û,∇ϕ)L2(Ω) + β(v0, û, ϕ) + β(û, v̂, ϕ) + β(v̂, û, ϕ) = 〈F,ϕ〉Ω ∀ϕ ∈ Z(Ω), (3.34)

where F
.
= f + η∆v̂ − (v̂ · ∇)v̂ ∈ H−1(Ω) is such that F1 is y-even and F2 is y-odd. It is quite standard

for the Navier-Stokes equations to see that the bilinear form A : Z(Ω)×Z(Ω)→ R defined by

A(v, w) = η(∇v,∇w)L2(Ω) + β(v0, v, w) + β(v, v̂, w) + β(v̂, v, w) ∀v, w ∈ Z(Ω),

is continuous and coercive (for the latter property, one needs the bound in (3.32)). Therefore, the Lax-
Milgram Theorem ensures the existence of a unique function û ∈ Z(Ω) satisfying (3.34). Whence, in view
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of the compact embedding Z(Ω) ⊂ L4(Ω), we have constructed a compact operator T : L4(Ω)→ L4(Ω)
such that, for any v0 ∈ L4(Ω), T (v0) = û is the unique symmetric solution of (3.34). Moreover, after
testing (3.34) with ϕ = û and using the bound in (3.32) we obtain

‖∇û‖L2(Ω) ≤
2

η
‖F‖H−1(Ω),

so that T actually maps the (non-empty) convex compact set {v ∈ L4(Ω) | η‖∇v‖L2(Ω) ≤ 2‖F‖H−1(Ω)}
into itself. Then the Schauder Fixed Point Theorem ensures the existence of û ∈ Z(Ω) such that
T (û) = û, that is, û is a weak solution of (3.33) satisfying the symmetry property (3.30). By the
symmetry properties of F , we infer that the resulting pressure p ∈ L2

0(Ω), which arises as a consequence
of [39, Lemma III.1.1], also satisfies the symmetry property given in (3.30).

Finally, under the assumptions of the statement, one can check that also (3.31) solves (1.2)-(1.3).
Thus, in case of uniqueness, the solution satisfies the symmetry property (3.30). 2

Remark 3.4. Since δ in (3.18) depends increasingly on η, and therefore decreasingly on Re, Figure
3.2 is compatible with Theorem 3.1: as long as Re is small the flow is symmetric, while if Re is large,
uniqueness is lost and asymmetric solutions may arise. Hence, in a symmetric framework, the existence
of an asymmetric solution is a sufficient condition for non-uniqueness. Whether it is also a necessary
condition is an open problem. For 2D symmetric conditions in a channel past a circular cylinder, Sahin-
Owens [71, Fig.6] (see branches 1, 3, 5 therein), numerically found different symmetric solutions for
suitable Reynolds numbers but for different proportions between the width of the channel and the diameter
of the cylinder.

In real life, perfect symmetry does not exist, there are no perfectly symmetric flows and any obsta-
cle inevitably has small imperfections. It is therefore natural to wonder whether “almost symmetric”
boundary data and obstacles give rise to “almost symmetric” solutions, in a suitable sense. Although
some of the below results hold under milder assumptions, from now on we take

(U, V ) ∈ H1/2(∂Q) f ∈ L2(Ω).

Firstly, we maintain the obstacle K fixed and we perturb the boundary velocity and the external
force. For any ε > 0, (U, V ) ∈ H1/2(∂Ω) and f ∈ L2(Ω) we denote

Bε(U, V, f) =

{
(A,B, g) ∈ H1/2(∂Ω)2 × L2(Ω)

∣∣∣∣∣ (A,B) satisfies (1.4),

‖(A− U,B − V )‖H1/2(∂Ω) + ‖g − f‖L2(Ω) < ε

}
.

In this setting, we prove the following continuous dependence result.

Theorem 3.5. Let Ω be as in (1.1), f ∈ L2(Ω) and (U, V ) ∈ H1/2(∂Ω) satisfying (1.4). There exists
δ0 = δ0(η,Ω) > 0 such that, if

‖(U, V )‖H1/2(∂Q) + ‖f‖L2(Ω) < δ0, (3.35)

then (1.2)-(1.3) in Ω admits a unique weak solution (u, p) ∈ V∗(Ω)×L2
0(Ω) with data (U, V, f). Further-

more, there exists ε0 = ε0(U, V, f) > 0 such that, for all ε < ε0 and all (Uε, Vε, fε) ∈ Bε = Bε(U, V, f),
problem (1.2)-(1.3) with data (Uε, Vε, fε) ∈ Bε admits a unique weak solution (uε, pε) ∈ V∗(Ω) × L2

0(Ω).
Furthermore, the following limit holds:

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

(
‖∇(u− uε)‖L2(Ω) + ‖p− pε‖L2(Ω)

)
= 0.

Proof. The quantitative uniqueness statement (3.35) follows directly from (3.3), since

‖f‖H−1(Ω) ≤ λ−1‖f‖L2(Ω),
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with λ > 0 the Poincaré constant of Ω. Now, let δ0 = δ0(η,Ω) > 0 be as in (3.35). Define

ε0 = ε0(U, V, f) = δ0 − ‖(U, V )‖H1/2(∂Ω) − ‖f‖L2(Ω) > 0

so that, if 0 < ε < ε0 and (Uε, Vε, fε) ∈ Bε, we have

‖(Uε, Vε)‖H1/2(∂Ω) + ‖fε‖L2(Ω) ≤ ‖(Uε − U, Vε − V )‖H1/2(∂Ω) + ‖fε − f‖L2(Ω) + ‖(U, V )‖H1/2(∂Ω) + ‖f‖L2(Ω)

< ε+ δ0 − ε0 < δ0,

and problem (1.2)-(1.3) with data (Uε, Vε, fε) admits a unique weak solution (uε, pε) ∈ V∗(Ω) × L2
0(Ω),

see Theorem 3.1. So, fix ε ∈ (0, ε0) and choose any (Uε, Vε, fε) ∈ Bε. In view of Proposition 2.1, there
exists a vector field w0 ∈ V∗(Ω) such that

w0 = (U, V )− (Uε, Vε) on ∂Q, ‖∇w0‖L2(Ω) ≤ C‖(U, V )− (Uε, Vε)‖H1/2(∂Q) ≤ Cε, (3.36)

for some constant C > 0 depending only on Ω. Let ξ
.
= u−uε−w0, so that ξ ∈ V(Ω). After subtracting

the equations (1.2) satisfied by (u, p, f) and (uε, pε, fε) in Ω we infer that:

− η∆ξ+ [(ξ+w0) · ∇](ξ+w0) + [(u− uε) · ∇]uε + (uε · ∇)(u− uε) +∇(p− pε) = η∆w0 + f − fε, (3.37)

with η∆w0 + f − fε ∈ H−1(Ω). Here (3.37) is understood in the weak sense, see (3.1); we test it with ξ,
we integrate by parts in Ω in order to obtain the upper bound (after applying (3.36)):

η‖∇ξ‖2L2(Ω) + β(ξ + w0, ξ + w0, ξ) + β(u− uε, uε, ξ) + β(uε, u− uε, ξ) ≤ ε(Cη + 1)‖∇ξ‖L2(Ω). (3.38)

After applying property (2.37) repeatedly we deduce that:

β(ξ + w0, ξ + w0, ξ) + β(u− uε, uε, ξ) + β(uε, u− uε, ξ) = β(ξ + w0, u, ξ) + β(uε, w0, ξ). (3.39)

In view of (2.35) and (3.36) we have

|β(ξ + w0, u, ξ) + β(uε, w0, ξ)| ≤
1

S0
‖∇u‖L2(Ω)‖∇ξ‖2L2(Ω) +

Cε

S
(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

)
‖∇ξ‖L2(Ω),

inequality that, together with (3.39), can be inserted into (3.38) to yield(
η − 1

S0
‖∇u‖L2(Ω)

)
‖∇ξ‖L2(Ω) ≤

[
C

(
1

S
(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

)
+ η

)
+ 1

]
ε. (3.40)

The uniqueness assumption ensures that ‖∇u‖L2(Ω) < S0η, and since u− uε = ξ + w0, we have

‖∇(u− uε)‖L2(Ω) ≤
C

[(S0

S − 1

)
‖∇u‖L2(Ω) +

S0

S ‖∇uε‖L2(Ω) + 2S0η

]
+ S0

S0η − ‖∇u‖L2(Ω)
ε. (3.41)

On the other hand, by subtracting the equations of conservation of momentum (1.2) satisfied by (u, p, f)
and (uε, pε, fε) in Ω we infer that:

∇(p− pε) = η∆(u− uε) + [(uε − u) · ∇]uε + (u · ∇)(uε − u) + f − fε, (3.42)

an identity that must also be intended in the weak sense of H−1(Ω). In particular:

‖∇(p− pε)‖H−1(Ω) ≤ η‖∇(u− uε)‖L2(Ω) + ‖∇uε‖L2(Ω)‖u− uε‖L6(Ω) + ‖∇(u− uε)‖L2(Ω)‖u‖L6(Ω) + ε

≤
[
η + C

(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

)]
‖∇(u− uε)‖L2(Ω) + ε,
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where C > 0 is the embedding constant for H1(Ω) ⊂ L6(Ω). From (2.43) we can deduce the existence
of a constant M > 0 (depending only on Ω) such that ‖p− pε‖L2(Ω) ≤M‖∇(p− pε)‖H−1(Ω). This yields

‖∇(u− uε)‖L2(Ω) + ‖p− pε‖L2(Ω) ≤
[
1 +M

(
η + C

(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

))]
‖∇(u− uε)‖L2(Ω) +Mε,

which, together with (3.41) and (3.2), completes the proof. 2

Theorem 3.5 is a continuous dependence result which shows, in particular, that if the first component
of f is y-even, the second component of f is y-odd and the boundary data (U, V ) satisfies the symmetry
property (3.29), then the solution (uε, pε) is “almost symmetric”, since in this case (u, p) verifies (3.30).
This is made precise in the following statement for which we introduce a further notation. For any
function (or distribution) φ = φ(x, y) we denote its even and odd parts by

φE(x, y) =
φ(x, y) + φ(x,−y)

2
, φO(x, y) =

φ(x, y)− φ(x,−y)

2
.

Then we have

Corollary 3.1. Let Ω be as in (1.1) and K symmetric with respect to the x-axis. Let f = (f1, f2) ∈
L2(Ω)2 with f1 y-even and f2 y-odd, let (U, V ) ∈ H1/2(∂Q) satisfy (1.4), (3.3) and (3.29). Then there
exists ε0 = ε0(U, V, f) > 0 such that, for all ε < ε0 and all (Uε, Vε, fε) ∈ Bε = Bε(0, 0, 0), the problem

−η∆v + (v · ∇)v +∇q = f + fε in Ω, v = (U + Uε, V + Vε) on ∂Q, v = (0, 0) on ∂K,

admits a unique weak solution (v1, v2, q) ∈ V∗(Ω)× L2
0(Ω) and

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

(
‖∇(vO1 , v

E
2 )‖L2(Ω) + ‖qO‖L2(Ω)

)
= 0 .

Theorem 3.5 and Corollary 3.1 make assumptions on the fluid flow, namely on the boundary data
(U, V ) and on the force f . This means that two flows having almost the same boundary data and forcing
behave quite similarly. We are now interested in a second perturbation result, by considering the same
flow conditions but with possibly different obstacles, that is, we fix (U, V ) ∈ H1/2(∂Q) and f ∈ L2(Ω),
and we allow K to vary. This is the problem that occurs if an object (the obstacle) has not been
manufactured with enough precision. However, this second problem is extremely more delicate and we
need first to make clear what kind of imprecisions are allowed.

Definition 3.2. Given a C2-domain K ⊂ Q such that ∂K ∩ ∂Q = ∅, we say that the family of Lipschitz
domains {Kε}ε>0 outer-approximates K as ε→ 0 if:

– K ⊂ Kε2 ⊂ Kε1 ⊂ Q, for every 0 < ε2 < ε1;

– distH(Kε,K) ≤ ε, for every ε > 0, where distH denotes the Hausdorff distance;

– there exists a finite number of disks B1, . . . , BN ⊂ Q such that, for any ε > 0, Q \Kε is contained in
the union of N domains, each one being star-shaped with respect to one of these disks (?).

The first two conditions in Definition 3.2 tell us that Kε approximates K monotonically from outside.
The third condition, that we denote by (?), is a geometric assumption that yields uniform bounds for
some constants depending on Kε. We can now prove the following statement.

Theorem 3.6. Let Ω be as in (1.1), K with C2-boundary. Let f ∈ L2(Ω) and (U, V ) ∈ H1/2(∂Q) satisfy
(1.4) and (3.35), and let (u, p) ∈ V∗(Ω)×L2

0(Ω) be the unique weak solution of (1.2)-(1.3), see Theorem
3.5. For any family of Lipschitz domains {Kε}ε>0 that outer-approximates K, there exists ε0 > 0 such
that if ε < ε0 then (1.2)-(1.3) in Ωε = Q \Kε admits a unique solution (uε, pε) ∈ V∗(Ωε)× L2

0(Ωε) and

lim
ε→0

(
‖∇(uε − u)‖L2(Ωε) + ‖pε − p‖L2(Ωε)

)
= 0. (3.43)
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Proof. From [62, Section 1.1.8], we know that condition (?) in Definition 3.2 implies

− the existence of Γ > 0 (depending on Ω but not on ε) such that |∂Kε|1 ≤ Γ2, ∀ε > 0;

− a uniform (ε-independent) cone property for ∂Kε.
(3.44)

Take an (open) smooth connected domain K0 such that K ⊂ K0 ⊂ K0 ⊂ Q; we have in mind a small
neighborhood of K. Let Ω0 = Q \K0 and consider a solenoidal extension v of the data in Ω0, that is,

v ∈ V∗(Ω0), v = (U, V ) on ∂Q, ‖∇v‖L2(Ω0) ≤ C0‖(U, V )‖H1/2(∂Q),

where C0 = C0(Ω0) > 0 is independent on the boundary data, see [57]. Then the function

v0(x, y) =

{
v(x, y) if (x, y) ∈ Ω0

0 if (x, y) ∈ K0 \K

is a solenoidal extension of the data (U, V ) in Ω and also in Ωε, provided ε is small enough in such a way
that Kε ⊂ K0. Hence, the constant C0 can be used to compute the uniqueness threshold (3.18) (and
also (3.35)) in Ω and Ωε, for any small enough ε > 0.

For all ε > 0 the existence of a weak solution (uε, pε) of (1.2)-(1.3) in Ωε follows from Theorem 3.1
applied to Ωε. Theorem 3.5 ensures uniqueness whenever

‖(U, V )‖H1/2(∂Q) + ‖f‖L2(Ωε) < δε, (3.45)

where δε = δε(η,Ωε) is as in (3.35), but relative to Ωε. A careful look at the proof of Theorem 3.5 and
formula (3.18) show that δε depends on Sε and Sε0 , namely the Sobolev constants defined in (2.22) but
relative to Ωε, and on the Poincaré constant of Ωε (by the above construction, C0 is independent of
ε). Since Kε outer-approximates K, one has Sε → S and Sε0 → S0 as ε → 0, and also the Poincaré
constants converge, due to the continuity of these functionals with respect to the Hausdorff convergence
of domains. Therefore, by (3.35) and by continuity, we know that (3.45) holds provided ε is small enough,
say ε < ε0. Not only this proves the uniqueness of the solution (uε, pε) but, according to Theorem 3.1,
it also proves the uniform bound

‖∇uε‖L2(Ωε) < Sε0η ≤ B ∀ε > 0, (3.46)

for some B > 0 (independent of ε) since Sε0 → S0 as ε→ 0.
To complete the proof we have to show that (3.43) holds. To this end, we first claim that there exist

positive constants {σε}ε>0 such that σε → 0 as ε→ 0 and

‖u‖H1/2(∂Kε)
= ‖u‖L2(∂Kε) +

 ∫
∂Kε

∫
∂Kε

|u(z1)− u(z2)|2
|z1 − z2|2

dsz1 dsz2

1/2

≤ σε ∀ε > 0. (3.47)

Indeed, as in the proof of Theorem 3.3, by localizing in a neighborhood of K one may deduce that
(u, p) ∈ H2(O \ K) × H1(O \ K), for any C2-domain O ⊂ Q such that O ∩ ∂Ω = ∂K. In particular,
u ∈ C0,ν

(
O
)

for any 0 < ν < 1. Then, since u vanishes on ∂K, the uniform continuity of u in O ensures
the existence of positive constants {θε}ε>0 such that θε → 0 as ε → 0 and ‖u‖L∞(∂Kε) ≤ θε for every
ε > 0. By combining this with (3.44)1, we infer

‖u‖L2(∂Kε) ≤ ‖u‖L∞(∂Kε)

√
|∂Kε|1 ≤ Γ θε ∀ε > 0 . (3.48)

Moreover, if M > 0 denotes the Hölder constant of u in O for ν = 4/5, we have

|u(z1)− u(z2)|2 = |u(z1)− u(z2)|1/8|u(z1)− u(z2)|15/8 ≤ (2θε)
1/8M15/8|z1 − z2|3/2
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and, in turn, ∫
∂Kε

∫
∂Kε

|u(z1)− u(z2)|2
|z1 − z2|2

dsz1 dsz2 ≤ (2M15θε)
1/8

∫
∂Kε

∫
∂Kε

dsz1 dsz2
|z1 − z2|1/2

. (3.49)

From (3.44)2 we know that the Lipschitz constant of ∂Kε is independent of ε. Thus, the integral on the
right hand side of (3.49) is uniformly bounded, that is, there exists Λ > 0 (independent of ε) such that ∫

∂Kε

∫
∂Kε

|u(z1)− u(z2)|2
|z1 − z2|2

dsz1 dsz2

1/2

≤ Λ θ1/16
ε ∀ε > 0 .

By combining this bound with (3.48) we obtain (3.47) with σε = Γθε + Λθ
1/16
ε .

We then claim that there exists a solenoidal vector field wε ∈ H1(Ωε) such that

wε = (0, 0) on ∂Q, wε = u|∂Kε on ∂Kε, ‖∇wε‖L2(Ωε) ≤ Cσε, (3.50)

for some constant C > 0 that depends on Ω but is independent of ε. The construction of such wε is
performed in two steps:
(1) In view of [37, Teorema 1.I], there exists W1,ε ∈ H1(Ωε) (not necessarily solenoidal) such that

W1,ε = (0, 0) on ∂Q, W1,ε = u|∂Kε on ∂Kε, ‖∇W1,ε‖L2(Ωε) ≤ C1,ε‖u‖H1/2(∂Kε)
, (3.51)

for some constant C1,ε > 0 that depends on Ωε. From [37] (see also [39, Theorem II.4.3]) we know that
C1,ε depends on Ωε through the number of domains Rm (m = 1, ...,m) needed to cover ∂Ωε (namely,
∂Ωε ⊂ ∪mRm) in such a way that each Rm may be transformed into a rectangle through a bijective
uniformly bi-Lipschitz map φm, see [37, p.285]. In view of condition (?) in Definition 3.2, the number
m = m(ε) of such rectangles Rm remains bounded as ε→ 0. Then, invoking again [37], C1,ε > 0 depends
on Ωε through the Lipschitz constants of the maps φm; by (3.44), also this constant remains bounded
as ε→ 0. Hence, there exists C > 0 (depending only on the family of disks {B1, . . . , BN} in Definition
3.2) such that C1,ε ≤ C for every ε > 0.
(2) We notice that the incompressibility condition and (1.4) imply that∫

∂Ωε

u · n̂ ds =

∫
∂Kε

u · n̂ ds = 0. (3.52)

From (3.51), (3.52) and the Divergence Theorem we then have ∇ ·W1,ε ∈ L2
0(Ωε). Hence, as in [15], we

deduce the existence of W2,ε ∈ H1
0 (Ωε) such that

∇ ·W2,ε = −∇ ·W1 in Ωε, ‖∇W2,ε‖L2(Ωε) ≤ C2,ε‖∇ ·W1,ε‖L2(Ωε), (3.53)

for some constant C2,ε > 0 that depends on Ωε. Condition (?) in Definition 3.2 together with [39,
Theorem III.3.1] imply that C2,ε ≤ C, for all ε > 0, where C depends only on the family B1, . . . , BN .

Finally, we take wε
.
= W1,ε +W2,ε, which satisfies (3.50) after combining (3.47), (3.51) and (3.53).

We now follow the procedure of the proof of Theorem 3.5, taking into account that the functions
involved belong to Sobolev spaces over different domains. For every ε > 0 let ξ = u− uε − wε ∈ V(Ωε).
After subtracting the equations (1.2) satisfied by (u, p, f) and (uε, pε, f) in Ωε we infer

−η∆ξ + [(ξ + wε) · ∇](ξ + wε) + [(u− uε) · ∇]uε + (uε · ∇)(u− uε) +∇(p− pε) = η∆wε,

with η∆wε ∈ H−1(Ωε), so that the equation is understood in the weak sense, see (3.1). We test it with
ξ, we integrate by parts in Ωε order to obtain the upper bound (after applying (3.47) and (3.50))

η‖∇ξ‖2L2(Ωε)
+ βε(ξ + wε, ξ + wε, ξ) + βε(u− uε, uε, ξ) + βε(uε, u− uε, ξ) ≤ Cησε‖∇ξ‖L2(Ωε), (3.54)

33



where βε : H1(Ωε)×H1(Ωε)×H1(Ωε)→ R denotes the trilinear form (2.34) with the integral computed
over Ωε. Since ξ ∈ V(Ωε), we have

βε(ξ+wε, ξ+wε, ξ)+βε(u−uε, uε, ξ)+βε(uε, u−uε, ξ) = βε(ξ, u, ξ)+βε(wε, u, ξ)+βε(uε, wε, ξ). (3.55)

Since Ωε ⊂ Ω, every function in H1
∗ (Ωε) may be extended by zero in Kε \K, becoming an element of

H1
∗ (Ω). Therefore, S and S0, defined in (2.22) for Ω, may also be used as embedding constants in Ωε.

By combining this fact with (3.50), we obtain the estimates∣∣βε(ξ, u, ξ)∣∣ ≤ 1

S0
‖∇u‖L2(Ω)‖∇ξ‖2L2(Ωε)

,
∣∣βε(uε, wε, ξ)∣∣ ≤ Cσε

S ‖∇uε‖L2(Ωε)‖∇ξ‖L2(Ωε),∣∣βε(wε, u, ξ)∣∣ ≤ Cσε
S ‖∇u‖L2(Ω)‖∇ξ‖L2(Ωε) . (3.56)

We plug (3.55)-(3.56) into (3.54) to deduce that(
η −
‖∇u‖L2(Ω)

S0

)
‖∇ξ‖L2(Ωε) ≤ Cσε

(
η +
‖∇uε‖L2(Ωε)

S +
‖∇u‖L2(Ω)

S

)
.

We have seen above that (3.35) implies (3.3) and, in turn, Theorem 3.1 ensures ‖∇u‖L2(Ω) < S0η. Hence,
the latter inequality yields an upper bound for ‖∇ξ‖L2(Ωε) which, combined with (3.46) and (3.50), yields

‖∇(u− uε)‖L2(Ωε) ≤ ‖∇ξ‖L2(Ωε) + ‖∇wε‖L2(Ωε) ≤
2Sη + (1− S/S0)‖∇u‖L2(Ω) +B

S0η − ‖∇u‖L2(Ω)

CS0

S σε → 0,

as ε → 0. In order to control the pressure terms, we note that the same extension argument of H1
∗ (Ωε)

into H1
∗ (Ω) proves that the embedding constant of H1

∗ (Ω) ⊂ L6(Ω) bounds the corresponding embedding
constant in Ωε. Then, as in the proof of Theorem 3.5, but applying condition (?), (2.43) and (3.46), we
can deduce the existence of a constant A > 0, depending on η and Ω, such that

‖p− pε‖L2(Ωε) ≤ A
(
1 + ‖∇u‖L2(Ω) + ‖∇uε‖L2(Ωε)

)
‖∇(u− uε)‖L2(Ωε) → 0 as ε→ 0.

This shows (3.43) and completes the proof. 2

3.3 Definition and computation of drag and lift

In this section we analyze the forces of a fluid flow in Ω over the obstacle K. The stress tensor of a
viscous incompressible fluid governed by (1.2) is (see [59, Chapter 2])

T(u, p)
.
= −pI2 + η[∇u+ (∇u)ᵀ] in Ω, (3.57)

where I2 is the 2× 2-identity matrix. Accordingly, the total force exerted by the fluid over the obstacle
K is formally given by

FK(u, p) = −
∫
∂K

T(u, p) · n̂ ds, (3.58)

where the minus sign is due to the fact that the outward unit normal n̂ to Ω is directed towards the
interior of K. To be precise, (3.58) makes sense only if (u, p) are regular while if (u, p) ∈ V∗(Ω)×L2

0(Ω)
is a weak solution of (1.2) with f ∈ L2(Ω), a generalized formula is needed. Indeed, in such case, one
has u ∈ Lp(Ω), for every p <∞ so that, in particular,

T(u, p) ∈ L2(Ω) ⊂ L3/2(Ω) and ∇ · T(u, p) = (u · ∇)u− f ∈ L3/2(Ω). (3.59)

Therefore, T(u, p) ∈ E3/2(Ω) and the normal component of the trace of T(u, p) belongs to W−
2
3
, 3
2 (∂Ω),

the dual space of W
2
3
,3(∂Ω), see (2.38). Then, we can rigorously define the force as follows.
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Definition 3.3. Let f ∈ L2(Ω) and let (u, p) ∈ V∗(Ω) × L2(Ω) be a weak solution of (1.2). Then, the
total force exerted by the fluid over the obstacle K is given by

FK(u, p) = −〈T(u, p) · n̂, 1〉∂K , (3.60)

where 〈·, ·〉∂K denotes the duality pairing between W−
2
3
, 3
2 (∂K) and W

2
3
,3(∂K).

The classical literature [2, Introduction] defines the drag force as the component of FK parallel to
the incoming stream and the lift force as the component of FK perpendicular to the stream. This
characterization is rigorous only if the direction of the inflow velocity is constant.

Definition 3.4. For (U, V ) ∈ H1/2(∂Q)\{(0, 0)} such that (U, V )/|(U, V )| is constant, the drag DK(u, p)
and the lift LK(u, p), exerted by the fluid over the obstacle K, are given by

DK(u, p) = FK(u, p) · (U, V )

|(U, V )| and LK(u, p) = FK(u, p) · (−V,U)

|(U, V )| .

In the case where V = 0 and U ∈ H1/2(∂Q) is a strictly positive function on ∂Q, this reduces to

DK(u, p) = FK(u, p) · (1, 0) and LK(u, p) = FK(u, p) · (0, 1).

Clearly, the signs of DK and LK are just a matter of orientation and one could just take the absolute
values, especially if one is merely interested in evaluating the strength of these forces.

The main purpose of this section is to discuss a well-known experimental fact: a bluff body immersed
in a viscous fluid experiences no lift when its cross-section is symmetric with respect to the angle of attack
of the fluid, as well illustrated in [66, Figure 2.6]. Moreover, any small symmetry-breaking angle of attack
produces a lift on the obstacle. This was already observed by Kutta [54] in 1910 (see also [3, Chapter
12]): “With regard to dynamic lift effects, the most important types of a body immersed in a flowing
fluid are long flat plates placed at an angle to the flow and slightly curved cylindrical shells, which
experience lift forces even if the chord of their cross-section lies parallel to the flow”.

For simplicity, we merely consider the case of constant positive horizontal data (U ∈ R+ and V = 0)
and, if Bε is as in Corollary 3.1, we prove

Theorem 3.7. Let Ω be as in (1.1), let K be symmetric with respect to the x-axis. Assume that U > 0
is constant, V = 0, and that f = (f1, f2) ∈ L2(Ω) is such that f1 is y-even and f2 is y-odd. If

2
√

2L |U |+ ‖f‖L2(Ω) < δ0 , (3.61)

with δ0 as in (3.35), then the fluid governed by (1.2)-(1.3) exerts no lift over K. Moreover, there exists
ε0 = ε0(U, f) > 0 such that, for all ε < ε0 and all (Uε, Vε, fε) ∈ Bε = Bε(0, 0, 0), the problem

− η∆v + (v · ∇)v +∇q = f + fε in Ω, v = (U + Uε, Vε) on ∂Q, v = (0, 0) on ∂K, (3.62)

admits a unique weak solution (vε, qε) ∈ V∗(Ω)× L2
0(Ω) and

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

∣∣LK(vε, qε)
∣∣ = 0.

Proof. The compatibility condition (1.4) is evidently satisfied, thus ensuring the existence of (at least)
one solution (u, p) ∈ V∗(Ω) × L2

0(Ω) of (1.2)-(1.3), see Theorem 3.1. Furthermore, from (2.39) we see
that (3.35) becomes (3.61) and then Theorem 3.5 ensures that the solution (u, p) is unique. Theorem
3.4 then states that (u, p) satisfies the symmetry properties (3.30).

From (3.60) and Definition 3.4 we have that

LK(u, p) = −〈T2(u, p) · n̂, 1〉∂K = 〈T2(u, p) · n̂, 1〉∂Q − 〈T2(u, p) · n̂, 1〉∂Ω, (3.63)
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where

T2(u, p) =

[
η

(
∂u1

∂y
+
∂u2

∂x

)
, 2η

∂u2

∂y
− p
]ᵀ
.

By Theorem 3.3 we know that the term over ∂Q in (3.63) can be treated as an integral. On the other
hand, (2.38) allows us to manage the term over ∂Ω and we obtain

LK(u, p) =

∫
∂Q

T2(u, p) · n̂−
∫

Ω
∇ · T2(u, p)

= η

L∫
−L

[
∂u1

∂y
(L, y)− ∂u1

∂y
(−L, y) +

∂u2

∂x
(L, y)− ∂u2

∂x
(−L, y)

]
dy + 2η

L∫
−L

[
∂u2

∂y
(x, L)− ∂u2

∂y
(x,−L)

]
dx

+

L∫
−L

[
p(x,−L)− p(x, L)

]
dx+

∫
Ω

[
f2(x, y)− u(x, y) · ∇u2(x, y)

]
dx dy = 0.

Let us explain in detail why all the above terms vanish. In the first integral, the terms with ∂u1
∂y vanish

because u1 is constant on ∂Q. For the term with ∂u2
∂x in the first integral we remark that with the change

of variables y 7→ −t it becomes

L∫
−L

[
∂u2

∂x
(L,−t)− ∂u2

∂x
(−L,−t)

]
dt

while, by (3.30), we know that it is also equal to the same expression with opposite sign. The second
integral vanishes because (3.30) implies that ∂u2

∂y is y-even and the summands cancel. The integral
∫

Ω f2

vanishes because f2 is y-odd and Ω is y-symmetric. Finally, u · ∇u2 = u1
∂u2
∂x + u2

∂u2
∂y and, again by

(3.30), each summand is the product of a y-even and a y-odd function so that u · ∇u2 is y-odd.
The number ε0 = ε0(U, f) > 0 can be chosen as in the proof of Theorem 3.5; then Theorem 3.1

guarantees the existence and uniqueness of a solution (vε, qε) ∈ V∗(Ω)× L2
0(Ω) of (3.62). By (2.38) and

(3.60) (and by linearity), we infer

T(vε, qε) = T(vε − u, qε − p) + T(u, p) , FK(vε, qε) = FK(vε − u, qε − p) + FK(u, p) ,

so that, by (3.63),

LK(vε, qε) = LK(vε − u, qε − p) = 〈T2(vε − u, qε − p) · n̂, 1〉∂Q − 〈T2(vε − u, qε − p) · n̂, 1〉∂Ω.

By combining this with Theorem 3.5 (and by continuity of traces, see [37] or [39, Theorem II.4.3]) we
obtain the statement. 2

Next, in the spirit of Theorem 3.6, we estimate the difference between the forces exerted by a given
flow over two nearby obstacles.

Theorem 3.8. Let Ω be as in (1.1), K with C2-boundary and symmetric with respect to the x-axis.
Assume that U > 0 is constant, V = 0, and that f ∈ L2(Ω) with f1 y-even and f2 y-odd; assume also
that (3.61) holds. Let {Kε}ε>0 be a family of Lipschitz domains that outer-approximates K and let ε0

be as in Theorem 3.6. For all ε ∈ (0, ε0) denote by Ωε = Q \Kε and by (uε, pε) ∈ V∗(Ωε) × L2
0(Ωε) the

unique weak solution of (1.2)-(1.3) in Ωε. Then

lim
ε→0
LKε(uε, pε) = 0.
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Proof. Existence and uniqueness of (u, p) and (uε, pε) as in the statement follow as in the proof of
Theorem 3.6. Fix ε ∈ (0, ε0). From Theorem 3.7 we know that LK(u, p) = 0 and, by arguing as in that
proof, we obtain

LKε(uε, pε) = LKε(uε, pε)− LK(u, p)

= η

∫ L

−L

[
∂(uε)1

∂y
(L, y)− ∂u1

∂y
(L, y)− ∂(uε)1

∂y
(−L, y) +

∂u1

∂y
(−L, y)

]
dy

+ η

∫ L

−L

[
∂(uε)2

∂x
(L, y)− ∂u2

∂x
(L, y)− ∂(uε)2

∂x
(−L, y) +

∂u2

∂x
(−L, y)

]
dy

+ 2η

∫ L

−L

[
∂(uε)2

∂y
(x, L)− ∂u2

∂y
(x, L)− ∂(uε)2

∂y
(x,−L) +

∂u2

∂y
(x,−L)

]
dx

+

∫ L

−L
[pε(x,−L)− p(x,−L)− pε(x, L) + p(x, L)] dx

+

∫
Ωε

[u · ∇u2 − uε · ∇(uε)2] +

∫
Ω\Ωε

u · ∇u2 −
∫

Ω\Ωε

f2 ,

(3.64)

and we claim that all the terms after the equality sign in (3.64) vanish as ε→ 0.
For the boundary integrals over ∂Q in (3.64), we fix an open set Ω0 ⊂ Ωε0 ⊂ Ω having an internal

boundary of class C2 and such that ∂Ωε0 ∩ ∂Ω0 = ∂Q; then Theorem 3.3 yields

(u, p), (uε, pε) ∈ H2(Ω0)×H1(Ω0) ∀ε > 0.

Indeed, this choice of Ω0 also ensures that Ω0 ⊂ Ωε and ∂Ωε ∩ ∂Ω0 = ∂Q for all ε > 0 since Kε outer-
approximates K. In fact, (3.23) says more: ‖uε‖H2(Ω0) and ‖pε‖H1(Ω0) are bounded independently of ε
since ‖∇uε‖L2(Ω0) and ‖pε‖L2(Ω0) are bounded by (3.43). Therefore, also ‖uε−u‖H2(Ω0) and ‖pε−p‖H1(Ω0)

are bounded, a fact that, combined with an interpolation and with (3.43), shows that

uε → u in Hs(Ω0) ∀s < 2 and pε → p in Hr(Ω0) ∀r < 1 , as ε→ 0.

Then a result by Gagliardo [37] (see also [39, Theorem II.4.3]) states that

uε → u in Hs(∂Ω0) ∀s < 3

2
and pε → p in Hr(∂Ω0) ∀r < 1

2
, as ε→ 0.

In turn, this shows that all the boundary integrals in (3.64) tend to vanish. Concerning the last line
in (3.64), we notice that the first integral tends to vanish thanks to Theorem 3.6 and (3.43) while the
second and third integrals tend to vanish because of the Lebesgue Theorem and because |Ω \Ωε| → 0 as
ε→ 0 (since Kε outer-approximates K).

Summarizing, all the integrals in (3.64) tend to zero as ε→ 0 and the result is proved. 2

Remark 3.5. A careful look at the proof of Theorem 3.7 shows that the lift is due to the asymmetric
part of the solution, namely LK(u1, u2, p) = LK(uE1 , u

O
2 , p

E). Moreover, assuming that K has a C2-
boundary and under suitable assumptions on the boundary datum (U, V ) ∈ H3/2(∂Q) (needed to prove
the H2 ×H1-regularity of the solutions, see [48]), arguments similar to the ones employed in the proofs
of Theorems 3.7 and 3.8 can be used to obtain the (respectively) stronger statements

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

∣∣FK(vε, qε)
∣∣ = 0 , lim

ε→0
FKε(uε, pε) = 0.

This means that also the drag varies with continuity.
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3.4 A universal threshold for the appearance of lift

In this section we restrict our attention to a simple case: we consider problem (1.2)-(1.3) assuming that
K is symmetric with respect to the x-axis, that f = 0, U ∈ R+ and V = 0, thereby obtaining{

−η∆u+ (u · ∇)u+∇p = 0, ∇ · u = 0 in Ω,
u = (U, 0) on ∂Q, u = (0, 0) on ∂K.

(3.65)

Note that (1.4) is satisfied and that (3.65) models a horizontal flow as in Figure 1.1.
Our purpose is to study the transition in (3.65) from uniqueness to non-uniqueness regimes (or,

similarly, from symmetric to asymmetric solutions). Then, in the next section, we numerically analyze
how the obtained threshold depends on the shape of the (symmetric) obstacle K.

The advantage of (3.65) is that we focus our attention on a unique parameter. Indeed, u solves (3.65)
for some η > 0 and U = 1 if and only if v = ku (for some k > 0) solves (3.65) for a viscosity ηk and
with U = k. Therefore, the transition of (3.65) from the uniqueness to the non-uniqueness regimes can
be studied for fixed η and variable U . In order to make sure that we are in the uniqueness regime for
(3.65) (see Theorem 3.1), we use the quantitative functional inequalities obtained in Section 2.

So, let us revisit Theorem 3.2 in this simplified context.

Theorem 3.9. Let Ω be as in (1.1) and assume (2.33) with L > a + d. Define γ0, γ1, γ2 > 0 as in
Theorem 3.2. For any U > 0 there exists a weak solution (u, p) ∈ V∗(Ω)×L2

0(Ω) of (3.65). If, moreover,

U <
η√
γ2

γ0
√
γ1√

γ0 + 2
√
γ1
, (3.66)

then the weak solution of (3.65) is unique. Furthermore, if K is symmetric with respect to the x-axis
and (3.66) holds, then the unique solution of (3.65) exerts no lift on K.

Proof. Existence of a weak solution (u, p) ∈ V∗(Ω)×L2
0(Ω) of (3.65) follows from Theorem 3.1, noticing

that the compatibility condition (1.4) is automatically fulfilled. On the other hand, the threshold (3.66)
for the critical inflow velocity ensuring unique solvability of (3.65) is directly obtained from Theorem
3.2 by putting V = 0.

Finally, in the case when K is symmetric with respect to the x-axis, by combining Theorems 3.4 and
3.7, we infer that the unique solution of (3.65) exerts no lift on K. 2

Combined with Theorem 3.1, Theorem 3.9 states that, for a given measure of the symmetric obstacle,
but regardless of its shape, there is no lift on the obstacle as long as (at least) the horizontal boundary
velocity U satisfies (3.66). Hence, we have obtained

an absolute bound on the fluid velocity under which any symmetric obstacle is subject to no lift.

This bound merely depends on the viscosity of the fluid and is independent of the nature of the obstacle
(a flag, any elastic body, any structure in civil engineering). If we view the fluid as the air and U as the
velocity of the wind, the drag force D is the force directly exerted from the wind on the obstacle and,
therefore, it comes from where the wind is blowing; hence it is mostly concentrated windward (the part
upwind). On the contrary, the lift force L is an indirect force generated by an instability of the obstacle
for large drag forces; this is the reason why it is oriented orthogonally to the flow and it acts downwind,
on the “hidden part” of the obstacle. This situation is depicted in Figure 3.3 for a “stadium-shaped”
obstacle, namely a rectangle ended by two half circles, to be compared with Figure 1.1.

Figure 3.3: Drag D and lift L forces acting on a stadium-shaped obstacle K.
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3.5 Multiplicity of solutions and numerical testing of shape performance

In the previous sections we gave sufficient conditions ensuring unique solvability of (1.2)-(1.3), but, as
far as we are aware, there exist no sufficient conditions for the existence of multiple solutions. The first
purpose of this section is precisely to give such condition in a symmetric framework, as a consequence
of Theorem 3.4.

Corollary 3.2. Let Ω be as in (1.1), K being symmetric with respect to the x-axis. Suppose that
f = (f1, f2) ∈ H−1(Ω) and that (U, V ) ∈ H1/2(∂Q) satisfy (1.4). Assume moreover that f1 is y-even, f2

is y-odd, and (U, V ) verifies (3.29). If (1.2)-(1.3) admits one asymmetric solution (u, p) ∈ V∗(Ω)2×L2
0(Ω)

(i.e., violating (3.30)), then there exist at least two more solutions of (1.2)-(1.3): its reflection (3.31)
and a symmetric solution satisfying (3.30).

Corollary 3.2 turns out to be extremely useful for numerical experiments, where one can visualize the
streamlines of the solutions and determine possible asymmetries. In this section we use this principle to
give hints on the shapes having better aerodynamic performances, namely, having smaller drag and lift.
We choose adequately the size of the box (−L,L)2 since we know from [16] that the drag decreases when
L increases, and increases as the obstacle increases. In fact, this is the same monotonicity as for the
Sobolev constant, see Section 2.2. Hence, imagine that one wishes to modify the shape of the obstacle
in Figure 3.3 in such a way to lower both the drag and the lift forces: D has to be minimized in order
to decrease as much as possible the input of energy from the wind into the obstacle whereas L has to
be minimized in order to decrease as much as possible the vertical instability of the obstacle. As in any
shape optimization problem, some common geometrical constraints need to be imposed.

� The total area of the obstacle is unchanged. This means that if the rectangle has thickness 2d then each
of the two “caps” (the white semicircles in Figure 3.3) needs to have an area of πd2/2. This constraint
is needed both to ensure that the obstacle maintains its total mass and that the mass itself remains
balanced on the right and the left of the barycenter of the rectangle.
� The obstacle is convex and symmetric with respect to the x-axis.
� The two caps yield a nonsmooth obstacle; this appears as a “numerical constraint”, since corners give
some computational difficulties and it appears unfair to compare smooth and nonsmooth obstacles.

Note that horizontal symmetry is not required and, in fact, it should not be expected as we now
explain. We need to replace the two circular caps with two planar regions. A careful look at Figure 3.2
shows that, for the same Re (same line), the drag is stronger in the left picture while the lift is stronger
on the right picture. Therefore, one expects that the stability might increase with asymmetry, namely
in obstacles with the upwind part different from the downwind part. Since in many geographical regions
the wind has mostly a constant direction, if the fluid modeled by (1.2) is the air, the obstacle K should
be planned asymmetric following the expected wind direction (U, V ).

In order to determine the shape performance, we fix the geometry and measure of the square and
the (symmetric) obstacle. Take a square Q with edges measuring 2L = 30 [m], and the gray rectangle of
Figure 3.3 having thickness 0.25 [m] and width 3 [m]. After completing with the caps (each one having
area equal to π/128 ≈ 0.025 [m2], for a total area of approximately 0.8 [m2]), all the considered obstacles
can be enclosed by the rectangle R in (2.33) with a = 1.7 [m] and d = 0.125 [m]; the kinematic viscosity
of air is about η = 1.5× 10−5 [m2/s]. With these measures, Theorem 3.9 becomes

Corollary 3.3. Let Ω be as in (1.1) with L = 15 [m], and assume (2.33) with a = 1.7 [m], d = 0.125 [m].
If V = 0 and U < 5.52× 10−9 [m/s] then the solution of (1.2)-(1.3) is unique and it exerts no lift on K.

In order to determine the shape performance, we proceeded computationally by employing the Open-
FOAM toolbox http://openfoam.org, through the use of the SIMPLE algorithm for the numerical
resolution of the steady-state Navier-Stokes equations in laminar regime, see [17]. In Table 1 we quote
some numerical results obtained with the above parameters: the flow goes from left to right on the
obstacles depicted in the first column, all having two caps of total area πd2/8.
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Shape of the obstacle U∗ × 103 [m/s] C∗D × 106 CD × 106 |CL| × 106

3.7 0.635 139.35 72.55

3.2 0.508 124.21 83.35

1.9 0.239 191.33 306.62

3.1 0.496 280.43 569.51

Table 1: Critical velocity U∗, drag coefficient C∗D at critical velocity, drag CD and lift CL coefficients at
velocity U = 0.1 [m/s].

In the second column we report the numerically found critical velocity U∗ for which uniqueness for
(3.65) fails: due to the symmetry of the problem and to the absence of lift for U < U∗, see Proposition
3.7, the number U∗ should be seen as the critical velocity generating lift. The drag coefficient CD and
the lift coefficient CL are, respectively, dimensionless forms of the drag D and lift L exerted by the
fluid governed by (3.65). For the previously specified inlet velocities, they are computed numerically
according to the following expressions (see [64, Chapter 9]):

CD =
D

1

2
ρU2Af

, CL =
L

1

2
ρU2Ap

, (3.67)

where ρ = 1 [kg/m2] is the air density, Af is the frontal length (the projected length seen by an observer
looking towards the object from a direction parallel to the upstream velocity), and Ap is the planform
length (the projected length seen by an observer looking towards the object from a direction normal to
the upstream velocity). In the third column we report, for U = U∗, the corresponding drag coefficient
C∗D. For a given a boundary velocity U larger than all the critical velocities U∗, the last two columns
of Table 1 contain the resulting drag and lift coefficients CD and CL. It turns out that U∗ and L do
not have the same behavior: the threshold of instability does not have the same monotonicity as the
lift at U = 0.1 [m/s]. In fact, the most relevant results are contained in the fifth column: there we see
the comparison between different shapes for the same flow velocity, ordered from top to bottom as the
“best shape” towards the “worse shape”, namely for increasing values of the lift coefficient. We tested
several intermediate values of U , between U∗ and U = 0.1 [m/s] and, as expected, for all the shapes we
have noticed a clear monotonicity of the lift coefficient as U increases. Since the threshold of instability
U∗ has two orders of magnitude less, what really measures the performances of the shapes is the rate of
increment of lift with respect to the velocity of the flow. Hence, by looking at the last column in Table
1 we see that, as far as the lift is concerned, the performance of the obstacle increases (lower lift) in
presence of a convex angle on the upwind part and a flat face on the downwind part. Our interpretation is
that the upwind part determines the separation of the flow and, therefore, the amount of energy around
the obstacle. On the other hand, the downwind part quantifies how much of this energy is effectively
able to lift vertically the obstacle and, hence, a flat boundary with less friction yields less lift.

Let us now turn to some numerical results which give strength to a conjecture by Pironneau [68, 69]
about the optimal shape minimizing the drag. We consider a family of “rugby balls”, that is, portion of
ellipses glued together. More precisely, for 0 < β < 2α we consider the family of functions ψ satisfying

ψ(x) = α
√

4− x2 − β , 0 ≤ x ≤
√

4− β2

α2
,

∫ √4−β2/α2

0
ψ(x) dx =

A

4
,
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where A is the area of the obstacles represented in Table 1. The integral constraint yields

2α arcsin

√
1− β2

4α2
− β arcsin

√
1− β2

4α2
=
A

4
≈ 0.2 . (3.68)

Then we extend by symmetry the graph of ψ, with respect to both the axes, obtaining a rugby ball
as in Figure 3.4.

Figure 3.4: A rugby-ball-shaped obstacle.

The angle ω of the rugby ball can be computed through the derivative evaluated at the endpoint
ξ =

√
4− β2/α2 of the interval; for instance,

ω = 2π
3

ω = π
2

ω = π
3

⇐⇒

ψ′(ξ) = −

√
3

ψ′(ξ) = −1
ψ′(ξ) = − 1√

3

⇐⇒


4α2 = α2β2 + 3β2

4α2 = α2β2 + β2

4α2 = α2β2 + β2

3

⇐⇒


(α, β) ≈ (0.06696, 0.00517)
(α, β) ≈ (0.06986, 0.00973)
(α, β) ≈ (0.07638, 0.02002)

 ,

where the last equivalence also accounts of (3.68). For these angles we obtained the numerical results
reported in Table 2, now ordered increasingly with respect to the second and third columns.

ω U∗ × 103 [m/s] C∗D × 106 CD × 106 |CL| × 106

2π/3 13 4.09 82.87 29.94

π/3 15 5.12 84.27 34.98

π/2 17 6.17 82.24 20.69

Table 2: Critical velocity U∗, drag coefficient C∗D at critical velocity, drag CD and lift CL coefficients at
velocity U = 0.1 [m/s].

Table 2 gives strength to a conjecture by Pironneau [68, 69] claiming that, not only rugby balls lower
the drag compared to other obstacles but also that the rugby balls minimizing the drag threshold are
the ones having angle ω = 2π/3.

We conclude this section by emphasizing that the second and third columns in Tables 1 and 2
suggest that the map U∗ 7→ C∗D is increasing and superlinear. Moreover, the data from these two
columns interpolate so nicely that they seem to show that “the drag force does not depend on the shape
of the obstacle”. This would mean that

the shape of the obstacle has the full responsibility of transforming the drag forces into lift forces.

4 Two connections with elasticity and mechanics

4.1 A three-dimensional model: the deck of a bridge

The purpose of this section is to apply the results of the present paper to a bridge model that was first
suggested in the research project [45], see also [47]. In the space R3 we consider the deck of a bridge to
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be a thin plate defined by

D = (−a, a)× (−d, d)× (−Λ,Λ) = K × (−Λ,Λ), (4.1)

where d � a � Λ. To have an idea, one could take a = Λ/75 and d = Λ/1000 (a deck of length 1km,
with the width of about 13m, whose thickness is about 1m). Then we consider the region where the air
surrounds the deck

B = (−L,L)2 × (−Λ,Λ) \D = Ω× (−Λ,Λ), (4.2)

where L� Λ, for instance L = 100Λ (100km, as a picture taken far away from the bridge). The domains
B and D, as well as their intersections Ω = (−L,L)2 \ K and K = (−a, a) × (−d, d) with the plane
z = 0, are represented in Figure 4.1 (not in scale).

Figure 4.1: The domains B and D (left) and their intersections Ω and K with the plane z = 0.

The bridge is subject to a wind whose flow is governed by the Navier-Stokes equations. We model
the case where the wind is blowing only in the x-direction, so that one has to analyze the planar section
of this configuration, as represented in the right picture of Figure 4.1, leading us to study the planar
problem of a flow around the obstacle K, governed by (1.2)-(1.3), as in Section 3.

In the three-dimensional configuration of the left picture in Figure 4.1, it is be convenient to decom-
pose the boundary of B as

∂B = Σ1 ∪ Σ2 ∪ ∂D,
where

Σ1 = {(x, y, z) ∈ ∂B | x ∈ {−L,L} } ⋃ {(x, y, z) ∈ ∂B | y ∈ {−L,L} },
Σ2 = {(x, y, z) ∈ ∂B | (x, y) /∈ D, z ∈ {−Λ,Λ} }. (4.3)

We then consider the three-dimensional Navier-Stokes equations in B, that is

− η∆v + (v · ∇)v +∇q = F, ∇ · v = 0 in B, (4.4)

for some F ∈ L2(B), complemented with appropriate boundary conditions. Notice that the obstacle D
and the domain B are symmetric with respect to the plane y = 0, in the sense that (x, y, z) ∈ B if and
only if (x,−y, z) ∈ B. It is therefore natural to wonder whether symmetry and bifurcation results also
hold in this 3D setting.

Proposition 4.1. For any F = (f1, f2, f3) ∈ L2(B) and (U, V,W ) ∈ H1/2(Σ1 ∪ Σ2) satisfying∫
Σ1∪Σ2

(U, V,W ) · n̂ dA = 0, (4.5)

there exists a weak solution (v, q) = (v1, v2, v3, q) ∈ H1(B)3 × L2
0(B) of (4.4) in B complemented with

the boundary conditions

v = (U, V,W ) on Σ1 ∪ Σ2, v = (0, 0, 0) on ∂D. (4.6)
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Moreover:
• there exists γ = γ(η,B) > 0 such that if ‖(U, V,W )‖H1/2(Σ1∪Σ2) +‖F‖L2(B) < γ, then the weak solution
of (4.4)-(4.6) is unique;
• if f1, f3, U,W are y-even and f2, V are y-odd, then also (ξ1, ξ2, ξ3, π) with

ξ1(x, y, z) = v1(x,−y, z), ξ2(x, y, z) = −v2(x,−y, z), ξ3(x, y, z) = v3(x,−y, z), π(x, y, z) = q(x,−y, z),

for a.e. (x, y, z) ∈ B, solves the problem (4.4)-(4.6);
• if f1, f3, U,W are y-even, if f2, V are y-odd and if ‖(U, V,W )‖H1/2(Σ1∪Σ2) + ‖F‖L2(B) < γ, then the

weak solution of (4.4)-(4.6) is unique and satisfies the symmetry property

v1(x, y, z) = v1(x,−y, z), v2(x, y, z) = −v2(x,−y, z), v3(x, y, z) = v3(x,−y, z), q(x, y, z) = q(x,−y, z),

for a.e. (x, y, z) ∈ B.

The proof of this result is completely similar to that of Theorem 3.4 and therefore we omit it. A
particular solution of (4.4) can be obtained by extending to B a solution of the corresponding planar
problem in Ω, as the next result shows.

Proposition 4.2. Let f = (f1, f2) ∈ L2(Ω) and (U, V ) ∈ H1/2(∂Q) satisfy (1.4). Define F (x, y, z) =
(f1(x, y), f2(x, y), 0) for a.e. (x, y, z) ∈ B. There exists γ = γ(η,B) > 0 such that, if ‖(U, V )‖H1/2(∂Q) +
‖f‖L2(Ω) < γ, then:
• problem (1.2)-(1.3) in Ω admits a unique weak (planar) solution (u1, u2, p) ∈ H1(Ω)2 × L2

0(Ω);
• problem (4.4), complemented with the boundary conditions

v = (U, V, 0) on Σ1, v = (u1, u2, 0) on Σ2, v = (0, 0, 0) on ∂D,

admits a unique weak solution (v, q) ∈ H1(B)3 × L2
0(B), which does not depend on z and is given by

v(x, y, z) = (u1(x, y), u2(x, y), 0), q(x, y, z) = p(x, y) for a.e. (x, y, z) ∈ B. (4.7)

Proof. Take γ = min {δ, γ}, with δ as in Theorem 3.1 and γ as in Proposition 4.1. Then problem
(1.2)-(1.3) in Ω admits a unique weak (planar) solution (u1, u2, p) ∈ H1(Ω)2 × L2

0(Ω). From (4.7)
we infer that (v, q) ∈ H1(B)3 × L2

0(B) is a weak solution of (4.4), where (U, V, 0) ∈ H1/2(Σ1)3 and
(u1, u2, 0) ∈ H1/2(Σ2)3 (the definition of weak solution for the 3D problem (4.4) is naturally extended
from Definition 3.1). The uniqueness of such solution is guaranteed by Proposition 4.1. 2

The proof of Proposition 4.2, although simple, makes a connection between the uniqueness of the
Navier-Stokes system in two and three dimensions. As a consequence of Theorem 3.9, and by putting
together the results of the present paper, we obtain a sufficient condition for the stability of bridges.

Corollary 4.1. Assume that the deck of a bridge coincides with the obstacle D in (4.1) and that the wind
is blowing only in the x-direction with velocity U > 0, in absence of external forces. If U is sufficiently
small, then the bridge does not oscillate.

To see this, it suffices to take U sufficiently small so that we fall in both the uniqueness regimes for
the 2D and 3D Navier-Stokes equations, see Theorem 3.9 and Proposition 4.1. Then the unique solution
of (4.4) with F = 0 is two-dimensional, see Proposition 4.2. In view of the symmetry of the domain,
Theorem 3.9 ensures that there is no lift on any of the two-dimensional cross-sections of the deck.

4.2 An impressive similitude with buckled plates

In this section we show that the bifurcation from uniqueness for the Navier-Stokes equations, related to
loss of symmetry, has a counterpart in a model of a buckled elastic plate.

Consider a thin narrow rectangular plate with the two short edges hinged while the two long edges
are free. In absence of forces, the plate lies horizontally flat and is represented by the planar domain
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Ω = (0, π) × (−`, `) with 0 < ` � π. The plate is only subject to compressive forces along the edges,
the so-called buckling loads. Following the plate model suggested by Berger [11], the nonlocal equation
modeling the deformation of the plate reads

∆2u+
[
P − S‖ux‖2L2(Ω)

]
uxx = 0 in Ω

u = uxx = 0 on {0, π} × [−`, `]
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on [0, π]× {−`, `} ,

(4.8)

where σ ∈ (0, 1) is the Poisson ratio, S > 0 depends on the elasticity of the material composing the
plate, S‖ux‖2L2(Ω) measures the geometric nonlinearity of the plate due to its stretching, while P is the
buckling constant: one has P > 0 if the plate is compressed and P < 0 if the plate is stretched in the
x-direction.

Partially hinged rectangular plates governed by (4.8) were introduced in [30] as models for the deck
of suspension bridges. For the variational characterization of (4.8) we introduce the functional space

H2
∗ (Ω) = {v ∈ H2(Ω) | v = 0 on {0, π} × [−`, `]}

and the inner product

(v, w)H2
∗(Ω) =

∫
Ω

(
∆v∆w − (1− σ)

(
vxxwyy + vyywxx − 2vxywxy

))
dx dy

with corresponding norm ‖v‖2H2
∗(Ω) = (v, v)H2

∗(Ω). Since σ ∈ (0, 1), this inner product defines a norm

which makes H2
∗ (Ω) a Hilbert space; see [30, Lemma 4.1]. The problem (4.8) is variational and this

is the main crucial difference with (1.2): its solutions may be found as critical points of the “energy
functional” defined by

J(v) =
1

2
‖v‖2H2

∗(Ω) −
P

2
‖vx‖2L2(Ω) +

S

4
‖vx‖4L2(Ω) ∀v ∈ H2

∗ (Ω) .

It is proved in [29, 30] that the space H2
∗ (Ω) is spanned by the eigenfunctions of the problem

∆2u = −λuxx in Ω
u = uxx = 0 on {0, π} × [−`, `]
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on [0, π]× {−`, `} ,

(4.9)

that are given by

Ekm(x, y) = ϕm,k(y) sin(mx) , Okm(x, y) = ψm,k(y) sin(mx) , (m, k = 1, 2, ...) , (4.10)

where ϕm,k and ψm,k are explicit linear combinations of sin(y), cos(y), sinh(y), cosh(y); the former are
even with respect to y, while the latter are odd. Dropping this distinction, let us order increasingly
the eigenvalues of (4.9) along a sequence {λn} (n = 1, 2, ...) and let us denote by {wn} the associated
sequence of normalized eigenfunctions, ‖(wn)x‖L2(Ω) = 1: the eigenvalue λ1 is simple and w1 has constant
sign and, as a convention, we put λ0 = 0.

By combining arguments from [4, 8, 29], we obtain the following statement.

Proposition 4.3. For any S > 0 and P ≥ 0, the function u0 = 0 solves (4.8).
• If P ∈ (λn, λn+1] for some n ≥ 0 and all the eigenvalues smaller than or equal to λn have multiplicity

1, then (4.8) admits exactly 2n+ 1 solutions which are explicitly given by

u0 = 0 , ±uj = ±
√
P − λj
S

wj (j = 1, ..., n) ;
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moreover, for each solution the energy is

J(u0) = 0 , J(±uj) = −(P − λj)2

4S
(j = 1, ..., n)

and the Morse index M is

M(u0) = n , M(±uj) = j − 1 (j = 1, ..., n) .

• If P ∈ (λn, λn+1] for some n ≥ 1 and at least one of the eigenvalues smaller than or equal to λn
has multiplicity larger than 1, then (4.8) admits infinitely many solutions.

In particular, Proposition 4.3 states that (4.8) admits a unique solution whenever P ≤ λ1, whereas
Theorem 3.1 states that (1.2)-(1.3) admits a unique solution whenever ‖(U, V )‖H1/2(∂Q) +‖f‖H−1(Ω) < δ.
At the value P = λ1 a bifurcation in (4.8) occurs and, when P overcomes λ1, two further solutions appear

±u1 = ±
√
P − λ1

S
w1

and these solutions converge to u0 as P ↘ λ1. The counterpart of this phenomenon is the bifurca-
tion which arises in (1.2)-(1.3) when the symmetric data overcome the critical threshold and multiple
(asymmetric) solutions may appear.

As long as λ1 < P ≤ λ2 only these three solutions exist and the statement about the Morse index
tells us that ±u1 are stable while u0 is unstable. Since w1(x, y) = ϕ(y) sin(x) for some even function
ϕ, see (4.10), the (positive) equilibrium solution of (4.8) has the shape as in Figure 4.2. The buckling
load (black arrows in Figure 4.2) generates a lift (white arrow in Figure 4.2) which is orthogonal to its
action. Clearly, this lift does not have the same meaning as in Section 3.3 but, still, we are in presence

Figure 4.2: Buckling load (black) and consequent lift (white) in a partially hinged plate.

of a phenomenon where a force acting on an object has its effect in the orthogonal direction.
Letting P increase further beyond λ2, each time P crosses an eigenvalue λn the number of solutions

of (4.8) increases by 2, thereby their total number remains odd: the solution u0 is symmetric, while the
other solutions ±uj are asymmetric but coupled (each asymmetric solution is coupled with its opposite),
as in Theorem 3.4. The only stable solutions (with zero Morse index) are the asymmetric solutions ±u1.
Since numerics (CFD) usually captures stable solutions, our feeling is that also the asymmetric solutions
displayed in the second line of Figure 3.2 (large Re) are stable, while the symmetric ones are probably
unstable since CFD is unable to detect them.

This pattern continues until P crosses some multiple eigenvalue, if any: in this case, the number of
solutions becomes infinite because there are infinitely many possible linear combinations of the multiple
eigenfunctions that solve (4.8). It is a generic property (with respect to the measures of the rectangular
plate) that all the eigenvalues are simple and, in this situation, Proposition 4.3 shows that (4.8) admits a
finite number of solutions (in fact, an odd number of solutions) for any P ≥ 0. A similar result, obtained
through an application of the Sard-Smale Lemma, holds for the Navier-Stokes equations: problem (3.65)
admits a finite number of solutions, see Foias-Temam [31, 32], generically with respect to U and η.

5 Final comments and open problems

If we were forced to indicate just one main result among all the others obtained in this paper, we would
select Theorem 3.9, which takes into account all the remaining results and gives an explicit universal
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bound such that if the boundary velocity of the fluid is below this bound, then the obstacle is not subject
to a lift force. In order to reach this bound, in Section 2 we went through several functional inequalities.
Most of these inequalities are stated in literature as “there exists a constant C > 0 such that...” with
little information (or no information at all!) on the magnitude of C. Our purpose was to give bounds, as
precise as possible, on these constants. With these bounds at hand, in Section 3 we tackled the problem
of estimating the forces exerted by a viscous fluid on a bluff body. We showed how uniqueness and
symmetry play a fundamental role and, in a simple situation, we managed giving fairly precise estimates
as in Theorem 3.9. As shown in Section 4, these bounds have important applications in physics and
engineering. We believe that the results of the present paper open new perspectives on fluid-structure
interaction models [66], leading to a bunch of natural questions and open problems that we list here.

• In Section 2.2 we obtained several bounds for some embedding constants. As pointed out in Remark
2.4, we believe that they could be improved by taking into account the shape and the position of the
obstacle. This would lead to a double shape/position optimization problem. We recall that, since the
outer squared box Q is only virtual (it is the frame of a photo), one has the freedom of moving the
obstacle inside the frame. In fact, the position of the obstacle within the flow plays a significant role,
see [40] where, however, the boundary effects are important.

• As a pure functional-analytic curiosity, one could seek bounds for the embedding H1(Ω) ⊂ Lp(Ω) for
any p ≥ 1, and not just p = 4. For which p is our capacity approach giving better bounds? Moreover,
the very same bounds could be sought in higher space dimension n ≥ 3, where there are two crucial
differences: the capacity potential behaves like 1/|x|n−2 (as the fundamental solution) and there exists
a critical exponent (p = 2n/(n− 2)) for the Sobolev embedding H1(Ω) ⊂ Lp(Ω). For the capacity, one
should check if the pyramidal functions introduced in Section 2.1 still allow to obtain reliable bounds.
For the critical exponent, it could be of some interest to investigate how the method developed in Section
2.2 allows to approximate the optimal embedding constant which, not only is known explicitly, but is
independent of the domain.

• Quite interesting appears the 3D version of the stationary problem (1.2)-(1.3). By this we mean a
non simply connected domain as in the right picture in Figure 4.1, which would model the deck of a
bridge. As mentioned above, the functional inequalities in these domains appear quite different, as well
as the computation of the lift. Indeed, a simple characterization as in Definition 3.4 is not available,
since the directions orthogonal to the flow generate a plane and not just one line. Moreover, weaker
embedding are available in 3D, which yields major difficulties in regularity results. For instance, for the
perturbation of the obstacle (Theorem 3.6), we used the embedding H2(Ω) ⊂ C0,ν

(
Ω
)

for all ν < 1 while
in 3D one just has ν = 1/2. Therefore, the 3D case is not just an extension of the 2D case, new issues
will be needed.

• A result in the spirit of Theorem 3.9 could be of great interest also for other boundary conditions. For
instance, conditions involving the pressure as in a network of pipes [13, 14, 21] or for the so-called Navier
boundary conditions [65]. For the latter, we mention that they appear appropriate in many physically
relevant cases [72], also for turbulent boundary layers [41, 67]. The Navier-Stokes equations under the
Navier boundary conditions (with and without friction) have been studied by many authors, starting
from Solonnikov-Shchadilov [73], see e.g. [1, 6, 9] and references therein; we mention in particular the
work by Berselli [12] which appears relevant for our purposes since he considers flat 3D boundaries, in
which cases the Navier boundary conditions reduce to combined Dirichlet-Neumann conditions.

• The evolution problem with constant data on ∂Q but with moving obstacle could be tackled from two
different points of view. First, in the spirit of Galdi-Silvestre [42], one could seek periodic solutions by
assuming that the obstacle is oscillating with given periodic law which maintains it far away from ∂Q:
do periodic solutions exist, regardless of the magnitude of the (constant) inflow conditions? Second, in
the spirit of Conca-San Mart́ın-Tucsnak [22], one could set up a full fluid-structure interaction model.
In this case, a major problem is to prevent collisions between the obstacle and ∂Q which, for our specific
problem, is not a physical boundary. How does the non-collision condition vary with respect to the
magnitude and the direction of the (constant) inflow?
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• The appearance of violent lift forces creates serious problems in suspension bridges, possibly leading to
disasters [44, Chapter 1]. The whole structure oscillates and both the cables and the hangers generate
unexpected behaviors of the deck, such as torsional movements. It is therefore desirable to find a
relationship between the fluid velocity, the resulting lift, and the attainment of the thresholds for hanger
slackening and cable shortening, as obtained explicitly in [46] for a simplified model.

•We saw in Theorem 3.4 that, in a symmetric framework (both the domain and the data), the existence
of asymmetric solutions implies non-uniqueness of solutions. The multiplicity of symmetric solutions is
however an open problem, see Remark 3.4. It would be extremely important (and very challenging) to
have a complete picture of the bifurcation diagram for multiple solutions of (1.2)-(1.3) in dependence of
the Reynolds number.

• We have seen in Remark 2.1 and Corollary 2.2 that our bounds for the relative capacity and for the
Sobolev constant of the embedding H1(Ω) ⊂ L4(Ω) are quite accurate. Therefore, possible improvements
of the threshold given in Theorem 3.9 may only be achieved through a different analysis of problem (1.5).

• Let (u, p) ∈ V∗(Ω) × L2
0(Ω) be a solution of (1.2)-(1.3) with (U, V ) ∈ R2. Let u = v + w be the

decomposition according to (2.20) so that v ∈ H1
0 (Ω) and w ∈ R(ψ − 1). In fact, from the boundary

conditions we know more, namely

w = (1− ψ)

(
U
V

)
=⇒ ‖∇w‖2L2(Ω) = (U2 + V 2)‖∇ψ‖2L2(Ω) = (U2 + V 2)CapQ(K) .

By (2.37) we infer that β(u, u, u) = β(u,w,w) and, therefore,

|β(u, u, u)| ≤ (U2 + V 2)
CapQ(K)

S1
‖∇u‖L2(Ω) .

Is it possible to use this inequality to improve the bounds? In particular, in Theorem 3.2.

• Is it possible to set up a theoretical shape optimization able to compute the derivative of the lift with
respect to variations of the shape of the obstacle? See [10, 19] for the case of drag derivative.
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[13] C. Bègue, C. Conca, F. Murat, and O. Pironneau. A nouveau sur les équations de Stokes et de
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phénomènes successifs de bifurcation. Annali della Scuola Normale Superiore di Pisa - Classe
di Scienze, 5(1):29–63, 1978.

[33] K. Friedrichs. On the boundary-value problems of the theory of elasticity and Korn’s inequality.
Annals of Mathematics, 48:441–471, 1947.

[34] H. Fujita. On stationary solutions to Navier-Stokes equation in symmetric plane domains under
general outflow condition. Pitman Research Notes in Mathematics Series, pages 16–30, 1998.

[35] H. Fujita and H. Morimoto. A remark on the existence of steady Navier-Stokes flows in a certain
two-dimensional infinite channel. Tokyo Journal of Mathematics, 25(2):307–321, 2002.

[36] V. Fuka and J. Brechler. Large eddy simulation of the stable boundary layer. In Finite Volumes
for Complex Applications VI - Problems & Perspectives, pages 485–493. Springer, 2011. http:

//artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html.

[37] E. Gagliardo. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n
variabili. Rendiconti del Seminario Matematico della Università di Padova, 27:284–305, 1957.
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