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Abstract

We suggest a new model for the dynamics of a suspension bridge through a system of nonlinear
nonlocal hyperbolic differential equations. The equations are of second and fourth order in space
and describe the behavior of the main components of the bridge: the deck, the sustaining cables
and the connecting hangers. We compute all the energies involved and we derive the equations
from variational principles. We then prove existence and uniqueness of a weak solution for the
resulting problem.

1 Introduction

The main span of a suspension bridge is a complex structure composed by several interacting compo-
nents, see Figure 1. Four towers sustain two cables that, in turn, sustain the hangers. At their lower
endpoint the hangers are linked to the deck and sustain it from above. The deck is represented by a
thin rectangular plate. The hangers are hooked to the cables and the deck is hooked to the hangers;
the weight of the deck deforms the cable and stretches the hangers that exert a restoring action on
the deck.

Figure 1: Sketch of a suspension bridge.

This complex structure is extremely interesting from a mathematical point of view. It appears quite
challenging to find a model simple enough to be mathematically tractable and sufficiently accurate to
display the main features of a real bridge. The celebrated report by Navier [23] has been for about
one century the only mathematical treatise of suspension bridges. Much later, the deflection theory
for beams was introduced in the monograph by Melan [21]. A further historical source is the work by
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Smith-Vincent [26] where the bridge is again modeled as a one dimensional beam: after linearization
they obtain a fourth order linear ODE [26, (4.2)] which can be integrated explicitly.

The two major problems of suspension bridges are their manifest nonlinear behavior [9] and their
instability, in particular they are prone to torsional oscillations. This is apparent in videos available
on the web [27] as well as in many other events, see e.g. [11] for a survey. Therefore, a reliable model
for a suspension bridge should be able to display torsional oscillations and a beam-type equation does
not achieve this goal.

A first model able to display torsional oscillations was introduced by McKenna [17, 19] who derives
a system of coupled ODE’s; this model views the cross section of the deck as a rod subject to the
forces exerted by two lateral nonlinear springs representing the hangers. A model involving vertical
oscillations of the deck, its torsional angle, and coupling with the two sustaining cables was suggested
by Matas-Očenášek [16] who consider the hangers as linear springs and obtain a system of four PDE’s,
see also (SB4) in [10].

Partial explanations of the instability in bridges are based on aerodynamic effects such as vortex
shedding, flutter, parametric resonance, aerodynamic forces, see [6]. But none of these theories explains
how a longitudinal oscillation can rapidly switch into a torsional one. Scanlan [25, p.209] writes that
the switch is due to some fortuitous condition, a justification which does not seem very scientific. And,
indeed, McKenna [18] raises many doubts about the mathematical models and motivations used in
classical literature.

In a recent paper [2] we suggested that the onset of the torsional instability could be of purely
structural nature. The model adopted there was oversimplified and did not describe accurately the
nonlinear behavior of the cables+hangers restoring force. By using Poincaré-type maps we were able
to show that a longitudinal oscillation in an ideally isolated bridge may switch rapidly into a torsional
oscillation when enough energy is present within the structure.

Aiming to display the phenomenon of transfer of energy between longitudinal and torsional oscil-
lations as in an actual bridge, in this paper we suggest a new and realistic model which takes into
account all the main components of the bridge and its quantitative structural parameters. We com-
pute the energies and we derive the corresponding Euler-Lagrange equations by variational principles.
The dynamics of the bridge is modeled through a system of four hyperbolic equations, three of them
of second order in space and one of fourth order. This system also contains nonlinear couplings (the
restoring action of the hangers) and nonlocal terms (the elongation of the extensible cables). In fact,
the full energy balance is rather complicated, therefore we approximate the equations with a first order
expansion and we prove that the initial-boundary value problem for the hyperbolic system admits a
unique solution. In a forthcoming paper [3] we will study higher order approximations.

In Section 2 we derive an accurate model and we proceed in two steps. First, in Sections 2.1 and
2.2 we compute the Lagrangian of a system composed by a one-dimensional beam suspended to a
cable through hangers, see Figure 2. In the classical literature [7, 15, 21] one neglects either the mass
of the cable, in which case the load is distributed per horizontal unit and the cable takes the shape
of a parabola, or the mass of the beam, in which case the load is distributed per unit length and the
cable takes the shape of a catenary. Since none of these masses is negligible, we take here into account
both their contributions. This gives rise to a somehow intermediate shape and the linearized problem
becomes a Sturm-Liouville problem with a weight. Second, in Section 2.3 we extend the result to the
full suspension bridge by modeling the deck as a degenerate plate, that is, a beam representing the
midline of the deck with cross sections which are free to rotate around the beam; simplified equations
representing this model were previously analyzed in [5, 22]. The midline corresponds to the barycenters
of the cross sections. The cross sections are seen as rods that can rotate around their barycenter. The
endpoints of the cross sections are the edges of the plate that are connected to the sustaining cables
through the hangers.

Then we derive the Euler-Lagrange equations by variational methods, that is, by finding critical
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points of the Lagrangian. The resulting equations form a system of semilinear hyperbolic equations,
three of them being of second order and one of fourth order, see (38). All the coefficients are continuous
time-independent functions and (38) is a nonlocal differential problem due to the presence of the
integral term which takes into account the cables elongations. A nonlinear term is responsible for the
coupling between the equations. These peculiarities show that (38) is not a standard problem and
therefore we need to prove existence and uniqueness of a solution. This is done in Section 3.

2 The physical model

Throughout this paper we denote the partial derivatives of a function y = y(x, t) by

y′ =
∂y

∂x
, ẏ =

∂y

∂t

and similarly for higher order derivatives.

2.1 A beam sustained by a cable through hangers

As a first step, we derive the Lagrangian of a suspended beam connected to a sustaining cable through
hangers. Let w be the position of the beam and p− s be the position of the cable, as in Figure 2. The
purpose of this section is to derive the equation of this cable-hangers-beam system.

Figure 2: Cable-beam structure modeling a suspension bridge.

We model the cable as a perfectly flexible string subject to vertical loads. If we assume that the
string has no resistance to bending, the only internal force is the tension F = F (x) of the string which
acts tangentially to the position of the curve representing the string. In Figure 3 we sketch a picture of

Figure 3: Equilibrium of a string.
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the string whose endpoints are A and B and whose position is described by a function −s(x) < 0, the
origin being below B. The horizontal direction represents the abscissa x whereas the downwards axis
represents the vertical displacement. Denote by β = β(x) the angle between the horizontal x-direction
and the tangent to the curve so that

−s′(x) = tanβ(x) . (1)

The horizontal component of the tension H0 is constant, that is,

F (x) cosβ(x) ≡ H0 > 0 . (2)

The classical deflection theory of suspension bridges models the bridge structure as a combination
of a string (the sustaining cable) and a beam (the deck). The cable carries its own weight, the weight
of the hangers (which we assume to be negligible) and the weight of the beam. Possible deformations
of the cable and the beam are assumed to be small, that is, we aim to model small displacements of
the beam and the cable with respect to the equilibrium position; therefore we assume that

all the displacements and their derivatives are small. (3)

In Figure 2 we represent the position −s(x) of the cable at rest with −s0 < 0 being the level of the
left and right endpoints of the cable (s0 is the height of the towers). We denote by L the distance
between the towers. Assume that a beam of length L and linear density of mass M is hanged to the
cable whose linear density of mass is m: the segment OQ represents the horizontal position of the
beam at rest. Since the spacing between hangers is small relative to the span, the hangers can be
considered as a continuous membrane connecting the cable and the beam. Then the cable is subject
to a downwards vertical force given by

q(x) =
(
M +m

√
1 + s′(x)2

)
g

g being the gravitational constant. In this situation, the vertical component of the tension has a
variation given by

d

dx
[F (x) sinβ(x)] = −q(x)

where we recall that the positive vertical axis is oriented downwards. In view of (2) we then obtain

H0
d

dx
[tanβ(x)] = −q(x)

Moreover, using (1) and taking into account that the cable is hanged to two towers of same height s0,
we get {

H0s
′′(x) =

(
M +m

√
1 + s′(x)2

)
g ,

s(0) = s(L) = s0
(4)

If one neglects the mass of the cable (m = 0) then the solution is the parabola

sp(x) = s0 −
Mg

2H0
x(L− x) , (5)

while if one neglects the mass of the beam (M = 0) the solution is the catenary

sc(x) =
H0

mg

[
cosh

(
mg

2H0
(2x− L)

)
− cosh

(
mgL

2H0

)]
+ s0 .
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We point out that if we take m = 0 in the above explicit equations and we assume that the sag-span
ratio for is 1/12 (a typical value for actual bridges, see e.g. [24, §15.17]), by using (5) we have

gM

2H0
=

2

3L

and then
0 < sp(x)− sc(x) ≤ sp(L/2)− sc(L/2) ≈ 6 · 10−3 L ∀x ∈ (0, L) .

Hence, for a typical length of the bridge L = 1km the maximum difference between the two configu-
rations is about 6m.

Our purpose is to consider both the masses of the beam and the cable (m,M > 0). Then (4) does
not have simple explicit solutions. Moreover, this second order equation has no variational structure
and the problem has boundary conditions, therefore existence and uniqueness of the solution are not
granted, but are proved in the next statement.

Proposition 1. For any m,M > 0 there exists a unique solution s = s(x) of (4); this solution is
symmetric with respect to x = L/2, that is, s(x) = s(L− x).

Proof. We first prove the existence and uniqueness of a symmetric solution of (4), then we show that
any solution of (4) is symmetric. These two steps will prove the statement.

For any s1 ∈ R the initial value problem
H0s

′′(x) =
(
M +m

√
1 + s′(x)2

)
g ,

s(L/2) = s1 ,

s′(L/2) = 0 ,

(6)

has a unique solution defined on the whole real line for all values of s1. Moreover, solutions of (6) with
different values of s1 differ by a constant and they are all symmetric with respect to x = L/2. Then
there exists a unique s1 < s0 such that the solution of (6) satisfies s(0) = s(L) = s0: this solution is
the unique symmetric solution of (4).

Take now a solution s of (4) which we know to exist in view of what we just proved. Since s
is convex and s(0) = s(L), by the Lagrange Theorem there exists a unique x0 ∈ (0, L) such that
s′(x0) = 0. Hence, s solves the initial value problem

H0s
′′(x) =

(
M +m

√
1 + s′(x)2

)
g ,

s(x0) = s̄(x0) ,

s′(x0) = 0 .

(7)

But also s(2x0 − x) solves (7): then by uniqueness of the solution we infer that s(x) ≡ s(2x0 − x).
Since s(0) = s(L) = s0 and since s is convex, we finally deduce that 2x0 = L. Therefore, any solution
s of (4) satisfies s(x) = s(L− x). 2

Hence, for general m,M > 0 the cable takes the shape of a curve with a ∪-shaped graph, something
in between a parabola and a catenary. The length at rest of the cable is

Lc =

∫ L

0

√
1 + s′(x)2 dx . (8)

Let
ξ(x) :=

√
1 + s′(x)2 (9)
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be the local length of the cable, which is related to the unique solution of (4) (see Proposition 1) and
will often appear in the computations. In classical literature this term is usually approximated with
ξ(x) ≡ 1. While modeling suspension bridges, Biot and von Kármán [7, p.277] warn the reader by
writing ...whereas the deflection of the beam may be considered small, the deflection of the string, i.e.,
the deviation of its shape from a straight line, has to be considered as of finite magnitude. Whence, (3)
is acceptable whereas no approximation of s′(x) should be taken. Nevertheless, at a subsequent stage,
Biot-von Kármán [7, (5.14)] decide to neglect s′(x)2 in comparison with unity: this leads to ξ(x) ≡ 1.
As shown in [13], this choice may significantly change the responses of the system. Needless to say,
this rough approximation considerably simplifies all the computations.

2.2 Lagrangian of the cable-hangers-beam system

In this section we write all the components of the Lagrangian of the single cable-hangers-beam sys-
tem. Since the energies involved are complicated, we will use (3) in order to approximate them with
asymptotic expansions up to second order terms. This will give rise to Euler-Lagrange equations with
linear terms.

• Kinetic energy of the beam. If w = w(x, t) denotes the position of the beam, then the kinetic
energy of the beam is given by

Ekb =
M

2

∫ L

0
ẇ2 dx . (10)

• Kinetic energy of the cable. If p(x, t)− s(x) denotes the position of the cable, then the kinetic
energy of the cable is given by

Ekc =
m

2

∫ L

0
ṗ2ξ(x) dx . (11)

• Gravitational energy. If we neglect the small extensions of the cable, the gravitational energy is
given by

Eg = −g
∫ L

0

(
Mw +mpξ(x)

)
dx .

The minus sign is due to the downward orientation of the vertical axis.
• Elastic energy in the hangers. The hangers behave as stiff linear springs when in tension and
they do not apply any force when compressed. The latter case is called slackening of the hangers.
Let λ = λ(x) be the length of the unloaded hanger at position x ∈ (0, L); this is the vertical length
of the hanger when it is fixed to the sustaining cable and before hanging the beam. After the beam
is installed, the hangers are in tension and reach a new length s(x) > λ(x), where s is the solution
of (4); if no additional load acts on the system, the equilibrium position of the beam is w(x) ≡ 0
(corresponding to the segment OQ in Figure 2) and the position of the cable at equilibrium (beam
installed) is −s(x). As one expects from a linear spring, the Hooke constant κ(x) of each hanger is
proportional to the inverse of its unloaded length, so that

κ(x) =
κ0
λ(x)

(κ0 > 0) .

Then the (linear density of) force due to the hanger in position x is

κ(x)
(
s(x)− λ(x)

)
. (12)

Since the (linear density of) weight of the beam is Mg, we find

Mg = κ(x)
(
s(x)− λ(x)

)
=
κ0

(
s(x)− λ(x)

)
λ(x)

(13)
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which shows that the relative elongation of the hangers is proportional to the density of weight after
the beam is installed: this relationship readily gives the following dependence of the elongation s(x)
on the unloaded length

s(x) =

(
1 +

Mg

κ0

)
λ(x) .

The actual length of the hanger is w(x, t)− (p(x, t)− s(x)), so that the hanger applies a force

F (w − p) = κ(x)
(
w(x, t)− (p(x, t)− s(x))− λ(x)

)+
= κ(x)

(
w(x, t)− p(x, t) +

Mg

κ(x)

)+
=

(
(κ0 +Mg)

w(x, t)− p(x, t)
s(x)

+Mg
)+

; (14)

note that F (0) = Mg, that is, the restoring force of the hangers balances gravity at equilibrium. The
positive part in (14) models the fact that the hangers behave as linear springs when extended and do
not yield any force when slackened. The equalities in (14) are due to (13). The elastic energy is then
given by

Eh(w − p) =
1

2

∫ L

0
κ(x)

((
w(x, t)− p(x, t) +

Mg

κ(x)

)+)2

dx

=
1

2

∫ L

0
κ(x)

((
w(x, t)− p(x, t) + s(x)− λ(x)

)+)2

dx . (15)

Remark 1. The special form of F in (14) was first suggested by McKenna-Walter [20] and well
models the possible slackening of the hangers, at least in a first order approximation as in the present
paper. Brownjohn [9] claims that the slackening mechanism is not as simple as an on/off force, as
described by the positive part of the elongation. Our results remain true if the force F is replaced by
any Lipschitz continuous function. 2

• Bending energy of the beam. The bending energy of a beam depends on its curvature, see [7]
and also [12] for a more recent approach and further references. The Young modulus E is a measure of
the stiffness of an elastic material and is defined as the ratio stress/strain. If Idx denotes the moment
of inertia of a cross section of length dx, then the constant quantity EI is the flexural rigidity of the
beam. The energy necessary to bend the beam is the square of the curvature times half the flexural
rigidity:

EB =
EI

2

∫ L

0

(w′′)2

(1 + (w′)2)3

√
1 + (w′)2 dx (16)

where we highlighted the curvature and the arclength. This energy is not convex and it fails to be
coercive in any reasonable functional space so that standard methods of calculus of variations do not
apply. Assuming (3), an asymptotic expansion in (16) yields

EB =
EI

2

∫ L

0

(w′′)2

(1 + (w′)2)5/2
dx ≈ EI

2

∫ L

0
(w′′)2

(
1− 5

2
(w′)2

)
dx =

EI

2

∫ L

0
(w′′)2 dx+ o

(
(w′′)2

)
;

(17)

note that the neglected infinitesimal term in (17) is also o
(

(w′)2
)

in view of (3). Therefore, from now

on, we simply take

EB =
EI

2

∫ L

0
(w′′)2 dx .

• Stretching energy of the beam. If large deformations are involved, the strain-displacement
relation is not linear and a possible nonlinear model was suggested by Woinowsky-Krieger [31]: he
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modified the classical Bernoulli-Euler beam theory by assuming a nonlinear dependence of the axial
strain on the deformation gradient and by taking into account the stretching of the beam due to its
elongation in the longitudinal direction. In this situation there is a coupling between bending and
stretching and the stretching energy is proportional to the elongation of the beam which results in

ES =
γ

2

(∫ L

0

(√
1 + (y′)2 − 1

)
dx

)2

≈ γ

8

(∫ L

0
(y′)2 dx

)2

where γ > 0 is the elastic constant of the beam. Since this term is of fourth order, in the sequel we
drop it.
• Stretching energy of the cable. The tension of the cable consists of two parts, the tension at
rest

H(x) = H0ξ(x) (18)

and the additional tension
AE

Lc
Γ(p)

due to the increment of length Γ(p) of the cable. The latter requires the energy

Etc(p) =
AE

2Lc
Γ(p)2 . (19)

Assuming (3), we may approximate Etc(p) as follows. First, we note the asymptotic expansion

√
1 + [s′(x)− p′(x)]2 −

√
1 + s′(x)2 = −s

′(x)p′(x)

ξ(x)
+
p′(x)2

2ξ(x)3
+ o
(
p′(x)2

)
. (20)

Then we approximate the increment Γ(p) of the length of the cable, due to its displacement p, by
using (20):

Γ(p) :=

∫ L

0

√
1 + [s′(x)− p′(x)]2 dx− Lc ≈

∫ L

0

(
p′(x)2

2ξ(x)3
− s′(x)p′(x)

ξ(x)

)
dx .

By squaring we find

Γ(p)2 =

(∫ L

0

s′(x)p′(x)

ξ(x)
dx

)2

+ o
(

(p′)2
)
.

Therefore, we approximate (19) by

Etc(p) =
AE

2Lc

(∫ L

0

s′(x)p′(x)

ξ(x)
dx

)2

.

By taking the variation of this energy and integrating by parts we obtain

dEtc(p)z = −AE
Lc

(∫ L

0

s′(x)p′(x)

ξ(x)
dx

)∫ L

0

s′′(x)z(x)

ξ(x)3
dx+ o(p) . (21)

On the other hand, the amount of energy needed to deform the cable at rest under the tension
(18) in the infinitesimal interval [x, x + dx] from the original position −s(x) to −s(x) + p(x) is the
variation of length times the tension, that is

E(x) dx = H0ξ(x)
(√

1 + [s′(x)− p′(x)]2 −
√

1 + s′(x)2
)
dx ,
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hence, using (20) and neglecting the higher order terms, the energy necessary to deform the whole
cable is

E(p) =

∫ L

0
E(x) dx = H0

∫ L

0

(
−s′(x)p′(x) +

p′(x)2

2ξ(x)2

)
dx . (22)

Then, the variation of energy σ−1[E(p+ σz)− E(p)] as σ → 0 and some integration by parts lead to

dE(p)z = H0

∫ L

0

(
− s′(x)z′(x) +

p′(x)z′(x)

ξ(x)2

)
dx = H0

∫ L

0

(
s′′ − p′′

ξ(x)2
+

2s′s′′p′

ξ(x)4

)
z(x) dx . (23)

• The Euler-Lagrange equations. The Lagrangian of the system is obtained as the sum of the
kinetic energies minus the sum of the potential energies. To compute the Euler-Lagrange equations
we derive the term

H0

(
s′′(x)− p′′(x)

ξ(x)2
+

2s′(x)s′′(x)p′(x)

ξ(x)4

)
=
(
M +mξ(x)

)
g − H0

ξ(x)2
p′′(x) +

2H0 s
′(x)s′′(x)

ξ(x)4
p′(x) (24)

from (23) and using (4). Then, from (21) we derive the additional tension in the cable h(p) produced
by its displacement p:

h(p) = −AE
Lc

[∫ L

0

s′(x)p′(x)

ξ(x)
dx

]
s′′(x)

ξ(x)3
. (25)

Remark 2. As already mentioned, in classical engineering literature [7, 21] one usually replaces
ξ(x) =

√
1 + s′(x)2 with 1 and neglects the mass of the cable (m = 0) so that one finds (5), that is,

s′′(x) = Mg
H0

; with these rough approximations, one can easily obtain also the second order expansion
of h(p), that is,

AE

2Lc

(∫ L

0
p′(x)2 dx

)
s′′(x) +

AE

Lc

(∫ L

0
s′(x)p′(x) dx

)
(p′′(x)− s′′(x)− 3s′(x)s′′(x)p′(x))

=
AE

2Lc

(∫ L

0
p′(x)2 dx

)
s′′(x)− AE

Lc

Mg

H0

(∫ L

0
p(x) dx

)
(p′′(x)− s′′(x)− 3s′(x)s′′(x)p′(x))

where we only see the terms of the expansion up to order 2. However, in literature one finds several
further simplifications. Timoshenko [29] (see also [30, Chapter 11]) manipulates the functional Γ(p)
and reaches the expression

AE

Lc

(∫ L

0

(
Mg

H0
p(x) +

p′(x)2

2

)
dx

)
(s′′(x)− p′′(x))

see [30, (11.16)]. This expression fails to consider some second order terms but inserts some third
order terms. Further simplifications can be found in literature; Biot-von Kármán [7, (5.14)] neglect
the second term and simply obtain

AE

Lc

Mg

H0

(∫ L

0
p(x) dx

)
(s′′(x)− p′′(x)) .

This clearly simplifies many computations but this approximation seems not to have a sound justifi-
cation. This is one further reason to stick to a first order approximation of h(p). 2

Let F be the force in (14), then by taking into account all the energy variations previously found
we obtain the following equations of motion:

mξ(x)p̈ =
H0

ξ(x)2
p′′(x)− 2H0 s

′(x)s′′(x)

ξ(x)4
p′(x)− h(p) + F (w − p)−Mg , (26)

Mẅ = −EIw′′′′ − F (w − p) +Mg . (27)

We emphasize that the term mgξ(x) has disappeared in (26) due to its appearance with the opposite
sign in (24) and in the gravitational energy.
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2.3 A model for the suspension bridge

In this subsection we consider the full suspension bridge. We view the deck as a degenerate plate,
namely a beam representing the midline of the deck with cross sections which are free to rotate around
the beam. The midline corresponds to the barycenters of the cross sections, which are seen as rods
that can rotate around their barycenter, the angle of rotation with respect to the horizontal position
is denoted by θ. The endpoints of the cross sections are the edges of the plate and they are connected
to the sustaining cables through the hangers. Then, for small θ, the positions of the two free edges of
the deck are given by

w = y ± ` sin θ ≈ y ± `θ .

Each free edge of the deck is connected to a sustaining cable through hangers. We derive here the
equation of this cable-hangers-deck system and, in order to derive the Euler-Lagrange equations, we
start from the cable-hangers-beam model developed in the previous subsections.

We denote by p1(x, t) and p2(x, t) the displacements of the cables from their equilibrium position
s(x), see (4): hence, pi(x, t)− s(x) denotes the actual position of the i-th cable (i = 1, 2). We assume
that the deck has length L and width 2` with 2`� L.
• Kinetic energy of the deck. This energy is composed by two terms, the first corresponding to
the kinetic energy of the barycenter of the cross section, see (10), the second corresponding to the
kinetic energy of the torsional angle. The kinetic energy of a rotating object is 1

2Jθ̇
2, where J is the

moment of inertia and θ̇ is the angular velocity. The moment of inertia of a rod of length 2` about the
perpendicular axis through its center is given by 1

3M`2dx where Mdx is the mass of the rod. Hence,
the kinetic energy of a rod having mass Mdx and half-length `, rotating about its center with angular
velocity θ̇, is given by Mdx

6 `2θ̇2. Therefore, the kinetic energy of the deck is given by

Ekd =

∫ L

0

(
M

6
`2θ̇2 +

M

2
ẏ2
)
dx . (28)

Note that now each cable sustains the weight of half deck, so the boundary value problem (4) for s(x)
becomes instead

H0s
′′(x) =

(
M

2
+mξ(x)

)
g , s(0) = s(L) = s0 .

• Kinetic energy of the cables. We adopt (11) for both cables and we get

Ekc =
m

2

∫ L

0
(ṗ21 + ṗ22) ξ(x) dx . (29)

• Stiffening energy of the deck. It is composed by two terms, the bending energy of the central
beam and the torsional energy. As in (17), we have

EB =
EI

2

∫ L

0
(y′′)2 dx , (30)

whereas the torsional stiffness of the deck is computed in terms of the derivative of the torsional angle:

ET =
GK

2

∫ L

0
(θ′)2 dx .

• Gravitational energy of the deck and cables. These are readily computed and read

−Mg

∫ L

0
y dx and −mg

∫ L

0
(p1 + p2)ξ(x) dx .
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• Elastic energy in the hangers. Following (15), the energies of the two rows of hangers are

Eh1(y + `θ − p1) =
1

2

∫ L

0
κ(x)

((
y(x, t) + `θ(x, t)− p1(x, t) + s(x)− λ(x)

)+)2

dx ,

Eh2(y − `θ − p2) =
1

2

∫ L

0
κ(x)

((
y(x, t)− `θ(x, t)− p2(x, t) + s(x)− λ(x)

)+)2

dx .

Since the weight Mg of the deck is now supported by two cables, each one supporting Mg/2, the force
F in (14) acts now on the two edges of the deck and this gives rise to the two forces:

F (y + `θ − p1) = κ(x)
(
y(x, t) + `θ(x, t)− p1(x, t) + s(x)− λ(x)

)+
= κ(x)

(
y(x, t) + `θ(x, t)− p1(x, t) +

Mg

2κ(x)

)+
,

F (y − `θ − p2) = κ(x)
(
y(x, t)− `θ(x, t)− p2(x, t) + s(x)− λ(x)

)+
= κ(x)

(
y(x, t)− `θ(x, t)− p2(x, t) +

Mg

2κ(x)

)+
,

with F (0) = Mg/2. Moreover, instead of (13) we have

Mg

2
= κ(x)

(
s(x)− λ(x)

)
=
κ0

(
s(x)− λ(x)

)
λ(x)

.

• The Euler-Lagrange equations. Let h(p) be as in (25), then the equations of motion are

mξ(x) p̈1 =
H0

ξ(x)2
p′′1 −

2H0 s
′(x)s′′(x)

ξ(x)4
p′1 − h(p1) + F (y + `θ − p1)−

Mg

2
(31)

mξ(x) p̈2 =
H0

ξ(x)2
p′′2 −

2H0 s
′(x)s′′(x)

ξ(x)4
p′2 − h(p2) + F (y − `θ − p2)−

Mg

2
(32)

Mÿ = −EIy′′′′ − F (y + `θ − p1)− F (y − `θ − p2) +Mg (33)

M

3
`2θ̈ = GKθ′′ + ` F (y − `θ − p2)− ` F (y + `θ − p1). (34)

• Boundary conditions. The degenerate plate is assumed to be hinged between the two towers
while it is clear that the cross sections between the towers are fixed and cannot rotate. This results
in the boundary conditions

y(0, t) = y(L, t) = y′′(0, t) = y′′(L, t) = θ(0, t) = θ(L, t) = 0 ∀t ≥ 0 . (35)

Since pi − s denotes the actual position of the cables, we also have

pi(0, t) = pi(L, t) = 0 ∀t ≥ 0 , (i = 1, 2). (36)

3 Existence and uniqueness for the suspension bridge system

3.1 Definition of solution

Up to scaling, we may assume that L = π: this will simplify the spectral decomposition of the
differential operator. We endow the Hilbert spaces L2(0, π), H1

0 (0, π), H2∩H1
0 (0, π) with, respectively,

the scalar products

(u, v)2 =

∫ π

0
uv , (u, v)H1 =

∫ π

0
u′v′ , (u, v)H2 =

∫ π

0
u′′v′′ .

11



Then an orthogonal basis in these three spaces is given by {ek}∞k=1, where

ek(x) =

√
2

π
sin(kx) , ‖ek‖2 = 1 , ‖ek‖H1 = k , ‖ek‖H2 = k2 .

We denote by H∗(0, π) the dual space of H2 ∩H1
0 (0, π) and by 〈·, ·〉∗ the duality pairing, whereas we

denote by H−1(0, π) the dual space of H1
0 (0, π) and by 〈·, ·〉1 the duality pairing.

Let ξ be as in (9); we also consider the Sturm-Liouville eigenvalue problem

−
(

H0

ξ(x)2
u′
)′

= λξ(x)u in (0, π) , u(0) = u(π) = 0 . (37)

We say that λ is an eigenvalue of (37) if there exists u 6= 0 (eigenfunction) such that∫ π

0

H0

ξ(x)2
u′v′ = λ

∫ π

0
ξ(x)uv ∀v ∈ H1

0 (0, π) .

It is well-known (see e.g. [1, §2.4]) that (37) admits a sequence of positive eigenvalues {λk} which
diverges to infinity. Each eigenvalue has multiplicity 1 and the sequence of eigenfunctions {uk} is an
orthogonal basis of L2(0, π) and of H1

0 (0, π) endowed with the scalar products

(u, v)ξ =

∫ π

0
ξ(x)uv ∀u, v ∈ L2

ξ(0, π) , (u, v)H1
ξ

=

∫ π

0

H0

ξ(x)2
u′v′ ∀u, v ∈ H1

ξ (0, π) .

Let us emphasize that the corresponding norms ‖ · ‖ξ and ‖ · ‖H1
ξ

are equivalent, respectively, to the

norms ‖ · ‖2 and ‖ · ‖H1 but, for the sake of clarity, we maintain the different notations L2
ξ and H1

ξ . In

the sequel, we assume that {uk} is normalized in L2
ξ , that is,

‖uk‖ξ = 1 , ‖uk‖H1
ξ

=
√
λk .

We denote by Hξ(0, π) the dual space of H1
ξ (0, π) and by 〈·, ·〉ξ the corresponding duality pairing.

We set

Φ(s) := F (s)− Mg

2
and Ψ(s) =

∫ s

0
Φ(σ) dσ

so that
Φ(0) = Ψ(0) = 0 , Φ(s) ≥ 0 , Ψ(s) ≥ 0 ∀s ∈ R .

In the above functional-analytic setting and with this simplification, the equations (31)-(32)-(33)-
(34) may be rewritten as

mξ(x) p̈1 =
[
H0
ξ(x)2

p′1

]′
+ AE

Lc

[∫ π
0
s′(x)p′1(x)

ξ(x) dx
]
s′′(x)
ξ(x)3

+ Φ(y + `θ − p1)

mξ(x) p̈2 =
[
H0
ξ(x)2

p′2

]′
+ AE

Lc

[∫ π
0
s′(x)p′2(x)

ξ(x) dx
]
s′′(x)
ξ(x)3

+ Φ(y − `θ − p2)

Mÿ = −EIy′′′′ − Φ(y + `θ − p1)− Φ(y − `θ − p2)
M
3 `

2θ̈ = GKθ′′ + `Φ(y − `θ − p2)− `Φ(y + `θ − p1)

(38)

where ξ(x) and s(x) are linked through (9). We add the boundary conditions (35)-(36) which we
rewrite for L = π:

y(0, t) = y(π, t) = y′′(0, t) = y′′(π, t) = pi(0, t) = pi(π, t) = θ(0, t) = θ(π, t) = 0 ∀t ≥ 0 . (39)
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We fix some initial data at time t = 0,

y(x, 0) = y0(x) , pi(x, 0) = p0i (x) , θ(x, 0) = θ0(x) ∀x ∈ (0, π)

ẏ(x, 0) = y1(x) , ṗi(x, 0) = p1i (x) , θ̇(x, 0) = θ1(x) ∀x ∈ (0, π) ,
(40)

with the following regularity

y0 ∈ H2 ∩H1
0 (0, π) , θ0, p0i ∈ H1

0 (0, π) , y1, θ1, p1i ∈ L2(0, π) . (41)

We say that (p1, p2, y, θ) is a weak solution of (38) if

θ, pi ∈ C0
(

[0, T ];H1
0 (0, π)

)
∩ C1

(
[0, T ];L2(0, π)

)
∩ C2

(
[0, T ];H−1(0, π)

)
y ∈ C0

(
[0, T ];H2 ∩H1

0 (0, π)
)
∩ C1

(
[0, T ];L2(0, π)

)
∩ C2

(
[0, T ];H∗(0, π)

) (42)

and if the following equations are satisfied

m〈p̈1, v1〉ξ + (p1, v1)H1
ξ

= AE
Lc

[∫ π
0
s′(x)p′1(x)

ξ(x) dx
] (

s′′(x)
ξ(x)3

, v1

)
2

+
(

Φ(y + `θ − p1), v1
)
2

m〈p̈2, v2〉ξ + (p2, v2)H1
ξ

= AE
Lc

[∫ π
0
s′(x)p′2(x)

ξ(x) dx
] (

s′′(x)
ξ(x)3

, v2

)
2

+
(

Φ(y − `θ − p2), v2
)
2

M〈ÿ, w〉∗ + EI(y, w)H2 = −
(

Φ(y + `θ − p1) + Φ(y − `θ − p2), w
)
2

M
3 `

2〈θ̈, v3〉1 +GK(θ, v3)H1 =
(
`Φ(y − `θ − p2)− `Φ(y + `θ − p1), v3

)
2

for all vi ∈ H1
0 (0, π), w ∈ H2 ∩ H1

0 (0, π) and t > 0. In the sequel we denote by XT the functional
space of solutions:

(p1, p2, y, θ) ∈ XT ⇐⇒ (42) holds. (43)

Note that this space already includes the boundary conditions (39): hence, from now on we will not
mention further (39). In Subsection 3.3 we prove the existence and uniqueness of a weak solution of
(38), see Theorem 2. Under suitable regularity assumptions on the data one can then obtain the same
result for a strong solution of (38), see [28].

In view of the energy balance performed in Section 2.3, the conserved (and approximated at second
order) total energy of any solution (p1, p2, y, θ) ∈ XT of (38) is given by

E(t) =

∫ π

0

(
M

6
`2θ̇2 +

M

2
ẏ2 +

m

2
(ṗ21 + ṗ22) ξ(x)

)
dx+

∫ π

0

(
EI

2
(y′′)2 +

GK

2
(θ′)2

)
dx

+
AE

2Lc

(∫ π

0

s′ p′1
ξ(x)

dx

)2

+
AE

2Lc

(∫ π

0

s′ p′2
ξ(x)

dx

)2

+H0

∫ π

0

(
(p′1)

2 + (p′2)
2

2ξ(x)2
− s′ (p′1 + p′2)

)
dx

−mg
∫ π

0
(p1 + p2)ξ(x) dx+

∫ π

0

(
Ψ(y + `θ − p1) + Ψ(y − `θ − p2)

)
dx (44)

where, in the first line we see the total kinetic energy of the bridge and the elastic energy of the
deck whereas in the second line we see the stretching energy of the two cables. The third line in (44)
deserves a particular attention: we see there the gravitational energies of the cables and the deck, the
latter being included in Ψ while the former cancels in the equations (38) due to its presence with an
opposite sign in both (24) and in the gravitational energy.
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3.2 Existence and uniqueness for a related linear problem

We consider here the linear and decoupled problem

mξ(x) p̈1 =
[
H0
ξ(x)2

p′1

]′
+ g1(x, t)

mξ(x) p̈2 =
[
H0
ξ(x)2

p′2

]′
+ g2(x, t)

Mÿ = −EIy′′′′ + g3(x, t)

M
3 `

2θ̈ = GKθ′′ + g4(x, t)

x ∈ (0, π) , t > 0 . (45)

where gj ∈ C0([0, π]× [0, T ]) for j = 1, ..., 4. To (45) we associate the initial conditions (40) with the
regularity as in (41). We say that (p1, p2, y, θ) ∈ XT is a weak solution of (45) if

m〈p̈1, v〉ξ + (p1, v)H1
ξ

= (g1, v)2

m〈p̈2, v〉ξ + (p2, v)H1
ξ

= (g2, v)2

M〈ÿ, w〉∗ + EI(y, w)H2 = (g3, w)2

M
3 `

2〈θ̈, v〉1 +GK(θ, v)H1 = (g4, v)2

∀v ∈ H1
0 (0, π) , ∀w ∈ H2 ∩H1

0 (0, π) , t > 0 .

The purpose of the present section is to establish the existence and uniqueness of a weak solution
of (45).

Theorem 1. Let T > 0 and let gj ∈ C0([0, π] × [0, T ]) for j = 1, ..., 4. For all y0, θ0, p0i , y
1, θ1, p1i

satisfying (41) there exists a unique weak solution (p1, p2, y, θ) ∈ XT of (45) satisfying (40).

The proof of Theorem 1 uses a Galerkin procedure and is divided in several steps, see e.g. [28,
Theorem II.4.1]. The proof allows to emphasize the delicate role of all the spaces, norms, and scalar
products defined in Section 3.1. Moreover, the proof provides the underlying idea for a numerical
approximation of the dynamics with a finite number of modes. For these reasons, and for the sake of
completeness, we give here the full proof of Theorem 1.
Step 1. We construct a sequence of solutions of approximated problems in finite dimensional spaces.

We consider the two basis defined in Section 3.1 and, for any n ≥ 1, we put

En := span{e1, . . . , en} , Un := span{u1, . . . , un} .

For any n ≥ 1 we also put

(p0i )n :=
n∑
k=1

(p0i , uk)ξ uk = −
n∑
k=1

λ−1k (p0i , uk)H1
ξ
uk , (p1i )n :=

n∑
k=1

(p1i , uk)ξ uk ,

y0n :=

n∑
k=1

(y0, ek)2 ek =

n∑
k=1

k−4(y0, ek)H2 ek , y1n :=

n∑
k=1

(y1, ek)2 ek ,

θ0n :=

n∑
k=1

(θ0, ek)2 ek = −
n∑
k=1

k−2(θ0, ek)H1 ek , θ1n :=

n∑
k=1

(θ1, ek)2 ek ,

so that

y0n → y0 in H2 , θ0n → θ0 , (p0i )n → p0i in H1 , y1n → y1 , θ1n → θ1 , (p1i )n → p1i in L2 (46)
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as n→∞. For any n ≥ 1 we seek ((p1)n, (p2)n, yn, θn) such that

(pi)n(x, t) =
n∑
k=1

(pi)
k
n(t)uk , yn(x, t) =

n∑
k=1

ykn(t)ek , θn(x, t) =
n∑
k=1

θkn(t)ek

and solving the variational problem

m((p̈1)n, v)ξ + ((p1)n, v)H1
ξ

= (g1, v)2

m((p̈2)n, v)ξ + ((p2)n, v)H1
ξ

= (g2, v)2

M(ÿn, w)2 + EI(yn, w)H2 = (g3, w)2

M
3 `

2(θ̈n, w)2 +GK(θn, w)H1 = (g4, w)2

∀v ∈ Un , ∀w ∈ En , t > 0 . (47)

By making n tests on each equation (for v = u1, ..., un and w = e1, ..., en) we obtain the 4n linear
equations 

m(p̈1)
k
n + λk(p1)

k
n = (g1, uk)2

m(p̈2)
k
n + λk(p2)

k
n = (g2, uk)2

Mÿkn + EI k4 ykn = (g3, ek)2

M
3 `

2θ̈kn +GK k2 θkn = (g4, ek)2

∀k = 1, ..., n . (48)

It is a classical result from the theory of linear ODE’s that this finite-dimensional linear system,
together with the initial conditions

(pi)
k
n(0) = (p0i , uk)ξ , (ṗi)

k
n(0) = (p1i , uk)ξ , y

k
n(0) = (y0, ek)2 , ẏ

k
n(0) = (y1, ek)2 ,

θkn(0) = (θ0, ek)2 , θ̇
k
n(0) = (θ1, ek)2 ,

admits a unique global solution defined for all t > 0.
Step 2. In this step we prove a local uniform bound for the sequence {((p1)n, (p2)n, yn, θn)}.

We fix some (finite) T > 0; in what follows the ci’s denote positive constants independent of n,
possibly depending on T . We take w = ẏn in (47)3 and we integrate first over (0, π) and then over
(0, t) for some t ∈ (0, T ) to obtain

M ‖ẏn(t)‖22 + EI ‖yn(t)‖2H2 = c1 + 2

∫ t

0
(g3, ẏn)2 ≤ c1 + 2‖g3‖∞

∫ t

0
‖ẏn(τ)‖1 dτ

≤ c1 + c2

∫ t

0
‖ẏn(τ)‖1 dτ (49)

where ‖ · ‖∞ denotes the L∞([0, π] × [0, T ])-norm whereas ‖ · ‖1 denotes the L1(0, π)-norm. Here,
c1 := supn(M‖y1n‖22 + EI‖y0n‖2H2) <∞. By using the Hölder inequality, we see that (49) implies

‖ẏn(t)‖22 ≤ c3 + c4

(∫ t

0
‖ẏn(τ)‖22 dτ

)1/2

. (50)

In turn, (50) may be written as

f ′(t) ≤ c3 + c4
√
f(t) ∀t ∈ (0, T ) , f(t) :=

∫ t

0
‖ẏn(τ)‖22 dτ .

We now recall a Gronwall-type lemma which can be deduced (e.g.) from [4] and [8, Lemma A.5/p.157].
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Lemma 1. Let f ∈ C1(R+) be such that f(0) = 0, 0 ≤ f ′(t) ≤ C1 +C2

√
f(t) for all t ≥ 0 (for some

C1, C2 > 0). Then

f(t) ≤ (C1 + C2)
2

4
t2 + (C1 + C2) t ∀t ≥ 0 .

By applying Lemma 1 to (50) and going back to (49), we obtain constants c5, c6 > 0 (independent
of n) such that

‖ẏn(t)‖22 + ‖yn(t)‖2H2 ≤ c5 + c6 t
2 ∀t ∈ (0, T ) . (51)

Similarly, take v = (ṗ1)n in (47)1 or v = (ṗ2)n in (47)2, to obtain constants c7, c8, c9, c10 > 0
(independent of n) such that

‖(ṗ1)n(t)‖2ξ + ‖(p1)n(t)‖2H1
ξ
≤ c7 + c8 t

2 ∀t ∈ (0, T ) ,

‖(ṗ2)n(t)‖2ξ + ‖(p2)n(t)‖2H1
ξ
≤ c9 + c10 t

2 ∀t ∈ (0, T ) .

In order to obtain these inequalities one also needs to combine the Hölder inequality with the equiva-
lence of the norms in L2 and L2

ξ .

Finally, we take w = θ̇n in (47)4. Proceeding as above, we obtain constants c11, c12 > 0 (indepen-
dent of n) such that

‖θ̇n(t)‖22 + ‖θn(t)‖2H1 ≤ c11 + c12 t
2 ∀t ∈ (0, T ) .

Step 3. We show that {((p1)n, (p2)n, yn, θn)} admits a strongly convergent subsequence in some norm.
Let us consider in detail the sequence {yn}, the other components being similar. The bound in

(51) suggests to prove strong convergence in the space

C0([0, T ];H2
∗ (0, π)) ∩ C1([0, T ];L2(0, π)) .

The equations in (48) show that the components ykn do not depend on n, that is,

yn(x, t) =

n∑
k=1

yk(t)ek .

Take some m > n ≥ 1 and define

ym,n(x, t) := ym(x, t)− yn(x, t) =
m∑

k=n+1

yk(t)ek

so that, in particular,
ym,n(x, 0) = y0m − y0n , ẏm,n(x, 0) = y1m − y1n .

Consider also the Fourier decomposition of the function g3:

g3(x, t) =
∞∑
k=1

gk3 (t)ek ;

since g3 ∈ C0([0, π]× [0, T ]) ⊂ L2((0, π)× (0, T )), we know that( ∞∑
k=n+1

gk3 (t)2

)1/2

→ 0 as n→∞ in L2(0, T ) . (52)
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Rewrite (47)3 with n replaced by m. Then by taking w = ẏm,n(t) as a test function, by using the
orthogonality of the system {ek}, and by integrating over (0, t) we obtain

M‖ẏm,n(t)‖22 + EI‖ym,n(t)‖2H2 = Cm,n + 2

∫ t

0
(g3, ẏm,n)2 = Cm,n + 2

∫ t

0

(
m∑

k=n+1

gk(τ)ek, ẏm,n

)
2

dτ

≤ Cm,n + 2

∫ T

0

(
m∑

k=n+1

gk3 (t)2

)1/2

‖ẏm,n(t)‖2dt (53)

where Cm,n = M‖y1m − y1n‖22 + EI‖y0m − y0n‖2H2 . By (46) we know that Cm,n → 0 as m,n → ∞;
combined with (52) and (53), this shows that {yn} is a Cauchy sequence in C0([0, T ];H2∩H1

0 (0, π))∩
C1([0, T ];L2(0, π)). By completeness of these spaces we conclude that

∃y ∈ C0([0, T ];H2 ∩H1
0 (0, π)) ∩ C1([0, T ];L2(0, π)) s.t.

yn → y in C0([0, T ];H2 ∩H1
0 (0, π)) ∩ C1([0, T ];L2(0, π)) as n→ +∞ ,

(54)

thereby completing the proof of the claim.
For the sequences {θn}, {(p1)n}, {(p2)n)} we may proceed similarly and prove that

∃pi ∈ C0
(

[0, T ];H1
0 (0, π)

)
∩ C1

(
[0, T ];L2(0, π)

)
s.t.

(pi)n → pi in C0
(

[0, T ];H1
0 (0, π)

)
∩ C1

(
[0, T ];L2(0, π)

)
as n→ +∞ ,

(55)

∃θ ∈ C0
(

[0, T ];H1
0 (0, π)

)
∩ C1

(
[0, T ];L2(0, π)

)
s.t.

θn → θ in C0
(

[0, T ];H1
0 (0, π)

)
∩ C1

(
[0, T ];L2(0, π)

)
as n→ +∞ .

(56)

Step 4. We take the limit in (47) and we prove Theorem 1.
By using (54)-(55)-(56) in (47) we see that (p1, p2, y, θ) is a weak solution of (45) satisfying (40),

with the additional regularity

θ, pi ∈ C2
(

[0, T ];H−1(0, π)
)
, y ∈ C2

(
[0, T ];H∗(0, π)

)
following from the equations (45). Therefore, for any T > 0 we have proved the existence of a weak
solution (p1, p2, y, θ) ∈ XT of (45) over the interval (0, T ) and satisfying (40). By arbitrariness of
T > 0 this proves global existence. Finally, arguing by contradiction and assuming the existence of
two solutions, we subtract the two linear equations for the two solutions and we obtain an homogeneous
linear problem; the energy conservation then shows that the (nonnegative) energy is always 0, which
proves that the two solutions are, in fact, the same. This completes the proof of Theorem 1.

3.3 The existence and uniqueness result

The purpose of this final subsection is to prove the following statement.

Theorem 2. For all y0, θ0, p0i , y
1, θ1, p1i satisfying (41) there exists a unique (global in time) weak

solution (p1, p2, y, θ) ∈ X∞ of (38) satisfying the initial conditions (40).

Global in time means here that we can take any T > 0, including T =∞; this explains the notation
X∞. For the proof we use a fixed point procedure combined with an energy estimate. The first step
consists in defining the map which will be shown to have a fixed point; in the sequel we emphasize
the dependence on time of the nonlocal term.
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Lemma 2. Let T > 0 and assume that y0, θ0, p0i , y
1, θ1, p1i satisfy (41). For all (q1, q2, z, α) ∈ XT

there exists a unique weak solution (p1, p2, y, θ) ∈ XT of the system

mξ(x) p̈1 =

[
H0

ξ(x)2
p′1

]′
+
AE

Lc

[∫ π

0

s′(x)q′1(x, t)

ξ(x)
dx

]
s′′(x)

ξ(x)3
+ Φ(z + `α− q1)

mξ(x) p̈2 =

[
H0

ξ(x)2
p′2

]′
+
AE

Lc

[∫ π

0

s′(x)q′2(x, t)

ξ(x)
dx

]
s′′(x)

ξ(x)3
+ Φ(z − `α− q2)

Mÿ = −EIy′′′′ − Φ(z + `α− q1)− Φ(z − `α− q2)
M

3
`2θ̈ = GKθ′′ + `Φ(z − `α− q2)− `Φ(z + `α− q1)

satisfying the initial conditions (40).

Proof. We set

g1(x, t) =
AE

Lc

[∫ π

0

s′(x)q′1(x, t)

ξ(x)
dx

]
s′′(x)

ξ(x)3
+ Φ(z + `α− q1) ,

g2(x, t) =
AE

Lc

[∫ π

0

s′(x)q′2(x, t)

ξ(x)
dx

]
s′′(x)

ξ(x)3
+ Φ(z − `α− q2) ,

g3(x, t) = −Φ(z + `α− q1)− Φ(z − `α− q2) ,

g4(x, t) = `Φ(z − `α− q2)− `Φ(z + `α− q1) .

Then gj ∈ C0([0, π]× [0, T ]) for j = 1, ..., 4 and we apply Theorem 1. 2

Denote by ZT the space of functions (p1, p2, y, θ) such that

θ, pi ∈ C0
(

[0, T ];H1
0 (0, π)

)
∩ C1

(
[0, T ];L2(0, π)

)
y ∈ C0

(
[0, T ];H2 ∩H1

0 (0, π)
)
∩ C1

(
[0, T ];L2(0, π)

) (57)

which is a Banach space when endowed with the norm

‖(p1, p2, y, θ)‖2ZT := ‖p1‖2L∞(H1
ξ )

+ ‖ṗ1‖2L∞(L2
ξ)

+ ‖p2‖2L∞(H1
ξ )

+ ‖ṗ2‖2L∞(L2
ξ)

+‖y‖2L∞(H2) + ‖ẏ‖2L∞(L2) + ‖θ‖2L∞(H1) + ‖θ̇‖2L∞(L2)

where the norms L∞(·) have the usual time-space meaning. Clearly, XT is a subspace of ZT , see (43).
For any y0, θ0, p0i , y

1, θ1, p1i satisfying (41) we define the convex subset (complete metric space)

B := {(p1, p2, y, θ) ∈ ZT ; (40) holds} .

If we take (q1, q2, z, α) and (p1, p2, y, θ) both satisfying (40), then Lemma 2 defines a map

Υ : B→ B , Υ(q1, q2, z, α) = (p1, p2, y, θ) . (58)

We now prove that for sufficiently small T this map is contractive.

Lemma 3. Let y0, θ0, p0i , y
1, θ1, p1i satisfy (41). If T > 0 is sufficiently small, then the map Υ defined

in (58) is a contraction from B into B.
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Proof. Consider two different (q11, q
1
2, z

1, α1) and (q21, q
2
2, z

2, α2) in B and let (pj1, p
j
2, y

j , θj) =

Υ(qj1, q
j
2, z

j , αj) for j = 1, 2. Denote by

p1 = p11 − p21 , p2 = p12 − p22 , y = y1 − y2 , θ = θ1 − θ2 .

We underline that these notations should not be confused with the initial conditions (40). By sub-
tracting the two systems satisfied by (pj1, p

j
2, y

j , θj) we see that (p1, p2, y, θ) is a weak solution of

mξ(x) p̈1 =

[
H0

ξ(x)2
p′1

]′
+
AE

Lc

[∫ π

0

s′(x)[(q11)′(x, t)− (q21)′(x, t)]

ξ(x)
dx

]
s′′(x)

ξ(x)3

+Φ(z1 + `α1 − q11)− Φ(z2 + `α2 − q21) (59)

mξ(x) p̈2 =

[
H0

ξ(x)2
p′2

]′
+
AE

Lc

[∫ π

0

s′(x)[(q12)′(x, t)− (q22)′(x, t)]

ξ(x)
dx

]
s′′(x)

ξ(x)3

+Φ(z1 − `α1 − q12)− Φ(z2 − `α2 − q22) (60)

Mÿ = −EIy′′′′ − Φ(z1 + `α1 − q11)− Φ(z1 − `α1 − q12)

+Φ(z2 + `α2 − q21) + Φ(z2 − `α2 − q22) (61)

M

3
`2θ̈ = GKθ′′ + `[Φ(z1 − `α1 − q12)− Φ(z1 + `α1 − q11)]

−`[Φ(z2 − `α2 − q22)− Φ(z2 + `α2 − q21)] (62)

satisfying homogeneous initial conditions.
Multiply (59) by ṗ1, (60) by ṗ2, (61) by ẏ, (62) by θ̇. Then integrate with respect to x over (0, π)

and with respect to t over (0, t); we obtain

m‖ṗ1(t)‖2ξ+‖p1(t)‖2H1
ξ

= 2
AE

Lc

∫ t

0

[∫ π

0

s′(x)[(q11)′(x, τ)− (q21)′(x, τ)]

ξ(x)
dx

] [∫ π

0

s′′(x)

ξ(x)3
ṗ1dx

]
dτ

+2

∫ t

0

∫ π

0
[Φ(z1+`α1−q11)−Φ(z2+`α2−q21)]ṗ1dxdτ (63)

m‖ṗ2(t)‖2ξ+‖p2(t)‖2H1
ξ

= 2
AE

Lc

∫ t

0

[∫ π

0

s′(x)[(q12)′(x, τ)− (q22)′(x, τ)]

ξ(x)
dx

] [∫ π

0

s′′(x)

ξ(x)3
ṗ2dx

]
dτ

+2

∫ t

0

∫ π

0
[Φ(z1−`α1−q12)−Φ(z2−`α2−q22)]ṗ2dxdτ (64)

M‖ẏ(t)‖22+EI‖y(t)‖2H2 = 2

∫ t

0

∫ π

0
[Φ(z2+`α2−q21)−Φ(z1+`α1−q11)]ẏdxdτ

+2

∫ t

0

∫ π

0
[Φ(z2−`α2−q22)−Φ(z1−`α1−q12)]ẏdxdτ (65)

M`2

3
‖θ̇(t)‖22+GK‖θ(t)‖2H1 = 2`

∫ t

0

∫ π

0
[Φ(z1−`α1−q12)−Φ(z2−`α2−q22)]θ̇dxdτ

−2`

∫ t

0

∫ π

0
[Φ(z1+`α1−q11)−Φ(z2+`α2−q21)]θ̇dxdτ. (66)

Our purpose is to add all the above identities and to obtain estimates. By adding the four left
hand sides of (63)-(64)-(65)-(66), we find δ > 0 such that

m‖ṗ1(t)‖2ξ+‖p1(t)‖2H1
ξ

+m‖ṗ2(t)‖2ξ+‖p2(t)‖2H1
ξ

+M ‖ẏ(t)‖22+EI ‖y(t)‖2H2 +
M

3
`2‖θ̇(t)‖22+GK‖θ(t)‖2H1

19



≥ δ
(
‖ṗ1(t)‖2ξ + ‖p1(t)‖2H1

ξ
+ ‖ṗ2(t)‖2ξ + ‖p2(t)‖2H1

ξ
+ ‖ẏ(t)‖22 + ‖y(t)‖2H2 + ‖θ̇(t)‖22 + ‖θ(t)‖2H1

)
. (67)

Next, we seek an upper bound for the sum of the four right hand sides. Two kinds of terms appear:
the Φ-terms and the nonlocal terms. For the term containing Φ in (63) we remark that

|Φ(z1 + `α1 − q11)− Φ(z2 + `α2 − q21)| ≤ κ(x)
(
|z1 − z2|+ `|α1 − α2|+ |q11 − q21|

)
;

therefore, by using the Hölder inequality several times,∣∣∣∣∫ t

0

∫ π

0
[Φ(z1 + `α1 − q11)− Φ(z2 + `α2 − q21)]ṗ1dxdτ

∣∣∣∣
≤ c

∫ t

0

∫ π

0

(
|z1 − z2|+ `|α1 − α2|+ |q11 − q21|

)
|ṗ1|dxdτ

≤ c
∫ t

0

(
‖z1 − z2‖2 + ‖α1 − α2‖2 + ‖q11 − q21‖2

)
‖ṗ1(τ)‖ξdτ . (68)

Similarly, the terms containing Φ in (64)-(65)-(66) may be estimated, respectively, as follows

Φ-terms in (64) ≤ c
∫ t

0

(
‖z1 − z2‖2 + ‖α1 − α2‖2 + ‖q12 − q22‖2

)
‖ṗ2(τ)‖ξdτ , (69)

Φ-terms in (65) ≤ c
∫ t

0

(
‖z1 − z2‖2 + ‖α1 − α2‖2 + ‖q11 − q21‖2 + ‖q12 − q22‖2

)
‖ẏ(τ)‖2dτ , (70)

Φ-terms in (66) ≤ c
∫ t

0

(
‖z1 − z2‖2 + ‖α1 − α2‖2 + ‖q11 − q21‖2 + ‖q12 − q22‖2

)
‖θ̇(τ)‖2dτ . (71)

Then, we upper estimate the two nonlocal terms in (63)-(64):∣∣∣∣∫ t

0

[∫ π

0

s′(x)[(q1i )
′(x, τ)− (q2i )

′(x, τ)]

ξ(x)
dx

] [∫ π

0

s′′(x)

ξ(x)3
ṗidx

]
dτ

∣∣∣∣
≤ c

∫ t

0

[∫ π

0
|(q1i )′(x, τ)− (q2i )

′(x, τ)|dx
] [∫ π

0
|ṗi|dx

]
dτ

≤ c
∫ t

0
‖(q1i )′(τ)− (q2i )

′(τ)‖2‖ṗi(τ)‖ξdτ . (72)

All together, (68)-(69)-(70)-(71)-(72) prove that

the sum of all the r.h.s. of (63)-(64)-(65)-(66)

≤ c
∫ t

0

(
‖z1−z2‖2+‖α1−α2‖2+‖q11−q21‖2+‖q12−q22‖2

)(
‖ṗ1(τ)‖ξ+‖ṗ2(τ)‖ξ+‖ẏ(τ)‖2+‖θ̇(τ)‖2

)
dτ

+c

∫ t

0

(
‖(q11)′(τ)− (q21)

′(τ)‖2 + ‖(q12)′(τ)− (q22)
′(τ)‖2

)(
‖ṗ1(τ)‖ξ + ‖ṗ2(τ)‖ξ

)
dτ

≤ c
√
t
(
‖z1−z2‖L∞(L2)+‖α

1−α2‖L∞(L2)+‖q
1
1−q21‖L∞(L2)+‖q

1
2−q22‖L∞(L2)

)(∫ t

0

(
‖ṗ1(τ)‖2ξ+‖ṗ2(τ)‖

2
ξ+‖ẏ(τ)‖

2
2+‖θ̇(τ)‖22

)
dτ

)1/2

+c
√
t
(
‖(q11)′−(q21)′‖L∞(L2)+‖(q

1
2)

′−(q22)′‖L∞(L2)

)(∫ t

0

(
‖ṗ1(τ)‖2ξ+‖ṗ2(τ)‖

2
ξ

)
dτ

)1/2

≤ c
√
T‖(q11 − q21 , q12 − q22 , z1 − z2, α1 − α2)‖ZT

(∫ t

0

(
‖ṗ1(τ)‖2ξ + ‖ṗ2(τ)‖

2
ξ + ‖ẏ(τ)‖

2
2 + ‖θ̇(τ)‖22

)
dτ

)1/2

. (73)
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By taking the sum of (63)-(64)-(65)-(66), by taking into account the lower bound (67) and the
upper bound (73), for all t ∈ (0, T ) we obtain

‖ṗ1(t)‖2ξ + ‖p1(t)‖
2
H1
ξ
+ ‖ṗ2(t)‖2ξ + ‖p2(t)‖

2
H1
ξ
+ ‖ẏ(t)‖22 + ‖y(t)‖2

H2 + ‖θ̇(t)‖22 + ‖θ(t)‖2
H1

≤ c
√
T‖(q11 − q21 , q12 − q22 , z1 − z2, α1 − α2)‖ZT

(∫ t

0

(
‖ṗ1(τ)‖2ξ + ‖ṗ2(τ)‖

2
ξ + ‖ẏ(τ)‖

2
2 + ‖θ̇(τ)‖22

)
dτ

)1/2

. (74)

In particular, by dropping the potential part, (74) implies that

φ′(t) ≤ K
√
φ(t) with φ(t) =

∫ t

0

(
‖ṗ1(τ)‖2ξ + ‖ṗ2(τ)‖2ξ + ‖ẏ(τ)‖22 + ‖θ̇(τ)‖22

)
dτ

and K = c
√
T‖(q11 − q21, q12 − q22, z1 − z2, α1 − α2)‖ZT .

This differential inequality yields
√
φ(t) ≤ Kt/2 for all t ∈ [0, T ] which, inserted into the right hand

side of (74), gives

‖ṗ1(t)‖2ξ + ‖p1(t)‖2H1
ξ

+ ‖ṗ2(t)‖2ξ + ‖p2(t)‖2H1
ξ

+ ‖ẏ(t)‖22 + ‖y(t)‖2H2 + ‖θ̇(t)‖22 + ‖θ(t)‖2H1

≤ cT 2‖(q11 − q21, q12 − q22, z1 − z2, α1 − α2)‖2ZT ∀t ∈ [0, T ] .

By taking the supremum with respect to t ∈ [0, T ] and by replacing pi, y, θ, this finally yields

‖(p11 − p21, p12 − p22, y1 − y2, θ1 − θ2)‖ZT ≤ C T ‖(q
1
1 − q21, q12 − q22, z1 − z2, α1 − α2)‖ZT .

Then, for sufficiently small T the map Υ is contractive. 2

Since a solution of (38) is a fixed point for Υ (as defined in (58)), Lemma 3 shows that there exists
a unique weak solution (p1, p2, y, θ) ∈ XT of (38) satisfying the initial conditions (40), provided that
T > 0 is sufficiently small. The conservation of the energy in (44) shows that the solution cannot
blow up in finite time and therefore the solution is global, that is, T = ∞. This completes the proof
of Theorem 2.
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