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Abstract

We consider a hinged elastic beam subject to nonlinear restoring force. Our purpose is to model
the roadway of a suspension bridge and the nonlinear action of the hangers. We show that the
equilibrium position of the beam under the action of a vertical load displays an oscillating profile.
We compare the nonlinear model with the linear model and we study the dependence of the solution
with respect to the physical parameters involved.
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1 Introduction

Assume that a hinged beam, of finite length 2R, is subject to the restoring forces of a large number of
nonlinear two-sided springs as in Figure 1.

Figure 1: Beam subject to two-sided restoring springs.

The beam may be seen as a simplified model for the roadway of a suspension bridge and the springs
are intended to model the hangers which, in turn, are linked to sustaining cables. Assume that, besides
the nonlinear restoring force g due to the springs there is a downwards distributed load p = p(x) acting
on the beam. Then, the vertical deformation w of the beam is governed by the semilinear equation

EI w′′′′(x)− Tw′′(x) = p(x)− g(w(x)) (−R < x < R) (1)

complemented with the hinged boundary conditions

w(±R) = w′′(±R) = 0 . (2)

This is the general equation of a beam having flexural rigidity EI > 0, constant tension T ≥ 0, and
subject to both a downwards load p (its weight) and to the restoring action g = g(w) due to some elastic
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springs; we refer to [3] (see also [7]) for the derivation of (1). We assume here that

g ∈ C0(R) is increasing. (3)

It is well-known that the linear Hooke law of elasticity states that for relatively small deformations of
an object, the size of the deformation is directly proportional to the deforming force or load. But for large
values of the applied force, the deformation of the elastic material is often larger than expected on the
basis of the Hooke law. This tells us that a linear law is reliable only for small elongations of a spring.
Since we have in mind a suspension bridge and since suspension bridges exhibit large displacements
of the beam, see [1, 14, 16] and also the survey of events in [6], the elastic behavior of the hangers
cannot be assumed to be linear. Figure 2 shows the original Tacoma Narrows Bridge (1940) with its
wide oscillations (picture taken from [1, p.6]).

Figure 2: Wide oscillations at the collapsed Tacoma Narrows Bridge (1940).

In recent years, the nonlinear behavior of several structures became evident to the scientific community,
see e.g. [13]; in particular, the nonlinear behavior of cables [11] and of the restoring action of the hangers
[4] has been emphasized.

How different can be the response of a nonlinear restoring force was recently studied by us in several
papers [2, 8, 9, 10] in the case of ideal infinite beams. A striking new phenomenon appears, namely a
finite space blow up with self-excited oscillation. More precisely, fourth order equations such as (1) ex-
hibit solutions which cannot be continued to the whole real line due to the appearance of wide oscillations
yielding lim supw(x) = +∞ and lim inf w(x) = −∞ as x approaches some finite limit position. We
have shown that this phenomenon is not visible in equations of order less than four or in linear equations.

In this paper we aim at studying the same phenomenon in the case of a beam of finite length 2R,
identified with the interval [−R,R]. We compare the difference between the solutions of the nonlinear
problem (1)-(2) and the solutions of the corresponding linearized problem. We show that the profiles
of the solutions of the nonlinear problem exhibit a larger number of oscillations and we study how this
discrepancy varies in dependence of the physical parameters in the model.

Following a suggestion by Plaut-Davis [15, Section 3.5] we mainly consider

g(w) = kw + εw3 for some k, ε > 0; (4)

in fact, this nonlinearity is quite common in elasticity models, see e.g. [12, (1)]. Let us also mention that,
in view of the general results in [10], we expect different nonlinearities to generate the same qualitative
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behavior within solutions. In order to go directly into the heart of the matter, consider the initial value
problem

w′′′′δ (x)−w′′δ (x)+wδ(x)+δwδ(x)3=1, wδ(0)=w′δ(0)=w′′δ (0)=w′′′δ (0)=0. (5)

In Figure 3 we plot the solutions wδ of (5) for δ = 0 (linear case), δ = 0.01, δ = 0.02. Close to x = 0,
say for x ∈ [0, 4.5], the solutions are almost identical. Then, the larger is δ, the earlier the oscillation
starts. For δ = 0.02 the solution numerically appears to blow up for x ≈ 7.1.

Figure 3: Solutions of (5) when δ = 0 (thick), δ = 0.01 (intermediate), δ = 0.02 (thin).

The purpose of this paper is to explain these behaviors and to emphasize the difference between the
linear and the nonlinear regime in the case of a finite hinged beam subject to superlinear restoring forces.
We will show that the presence of δ > 0 creates a phenomenon of self-excited oscillations which in-
creases immeasurably the vibrations of the beam. As a conclusion, we may state that the nonlinear
behavior of restoring forces creates fracture in ideal infinite beams whereas it increases the number of
vibrations in hinged bounded beams.

2 Preliminary results

2.1 Explicit solutions for the linear equation

Consider first the linear case where g(w) = kw, that is, the springs obey the classical linear Hooke law.
Then (1) reads

EI w′′′′(x)− Tw′′(x) + kw(x) = p(x) . (6)

The tension is usually small compared with the flexural rigidity; therefore, we assume that

0 ≤ T < 2
√
k EI . (7)

This assumption gives the “right behavior” to the solutions of (6): indeed, assuming that p is constant,
p(x) ≡ p ∈ R, simple calculus arguments show that if T ≥ 0 satisfies (7), then the solutions of (6) have
the form

w(x)=a cosh

[
x

√
2
√
kEI+T
4EI

]
cos

[
x

√
2
√
kEI−T
4EI

]
+b sinh

[
x

√
2
√
kEI+T
4EI

]
sin

[
x

√
2
√
kEI−T
4EI

]
+c sinh

[
x

√
2
√
kEI+T
4EI

]
cos

[
x

√
2
√
kEI−T
4EI

]
+d cosh

[
x

√
2
√
kEI+T
4EI

]
sin

[
x

√
2
√
kEI−T
4EI

]
+
p

k
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with the coefficients a, b, c, d depending on the boundary or initial conditions. In particular, if we further
assume that w satisfies (2) then w is even and it has the form

w(x)=a cosh

[
x

√
2
√
kEI+T
4EI

]
cos

[
x

√
2
√
kEI−T
4EI

]
+b sinh

[
x

√
2
√
kEI+T
4EI

]
sin

[
x

√
2
√
kEI−T
4EI

]
+
p

k
(8)

for some a, b ∈ R depending on R. Too many parameters appear in the explicit form (8) of the solution.
For this reason, in Section 2.3 we reduce the problem to an adimensional form.

2.2 Variational formulation and well posedness of the nonlinear problem

It is quite standard to prove that (1) is well-posed, it suffices to set up a suitable variational formulation.
Let us briefly sketch what is meant by weak solution and under which assumptions it exists and is unique.

Consider the second order Sobolev space H2 ∩H1
0 (−R,R) and let H∗(−R,R) denote its dual space.

The space H2 ∩H1
0 (−R,R) is a Hilbert space when endowed with the scalar product

(u, v) =

∫ R

−R
u′′(x)v′′(x) dx ∀u, v ∈ H2 ∩H1

0 (−R,R) .

For all p ∈ H∗(−R,R) we say that w ∈ H2 ∩H1
0 (−R,R) is a weak solution of (1)-(2) if∫ R

−R

(
EI w′′(x)v′′(x) + T w′(x)v′(x) + g(w(x))v(x)

)
dx = 〈p, v〉 ∀v ∈ H2 ∩H1

0 (−R,R) (9)

where 〈·, ·〉 denotes the duality between H∗(−R,R) and H2 ∩H1
0 (−R,R). Since H2 ∩H1

0 (−R,R) ⊂
C1[−R,R], the integral

∫
g(w)v makes sense. Weak solutions of (1)-(2), as defined in (9), are critical

points of the energy functional

J(u) =
EI

2

∫ R

−R
u′′(x)2 dx+

T

2

∫ R

−R
u′(x)2 dx+

∫ R

−R
G(u(x)) dx−〈p, u〉 ∀u ∈ H2∩H1

0 (−R,R)

where G(s) =
∫ s
0 g(σ) dσ. If g satisfies (3) then G ∈ C1(R) is a convex function. Hence, the functional

J consists in the sum of two quadratic (convex) terms, of an additional convex term containingG, and of a
linear term. Therefore, J is convex and since it is continuous and coercive inH2∩H1

0 (−R,R) it admits a
unique critical point, its absolute minimum, which is a weak solution w of (9). If we additionally assume
that p ∈ C0[−R,R] (in particular, if p is constant) then the weak solution w belongs to C4[−R,R] and
it is a classical solution of (1)-(2). Let us summarize these facts in the following

Theorem 1. Assume (3) and (7). Then for all p ∈ H∗(−R,R) there exists a unique w ∈ H2 ∩
H1

0 (−R,R) satisfying (9). If p ∈ C0[−R,R] then w ∈ C4[−R,R] and w is a classical solution of
(1)-(2).

2.3 Adimensional form of the equation

With the choice (4), the equation (1) reads

EI w′′′′(x)− Tw′′(x) + kw(x) + εw(x)3 = p(x) (−R < x < R) .

To simplify the task, we restrict our attention to the case of a constant load p(x) ≡ p. After the changes
of variables

x 7→ x 4

√
k

4EI , τ =
T

2
√
k EI

, δ =
4ε

k
, P =

4

k
p , L = R 4

√
k

4EI ,
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this equation becomes

w′′′′(x)− 4τw′′(x) + 4w(x) + δw(x)3 = P (−L < x < L) (10)

with τ < 1 in view of (7). The boundary conditions (2) simply become

w(±L) = w′′(±L) = 0 . (11)

3 The number of oscillations of the solution of the linear problem

When δ = 0, the equation (10) reads

w′′′′(x)− 4τw′′(x) + 4w(x) = P (−L < x < L) (12)

and the solution of (12) satisfying (11) is even for all L > 0; by (8), the general solution of (12)-(11) is

w(x) = a cosh
[
x
√

1 + τ
]

cos
[
x
√

1− τ
]

+ b sinh
[
x
√

1 + τ
]

sin
[
x
√

1− τ
]

+
P

4

with a and b to be determined in dependence of L. For our convenience we restrict the possible values
of L by requiring that

a√
1 + τ

=
b√

1− τ
=: γ (13)

in such a way that the solution reads

w(x) = γ
{√

1 + τ cosh
[
x
√

1 + τ
]

cos
[
x
√

1− τ
]

+
√

1− τ sinh
[
x
√

1 + τ
]

sin
[
x
√

1− τ
] }

+
P

4
.

By differentiating we then find that

w′(x) = 2γ sinh
[
x
√

1 + τ
]

cos
[
x
√

1− τ
]

and it is therefore quite simple to compute the number of critical points of w. Restricting to the half-line
x ≥ 0, we see that w′(x) = 0 if and only if

x = x0 := 0 or x = xj :=
(2j − 1)π

2
√

1− τ
(j ∈ N , j ≥ 1) . (14)

A further differentiation yields

w′′(x) = 2γ
{√

1 + τ cosh
[
x
√

1 + τ
]

cos
[
x
√

1− τ
]
−
√

1− τ sinh
[
x
√

1 + τ
]

sin
[
x
√

1− τ
] }

.

By imposing the second boundary condition in (11) we find

tan
[
L
√

1− τ
]

=

√
1 + τ

1− τ
coth

[
L
√

1 + τ
]

(15)

and it is clear that

∀k ∈ N (k ≥ 1) ∃!Lk ∈
(

(k − 1)π√
1− τ

,
(2k − 1)π

2
√

1− τ

)
s.t. Lk satisfies (15). (16)

We refer to Figure 4, where Λk = (2k−1)π
2
√
1−τ , for the qualitative description of the position of Lk as defined

in (16). In fact, since the right hand side of (15) is larger than 1, we know that Lk >
(4k−3)π
4
√
1−τ .
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Figure 4: Positions of Lk as defined in (16).

Once Lk is fixed we may compute γ = γk by imposing the first boundary condition in (11) and by
using (16):

γk = − P

8
√

1+τ cosh
[
Lk
√

1+τ
]

cos
[
Lk
√

1−τ
] . (17)

Since Lk satisfies (16) we have γk < 0.
Let us summarize the above results in the following statement.

Theorem 2. Assume that L = Lk and γ = γk for some k ∈ N (k ≥ 1), where Lk is defined in (16) and
γk is defined in (17). Then the function

wk(x) = γk

{√
1 + τ cosh

[
x
√

1 + τ
]

cos
[
x
√

1− τ
]
+
√

1− τ sinh
[
x
√

1 + τ
]

sin
[
x
√

1− τ
] }

+
P

4

solves the problem

w′′′′k (x)− 4τw′′k(x) + 4wk(x) = P ∀x ∈ (−Lk, Lk) , wk(±Lk) = w′′k(±Lk) = 0 .

Therefore, wk admits 2k − 1 critical points given by x0 and ±xj for j = 1, ..., k − 1, see (14); in
particular, if k = 1 then w1 only admits the unique critical point x0 = 0.

Theorem 2 counts the number of critical points of wk. Recalling that
the vertical axis is oriented downwards

we see that the unique constant solution of (12) is given by

w̃(x) ≡ P

4
. (18)

Roughly speaking, we can say that the “target” of wk, who aims to minimize the energy of the beam, is
to approach as much as possible the equilibrium position w̃. In Figure 5 we plot the qualitative graphs
of w1, w2, w3. One sees that the first beam is not large enough to allow w1 to reach P/4. On the other

Figure 5: Graphs of w1, w2, w3, as defined in Theorem 2.
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hand, the second beam is large enough and w2 goes beyond P/4 in order to get close to it after the first
maximum point. Finally, the third beam tends to hide the oscillations of w3 around P/4; after the first
maximum, w3 just slightly oscillates around P/4 and w3 appears almost constant in the central part of
the beam. The same phenomenon becomes more and more evident as k increases, that is, as the length
of the beam increases.

As a complement to Theorem 2 we may add two more information on the qualitative behavior of wk.
First, we may distinguish between maxima and minima points; we have

∀k ∈ N , k ≥ 1 (−1)k+jw′′k(xj) > 0 ∀j = 0, ..., k − 1 . (19)

Then, we formalize the tendency to flatten in the center of the beam as follows

the map {0, ..., k − 1} → R+ defined by j 7→
∣∣∣∣wk(xj)− P

4

∣∣∣∣ is strictly increasing. (20)

Due to the linear nature of (12), it is clear that the number of critical points of wk does not depend
on P . Moreover, we have linked τ to Lk through (16). Therefore, the number of critical points of the
solution wk of (12)-(11) (for L = Lk) merely depends on k. Theorem 2 states that it equals 2k − 1. In
next section we numerically compute the number of critical points of the solution of (10)-(11) and we
compare it with 2k − 1; however, for the nonlinear problem, the number of critical points depends both
on P and δ.

4 The number of oscillations of the solution of the nonlinear problem

4.1 The numerical procedure and its test on the linear equation

In the nonlinear case δ 6= 0 we do not have explicit solutions of (10)-(11) and we cannot proceed
theoretically in order to find the number of critical points of the corresponding solutions. Let us notice
that, by the Cardano formula, the unique constant solution of (10) is given by

w(x) ≡W (δ, P ) :=
3 · 41/3 · P

[3P
√

3δ +
√

27P 2δ + 256]2/3 + 44/3 + [3P
√

3δ −
√

27P 2δ + 256]2/3
(21)

which coincides with (18) when δ = 0.
Assume again that, for a given τ ∈ (0, 1), the length of the beam is given by (16) for some k ∈ N

(k ≥ 1). We are interested in finding the number of critical points of the solution of (10)-(11) when
L = Lk and τ satisfies (16). By symmetry, we may restrict our attention to the interval [0, Lk). This
number also depends both on the load P and on the nonlinear coefficient δ; let us denote it by

Z(Lk, P, δ) := the number of critical points of the solution of (10)-(11) in the interval [0, Lk) . (22)

Note that Z(Lk, P, 0) = k for all P . By putting w(x) = αz(x), one sees that

Z(Lk, P, δ) = Z

(
Lk,

P

α
, δα2

)
∀α > 0 . (23)

In particular, (23) states that the number of critical points does not vary if we decrease the nonlinearity
and we increase the load (or viceversa) following a suitable rule.

In order to compute Z(Lk, P, δ) we proceeded numerically by using the bvptwp code, whose MAT-
LAB version was published in [5]. It is an optimized high-quality code. We first tested this numerical
approach on the linear case δ = 0. We first chose τ and k, then we computed Lk as defined in (16): by
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a bisection method we found the root of (15) in the interval
(
(k−1)π√

1−τ ,
(2k−1)π
2
√
1−τ

)
with an accuracy of the

order of 10−12. This choice is motivated by the fact that in our numerical simulations we require a high
accuracy. We note that any Newton (or Newton-type) method cannot be used since convergence is not
guaranteed by the function behavior close to the searched root. Actually, the bvptwp code has an order
which varies from 4 to 8 and we used a stepsize of the order of 10−3, so we can expect to compute the
solution of (10) with about 10 correct digits.

We then compared the analytical results obtained in Section 3 with our numerical results. To this
end, we first note that values of γk in (17) decrease very quickly when k increases; for example, γ6 =
4.2 · 10−32 and γ12 = 8.8 · 10−68 when P = 10 and τ = 0.9. Therefore, the computation of wk(x) in
Theorem 2 can exhibit a serious loss of significant digits due to the fact that the finite arithmetic sum can
be an ill-conditioned operation. Indeed, if one wishes to compute the variations of the solution wk(x)
(see Theorem 2) with respect to w̃(x) = P/4 (see (18)), one is led to introduce the function

V (x) = wk(x)− P

4
=

(
γkA(x) +

P

4

)
− P

4
(24)

where A(x) = {
√

1 + τ cosh[x
√

1 + τ ] cos[x
√

1− τ ] +
√

1− τ sinh[x
√

1 + τ ] sin[x
√

1− τ ]}. And if
γkA(x) is less than the machine roundoff unit, one finds V (x) = 0, even though V (x) = γkA(x) 6= 0.
To avoid this problem we computed γkA(x) only: this enabled us to compute correct scaled critical
values corresponding to the critical points given by (14). Whence, when we used the bvptwp code, we
considered the function z(x) = w(x)− P/4 so that, instead of (12), we consider the problem

z′′′′ − 4τz′′ + 4z = 0 , z(±L) = −P
4
, z′′(±L) = 0 . (25)

We consider here the case k = 12, τ = 0.9, P = 10, L = L12 = 113.535. In Table 1 in the Appendix
we quote the analytical critical points xj (j = 1, ..., 12) given by (14), the numerically evaluated critical
points ξj , the corresponding scaled critical values V (xj) (that is, γkA(xj)) and z(ξj), which were ob-
tained solving numerically (25) by bvptwp. It appears clearly that the numerical critical values exhibit a
very good accordance with the analytical ones; indeed, they often exhibit more than 7 correct digits. This
was somehow expected since we have to consider the effect of both the error by numerical integration
and the error in estimating the numerical critical points; the latter is not greater than 3 · 10−3, according
to the following pattern.

Critical points and critical values are computed as follows. We recall that the bvptwp code provides
two vectors: the vector of the grid points built by dividing the integration interval [0, 2Lk] into N subin-
tervals, assuming the integration stepsize h = 2Lk/N, and xn = nh for n = 0, 1, ...N , together with
the vector of the computed approximations zn of z(xn). Then we implement a routine that rescales the
integration interval which becomes [−Lk, Lk] and checks if the origin is a local maximum or minimum.
If the origin is a maximum, our routine looks for a local minimum, which is the first grid point where
the solution value is followed by a larger value and then it goes on seeking a local maximum, which
is the first grid point where the solution value is followed by a smaller value, and so on. The contrary
happens when the origin is a local minimum. It is clear that for increasing N and decreasing h, the error
is decreasing. For Table 1 we chose N = 90000 so that h = 0.00252; therefore the absolute error in the
estimated critical point ξj is not greater than 3 · 10−3. The corresponding values z(ξj) may not be the
exact critical values, they are computed at the closest point ξj of the grid.

4.2 Numerical results in the nonlinear case

We consider here (10)-(11) with δ > 0. In order to compute the critical points and the critical values by
the bvptwp code, we introduce the variable z(x) = w(x)−W (δ, P ) where W (δ, P ) is defined in (21).
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Then, instead of (10)-(11), we consider the problem

z′′′′−4τz′′+
(

4+3W (δ, P )2
)
z+3δW (δ, P )z2+δz3=0 , z(±L)=−W (δ, P ) , z′′(±L)=0 . (26)

If we fix δ = 0.1, L = L12 = 113.535 (k = 12), and we take τ = 0.9 and P = 10, then we have
W (δ, P ) = 2.224723963 in (21). The computed critical points ξi and corresponding critical values z(ξj)
are reported in Table 2 in the Appendix. In this case the origin is a maximum and

the number of critical points is larger than in the linear case

and, consequently, the last maximum, which is the absolute maximum, is closer to the right end of the
integration interval. In order to check this behavior, we considered some different values of δ and τ
whereas we always assumed P = 10 in view of (23). The detailed results are contained in the Appendix.
In Figure 6 we quote the plots of the map Z(Lk, P, δ) for different values of its arguments.

Figure 6: Plots of the maps k 7→ Z(Lk, 10, δ) for δ = 0, 0.1, 16. The values of τ are 0.1, 0.5, 0.9 from
left to right.

It appears that the gap Z(Lk, P, δ)− k increases with τ . We also consider the two numbers

Ml :=max{|z(x)|; z′(x) = 0, z solves (25)}, Mnl :=max{|z(x)|; z′(x) = 0, z solves (26)}

which represent the maximum deviation of critical points with respect to the equilibrium positions (18)
and (21).

If we compare Tables 3-4-5-6-7-8, and further numerical results that we obtained for different values
of the parameters, we can draw the following conclusions:

• Tables 3-4, Tables 5-6, and Tables 7-8 suggest that

the map δ 7→ Z(Lk, P, δ) is increasing;

• in turn, by (23), this enables us to infer that

the map P 7→ Z(Lk, P, δ) is increasing;

• Tables 3-5-7 on one hand and Tables 4-6-8 on the other hand, suggest that

the map τ 7→ Z(Lk, P, δ) is increasing;

• Tables 3-5-7 on one hand and Tables 4-6-8 on the other hand, suggest that

the maps τ 7→Ml and τ 7→Mnl are decreasing.
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Moreover, it seems that Ml > Mnl for small τ while Ml < Mnl for large τ .
Recalling the meaning of the parameters, we may conclude that a stronger nonlinearity of the restoring

force, an increasing load, an increasing tension of the sustaining cable, all contribute to increase the
number of vibrations within the beam. Moreover, the displacements from equilibrium (Ml and Mnl) are
decreasing with respect to the tension τ . Finally, the map k 7→ Z(Lk, P, δ) − k is increasing; since k
somehow measures the length of the beam, as k →∞ we obtain the limit situation of an infinite number
of oscillations, as shown in detail in our previous papers [8, 10].
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5 Appendix: numerical tables

Here we present the tables referred in Section 4. Table 1 compares critical points xj of (25) (as given
by (14)), rounded to 5 digits, with their numerical approximation ξj and critical values V (xj) with their
numerical approximations z(ξj), when k = 12, τ = 0.9, P = 10.

xj ξj V (xj) z(ξj)

0 0 1.2100624e-67 1.2100624e-67

4.9770 4.9780 1.3061401e-65 1.3061399e-65

14.902 14.901 -1.1565620e-59 -1.1565606e-59

24.836 24.836 1.0241123e-53 1.0241123e-53

34.771 34.772 -9.0683073e-48 -9.0683013e-48

44.706 44.705 8.0298027e-42 8.0297981e-42

xj ξj V (xj) z(ξj)

54.640 54.640 -7.1102279e-36 -7.1102276e-36

64.575 64.578 6.2959630e-30 6.2959547e-30

74.509 74.509 -5.5749479e-24 -5.5749470e-24

84.444 84.444 4.9365037e-18 4.9365023e-18

94.378 94.377 -4.3711742e-12 -4.3711695e-12

104.31 104.313 3.8705863e-6 3.8705863e-6

Table 1: Comparison between the critical points (14) and their numerical approximation when δ = 0,
k = 12, τ = 0.9, P = 10.

Table 2 shows computed values of the critical points ξj of the solution of (10) together with their
corresponding critical values z(ξj), when δ = 0.1, k = 12, τ = 0.9, P = 10. Note that the number of
critical points has increased from 12 to 19.

ξj z(ξj)

0 -1.749333299e-72

5.328 -3.063586089e-68

11.363 1.811528011e-64

17.398 -1.071173729e-60

23.433 6.333952062e-57

29.468 -3.745326049e-53

35.503 2.214646886e-49

ξj z(ξj)

41.538 -1.309541750e-45

47.573 7.743444819e-42

53.608 -4.578772508e-38

59.643 2.707471696e-34

65.678 -1.600953743e-30

71.713 9.466591617e-27

ξj z(ξj)

77.748 -5.597685581e-23

83.783 3.309964677e-19

89.818 -1.957213566e-15

95.853 1.157318971e-11

101.888 -6.843337144e-8

107.923 4.046373241e-4

Table 2: Numerical values of the critical points and critical values of the solution of (10) when δ = 0.1,
k = 12, τ = 0.9, P = 10.

We now consider different values of δ and τ whereas we keep P = 10 fixed: by (23) the variations
with respect to P may be deduced by corresponding variations with respect to δ.

Table 3 shows our results for δ = 0.1, τ = 0.1, P = 10. The number Ml denotes the absolute
maximum of V (x) as defined in (24), while Mnl denotes the absolute maximum of the solution z(x)
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of (26); in this case, we have W (δ, P ) = 2.224723963 in (21). Finally, Z(Lk) denotes the number of
critical points of the solution of (10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 1.00575 -1.3426264 1 -1.0779201

2 4.19236 1.1419585e-1 2 1.0047630e-1

3 7.50373 1.1786580e-1 3 1.0290371e-1

4 10.8153 1.1786933e-1 4 1.0290502e-1

5 14.1267 1.1786933e-1 5 1.0290503e-1

6 17.4383 1.1786933e-1 6 1.0290501e-1

7 20.7498 1.1786933e-1 7 1.0290492e-1

k Lk Ml Z(Lk) Mnl

8 24.0614 1.1786933e-1 8 1.0290497e-1

9 27.3729 1.1786933e-1 9 1.0290499e-1

10 30.6844 1.1786933e-1 11 1.0290503e-1

13 40.6190 1.1786933e-1 14 1.0290503e-1

16 50.5536 1.1786933e-1 17 1.0290484e-1

18 57.1767 1.1786933e-1 19 1.0290496e-1

20 63.9977 1.1786933e-1 21 1.0290486e-1

Table 3: For varying k, absolute maximum and number of critical points of the solution of (10) when
δ = 0.1, τ = 0.1, P = 10.

Table 4 shows our results for δ = 16, τ = 0.1, P = 10. The number Ml denotes the absolute
maximum of V (x) as defined in (24), while Mnl denotes the absolute maximum of the solution z(x)
of (26); in this case, we have W (δ, P ) = 0.7579901138 in (21). Again, Z(Lk) denotes the number of
critical points of the solution of (10)-(11) in the interval [0, Lk), see (22). We also tried δ = 60 (with
τ = 0.1 and P = 10) which yields W (δ, P ) = 0.5100184968 in (21): then for k = 20, δ = 60, τ = 0.1,
P = 10, we found Z(Lk) = 38 and Mnl = 0.0240770757.

k Lk Ml Z(Lk) Mnl

1 1.00575 -1.3426264 1 -3.3574287e-2

2 4.19236 1.1419585e-1 3 3.5323444e-2

3 7.50373 1.1786580e-1 4 3.5323677e-2

4 10.8153 1.1786933e-1 6 3.5323676e-2

5 14.1267 1.1786933e-1 8 3.5323670e-2

6 17.4383 1.1786933e-1 10 3.5323635e-2

7 20.7498 1.1786933e-1 11 3.5323667e-2

k Lk Ml Z(Lk) Mnl

8 24.0614 1.1786933e-1 13 3.5323658e-2

9 27.3729 1.1786933e-1 15 3.5323613e-2

10 30.6844 1.1786933e-1 17 3.5323637e-2

13 40.6190 1.1786933e-1 22 3.5323656e-2

16 50.5536 1.1786933e-1 27 3.5323534e-2

18 57.1767 1.1786933e-1 30 3.5323645e-2

20 63.9977 1.1786933e-1 34 3.5323553e-2

Table 4: For varying k, absolute maximum and number of critical points of the solution of (10) when
δ = 16, τ = 0.1, P = 10.

Then we varied τ . Table 5 shows our results for δ = 0.1, τ = 0.5, P = 10. The number Ml denotes
the absolute maximum of V (x) as defined in (24), while Mnl denotes the absolute maximum of the
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solution z(x) of (26); in this case, we have W (δ, P ) = 2.224723963 in (21). Again, Z(Lk) denotes the
number of critical points of the solution of (10)-(11) in the interval [0, Lk), see (22).

Table 6 shows our results for δ = 16, τ = 0.5, P = 10. The number Ml denotes the absolute
maximum of V (x) as defined in (24), while Mnl denotes the absolute maximum of the solution z(x) of
(26); in this case, we have W (δ, P ) = 0.75799011 in (21). Again, Z(Lk) denotes the number of critical
points of the solution of (10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 1.51084 -7.9224393e-1 1 -5.7092275e-1

2 5.92384 1.5423589e-2 2 1.9924238e-2

3 10.3667 1.5490724e-2 3 1.9961029e-2

4 14.8096 1.5490725e-2 4 1.9961029e-2

5 19.2525 1.5490725e-2 5 1.9961021e-2

6 23.0954 1.5490725e-2 7 1.9961026e-2

7 28.1382 1.5490725e-2 8 1.9961028e-2

k Lk Ml Z(Lk) Mnl

8 32.5811 1.5490725e-2 9 1.9961029e-2

9 37.0240 1.5490725e-2 10 1.9961029e-2

10 41.4669 1.5490725e-2 11 1.9961021e-2

13 54.7955 1.5490725e-2 15 1.9961004e-2

16 68.1242 1.5490725e-2 18 1.9961029e-2

18 77.0010 1.5490725e-2 21 1.9961018e-2

20 85.8957 1.5490725e-2 23 1.9961029e-2

Table 5: For varying k, absolute maximum and number of critical points of the solution of (10) when
δ = 0.1, τ = 0.5, P = 10.

k Lk Ml Z(Lk) Mnl

1 1.51084 -7.9224393e-1 1 3.0910297e-2

2 5.92384 1.5423589e-2 3 1.9736332e-2

3 10.3667 1.5490724e-2 5 1.9736281e-2

4 14.8069 1.5490725e-2 8 1.9736299e-2

5 19.2525 1.5490725e-2 10 1.9736281e-2

6 23.6954 1.5490725e-2 12 1.9736299e-2

7 28.1382 1.5490725e-2 14 1.9736326e-2

k Lk Ml Z(Lk) Mnl

8 32.5811 1.5490725e-2 16 1.9736281e-2

9 37.0240 1.5490725e-2 18 1.9736308e-2

10 41.4669 1.5490725e-2 20 1.9736333e-2

13 54.7955 1.5490725e-2 27 1.9736326e-2

16 68.1242 1.5490725e-2 33 1.9736334e-2

18 77.0010 1.5490725e-2 38 1.9736334e-2

20 85.8957 1.5490725e-2 42 1.9736293e-2

Table 6: For varying k, absolute maximum and number of critical points of the solution of (10) when
δ = 16, τ = 0.5, P = 10.

Table 7 shows our results for δ = 0.1, τ = 0.9, P = 10. The number Ml denotes the absolute
maximum of V (x) as defined in (24), while Mnl denotes the absolute maximum of the solution z(x)
of (26); in this case, we have W (δ, P ) = 2.224723963 in (21). Again, Z(Lk) denotes the number of
critical points of the solution of (10)-(11) in the interval [0, Lk), see (22).
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k Lk Ml Z(Lk) Mnl

1 4.25417 -3.17518750e-2 1 -5.8961180e-3

2 14.1887 3.8705820e-6 3 4.0461082e-4

3 24.1233 3.8705863e-6 4 4.0453454e-4

4 34.0579 3.8705863e-6 6 4.0460479e-4

5 43.9925 3.8705863e-6 8 4.0463708e-4

6 53.9271 3.8705863e-6 9 4.0463704e-4

7 63.8616 3.8705863e-6 11 4.0463733e-4

k Lk Ml Z(Lk) Mnl

8 73.7962 3.8705863e-6 13 4.0463504e-4

9 83.7309 3.8705863e-6 14 4.0463656e-4

10 93.6654 3.8705863e-6 16 4.0463711e-4

13 123.469 3.8705863e-6 21 4.0463703e-4

16 153.273 3.8705863e-6 26 4.0463634e-4

18 173.142 3.8705863e-6 29 4.0463636e-4

20 193.011 3.8705863e-6 32 4.0463622e-4

Table 7: For varying k, absolute maximum and number of critical points of the solution of (10) when
δ = 0.1, τ = 0.9, P = 10.

Table 8 shows our results for δ = 16, τ = 0.9, P = 10. The number Ml denotes the absolute
maximum of V (x) as defined in (24), while Mnl denotes the absolute maximum of the solution z(x)
of (26); in this case, we have W (δ, P ) = 0.7579901138 in (21). Again, Z(Lk) denotes the number of
critical points of the solution of (10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 4.25417 -3.17518750e-2 2 9.7003992e-3

2 14.1887 3.8705820e-6 7 9.6989325e-3

3 24.1233 3.8705863e-6 11 9.6989375e-3

4 34.0579 3.8705863e-6 15 9.6989332e-3

5 43.9925 3.8705863e-6 20 9.6989375e-3

6 53.9271 3.8705863e-6 24 9.6989130e-3

7 63.8616 3.8705863e-6 28 9.6988994e-3

k Lk Ml Z(Lk) Mnl

8 73.7962 3.8705863e-6 33 9.6988819e-3

9 83.7309 3.8705863e-6 37 9.6989361e-3

10 93.6654 3.8705863e-6 42 9.6989292e-3

13 123.469 3.8705863e-6 55 9.6989373e-3

16 153.273 3.8705863e-6 69 9.6989275e-3

18 173.142 3.8705863e-6 77 9.6988885e-3

20 193.011 3.8705863e-6 85 9.6989346e-3

Table 8: For varying k, absolute maximum and number of critical points of the solution of (10) when
δ = 16, τ = 0.9, P = 10.
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