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Abstract

Using web functions, we approximate the Dirichlet integral which represents
the torsional rigidity of a cylindrical rod with planar convex cross-secfiro
this end, we use a suitably defined piercing function, which enables us to obtain
bounds for both the approximate and the exact value of the torsional rigidity. When
Q varies, we show that the ratio between these two values is always Iarge%;than
we prove that this is a sharp lower bound and that it is not attained. Several extremal
cases are also analyzed and studied by numerical methods.

1. Introduction

Let @ c R? be an open bounded convex domain. We consider the torsion
problem for a long cylindrical rod in the space’Bf uniform planar cross-section
Q in the (x1, x2)-plane and whose axis is thg axis. The state of stress in the
interior of the rod does not depend efiand is determined by a warping function
u = u(x), x € , which solves the boundary value problem

—-Au=1 inQ,
u=0 o0ono. @

The torsional rigidity (or simply torsion) of the rad x R is the torque required
for unit angle of twist per unit length and, up to a multiplicative constant, can be
expressed by the Dirichlet integral

/Q Va2, )

whereu is the unique solution of (1). From a mathematical point of view, (2) is the
best (smallest) constanit = C($2) for the Sobolev inequalityv|? < C||Vvl|3
which holds for allv € Hol(sz). For a brief story of the torsion problem we refer to
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Section 5. We also point out that (1) is related to other mechanical problems, such
as the bending of a uniformly loaded plane membrane, or the motion of a viscous
fluid in a pipe with fixed walls, see for instance [17].

Except for some particular cases (e.g., wkks a disk, a rectangle) the explicit
form of the unique solutiol of (1) is not known and therefore the corresponding
torsion (2) may not be computed. Hence the problem of finding some estimates,
as accurate as possible, for the Dirichlet integral (2), arises. The approximation
consideredinthis paperis based on the idea of restricting the variational formulation
of (1) to the class of functions which depend only on the distance from the
boundaryo 2. More precisely, note first that (1) is the Euler-Lagrange equation of
the convex functional

(|W|2 ) 1
J(u):/ —ul, u € Hy(2).
o\ 2

Therefore, the unique solutianof (1) coincides with the unique minimum df;
in particular, the torsion (2) can be recovered by solving the infimum problem for
J, since integration by parts gives

1
min J(u) = J@) = ——/ V|2, ©)
ueHY(Q) 2Ja

Consider now the following minimization problem:

min J®), 4
Jain (u) 4)

where(R2) is the subset oHol(SZ) of functions depending only on the distance
from the boundary 2. We call the functions irC(£2) web functions. We observe
thatKC(R2) is alinear closed subspacelﬁig(sz) and that the unique solutiarof (4)
satisfies the corresponding weak formulation of (1) when the class of test functions
is restricted tdC(2), namely

/ VvV = / 10 Vo € K(2). (5)
Q Q

Sinceu satisfies the same relation for alle H&(Sz), we deduce by subtracting
thatv is the orthogonal projection af onto C(2) in the Hilbert spaceHOl(Q);
moreover, takingg = v in (5), we infer

. _ 1 2
MQWKIPQ)J(M) =J() = 2/QIVvI : (6)
Web functions were introduced for planar regular polygons in [12] in order to
approximate the infimum ovewg’l(sz) of a more general class of functionals

with their minimum overC(€2). A full generalization to any convex domain in"R

(n = 2) was given in [8]. It is shown in [8,12] that under very mild assumptions
onJ (not including convexity), the minimum of over K(2) always exists and is
unique. The explicit form of the unique minimizing web function and of (4) is also
given. While preparing this manuscript, we discovered that functions depending on
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the distance from the boundary have been previously considerdthlyi [18]
andPo6Lya [25] precisely in connection with the torsion problem.

Our purpose is to determine an optimal estimate for the “error” made when (6)
is used as an approximation for (3). Tiebative error of such approximation can
be expressed by the ratio

min, exc o) J (1)

EQ) = — .
( min, ¢ y1q) J )

@)

Before stating the main result of the paper, which is a sharp lower bouidd itas
worth adding a few comments about definition (7). First note£hiatwell defined,
because = 0 does not minimizg overH&(Q). Moreover, sincéC(2) C H&(Q)
we have€ e [0, 1] and the closef is to 1, the better the approximation is. This
becomes more evident if, recalling (3) and (6), we §€8) as the square of the
ratio between thélol(sz) norm of the component of alongK(2) and theHol(Q)
norm ofzu. It is convenient to set

N Q) =-2 min J(u), D(Q)=-2 min J(u),
uek(2) ueH}(Q)

so that both the numeratdv" and the denominatdP of £ are nonnegative and
homogeneous of degree 4, namely

NkQ) = KN (), D) = k*D(Q) Vk>0.

Therefore, the functional is invariant under dilations and we may restrict our
attention to convex sets in the plane having the same measure as the unit disk:

C= {sz c R2. Qis convex |Q| =71}.

Clearly, an upper bound (or lower bound) foigives a lower bound (resp., upper
bound) for the torsio in terms of /. The upper bound < 1 s straightforward

and has been already pointed outHgjya [25, (3.3)]. Much less is known about
lower bounds fo£: some of them and some numerical results for more general
problems are available in the previous works [9, 10]. Therefore, as pointed out by
Buttazzo [6], it is of some interest to study the minimization problem€odver

C and to find out if there exists an optimal design. Our main result gives a complete
answer to these questions. It states that the infimuth@ferC is % and that it is

not attained:

We stress that most of the usual techniques fail when we try to use them to prove
the above result. In fact, these methods may give some informatidvi and D
separately, but either they do not work simultaneously for both, or they are not fine
enough to emphasize different behaviors and allow us to prove Theorem 1. For
instance, the use of maximum principles is ruled out sifide a quotient whose
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numeratot\ and denominatoP have essentially the same behavior under small
perturbations. On the other hand, the derivative with respect to the domain, often
employed in shape optimization, can be performed only for smooth sets and turns
out to have a complicated form. Therefore, we are led to set up a different, specific
approach. It is based on the definition gbiarcing function A measuring roughly

how far we can enter int&® starting from a boundary point and following the
inner normal. This piercing function, inspired by a work@fLrina [7], must be
handled very carefully because it does not “vary with continuity” with respect to
the Hausdorff distancéy of domains, see Remark 4. Wheris a convex polygon,

we obtain both an upper bound fo1(2) (see Theorem 3) and a lower bound for

N () (see Theorem 4) in terms of the piercing functioin connection with this,

we heavily exploit the explicit expression &f (2) given in [9] in terms of the
parallel sets Q; := {x € Q; d(x,9Q) > ¢}, see formula (9), and an improved
isoperimetric inequality for convex polygons, see Theorem 2. These tools enable
us to prove the strict inequality > % in the class of convex polygons. By density
we extend such inequality to the whole cl@ssind it remains strict by a suitable
contradiction argument. Finally, to show tl%its the sharp lower bound, we exhibit

a minimizing sequence; it is suggested by numerical computations, and it is given
by isosceles triangleg""}, having infinitesimal height as — +oc.

The paper is organized as follows. In Section 2, we study in some detail the
functional £ on two subclasse§; andC»> of C which are extremal in the sense
that they achieve the equality in suitable inequalities for convex planar sets. In
particular, we analyze the behavior&bn the class of triangles. In Section 3, we
deal with minimizing sequences and we prove the inequality $h& ;3’1. Section
4 is devoted to the proof of the strict inequally> 731. Finally, in Section 5, we
conclude by giving some historical notes and open problems.

2. Two extremal cases

Let @ ¢ R? be an open bounded convex set andiet denote its inradius,
namely the supremum of the radii of the open disks contain€d ithe Lebesgue
measure of2 and the 1-dimensional Hausdorff measure of its boundgrwill be
denoted respectively b2| and|d2|. For every convex s& C IRZ, the geometrical
guantities|2], |0€2|, and W, are related by the following inequalities, which can
be found for instance in the book BONNESEN & FENCHEL [5]:

182 < 212
TWq + Wo = [0Q2] £ Wo (8)

Moreover, itis known (see [30, Section 8]), that (8) represeatspl ete system
of inequalities for (|2, [0€2], Wg), i.e., for every triplet of positive real numbers
(a1, a2, ag) satisfyingras + a3 a1 < ap < 2053wy, there exist a convex planar
setQ such thatQ| = a1, |0R2| = a2, andWq = 3. In particular, settingQ| = =,
and representing on the coordinate axes

_ZnWQ _ 472
RFLS] RRTTeTES
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y=x(2-x)

=V

o
Fig. 1. The clas< represented in théx, y)-plane

the clas< can be identified as the shaded set inBhrascake-type diagram [3]
represented in Fig. 1.

In this section we restrict the study of the functio&alo the class of convex
domains2 which lie on the boundary of the set represented in Fig. 1. The upper
parabola and the lower segment delimiting such a region correspond respectively
to the following subclasses 6f

1 2
CL= {QEC, n(WQ—i- WQ) _|asz|}, Cr= {QGC, 1992 = WQ}.

It is known that a set belongs & if and only if it is in the form of a rectangle
with to opposite sides rounded into two half circles [1, p. 8], whereas it belongs to
Cz if and only if it circumscribes a disk [31, p. 321]. In particular, among the two
extremal points? and O in Fig. 1, the former corresponds to the disk, which is the
only element ofC1 N C2, while the latter corresponds to the degenerate case of a
straight line.

Concerning the dislB, not only it is the unique set iy N C, but it also has
the following extremality property:

Proposition 1. Let Q € C. Then
EQ)=1 < Q=8B

Proof. The implication—is animmediate consequence of the fact that the unique
solutionw of (1) on B is given byz(x) = (1 — |x|%)/4. Vice versa, let us assume
that£(Q) = 1, with 9Q € C2. This means that the unique solutigrof (1) is a
web function, sayi(x) = g(d(x)), beingd(x) = d(x, 9R), andg a real function

on [0, Wq]. ThenVu = g'(d)Vd. In particular, o2 we have

ad
a_u =g (d)Vd -n=-g (0n-n=—g'(0) = constant
n
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wheren is the unit outer normal. It then follows by a theorenSekrin [32] that
Q must be a disk. In order to drop the restrictiéfd € C2 we refer to the different
proof of Serrin’s result given byWEINBERGER in the subsequent paper [34]O

For everyQ € C1UCy, we are able to compute the numerat&(<2) of the ratio
£(Q) (see Propositions 2 and 3 below). This can be obtained as a particular case of
the representation formula (25) in [9] (see also [25, (3.30)]), which states that

Yo |, 2
N :/ dr. 9
@=f o ©)
where
Q={xeQ; dx,0Q) > t}. (10)

The aim of computing explicitiV (£2) onC1 U C» is twofold. First, the knowledge

of the exact value of/'(£2), combined with Theorem 1, allows us to deduce a quite
simple way to estimate the torsion (see Corollaries 1 and 2). Second\b(iee

is known, the numerical determination Bf(2) enables us to evaluatd 2) on

C1 U Cs (see Figs. 2, 3, 4 below); in particular, this provides an insight on how to
construct a minimizing sequence (cf. Section 3).

Propositions 2 and 3 and the lower bounds of Corollaries 1 and 2 are essentially
due toPALya, see [25, p. 418] where several details were omitted. We give here
a complete proof of these results; we also establish upper bounds déod we
complement these estimates with some numerical experiments. We now proceed
separately o€ andCs.

2.1. The case of rectangles ended by semicircles

Up to rigid motions there is a one-to-one correspondence between the interval
(0, 1] and the clas§€1. More precisely, for every e (0, 1] (up to translations and
rotations) the unique sé&y belonging taC; and havingW as inradius is given by

a(W2-1) n(1l-—w?
RWZ[( aw 0 aw )X(_W’W)]

w2 -1 1— w2
UBW(H( aw )>UBW<N( aw )>

where By (X) denotes the disk centered @, 0) with radiusW. Then, we have
the following explicit characterization o¥ (Ry ) in terms ofW.

(11)

Proposition 2. For all Ry € C1 (with0 < W < 1),

4

T (W2-1 14+ w2 7 1—4w24+ w?
N(RW)_S_Z( W >Iog(—l_W2>—l—6—W2 i (12)
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Proof. For allr € (0, W) we have

1
[0(Rw):| =7 (W—i- W —2t> .

Since alsa Ry ), belongs taCy, it still satisfies the equality in the (rescaled) first
inequality of (8); hence

[(Rw)il = (W = D[d(Rw);| — m(W — 1)°.
Therefore,

(Rw)il* _ 7w (W —=0)*(L—1W)?

= , O<t<W,
ORw) | W W2Z—2tW +1 ==

and the statement follows from (9) after integration d@ew]. O

By combining Theorem 1 with Proposition 2 we obtain an explicit way to
estimate the torsion whem < Cy:

Corollary 1. For all Ry € C1 (with0 < W < 1),

w2 —1\* 14+ w2 1—4w2 + w4
T lo + —£—+§D(RW),
32 w 1—- w2 16 w2
w2 —1\* 14+ w2 1—4w2 + wh
D(Ry) < i lo W £—+
24 w 1-w2) 12 w2

Using the toolbox PDE of the program Matlab, we determined numerical values
for D(Ry) forall0 < W < 1. Thanks to Proposition 2, we then obtained the graph
in Fig. 2, which represents the functidn(W) = £(Rwy) for0 < W < 1.

Note that the functiorb admits a global minimum foW = 0.585. This fact
appears somehow natural since, 6r= 1, Ry is the disk, so thaf(R1) = 1

0.99

0.98

0.97

0.96

Fig. 2. The plot of®(W) = £(Rw) for W € (0, 1]
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(see Proposition 1), whereas, faf — 0, £(Rw) tends to 1 (see Proposition 5
below). AsW — 0, Ry approaches the sequence of thinning rectangles contained
in the clas<C, which are obtained by deformation of the square when stretching
two opposite sides. Along such a sequeficends to 1 and turns out, surprisingly,
not to be monotonic, see [9, Proposition 4]. This unexpected behavior of thinning
rectangles may find an explanation in the existence of a global minimum for the
function ®.

2.2. The case of circumscribed domains

Let Q@ € Co. Then the following simple characterization &f(€2) in terms of
Wg holds.

Proposition 3. For all © € C»,

73

= 2002

N(Q) =%W92

Proof. By a density argument, it suffices to prove the statement vihencCs is

a polygon. Indeed, ever € C; (circumscribing some disk of radiusWg) can

be approximated in the Hausdorff topology by a sequence of polygénsc C»
circumscribing the same disk; then, we can pass to the limit in the equality
N(Py) = % Wgq? thanks to the continuity of the mappir@ — N () with
respect to the Hausdorff convergence of domains, see [8, Section 6]. So, assume
that$2 is a polygon, and let

4
C = Z cotan-
2

where the sum is extended over all inner anglex the polygon. By a straightfor-
ward computation, for all € (0, W), we have

2 2 2
Q=7 — —1+ Ct*, 09| = — — 2Ct. 13
| =m Wo + [0€2 ] Weo (13)

Moreover, since; still circumscribes a disk (of radiud’g — ¢), it satisfies the
equality in the (rescaled) second part of inequality (8), hence:

2|2 |
[0€2]| = ———.
(Wa —1)

Takingt = W, in the second equation of (13), we obt&in= % Therefore,
Q

— 1— —t4+ —=t
9% 2 *

Wa WQ 2

12,12 n(WQ—t)( 2 1 2)

and the statement follows from (9) after integration o@&Wg). O

Thanks to Theorem 1 and Proposition 3, we may estimate the torsion of sets in
C2 with the following simple inequalities:
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Corallary 2. For all Q € C»,
% Wo? < D(Q) < % Wo2.

At this point, as in the case of cla€s, we would like to determine numerical
values forD(Q2) when belongs taC,. For this purpose, the whole clagsis too
wide. Therefore, we restrict our attention to the subsefxofiiven by triangles.
In order to simplify the numerics, we drop the area constraint, we fix two of the
vertices, sayd = (—1, 0) andB = (1, 0), and we let the third vertek vary in the
plane sectof" = [0, co) x (0, o).

Let us begin by considering the simpler class of isosceles triangles ofhBsis
in this case, the third verteX is free to move along the positiyeaxis and we have
a one-parameter family of triangles. We parametrize {tfag, whered < (0, %)
is the common value for the acute angles adjacent to thebAs&he numerator
N (Typ) can be recovered thanks to Proposition 3 and taking into account that

0
W, = tanz.

The numerical values faP(Ty) can be determined using the toolbox PDE of the
program Matlab. Thus we obtained Fig. 3, representing the fundtion = £(7,)
foro € (0, %).

0.82

02 04

0.78

0.76

Fig. 3. The plot of®(6) = £(Tp) for 6 € (0, %)

The function® approache§ asf — 0 oré — 7% (see Proposition 4 and
Remark 1 below) and it has a maximum f#r= 7%, in correspondence of the
equilateral triangle. Actually, the equilateral triangle is the global maximum in the
whole class of triangles. In such a class, to obtain a representatighisomore
delicate since the third verteX has two degrees of freedomIh We parametrize
the triangles agTy },,,, where(x, y) € I' are the Cartesian coordinategfThe
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numeratonV' (7, ,) can be recovered thanks to Proposition 3, as some computations
give

2
WTH - cotan(g) +tan( + ﬂ)
2 2
where
. 2sin .
T — arcsm[%} if x24y2 <1,
a:arctan( Y ),ﬂ: ”(fc_l) Ty
x+1 . 2 sina .
arcsinf ——————— otherwise.

Vi —12+y2

Again, the numerical values f@ (7, ) can be determined using the toolbox PDE of
the program Matlab. This gives the 3-dimensional plot for the functiea @ (x, y)
represented in Fig. 4, whe(e, y) vary in[0, 8) x (0, 10).

Fig. 4. The plot of€(Ty y) for (x, y) € [0, 8) x (0, 10)

The absolute maximum corresponds to the equilateral triafigle; and the
section of the surface in Fig. 4 with the axis= 0 is precisely the graph for
isosceles triangleky,, (v > 0) in Fig. 3. We also recall thét(TO,\/g) ~ 0.834, see
[10]. According to Fig. 4, it seems thatis strictly decreasing on every half line
whose origin i50, v/3).



Bound for the Torsional Rigidity of Rods 199

3. About minimizing sequences

Note first that, for every > 0, the clas€’ = {Q € C; Wq = 8} is compact.
Indeed, even e C? satisfies|dQ2| < 27/, so that any sequend&”"}, c C?
is equibounded up to a translation. Hence, from the Blaschke-selection Theorem
[31, Theorem 1.8.6] and the continuity of the inradius, there exists a subsequence
of {Q"} converging to a convex sét € C°.

We also recall that, if we endogiwith the Hausdorff distancéy, the functional
£ is continuous, see [8, Theorem 6.1]. Therefér@dmits a minimum oveg®.

In order to apply such property, suppose for a moment that the strict inequality
E(Q) > % holds for eveny e C (this is precisely the first part of Theorem 1 and
it will be proved in the next section). Then, either grff > ;31 or the following
implication holds:

viohy, ce, @) -3 = Wy —o. (14)
Accordingly, to prove that inf £ = %, we find a minimizing sequence:
Proposition 4. There exists a sequence of isosceles triangles {7}, ¢ C such that

lim sup&(T") < 2 ; (15)

h—+00

in particular, inf £(Q) < 3.
P QeC ) = 4

Proof. For all integern > 1 consider the isosceles triangle

h? h?
Th:{(x,y)€R2;0<y<z, —y—h<x<h——y}.
h T

Clearly, T" e C for all h. Moreover, sinceW,» = wh(h? + Vh* + 72)~1, by
Proposition 3 and by letting — oo, we obtain
73n? 73

8(h2 + Vi® + 122 3212

Now let 8, be the function defining the two equal sides/df, namely

N(Th = ash — oo. (16)

B, (x) = min {%(k +x), %(h —x)} . xel—hhl

Setv,(x,y) = —3y(y — Br(x)), so thaty, € HF(T"). Then, with a simple
integration we obtain
7T3
DT =-2 min Ju) = -2J(v) ~ a ash — oo.

ueHY(Th)
This, together with (16), proves (15) by lettihng— co. 0O

Remark 1. An alternative minimizing sequen¢@”},, of isosceles triangles is ob-
tained by lettings tend to zero, witl'” defined as in the above proof.
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The next statement shows that the converse implication in (14) is false. Actually,
a sequence of domaig®"};, c C satisfyingWg, — 0 may even be maximizing
for £.

Proposition 5. For all W € (0, 1] let Ry € C1 bethe set defined by (11). Then
lim E(Rwy) =1
W—0
Proof. Consider the rectangle
Ow — T(W2—1) W T(l— W2 N
W= aw T aw

SinceRy C Qw, by the maximum principle we havB(Ry) < D(Qw). For
rectangles, explicit computations made by separation of variables allow us to de-
termineD, see (40) in [9]; using such a formula and the homogeneity of degree 4
of D, we deduce that

W) x (=W, W).

D(Rw) < D(Qw) ~ %WZ asW — 0.
Hence, we have
3
liminf E(Rw) 2 liminf — N (Rw) = 1,
g (Rw) = o nWZN( w)
where the last equality follows using (12)0

Remark 2. In view of Propositions 4 and 5, it is natural to ask which are the
sequence$Q’};, c C that fulfill the necessary conditioW,, — 0 and are also
minimizing for£. A complete characterization of such sequences seems to be rather
difficult. However, we can find minimizing sequences different from the one made
by triangles given in Proposition 4. In some sense, it is necessary to consider a
sequence of domains for which the “triangular” component dominates the “rectan-
gular” one in the thinning process. A, — 0, the rectangular and the triangular
components of2 are in fact itsC; andC, components whose behavior is respec-
tively maximizing and minimizing fo€. For instance, leP, be the parallelogram

with baseb > 0, height: = 7 and smallestinner angle of meas@re: 6(b). Then

the asymptotic behavior ¢f(P,) for b — oo depends on the choice of the function
6(b). If 6(b) = %, thenP, is arectangle and(Py) — 1. 1f0(b) = arcsinir/b?),
then P, is a rhombus and the triangular effect prevails so &@;,) — %. Finally,

for different choices ob, the limit of £(P,) may take all the intermediate values
between3 and 1.

4. Proof of Theorem 1

Thanks to Proposition 4, in order to complete the proof of Theorem 1 we have
to show that
Q) > 3, vQ e C. (17)

This is the goal of the section. Since the proof of (17) is delicate and covers a
number of pages, we divide it into several steps.
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4.1. Two fundamental tools

In this subsection we define the piercing functiomentioned in the introduc-
tion and we prove an isoperimetric inequality for convex polygons.

For a.e.y € 99, the outer unit normal is well defined and it will be denoted
by n,. For a.ex € ©, the pointlT(x) € 92 such thafx — IT(x)| = d(x, L) is
uniquely determined. Then we set

A(y) =supk =2 0; TI(y — kny) = y} fora.e.y € 0Q. (18)

We clearly have & A(y) £ Wq ond. In what follows, we also make use of the
following extension of. to pointsx € Q:

A(x) = A(T1(x)) — |x — IT(x)] fora.e.x € Q. (19)

Note that, for convex polygon@ ¢ R?, (19) enables us to write the measure of
the parallel sef2; as

] = / A() dy. (20)
082

Now we establish an isoperimetric inequality for convex polygons which will be
used to estimate the term(2) in (33). In the case of polygons with 4 sides this
inequality appears, for instance, in [4, (23)]; in the case of arbitrary polygons, see
[21] and references therein. For sake of completeness we give here a full proof.

Theorem 2 (Isoperimetric inequality for convex polygond.et @ ¢ R? be a
convex polygon. Then

ksl
Q| < , 21
2l S 7= (21)
whereC = Zf"z 1 cotan%", andéy, ... , Oy denotetheinner angles of the polygon.

Equality in (21) holdsif and only if  isa circumscribed polygon.

Remark 3. We haveC > Ncotan[%n] = Ntan% > m.Thus (21) improves

(for convex polygons) the usual isoperimetric inequality which holds for any set in
the plane withC = 7, see also [20, Section 12.4].

Proof. Let a(t) := 10|, t € [0, Wg]. Fort small enough we havi;| =
Q| — 19Kt + Cr2, hence

d
a(t) = _E'Q" =10Q| — 2Ct (¢ small).

As a consequence of the Brunn—Minkowski Theorenis a concave function in
[0, Wq] (see [5, Section 24, Section 55] and [8, Lemma 4.2]). Hence

a(t) £10Q2| — 2Ct vt € [0, Wq].
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Integrating this inequality ifi0, Wq] gives
Wa
Q| = / a(t)dr < |3QWg — CW3,
0

and (21) follows maximizing the last term with respectity,. We remark that
equality in (21) holds if and only i&(r) = |0Q2| — 2Ct for everyt € [0, Wg] and

Wq = |10Q2|/2C. These two conditions are simultaneously satisfied if and only if
the polygon< circumscribed a disk. O

4.2. An upper bound for D

In this subsection we prove the following upper bound for the torsion of a
polygon in terms of the piercing function:

Theorem 3. Let 2 ¢ IR? be a convex polygon and let i be the minimizer of J in
H3(Q). Then there exists § = §(2) > 0 such that

1
p@ =3 [ 3%0)dy - 8@ 22)
Q
and
5@ 2 [ [Ivaeo - 19 e 2] dx (23)
Q

where n(T1(x)) isthe unit outer normal to 9<2 at the point TT(x) (when it exists).

Proof. We first prove (22). Assume tha&® has N sides and denote them by
Fi1, ..., Fy. For simplicity, for allj = 1, ... , N we denote byF; the open seg-
ment, namely the-th side of Q2 without its endpoints. Note that the function
introduced in (18) is defined in every point@f2 except for thev vertices. More-
over,n, = n; is a constant vector oR;. We take a partition of2 into N open
subpolygongPy, ... , Py defined as follows:

Pi={y—tn;; yeF;, 0 <t <A(y)}.

Each polygonP; may also be seen as the (open) epigrdplof the functioni on
F;, namely

Zi ={(y,t); ye F;, 0<t <A(M}
Forallj e {1,..., N} let

HX(P)) :={ve HY(P)); v=00nF;},
HX(Zj) = {ve HXZj); v(y,0) =0Vy € F}}

and consider the functional

Jj(v)=/ <%|Vv|2—v) Vo e HX(P)).

Pj
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Note that

A(Y)
Ji(w) = /F fo [%Wv(y — )2 —v(y — mj)] drdy Vv e HX(P)).
’ (24)

Let u be the minimizer of/. Let alsou; denote the restrictions of to P;
(j =1,.., N)andset

u;(y, 1) =uj(y —tnj)  ¥(y,1) € Z;. (25)
Sinceu; € C* N Hi(P)), we haveu} € H}(Z;) andou}/dr = —Vu; - n; so that

*

u-
8—;(y,t> S |\Vu;(y —tnj)| Yy, 1) € Z;. (26)

Therefore we get

Jj(uj) zlj(u;‘) (j:l,,N) (27)

A [ 1 /9v\2 1
Ij(v) := / / > (—) —v | dtdy Yv € H (Z;).
F;Jo ot

On the other hand, at each fixece F;, we have

where

Ay)
min { fo 318 0P - g)] dr: g € HXO. (), g0 = 0} = =),

Therefore the minimum af; on H*l(Zj) (whichis attained by the function(y, 1) =
t[20(y) — t]/2) may be evaluated as

min{l;(v); v € HX(Z;)} = —%/ A3(y) dy. (28)

Fj

Then, by (27) and (28) we have

N N 1 N 1
J@) = Jjp) 2 Y Lw) = —¢ Z/ W30 dy = —6/ 23(y) dy.
j=1 j=1 j=1"Fi a9
(29)
This yields
D) = —2/() < & / 33(y) dy. (30)
3 Jaa

To complete the proof of (22), it remains to show that the inequality in (30) is strict.
We may have equality in (30) only if we have equalities in (26) foja# 1, ..., N.
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But this is equivalent ta € () (i.e.,u web function), and in turn, t6(Q2) = 1.
By Proposition 1, this contradicts the assumption thas a polygon.
We now prove (23). By using (29), (24) and (25) we obtain

1 1
Q) =3 /BQ D) =2[J@ + 3 /m W] 2 230w — 1)
i

M1 5
:ZZ/F./(; [§|Vuj(y—tnj)| —uj(y — tnj)
j J

2

*

Uuj
—(y, t
o )]

2

A(y) 5 5
= E / /0 [|Vuj(y—tnj)| — |Vu;(y — tnj) - nj| ]dtdy
— JF;
J J

= fQ [IVa) 2 = Vi) - (M) ] dx

+ u;f(y, t):| dtdy

and (23) follows. O

4.3. A lower bound for

In this subsection, for polygor®, we obtain the following lower bound for
N () in terms of the piercing function:

Theorem 4. For any convex polygon Q C R?,

1
N@ z g / 23(y) dy.
Q

d
Remark 4. Theorem 4cannot be extended to any convex domain. To see this, just
consider the cas@ = B. Simple calculations give

T 1 1 T
N(B)Zg, Z/; )LS(J’)dYZZ/(; dy:E
B B

The explanation of this fact is that the map

Q / 230 dy
19

is not continuous with respect to the Hausdorff distasigeFor this reason the
piercing function is a tool which should be handled very carefully!

Theorem 4 follows directly from Lemmas 1 and 2 below.

Lemma 1. Let Q@ ¢ IR? be a convex polygon, then

1 Wgq Q 2 3
N@) = meﬂy)dy +f0 [:8;2" —Z/m )»2} g (3D
t t
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Proof. Letv € K(R2) be the (unique) minimizing web function, i.e.,

J@) = min J(u).
uek(2)

By [8, Theorem 3.1] we have

d(x,092) |Ql|
v(x) :f v(t)dt, v(t) = .
0 [0€2]

Then, sinceV'(2) = —2J (v), using the coarea formula and an integration by parts
we infer

A(y) 2 t
N(©Q) = —2/ / ’ |:v @) —/ v(s)ds] dtdy
a2 Jo 2 0

A(y)
=/ / [—v(t)2+2(x(y)—t)v(t)] di dy
Q2 J0

A ) A(Y) )
=f / (A (y) —1] dtdy—/ f (@) — () —D]* dr dy
92 J0 aQ JO

1 3
=Z/Aww@+Amx
o

(32)
where
0 1 2 2
Amrzf / (30200 =112 = ) = ) = 01?] dr dy.
Q2 J0

By Fubini's Theorem and recalling that (19) defirein the whole2, we may
rewrite A(Q2) as

W,
A(Q):/ Q/ [%AZ(Z)—[v(t)—k(Z)]Z] dzdt.
0 092

Finally, by (20), we have that(z) is the integral mean value afin 9%2;, and the
above equation becomes

WariQR 3
A(Q) = — 2| dt, 33
R A [WQA 4Am } ! (33)

which, combined with (32), proves (31)O

We now show that the termy(€2) in (33) is nonnegative:

Lemma 2. Let © ¢ R? be a convex polygon. Then, the function
wm:ﬂmz—%MM/ 3, el Wel, (34)
EIoN

iS nonnegative.
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Proof. Denote by O< 11 < --- < 1, = W, the set ofnteraction times, defined by
recurrence as follows. The first interaction timés the smallest valuee (0, Wq ]
for which (at least) one vertex of the parallel polygenis the intersection between
two or more bisecting lines of inner angles @f Assume now we have defined
t; € (0, Wql, fori < k. If yp = Wgq, thenkh = k, namely there aré interaction
timestz, ... , t. Otherwise, we defing 1 as the smallest valuee (7, Wq] for
which (at least) one vertex of the parallel polygenis the intersection between two
or more bisecting lines of inner angles®j, . This means that, for every interaction
timet; and for everye > 0, ©;_, has (at least) one side more th@p. Note in
particular that the set of interaction times is finite and is reduced+oWg, in the
case of circumscribed polygons.

Now fix ¢t ¢ {r1,...1;,} and takee > 0 small enough such that the interval
(t — &,t + ¢) does not contain any interaction time. l@tdenote the constant in
(21) relative to the polygog;. It follows by some geometrical arguments that

1082 4¢| = 1082 | — 2Cie, Q4| = |Su] — 1982 e + 0(e),

f 22 =/ A2 — 2| + o(e),
Qe o

Yt +e) =y + [%Ct /m 32— 1jae, ||s2t|}s+o<e)

hence

Since the same argument can be repeated replaeingby ¢ — ¢, we deduce that
the functiony is differentiable at every ¢ {1, ..., #;}, and

v =3¢ fm 12— 100,119,

Recalling the definition ofy, we havef;, 22 = 1097 112 — ¥ (1)], then

1€2| |92 |2
Y1) =2C —— 9% [IQzI— ac, ]—2|8QZ|¢'0) (35)

Now, using the isoperimetric mequality (21), we obtain

w<r><2 Y(t)  Vtdft,.... ).

IanI

Sincey is a continuous function, vanishingrat Wg, the above inequality means
thaty (r) = O for everyr € [0, Wq]. O

Remark 5. Lemma 2 may be complemented with the statement that for a convex
polygon2 we havey (¢) = 0 if and only if  circumscribes a disk. Indeed, for
suchg, for everyr € [0, Wg] the following equalities hold:

o) = S wa — 0. i1 = S wa -0 [ 32= D owa -0
Wa o) 3w,
Therefore, by using these identities in (34), it follows tigat) = 0. Conversely,
assume thaty(r) = 0. By (35) and Theorem 2, we deduce tl§gt must be a
circumscribed polygon for all € [0, Wgq].
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4.4. Conclusion

In this subsection we prove inequality (17): by Proposition 1 we may restrict
our attention to the case whefeis not a disk. Then, denoting lad the Hausdorff
distance of domains, we make precise the behavior of the funétidound in
Theorem 3) on converging sequences of polygons.

Lemma3. Let @ C IR? be a bounded convex set (different from a disk). Then
there exists a sequence { P}, of convex polygons such that dy (P, 2) — 0 and
3(Pp) — Cq > 0, where Cg, isa constant depending only on 2.

Proof. Take a sequence of polygof;, };, such thatly(Py,, 2) — 0 andP, C Q2
for all 1. Then, extending by zero @\ P, functions inHol(Ph), we have the usual
embeddingHol(Ph) C Hol(Q). We may also extend by zero the distance function
from o Py:
d(x,0P,) ifxe Py,
dh(x)z{o ifx €2\ Py
Also defined(x) = d(x, Q).

Letu anduy, be the minimizers of over H}(2) andHZ (P;,) respectively, that
is, D(RQ) = —2J () andD(Py) = —2J (uy) for all h. Since for a.ex € Q we
haven (I1,(x)) = Vd, (I, (x)) = Vd;(x) (wherell, (x) is the projection point of
x ontod Py), by (23) and Fatou’s Lemma we infer

|iminf5(Ph)g/ lim inf [|Vuh(x)|2—|Vuh(x)-th(x)|2] dx.  (36)
h Q h

We first claim that, up to a subsequence, we have
Vup(x) = Vu(x) fora.e.x € Q. (37)

By using the Euler equations (1) {a and P, we find thatu;, — u in H(}(Q) and
Vunll 2 — Vil L2(q) SO thatVu, — Vi in L?($2) and (37) follows, up to a
subsequence.

Next we claim that, up to a subsequence,

Vdy(x) — Vd(x) fora.e.x € Q. (38)

To show this, note that; (x) — d(x) for all x € Q. When this is combined with
the uniform estimate}Wth% = |Py| < ||, we infer that, up to subsequences,
{d;} converges weakly td in H(}(Q). Moreover, sincéP,| — |2| we also have
IVdyll2 — |IVd|l2. ThereforeVd, — Vd in L%($2) and (38) follows, up to a
subsequence.

For contradiction, assume th&tP,) — 0. Then, by (36), (37) and (38) we
conclude that

/ [|Vﬁ(x)|2 — |Va(x) - Vd(x)|2] dx =0
Q

which implies that: is a web functiong € £(2)) and hence& (©2) = 1. But this

is impossible in view of Proposition 1 since we assumedghestnot a disk. Then
the statement of the lemma follows, possibly by extracting a subsequenc®from
O
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Proof of (17). If € is a convex polygon, (17) is a straightforward consequence of
Theorems 3 and 4. &2 € C is not a polygon or a disk, consider the sequeig),
of convex polygons determined in Lemma 3. By Theorems 3 and 4 we have

_ NP - 3D(Py) +8(Pn)
D(P,) ~— 4 D(Pp)

Let Cq > 0 be as in Lemma 3. Then, recalling the continuityafith respect to

dy (see [8]) and letting — oo in (39) we obtain

3 D)+ Cq
> -
£ = 4 D)

E(Py) VheN. (39)

3
> 2
4

and (17) is proved for af2.

5. Historical notes and open problems

5.1. Abrief story of the torsion problem and parallel sets

The study of the torsion problem has a long history. In 18a@yT- VENANT [29]
conjectured that among all cross-sectiénsf given area the disk has the maximal
torsional rigidity. This conjecture was proved for simply connected regions by
P6LYA [24] in 1948, and then extended to multiply connected domaii®hya &
WEINSTEIN [27]. In [24] can also be found the uniform upper bound (independent
of Q € C) |ulleo < %, whereu is the warping function solving (1); for a lower
bound of|/u||« in terms of the harmonic radius 6f, see [22].

The setx2, defined in (10) are known in the literature iager parallel sets,
whereas the sef®’ := Q + ¢ B are calledbuter parallel sets. The latter seem have
been first considered in 1882 ByEINER [33], who proved the relations between
12|, 1022], ||, and|d2!|, nowadays known precisely as Steiner's formulas. The
origin of inner parallel sets may be perhaps attribute®tesz [28], who used
them in order to prove integral inequalities. A first study of the properties of inner
parallel sets was developed Bp1L [4]. The papers [11,14] focus attention on
the piecewise regularity @fQ2, for a.e.r; in particular, Steiner’s formulas may be
partially extended (for smat) to inner parallel sets, see e.g. [1, Section 1.1.4].

The first flavor of the idea to use inner parallel sets in variational problems may
be found in the monograph B6LYA & SzEGO [26, Section 1.29]: they introduce
a new method which consists in restricting the class of admissible functions by
prescribing the family of their level lines. Only some years la#esxar [18] used
the distance function from the boundagx) in order to give a lower bound for the
torsional rigidity of planar domains. Shortly afterwards, by dealing with the whole
class of functions depending only dfix), Makai's bounds where improved first
by PéLya [25] and subsequently lBAYNE & WEINBERGER [23].

Further inequalities related to the torsion problem may be found in [26]. For
more recent results, see the book [1] and references therein. For the history of the
location of maxima for the gradient of solutions to (1) and related problems, we
refer to [15, Section 4].
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Some different applications of inner parallel sets, mainly in the framework of
convex bodies, may be found in [31] (see in particular the bibliographic note 2 for
Section 6.5).

5.2. The torsion problem with two different materials

This problem was first considered in the celebrated papdtdhya & WE-
INSTEIN [27] and subsequently studied by many authors, see [2,7,13,16,19] and
references therein. Assume we wish to place two different linearly elastic materials
(of different shear moduli) in the plane domdinso as to maximize the torsional
rigidity of the resulting rod; moreover, the proportions of these materials are pre-
scribed. After some calculations, the problem is reduced to one of minimizing the
functional

1<u)=f fAVu) —u,  ue HH(Q),
Q

where f (1) = min{far?, 2 + y}witha > g > 0,y > 0.

Sincef is not convex, such a problem may not have a solution. Then we are led
to introduce the relaxed functional which does have a minimum. From a physical
point of view, this means that there exists an optimal design if we are allowed
to incorporate composites by mixing the two materials on a microscopic scale.
However, the resulting design may not be so easy to manufacture and therefore it
may be necessary to try to find an optimal design in a simpler class of possible
designs. Again, we could restrict ourselves to the class of web functions (Where
admits a unique minimum) and try to determine a sharp lower bound for the relative
error

minyeice) 1 (1)
infueH&(Q) I(u)

For an estimate of the lower bound wh@ris a square, see [9, Proposition 8].

5.3. Minimization of £ in higher space dimensions

The value;f’1 found in Theorem 1 is somehow puzzling as it is not intuitively
obvious where it comes from. Since itis strictly related to the geometrical properties
of convex sets in the planedRit would be interesting to find the corresponding
value in higher dimensional space$ R > 3. Some of our results may be easily
extended to this context but others seem to be less suitable. However, at least in
R3, it should not be too difficult to figure out what minimizing sequences look like
and to find a numerical approximation of the infimumgof
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