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Abstract

Using web functions, we approximate the Dirichlet integral which represents
the torsional rigidity of a cylindrical rod with planar convex cross-section�. To
this end, we use a suitably defined piercing function, which enables us to obtain
bounds for both the approximate and the exact value of the torsional rigidity. When
� varies, we show that the ratio between these two values is always larger than3

4;
we prove that this is a sharp lower bound and that it is not attained. Several extremal
cases are also analyzed and studied by numerical methods.

1. Introduction

Let � ⊂ IR2 be an open bounded convex domain. We consider the torsion
problem for a long cylindrical rod in the space IR3 of uniform planar cross-section
� in the (x1, x2)-plane and whose axis is thex3 axis. The state of stress in the
interior of the rod does not depend onx3 and is determined by a warping function
u = u(x), x ∈ �, which solves the boundary value problem

−�u = 1 in�,

u = 0 on∂�.
(1)

The torsional rigidity (or simply torsion) of the rod� × IR is the torque required
for unit angle of twist per unit length and, up to a multiplicative constant, can be
expressed by the Dirichlet integral∫

�

|∇u|2, (2)

whereu is the unique solution of (1). From a mathematical point of view, (2) is the
best (smallest) constantC = C(�) for the Sobolev inequality‖v‖2

1 � C‖∇v‖2
2

which holds for allv ∈ H 1
0 (�). For a brief story of the torsion problem we refer to
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Section 5. We also point out that (1) is related to other mechanical problems, such
as the bending of a uniformly loaded plane membrane, or the motion of a viscous
fluid in a pipe with fixed walls, see for instance [17].

Except for some particular cases (e.g., when� is a disk, a rectangle) the explicit
form of the unique solutionu of (1) is not known and therefore the corresponding
torsion (2) may not be computed. Hence the problem of finding some estimates,
as accurate as possible, for the Dirichlet integral (2), arises. The approximation
considered in this paper is based on the idea of restricting the variational formulation
of (1) to the class of functionsu which depend only on the distance from the
boundary∂�. More precisely, note first that (1) is the Euler-Lagrange equation of
the convex functional

J (u) =
∫
�

( |∇u|2
2

− u

)
, u ∈ H 1

0 (�).

Therefore, the unique solutionu of (1) coincides with the unique minimum ofJ ;
in particular, the torsion (2) can be recovered by solving the infimum problem for
J , since integration by parts gives

min
u∈H1

0 (�)

J (u) = J (u) = −1

2

∫
�

|∇u|2. (3)

Consider now the following minimization problem:

min
u∈K(�)

J (u), (4)

whereK(�) is the subset ofH 1
0 (�) of functions depending only on the distance

from the boundary∂�. We call the functions inK(�) web functions. We observe
thatK(�) is a linear closed subspace ofH 1

0 (�) and that the unique solutionv of (4)
satisfies the corresponding weak formulation of (1) when the class of test functions
is restricted toK(�), namely∫

�

∇v · ∇ϕ =
∫
�

ϕ ∀ϕ ∈ K(�). (5)

Sinceu satisfies the same relation for allϕ ∈ H 1
0 (�), we deduce by subtracting

that v is the orthogonal projection ofu onto K(�) in the Hilbert spaceH 1
0 (�);

moreover, takingϕ = v in (5), we infer

min
u∈K(�)

J (u) = J (v) = −1

2

∫
�

|∇v|2. (6)

Web functions were introduced for planar regular polygons in [12] in order to
approximate the infimum overW1,1

0 (�) of a more general class of functionalsJ
with their minimum overK(�). A full generalization to any convex domain in IRn

(n � 2) was given in [8]. It is shown in [8,12] that under very mild assumptions
onJ (not including convexity), the minimum ofJ overK(�) always exists and is
unique. The explicit form of the unique minimizing web function and of (4) is also
given. While preparing this manuscript, we discovered that functions depending on
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the distance from the boundary have been previously considered byMakai [18]
andPólya [25] precisely in connection with the torsion problem.

Our purpose is to determine an optimal estimate for the “error” made when (6)
is used as an approximation for (3). Therelative error of such approximation can
be expressed by the ratio

E(�) = minu∈K(�) J (u)

minu∈H1
0 (�)

J (u)
. (7)

Before stating the main result of the paper, which is a sharp lower bound forE , it is
worth adding a few comments about definition (7). First note thatE is well defined,
becauseu ≡ 0 does not minimizeJ overH 1

0 (�). Moreover, sinceK(�) ⊂ H 1
0 (�)

we haveE ∈ [0,1] and the closerE is to 1, the better the approximation is. This
becomes more evident if, recalling (3) and (6), we seeE(�) as the square of the
ratio between theH 1

0 (�) norm of the component ofu alongK(�) and theH 1
0 (�)

norm ofu. It is convenient to set

N (�) = −2 min
u∈K(�)

J (u), D(�) = −2 min
u∈H1

0 (�)

J (u),

so that both the numeratorN and the denominatorD of E are nonnegative and
homogeneous of degree 4, namely

N (k�) = k4N (�), D(k�) = k4D(�) ∀ k > 0.

Therefore, the functionalE is invariant under dilations and we may restrict our
attention to convex sets in the plane having the same measure as the unit disk:

C =
{
� ⊂ IR2; � is convex, |�| = π

}
.

Clearly, an upper bound (or lower bound) forE gives a lower bound (resp., upper
bound) for the torsionD in terms ofN . The upper boundE � 1 is straightforward
and has been already pointed out byPólya [25, (3.3)]. Much less is known about
lower bounds forE : some of them and some numerical results for more general
problems are available in the previous works [9,10]. Therefore, as pointed out by
Buttazzo [6], it is of some interest to study the minimization problem ofE over
C and to find out if there exists an optimal design. Our main result gives a complete
answer to these questions. It states that the infimum ofE overC is 3

4 and that it is
not attained:

Theorem 1. For all � ∈ C,

E(�) > inf
D∈C

E(D) = 3
4.

We stress that most of the usual techniques fail when we try to use them to prove
the above result. In fact, these methods may give some information onN andD
separately, but either they do not work simultaneously for both, or they are not fine
enough to emphasize different behaviors and allow us to prove Theorem 1. For
instance, the use of maximum principles is ruled out sinceE is a quotient whose
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numeratorN and denominatorD have essentially the same behavior under small
perturbations. On the other hand, the derivative with respect to the domain, often
employed in shape optimization, can be performed only for smooth sets and turns
out to have a complicated form. Therefore, we are led to set up a different, specific
approach. It is based on the definition of apiercing function λ measuring roughly
how far we can enter into� starting from a boundary point and following the
inner normal. This piercing function, inspired by a work ofCellina [7], must be
handled very carefully because it does not “vary with continuity” with respect to
the Hausdorff distancedH of domains, see Remark 4. When� is a convex polygon,
we obtain both an upper bound forD(�) (see Theorem 3) and a lower bound for
N (�) (see Theorem 4) in terms of the piercing functionλ. In connection with this,
we heavily exploit the explicit expression ofN (�) given in [9] in terms of the
parallel sets �t := {x ∈ �; d(x, ∂�) > t}, see formula (9), and an improved
isoperimetric inequality for convex polygons, see Theorem 2. These tools enable
us to prove the strict inequalityE > 3

4 in the class of convex polygons. By density
we extend such inequality to the whole classC, and it remains strict by a suitable
contradiction argument. Finally, to show that3

4 is the sharp lower bound, we exhibit
a minimizing sequence; it is suggested by numerical computations, and it is given
by isosceles triangles{T h}h having infinitesimal height ash → +∞.

The paper is organized as follows. In Section 2, we study in some detail the
functionalE on two subclassesC1 andC2 of C which are extremal in the sense
that they achieve the equality in suitable inequalities for convex planar sets. In
particular, we analyze the behavior ofE on the class of triangles. In Section 3, we
deal with minimizing sequences and we prove the inequality infC E � 3

4. Section
4 is devoted to the proof of the strict inequalityE > 3

4. Finally, in Section 5, we
conclude by giving some historical notes and open problems.

2. Two extremal cases

Let � ⊂ IR2 be an open bounded convex set and letW� denote its inradius,
namely the supremum of the radii of the open disks contained in�. The Lebesgue
measure of� and the 1-dimensional Hausdorff measure of its boundary∂� will be
denoted respectively by|�|and|∂�|. For every convex set� ⊂ IR2, the geometrical
quantities|�|, |∂�|, andW� are related by the following inequalities, which can
be found for instance in the book byBonnesen & Fenchel [5]:

πW� + |�|
W�

� |∂�| � 2|�|
W�

. (8)

Moreover, it is known (see [30, Section 8]), that (8) represents acomplete system
of inequalities for (|�|, |∂�|,W�), i.e., for every triplet of positive real numbers
(α1, α2, α3) satisfyingπα3 + α−1

3 α1 � α2 � 2α−1
3 α1, there exist a convex planar

set� such that|�| = α1, |∂�| = α2, andW� = α3. In particular, setting|�| = π ,
and representing on the coordinate axes

x = 2πW�

|∂�| and y = 4π2

|∂�|2 ,
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y = x (2− x)

y = x

O

P

x

y

Fig. 1. The classC represented in the(x, y)-plane

the classC can be identified as the shaded set in theBlaschke-type diagram [3]
represented in Fig. 1.

In this section we restrict the study of the functionalE to the class of convex
domains� which lie on the boundary of the set represented in Fig. 1. The upper
parabola and the lower segment delimiting such a region correspond respectively
to the following subclasses ofC:

C1 =
{
� ∈ C; π

(
W� + 1

W�

)
= |∂�|

}
, C2 =

{
� ∈ C; |∂�| = 2π

W�

}
.

It is known that a set belongs toC1 if and only if it is in the form of a rectangle
with to opposite sides rounded into two half circles [1, p. 8], whereas it belongs to
C2 if and only if it circumscribes a disk [31, p. 321]. In particular, among the two
extremal pointsP andO in Fig. 1, the former corresponds to the disk, which is the
only element ofC1 ∩ C2, while the latter corresponds to the degenerate case of a
straight line.

Concerning the diskB, not only it is the unique set inC1 ∩ C2, but it also has
the following extremality property:

Proposition 1. Let � ∈ C. Then

E(�) = 1 ⇐⇒ � = B.

Proof. The implication⇐� is an immediate consequence of the fact that the unique
solutionu of (1) onB is given byu(x) = (1− |x|2)/4. Vice versa, let us assume
thatE(�) = 1, with ∂� ∈ C2. This means that the unique solutionu of (1) is a
web function, sayu(x) = g(d(x)), beingd(x) = d(x, ∂�), andg a real function
on [0,W�]. Then∇u = g′(d)∇d. In particular, on∂� we have

∂u

∂n
= g′(d)∇d · n = −g′(0)n · n = −g′(0) = constant,
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wheren is the unit outer normal. It then follows by a theorem ofSerrin [32] that
� must be a disk. In order to drop the restriction∂� ∈ C2 we refer to the different
proof of Serrin’s result given byWeinberger in the subsequent paper [34].��

For every� ∈ C1∪C2, we are able to compute the numeratorN (�) of the ratio
E(�) (see Propositions 2 and 3 below). This can be obtained as a particular case of
the representation formula (25) in [9] (see also [25, (3.30)]), which states that

N (�) =
∫ W�

0

|�t |2
|∂�t | dt, (9)

where

�t = {x ∈ �; d(x, ∂�) > t}. (10)

The aim of computing explicitlyN (�) onC1∪ C2 is twofold. First, the knowledge
of the exact value ofN (�), combined with Theorem 1, allows us to deduce a quite
simple way to estimate the torsion (see Corollaries 1 and 2). Second, onceN (�)

is known, the numerical determination ofD(�) enables us to evaluateE(�) on
C1 ∪ C2 (see Figs. 2, 3, 4 below); in particular, this provides an insight on how to
construct a minimizing sequence (cf. Section 3).

Propositions 2 and 3 and the lower bounds of Corollaries 1 and 2 are essentially
due toPólya, see [25, p. 418] where several details were omitted. We give here
a complete proof of these results; we also establish upper bounds forD and we
complement these estimates with some numerical experiments. We now proceed
separately onC1 andC2.

2.1. The case of rectangles ended by semicircles

Up to rigid motions there is a one-to-one correspondence between the interval
(0,1] and the classC1. More precisely, for everyW ∈ (0,1] (up to translations and
rotations) the unique setRW belonging toC1 and havingW as inradius is given by

RW =
[(

π(W2 − 1)

4W
,
π(1−W2)

4W

)
× (−W,W)

]
⋃

BW

(
π(W2 − 1)

4W

) ⋃
BW

(
π(1−W2)

4W

) (11)

whereBW(X) denotes the disk centered at(X,0) with radiusW . Then, we have
the following explicit characterization ofN (RW) in terms ofW .

Proposition 2. For all RW ∈ C1 (with 0 < W < 1),

N (RW) = π

32

(
W2 − 1

W

)4

log

(
1+W2

1−W2

)
− π

16

1− 4W2 +W4

W2 . (12)
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Proof. For all t ∈ (0,W) we have

|∂(RW)t | = π

(
W + 1

W
− 2t

)
.

Since also(RW)t belongs toC1, it still satisfies the equality in the (rescaled) first
inequality of (8); hence

|(RW)t | = (W − t)|∂(RW)t | − π(W − t)2.

Therefore,

|(RW)t |2
|∂(RW)t | =

π

W

(W − t)2(1− tW)2

W2 − 2tW + 1
, 0 < t < W,

and the statement follows from (9) after integration over[0,W ]. ��
By combining Theorem 1 with Proposition 2 we obtain an explicit way to

estimate the torsion when� ∈ C1:

Corollary 1. For all RW ∈ C1 (with 0 < W < 1),

π

32

(
W2 − 1

W

)4

log

(
1+W2

1−W2

)
− π

16

1− 4W2 +W4

W2 � D(RW),

D(RW) <
π

24

(
W2 − 1

W

)4

log

(
1+W2

1−W2

)
− π

12

1− 4W2 +W4

W2 .

Using the toolbox PDE of the program Matlab, we determined numerical values
for D(RW) for all 0 < W � 1. Thanks to Proposition 2, we then obtained the graph
in Fig. 2, which represents the function$(W) = E(RW) for 0 < W � 1.

Note that the function$ admits a global minimum forW ≈ 0.585. This fact
appears somehow natural since, forW = 1, RW is the disk, so thatE(R1) = 1

0.2 0.4 0.6 0.8 1

0.96

0.97

0.98

0.99

Fig. 2. The plot of$(W) = E(RW ) for W ∈ (0,1]
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(see Proposition 1), whereas, forW → 0, E(RW) tends to 1 (see Proposition 5
below). AsW → 0,RW approaches the sequence of thinning rectangles contained
in the classC, which are obtained by deformation of the square when stretching
two opposite sides. Along such a sequenceE tends to 1 and turns out, surprisingly,
not to be monotonic, see [9, Proposition 4]. This unexpected behavior of thinning
rectangles may find an explanation in the existence of a global minimum for the
function$.

2.2. The case of circumscribed domains

Let � ∈ C2. Then the following simple characterization ofN (�) in terms of
W� holds.

Proposition 3. For all � ∈ C2,

N (�) = π

8
W�

2 = π3

2|∂�|2 .

Proof. By a density argument, it suffices to prove the statement when� ∈ C2 is
a polygon. Indeed, every� ∈ C2 (circumscribing some diskD of radiusW�) can
be approximated in the Hausdorff topology by a sequence of polygons{Ph} ⊂ C2
circumscribing the same diskD; then, we can pass to the limit in the equality
N (Ph) = π

8 W�
2 thanks to the continuity of the mapping� �→ N (�) with

respect to the Hausdorff convergence of domains, see [8, Section 6]. So, assume
that� is a polygon, and let

C =
∑
ϑ

cotan
ϑ

2

where the sum is extended over all inner anglesϑ of the polygon. By a straightfor-
ward computation, for allt ∈ (0,W�), we have

|�t | = π − 2π

W�

t + Ct2, |∂�t | = 2π

W�

− 2Ct. (13)

Moreover, since�t still circumscribes a disk (of radiusW� − t), it satisfies the
equality in the (rescaled) second part of inequality (8), hence:

|∂�t | = 2|�t |
(W� − t)

.

Takingt = W� in the second equation of (13), we obtainC = π

W�
2 . Therefore,

|�t |2
|∂�t | =

π(W� − t)

2

(
1− 2

W�

t + 1

W�
2 t

2
)
,

and the statement follows from (9) after integration over(0,W�). ��
Thanks to Theorem 1 and Proposition 3, we may estimate the torsion of sets in

C2 with the following simple inequalities:
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Corollary 2. For all � ∈ C2,

π

8
W�

2 � D(�) <
π

6
W�

2.

At this point, as in the case of classC1, we would like to determine numerical
values forD(�) when� belongs toC2. For this purpose, the whole classC2 is too
wide. Therefore, we restrict our attention to the subset ofC2 given by triangles.
In order to simplify the numerics, we drop the area constraint, we fix two of the
vertices, sayA = (−1,0) andB = (1,0), and we let the third vertexC vary in the
plane sector' = [0,∞)× (0,∞).

Let us begin by considering the simpler class of isosceles triangles of basisAB:
in this case, the third vertexC is free to move along the positivey axis and we have
a one-parameter family of triangles. We parametrize it as{Tθ }θ , whereθ ∈ (0, π2 )
is the common value for the acute angles adjacent to the baseAB. The numerator
N (Tθ ) can be recovered thanks to Proposition 3 and taking into account that

WTθ = tan
θ

2
.

The numerical values forD(Tθ ) can be determined using the toolbox PDE of the
program Matlab. Thus we obtained Fig. 3, representing the function$(θ) = E(Tθ )
for θ ∈ (0, π2 ).

0.2 0.4 0.6 0.8 1 1.2 1.4

0.76

0.78

0.82

Fig. 3. The plot of$(θ) = E(Tθ ) for θ ∈ (0, π2 )

The function$ approaches34 asθ → 0 or θ → π
2 (see Proposition 4 and

Remark 1 below) and it has a maximum forθ = π
3 , in correspondence of the

equilateral triangle. Actually, the equilateral triangle is the global maximum in the
whole class of triangles. In such a class, to obtain a representation forE is more
delicate since the third vertexC has two degrees of freedom in'. We parametrize
the triangles as{Tx,y}x,y , where(x, y) ∈ ' are the Cartesian coordinates ofC. The
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numeratorN (Tx,y) can be recovered thanks to Proposition 3, as some computations
give

WTx,y =
2

cotan
(α

2

)
+ tan

(α + β

2

)
where

α = arctan

(
y

x + 1

)
, β =



π − arcsin

[
2 sinα√

(x − 1)2 + y2

]
if x2 + y2 � 1,

arcsin

[
2 sinα√

(x − 1)2 + y2

]
otherwise.

Again, the numerical values forD(Tx,y)can be determined using the toolbox PDE of
the program Matlab.This gives the 3-dimensional plot for the function$ = $(x, y)

represented in Fig. 4, where(x, y) vary in [0,8)× (0,10).

Fig. 4. The plot ofE(Tx,y) for (x, y) ∈ [0,8)× (0,10)

The absolute maximum corresponds to the equilateral triangleT0,
√

3 and the
section of the surface in Fig. 4 with the axisx = 0 is precisely the graph for
isosceles trianglesT0,y (y > 0) in Fig. 3. We also recall thatE(T0,

√
3) ≈ 0.834, see

[10]. According to Fig. 4, it seems thatE is strictly decreasing on every half line
whose origin is(0,

√
3).
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3. About minimizing sequences

Note first that, for everyδ > 0, the classCδ = {� ∈ C; W� � δ} is compact.
Indeed, every� ∈ Cδ satisfies|∂�| � 2π/δ, so that any sequence{�h}h ⊂ Cδ

is equibounded up to a translation. Hence, from the Blaschke-selection Theorem
[31, Theorem 1.8.6] and the continuity of the inradius, there exists a subsequence
of {�h} converging to a convex set� ∈ Cδ.

We also recall that, if we endowC with the Hausdorff distancedH, the functional
E is continuous, see [8, Theorem 6.1]. Therefore,E admits a minimum overCδ.

In order to apply such property, suppose for a moment that the strict inequality
E(�) > 3

4 holds for every� ∈ C (this is precisely the first part of Theorem 1 and
it will be proved in the next section). Then, either infC E > 3

4 or the following
implication holds:

∀{�h}h ⊂ C , E(�h) → 3
4 �⇒ W�h → 0. (14)

Accordingly, to prove that infC E = 3
4, we find a minimizing sequence:

Proposition 4. There exists a sequence of isosceles triangles {T h}h ⊂ C such that

lim sup
h→+∞

E(T h) � 3
4 ; (15)

in particular, inf
�∈C

E(�) � 3
4 .

Proof. For all integerh � 1 consider the isosceles triangle

T h =
{
(x, y) ∈ IR2; 0 < y <

π

h
,
h2y

π
− h < x < h− h2y

π

}
.

Clearly,T h ∈ C for all h. Moreover, sinceWTh = πh(h2 + √
h4 + π2)−1, by

Proposition 3 and by lettingh → ∞, we obtain

N (T h) = π3h2

8(h2 +√
h4 + π2)2

≈ π3

32h2 ash → ∞. (16)

Now letβh be the function defining the two equal sides ofT h, namely

βh(x) = min
{ π

h2 (h+ x),
π

h2 (h− x)
}
, x ∈ [−h, h].

Set vh(x, y) = −1
2y(y − βh(x)), so thatvh ∈ H 1

0 (T
h). Then, with a simple

integration we obtain

D(T h) = −2 min
u∈H1

0 (T
h)

J (u) � −2J (vh) ≈ π3

24h2 ash → ∞.

This, together with (16), proves (15) by lettingh → ∞. ��
Remark 1. An alternative minimizing sequence{T h}h of isosceles triangles is ob-
tained by lettingh tend to zero, withT h defined as in the above proof.
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The next statement shows that the converse implication in (14) is false.Actually,
a sequence of domains{�h}h ⊂ C satisfyingW�h → 0 may even be maximizing
for E .

Proposition 5. For all W ∈ (0,1] let RW ∈ C1 be the set defined by (11). Then

lim
W→0

E(RW) = 1.

Proof. Consider the rectangle

QW =
(
π(W2 − 1)

4W
−W,

π(1−W2)

4W
+W

)
× (−W,W).

SinceRW ⊂ QW , by the maximum principle we haveD(RW) < D(QW). For
rectangles, explicit computations made by separation of variables allow us to de-
termineD, see (40) in [9]; using such a formula and the homogeneity of degree 4
of D, we deduce that

D(RW) � D(QW) ≈ π

3
W2 asW → 0.

Hence, we have

lim inf
W→0

E(RW) � lim inf
W→0

3

πW2N (RW) = 1,

where the last equality follows using (12).��
Remark 2. In view of Propositions 4 and 5, it is natural to ask which are the
sequences{�h}h ⊂ C that fulfill the necessary conditionW�h → 0 and are also
minimizing forE .A complete characterization of such sequences seems to be rather
difficult. However, we can find minimizing sequences different from the one made
by triangles given in Proposition 4. In some sense, it is necessary to consider a
sequence of domains for which the “triangular” component dominates the “rectan-
gular” one in the thinning process. AsW� → 0, the rectangular and the triangular
components of� are in fact itsC1 andC2 components whose behavior is respec-
tively maximizing and minimizing forE . For instance, letPb be the parallelogram
with baseb > 0, heighth = π

b
and smallest inner angle of measureθ = θ(b). Then

the asymptotic behavior ofE(Pb) for b → ∞ depends on the choice of the function
θ(b). If θ(b) = π

2 , thenPb is a rectangle andE(Pb) → 1. If θ(b) = arcsin(π/b2),
thenPb is a rhombus and the triangular effect prevails so thatE(Pb) → 3

4. Finally,
for different choices ofθ , the limit of E(Pb) may take all the intermediate values
between3

4 and 1.

4. Proof of Theorem 1

Thanks to Proposition 4, in order to complete the proof of Theorem 1 we have
to show that

E(�) > 3
4, ∀� ∈ C. (17)

This is the goal of the section. Since the proof of (17) is delicate and covers a
number of pages, we divide it into several steps.
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4.1. Two fundamental tools

In this subsection we define the piercing functionλ mentioned in the introduc-
tion and we prove an isoperimetric inequality for convex polygons.

For a.e.y ∈ ∂�, the outer unit normal is well defined and it will be denoted
by ny . For a.e.x ∈ �, the point-(x) ∈ ∂� such that|x −-(x)| = d(x, ∂�) is
uniquely determined. Then we set

λ(y) = sup{k � 0; -(y − kny) = y} for a.e.y ∈ ∂�. (18)

We clearly have 0� λ(y) � W� on∂�. In what follows, we also make use of the
following extension ofλ to pointsx ∈ �:

λ(x) = λ(-(x))− |x −-(x)| for a.e.x ∈ �. (19)

Note that, for convex polygons� ⊂ IR2, (19) enables us to write the measure of
the parallel set�t as

|�t | =
∫
∂�t

λ(y) dy. (20)

Now we establish an isoperimetric inequality for convex polygons which will be
used to estimate the term�(�) in (33). In the case of polygons with 4 sides this
inequality appears, for instance, in [4, (23)]; in the case of arbitrary polygons, see
[21] and references therein. For sake of completeness we give here a full proof.

Theorem 2 (Isoperimetric inequality for convex polygons). Let � ⊂ IR2 be a
convex polygon. Then

|�| � |∂�|2
4C

, (21)

whereC := ∑N
i=1 cotanθi

2 , and θ1, . . . , θN denote the inner angles of the polygon.
Equality in (21) holds if and only if � is a circumscribed polygon.

Remark 3. We haveC � N cotan
[
(N−2)

2N π
]
= N tan π

N
> π . Thus (21) improves

(for convex polygons) the usual isoperimetric inequality which holds for any set in
the plane withC = π , see also [20, Section 12.4].

Proof. Let α(t) := |∂�t |, t ∈ [0,W�]. For t small enough we have|�t | =
|�| − |∂�|t + Ct2, hence

α(t) = − d

dt
|�t | = |∂�| − 2Ct (t small).

As a consequence of the Brunn–Minkowski Theorem,α is a concave function in
[0,W�] (see [5, Section 24, Section 55] and [8, Lemma 4.2]). Hence

α(t) � |∂�| − 2Ct ∀t ∈ [0,W�].
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Integrating this inequality in[0,W�] gives

|�| =
∫ W�

0
α(t) dt � |∂�|W� − CW2

�,

and (21) follows maximizing the last term with respect toW�. We remark that
equality in (21) holds if and only ifα(t) = |∂�| − 2Ct for everyt ∈ [0,W�] and
W� = |∂�|/2C. These two conditions are simultaneously satisfied if and only if
the polygon� circumscribed a disk. ��

4.2. An upper bound for D

In this subsection we prove the following upper bound for the torsion of a
polygon in terms of the piercing function:

Theorem 3. Let � ⊂ IR2 be a convex polygon and let u be the minimizer of J in
H 1

0 (�). Then there exists δ = δ(�) > 0 such that

D(�) = 1

3

∫
∂�

λ3(y) dy − δ(�) (22)

and

δ(�) �
∫
�

[
|∇u(x)|2 − |∇u(x) · n(-(x))|2

]
dx (23)

where n(-(x)) is the unit outer normal to ∂� at the point -(x) (when it exists).

Proof. We first prove (22). Assume that� hasN sides and denote them by
F1, . . . , FN . For simplicity, for allj = 1, . . . , N we denote byFj theopen seg-
ment, namely thej -th side of� without its endpoints. Note that the functionλ
introduced in (18) is defined in every point of∂� except for theN vertices. More-
over,ny ≡ nj is a constant vector onFj . We take a partition of� into N open
subpolygonsP1, . . . , PN defined as follows:

Pj = {y − tnj ; y ∈ Fj , 0 < t < λ(y)}.
Each polygonPj may also be seen as the (open) epigraphZj of the functionλ on
Fj , namely

Zj = {(y, t); y ∈ Fj , 0 < t < λ(y)}.
For all j ∈ {1, ..., N} let

H 1∗ (Pj ) := {v ∈ H 1(Pj ); v = 0 onFj },
H 1∗ (Zj ) := {v ∈ H 1(Zj ); v(y,0) = 0 ∀y ∈ Fj }

and consider the functional

Jj (v) =
∫
Pj

(
1
2|∇v|2 − v

)
∀v ∈ H 1∗ (Pj ).
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Note that

Jj (v) =
∫
Fj

∫ λ(y)

0

[
1
2|∇v(y − tnj )|2 − v(y − tnj )

]
dt dy ∀v ∈ H 1∗ (Pj ).

(24)

Let u be the minimizer ofJ . Let alsouj denote the restrictions ofu to Pj
(j = 1, ..., N ) and set

u∗j (y, t) = uj (y − tnj ) ∀(y, t) ∈ Zj . (25)

Sinceuj ∈ C1 ∩H 1∗ (Pj ), we haveu∗j ∈ H 1∗ (Zj ) and∂u∗j /∂t = −∇uj · nj so that∣∣∣∣∣
∂u∗j
∂t

(y, t)

∣∣∣∣∣ � |∇uj (y − tnj )| ∀(y, t) ∈ Zj . (26)

Therefore we get

Jj (uj ) � Ij (u
∗
j ) (j = 1, ..., N) (27)

where

Ij (v) :=
∫
Fj

∫ λ(y)

0

[
1

2

(
∂v

∂t

)2

− v

]
dt dy ∀v ∈ H 1∗ (Zj ).

On the other hand, at each fixedy ∈ Fj , we have

min

{∫ λ(y)

0

[
1
2|g′(t)|2 − g(t)

]
dt; g ∈ H 1(0, λ(y)), g(0) = 0

}
= −1

6λ
3(y).

Therefore the minimum ofIj onH 1∗ (Zj ) (which is attained by the functionw(y, t)=
t[2λ(y)− t]/2) may be evaluated as

min{Ij (v); v ∈ H 1∗ (Zj )} = −1

6

∫
Fj

λ3(y) dy. (28)

Then, by (27) and (28) we have

J (u) =
N∑

j=1

Jj (uj ) �
N∑

j=1

Ij (u
∗
j ) � −1

6

N∑
j=1

∫
Fj

λ3(y) dy = −1

6

∫
∂�

λ3(y) dy.

(29)

This yields

D(�) = −2J (u) � 1

3

∫
∂�

λ3(y) dy. (30)

To complete the proof of (22), it remains to show that the inequality in (30) is strict.
We may have equality in (30) only if we have equalities in (26) for allj = 1, ..., N .
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But this is equivalent tou ∈ K(�) (i.e.,u web function), and in turn, toE(�) = 1.
By Proposition 1, this contradicts the assumption that� is a polygon.

We now prove (23). By using (29), (24) and (25) we obtain

δ(�) = 1

3

∫
∂�

λ3 − D(�) = 2
[
J (u)+ 1

6

∫
∂�

λ3
]

� 2
∑
j

[Jj (uj )− Ij (u
∗
j )]

= 2
∑
j

∫
Fj

∫ λ(y)

0

[
1

2
|∇uj (y − tnj )|2 − uj (y − tnj )

− 1

2

∣∣∣∣∣
∂u∗j
∂t

(y, t)

∣∣∣∣∣
2

+ u∗j (y, t)


 dt dy

=
∑
j

∫
Fj

∫ λ(y)

0

[
|∇uj (y − tnj )|2 − |∇uj (y − tnj ) · nj |2

]
dt dy

=
∫
�

[
|∇u(x)|2 − |∇u(x) · n(-(x))|2

]
dx

and (23) follows. ��

4.3. A lower bound for N

In this subsection, for polygons�, we obtain the following lower bound for
N (�) in terms of the piercing function:

Theorem 4. For any convex polygon � ⊂ IR2,

N (�) � 1

4

∫
∂�

λ3(y) dy.

Remark 4. Theorem 4cannot be extended to any convex domain. To see this, just
consider the case� = B. Simple calculations give

N (B) = π

8
,

1

4

∫
∂B

λ3(y) dy = 1

4

∫
∂B

dy = π

2
.

The explanation of this fact is that the map

� �→
∫
∂�

λ3(y) dy

is not continuous with respect to the Hausdorff distancedH. For this reason the
piercing function is a tool which should be handled very carefully!

Theorem 4 follows directly from Lemmas 1 and 2 below.

Lemma 1. Let � ⊂ IR2 be a convex polygon, then

N (�) = 1

4

∫
∂�

λ3(y) dy +
∫ W�

0

[ |�t |2
|∂�t | −

3

4

∫
∂�t

λ2
]
dt. (31)
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Proof. Let v ∈ K(�) be the (unique) minimizing web function, i.e.,

J (v) = min
u∈K(�)

J (u).

By [8, Theorem 3.1] we have

v(x) =
∫ d(x,∂�)

0
ν(t) dt , ν(t) := |�t |

|∂�t | .

Then, sinceN (�) = −2J (v), using the coarea formula and an integration by parts
we infer

N (�) = −2
∫
∂�

∫ λ(y)

0

[
ν2(t)

2
−

∫ t

0
ν(s)ds

]
dt dy

=
∫
∂�

∫ λ(y)

0

[
−ν(t)2 + 2(λ(y)− t)ν(t)

]
dt dy

=
∫
∂�

∫ λ(y)

0
[λ(y)− t]2 dt dy −

∫
∂�

∫ λ(y)

0
[ν(t)− (λ(y)− t)]2 dt dy

= 1

4

∫
∂�

λ3(y) dy +�(�),

(32)

where

�(�) :=
∫
∂�

∫ λ(y)

0

[
1
4[λ(y)− t]2 − [ν(t)− (λ(y)− t)]2

]
dt dy.

By Fubini’s Theorem and recalling that (19) definesλ in the whole�, we may
rewrite�(�) as

�(�) =
∫ W�

0

∫
∂�t

[
1
4λ

2(z)− [ν(t)− λ(z)]2
]
dz dt.

Finally, by (20), we have thatν(t) is the integral mean value ofλ in ∂�t , and the
above equation becomes

�(�) =
∫ W�

0

[ |�t |2
|∂�t | −

3

4

∫
∂�t

λ2
]
dt, (33)

which, combined with (32), proves (31).��
We now show that the term�(�) in (33) is nonnegative:

Lemma 2. Let � ⊂ IR2 be a convex polygon. Then, the function

ψ(t) := |�t |2 − 3
4|∂�t |

∫
∂�t

λ2, t ∈ [0,W�], (34)

is nonnegative.
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Proof. Denote by 0< t1 < · · · < th = W� the set ofinteraction times, defined by
recurrence as follows. The first interaction timet1 is the smallest valuet ∈ (0,W�]
for which (at least) one vertex of the parallel polygon�t is the intersection between
two or more bisecting lines of inner angles of�. Assume now we have defined
ti ∈ (0,W�], for i � k. If tk = W�, thenh = k, namely there arek interaction
timest1, . . . , tk. Otherwise, we definetk+1 as the smallest valuet ∈ (tk,W�] for
which (at least) one vertex of the parallel polygon�t is the intersection between two
or more bisecting lines of inner angles of�tk . This means that, for every interaction
time ti and for everyε > 0, �ti−ε has (at least) one side more than�ti . Note in
particular that the set of interaction times is finite and is reduced tot1 = W� in the
case of circumscribed polygons.

Now fix t !∈ {t1, . . . th} and takeε > 0 small enough such that the interval
(t − ε, t + ε) does not contain any interaction time. LetCt denote the constant in
(21) relative to the polygon�t . It follows by some geometrical arguments that

|∂�t+ε| = |∂�t | − 2Ctε, |�t+ε| = |�t | − |∂�t |ε + o(ε),∫
∂�t+ε

λ2 =
∫
∂�t

λ2 − 2ε|�t | + o(ε),

hence

ψ(t + ε) = ψ(t)+
[

3
2Ct

∫
∂�t

λ2 − 1
2|∂�t ||�t |

]
ε + o(ε).

Since the same argument can be repeated replacingt + ε by t − ε, we deduce that
the functionψ is differentiable at everyt !∈ {t1, . . . , th}, and

ψ ′(t) = 3
2Ct

∫
∂�t

λ2 − 1
2|∂�t ||�t |.

Recalling the definition ofψ , we have
∫
∂�t

λ2 = 4
3 |∂�t |−1 [|�t |2 − ψ(t)], then

ψ ′(t) = 2Ct

|�t |
|∂�t |

[
|�t | − |∂�t |2

4Ct

]
− 2

Ct

|∂�t |ψ(t). (35)

Now, using the isoperimetric inequality (21), we obtain

ψ ′(t) � −2
Ct

|∂�t |ψ(t) ∀ t !∈ {t1, . . . , th}.
Sinceψ is a continuous function, vanishing att = W�, the above inequality means
thatψ(t) � 0 for everyt ∈ [0,W�]. ��
Remark 5. Lemma 2 may be complemented with the statement that for a convex
polygon� we haveψ(t) ≡ 0 if and only if� circumscribes a disk. Indeed, for
such�, for everyt ∈ [0,W�] the following equalities hold:

|∂�t | = |∂�|
W�

(W� − t), |�t | = |∂�|
2W�

(W� − t)2,

∫
∂�t

λ2 = |∂�|
3W�

(W� − t)3.

Therefore, by using these identities in (34), it follows thatψ(t) ≡ 0. Conversely,
assume thatψ(t) ≡ 0. By (35) and Theorem 2, we deduce that�t must be a
circumscribed polygon for allt ∈ [0,W�].
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4.4. Conclusion

In this subsection we prove inequality (17): by Proposition 1 we may restrict
our attention to the case where� is not a disk. Then, denoting bydH the Hausdorff
distance of domains, we make precise the behavior of the functionδ (found in
Theorem 3) on converging sequences of polygons.

Lemma 3. Let � ⊂ IR2 be a bounded convex set (different from a disk). Then
there exists a sequence {Ph}h of convex polygons such that dH (Ph,�) → 0 and
δ(Ph) → C� > 0, where C� is a constant depending only on �.

Proof. Take a sequence of polygons{Ph}h such thatdH(Ph,�) → 0 andPh ⊂ �

for all h. Then, extending by zero on�\Ph functions inH 1
0 (Ph), we have the usual

embeddingH 1
0 (Ph) ⊂ H 1

0 (�). We may also extend by zero the distance function
from ∂Ph:

dh(x) =
{
d(x, ∂Ph) if x ∈ Ph,

0 if x ∈ � \ Ph.

Also defined(x) = d(x, ∂�).
Letu anduh be the minimizers ofJ overH 1

0 (�) andH 1
0 (Ph) respectively, that

is, D(�) = −2J (u) andD(Ph) = −2J (uh) for all h. Since for a.e.x ∈ � we
haven(-h(x)) = ∇dh(-h(x)) = ∇dh(x) (where-h(x) is the projection point of
x onto∂Ph), by (23) and Fatou’s Lemma we infer

lim inf
h

δ(Ph) �
∫
�

lim inf
h

[
|∇uh(x)|2 − |∇uh(x) · ∇dh(x)|2

]
dx. (36)

We first claim that, up to a subsequence, we have

∇uh(x) → ∇u(x) for a.e.x ∈ �. (37)

By using the Euler equations (1) in� andPh, we find thatuh ⇀ u in H 1
0 (�) and

‖∇uh‖L2(�) → ‖∇u‖L2(�) so that∇uh → ∇u in L2(�) and (37) follows, up to a
subsequence.

Next we claim that, up to a subsequence,

∇dh(x) → ∇d(x) for a.e.x ∈ �. (38)

To show this, note thatdh(x) → d(x) for all x ∈ �. When this is combined with
the uniform estimate‖∇dh‖2

2 = |Ph| � |�|, we infer that, up to subsequences,
{dh} converges weakly tod in H 1

0 (�). Moreover, since|Ph| → |�| we also have
‖∇dh‖2 → ‖∇d‖2. Therefore∇dh → ∇d in L2(�) and (38) follows, up to a
subsequence.

For contradiction, assume thatδ(Ph) → 0. Then, by (36), (37) and (38) we
conclude that ∫

�

[
|∇u(x)|2 − |∇u(x) · ∇d(x)|2

]
dx = 0

which implies thatu is a web function (u ∈ K(�)) and henceE(�) = 1. But this
is impossible in view of Proposition 1 since we assumed that� is not a disk. Then
the statement of the lemma follows, possibly by extracting a subsequence fromPh.
��
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Proof of (17). If � is a convex polygon, (17) is a straightforward consequence of
Theorems 3 and 4. If� ∈ C is not a polygon or a disk, consider the sequence{Ph}h
of convex polygons determined in Lemma 3. By Theorems 3 and 4 we have

E(Ph) = N (Ph)

D(Ph)
� 3

4

D(Ph)+ δ(Ph)

D(Ph)
∀h ∈ IN . (39)

Let C� > 0 be as in Lemma 3. Then, recalling the continuity ofE with respect to
dH (see [8]) and lettingh → ∞ in (39) we obtain

E(�) � 3

4

D(�)+ C�

D(�)
>

3

4

and (17) is proved for all�.

5. Historical notes and open problems

5.1. A brief story of the torsion problem and parallel sets

The study of the torsion problem has a long history. In 1856,Saint-Venant [29]
conjectured that among all cross-sections� of given area the disk has the maximal
torsional rigidity. This conjecture was proved for simply connected regions by
Pólya [24] in 1948, and then extended to multiply connected domains byPólya &
Weinstein [27]. In [24] can also be found the uniform upper bound (independent
of � ∈ C) ‖u‖∞ � 1

4, whereu is the warping function solving (1); for a lower
bound of‖u‖∞ in terms of the harmonic radius of�, see [22].

The sets�t defined in (10) are known in the literature asinner parallel sets,
whereas the sets�t := �+ tB are calledouter parallel sets. The latter seem have
been first considered in 1882 bySteiner [33], who proved the relations between
|�|, |∂�|, |�t |, and|∂�t |, nowadays known precisely as Steiner’s formulas. The
origin of inner parallel sets may be perhaps attributed toRiesz [28], who used
them in order to prove integral inequalities. A first study of the properties of inner
parallel sets was developed byBol [4]. The papers [11,14] focus attention on
the piecewise regularity of∂�t for a.e.t ; in particular, Steiner’s formulas may be
partially extended (for smallt) to inner parallel sets, see e.g. [1, Section I.1.4].

The first flavor of the idea to use inner parallel sets in variational problems may
be found in the monograph byPólya & Szegö [26, Section 1.29]: they introduce
a new method which consists in restricting the class of admissible functions by
prescribing the family of their level lines. Only some years later,Makai [18] used
the distance function from the boundaryd(x) in order to give a lower bound for the
torsional rigidity of planar domains. Shortly afterwards, by dealing with the whole
class of functions depending only ond(x), Makai’s bounds where improved first
by Pólya [25] and subsequently byPayne & Weinberger [23].

Further inequalities related to the torsion problem may be found in [26]. For
more recent results, see the book [1] and references therein. For the history of the
location of maxima for the gradient of solutions to (1) and related problems, we
refer to [15, Section 4].
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Some different applications of inner parallel sets, mainly in the framework of
convex bodies, may be found in [31] (see in particular the bibliographic note 2 for
Section 6.5).

5.2. The torsion problem with two different materials

This problem was first considered in the celebrated paper byPólya & We-
instein [27] and subsequently studied by many authors, see [2,7,13,16,19] and
references therein. Assume we wish to place two different linearly elastic materials
(of different shear moduli) in the plane domain� so as to maximize the torsional
rigidity of the resulting rod; moreover, the proportions of these materials are pre-
scribed. After some calculations, the problem is reduced to one of minimizing the
functional

I (u) =
∫
�

f (|∇u|)− u, u ∈ H 1
0 (�),

wheref (t) = min{αt2, βt2 + γ } with α > β > 0, γ > 0.
Sincef is not convex, such a problem may not have a solution. Then we are led

to introduce the relaxed functional which does have a minimum. From a physical
point of view, this means that there exists an optimal design if we are allowed
to incorporate composites by mixing the two materials on a microscopic scale.
However, the resulting design may not be so easy to manufacture and therefore it
may be necessary to try to find an optimal design in a simpler class of possible
designs. Again, we could restrict ourselves to the class of web functions (whereI

admits a unique minimum) and try to determine a sharp lower bound for the relative
error

minu∈K(�) I (u)

inf u∈H1
0 (�)

I (u)
.

For an estimate of the lower bound when� is a square, see [9, Proposition 8].

5.3. Minimization of E in higher space dimensions

The value3
4 found in Theorem 1 is somehow puzzling as it is not intuitively

obvious where it comes from. Since it is strictly related to the geometrical properties
of convex sets in the plane IR2, it would be interesting to find the corresponding
value in higher dimensional spaces IRd , d � 3. Some of our results may be easily
extended to this context but others seem to be less suitable. However, at least in
IR3, it should not be too difficult to figure out what minimizing sequences look like
and to find a numerical approximation of the infimum ofE .
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30. L.A. Santaló, Sobre los sistemas completos de desigualdades entre tres elementos de

una figura convexa plana,Math. Notae 17, 1961, 82–104
31. R. Schneider, Convex bodies: the Brunn–Minkowski theory, Cambridge Univ. Press,

1993
32. J. Serrin, A symmetry problem in potential theory,Arch. Rational Mech. Anal. 43,

1971, 304–318
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