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Abstract. We determine nontrivial solutions of some semilinear and quasilinear elliptic
problems on Rn; we make use of two different nonsmooth critical point theories which allow
to treat two kinds of nonlinear problems. A comparison between the possible applications
of the two theories is also made.

1. Introduction. Consider a functional J defined on some Banach space B
and having a mountain-pass geometry: the celebrated theorem by Ambrosetti-
Rabinowitz [1] states that if J ∈ C1(B) and J satisfies the Palais-Smale condition
(PS condition in the sequel) then J admits a nontrivial critical point. In this paper
we drop these two assumptions: in order to determine nontrivial solutions of some
nonlinear elliptic equations in Rn (n ≥ 3), we use the mountain-pass principle for
a class of nonsmooth functionals which do not satisfy the PS condition. More pre-
cisely, we consider a model elliptic problem first studied by Rabinowitz [13] with
the C1-theory and we extend his results by means of the nonsmooth critical point
theories of Clarke [5, 6] and Degiovanni et al. [8, 9]; one of the purposes of this
paper is to emphasize some differences between these two theories. This study was
inspired by previous work on the existence of standing wave solutions of nonlinear
Schrödinger equations: after making a standing wave ansatz, Rabinowitz reduces
the problem to that of studying the semilinear elliptic equation

−∆u+ b(x)u = f(x, u) in Rn (1)

under suitable conditions on b and assuming that f is smooth, superlinear and
subcritical.

To explain our results we introduce some functional spaces. We denote by Lp

the space of measurable functions u of p-th power absolutely summable on Rn, that
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is, satisfying ‖u‖pp :=
∫
Rn |u|p < +∞; by H1 we denote the Sobolev space normed

by ‖u‖2H1 :=
∫
Rn(|Du|2 + |u|2). We will assume that the function b in (1) is greater

than some positive constant; then we define the Hilbert space E of all functions
u : Rn → R with ‖u‖2E :=

∫
Rn(|Du|2 + b(x)u2) < ∞. We denote by E∗ the dual

space of E: as E is continuously embedded in H1 we also have H−1 ⊂ E∗.
We first consider the case where (−∆) in (1) is replaced by a quasilinear elliptic

operator: we seek positive weak solutions u ∈ E of the problem

−
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

∂aij
∂s

(x, u)DiuDju+ b(x)u = f(x, u) in Rn. (2)

Note that if aij(x, s) ≡ δij , then (2) reduces to (1). Here and in the sequel, by
positive solution we mean a nonnegative nontrivial solution. To determine weak
solutions of (2) we look for critical points of the functional J : E → R defined by

J(u) =
1
2

∫
Rn

n∑
i,j=1

aij(x, u)DiuDju+
1
2

∫
Rn
b(x)u2 −

∫
Rn
F (x, u) ∀u ∈ E,

where F (x, s) =
∫ s

0
f(x, t)dt. Under reasonable assumptions on aij , b, f , the func-

tional J is continuous but not even locally Lipschitz, see [3], therefore, we cannot
work in the classical framework of critical point theory. Nevertheless, the Gâteaux-
derivative of J exists in the smooth directions, i.e., for all u ∈ E and ϕ ∈ C∞c we
can define

J ′(u)[ϕ] =
∫
Rn

( n∑
i,j=1

[
aij(x, u)DiuDjϕ+

1
2
∂aij
∂s

(x, u)DiuDjuϕ
]
+b(x)uϕ−f(x, u)ϕ

)
.

According to the nonsmooth critical point theory developed in [8, 9] we know that
critical points u of J satisfy J ′(u)[ϕ] = 0 for all ϕ ∈ C∞c and hence solve (2) in
distributional sense; moreover, since

−
n∑

i,j=1

Dj(aij(x, u)Diu) + b(x)u− f(x, u) ∈ E∗

we also have
1
2

n∑
i,j=1

∂aij
∂s

(x, u)DiuDju ∈ E∗

and (2) is solved in the weak sense (∀ϕ ∈ E). We refer to [3] for the adaptation
of this theory to quasilinear equations of the kind of (2) and to [7, 10] for applica-
tions in the case of unbounded domains and for further references. Under suitable
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assumptions on aij , b, f and by using the above mentioned tools we will prove that
(2) admits a positive weak solution. Next, we take into account the case where f is
not continuous: let f(x, ·) ∈ L∞loc(R) and denote

f(x, s) = lim
ε↘0

essinf {f(x, t); |t− s| < ε}

f(x, s) = lim
ε↘0

esssup {f(x, t); |t− s| < ε};

our aim is to determine u ∈ E such that

−∆u+ b(x)u ∈ [f(x, u), f(x, u)] in Rn. (3)

Positive solutions u of (3) satisfy 0 ∈ ∂I(u), where

I(u) =
1
2

∫
Rn

(|Du|2 + b(x)u2)−
∫
Rn
F (x, u+) ∀u ∈ E

and ∂I(u) stands for the Clarke gradient [5, 6] of the locally Lipschitz energy func-
tional I; more precisely,

∂I(u) =
{
ζ ∈ E∗; I0(u; v) ≥ 〈ζ, v〉, ∀v ∈ E

}
,

where

I0(u; v) = lim sup
w→u
λ↘0

I(w + λv)− I(w)
λ

. (4)

This problem may be reformulated, equivalently, in terms of hemivariational in-
equalities as follows: find u ∈ E such that∫

Rn
(DuDv + b(x)uv) +

∫
Rn

(−F )0(x, u; v) ≥ 0 ∀v ∈ E, (5)

where (−F )0(x, u; v) denotes the Clarke directional derivative of (−F ) at u(x) with
respect to v(x) and is defined as in (4). So, when f(x, ·) is not continuous, Clarke’s
theory will enable us to prove that (3) admits a positive solution. The two existence
results stated in next section have several points in common; in both cases we first
prove that the corresponding functional has a mountain-pass geometry and that a
PS sequence can be built at a suitable inf-max level. Then we prove that the PS
sequence is bounded and that its weak limit is a solution of the problem considered;
the final step is to prove that this solution is not the trivial one; to this end we use
the concentration-compactness principle [11] and the behavior of the function b at
infinity. However, the construction of a PS sequence and the proof that its weak
limit is a solution are definitely different. They highlight the different tools existing
in the two theories.
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2. Main results. Let us first state our results concerning (2). We require the
coefficients aij (i, j = 1, ..., n) to satisfy

aij ≡ aji
aij(x, ·) ∈ C1(R) for a.e. x ∈ Rn

aij(x, s),
∂aij
∂s (x, s) ∈ L∞(Rn × R);

(6)

moreover, on the matrices [aij(x, s)] and [s∂aij∂s (x, s)] we make the following assump-
tions:

∃ν > 0 such that
n∑

i,j=1

aij(x, s)ξiξj ≥ ν|ξ|2 for a.e. x ∈ Rn, ∀s ∈ R, ∀ξ ∈ Rn (7)


∃µ ∈ (2, 2∗), γ ∈ (0, µ− 2) such that

0 ≤ s
n∑

i,j=1

∂aij
∂s

(x, s)ξiξj ≤ γ
n∑

i,j=1

aij(x, s)ξiξj for a.e. x ∈ Rn,∀s ∈ R,∀ξ ∈ Rn.

(8)
We require that b ∈ L∞loc(Rn) and that{ ∃b > 0 such that b(x) ≥ b for a.e. x ∈ Rn

ess lim
|x|→∞

b(x) = +∞. (9)

Let µ be as in (8), assume that f(x, s) 6≡ 0 and
f : Rn × R→ R is a Carathéodory function
f(x, 0) = 0 for a.e. x ∈ Rn
0 ≤ µF (x, s) ≤ sf(x, s) ∀s ≥ 0 and for a.e. x ∈ Rn;

(10)

moreover, we require f to be subcritical{
∀ε > 0 ∃fε ∈ L

2n
n+2 (Rn) such that

|f(x, s)| ≤ fε(x) + ε|s| n+2
n−2 ∀s ∈ R and for a.e. x ∈ Rn.

(11)

Finally, for all δ ∈ (2, 2∗) define q(δ) = 2n
2n+(2−n)δ : then we assume1

{
∃C ≥ 0, ∃δ ∈ (2, 2∗) , ∃G ∈ Lq(δ)(Rn) such that

F (x, s) ≤ G(x)|s|δ + C|s|2∗ ∀s ∈ R and for a.e. x ∈ Rn.
(12)

In Section 3 we will prove

1One could also consider the case δ = 2: in such case one also needs ‖G‖n/2 to be sufficiently
small.
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Theorem 1. Assume (6)–(12); then (2) admits a positive weak solution ū ∈ E.

Let us turn to the problem (3). We assume that f : Rn×R→ R is a (nontrivial)
measurable function such that

|f(x, s)| ≤ C(|s|+ |s|p) for a.e. (x, s) ∈ Rn × R, (13)

where C is a positive constant and 1 < p < n+2
n−2 . Here we do not assume that f(x, ·)

is continuous: nevertheless, if we define F (x, s) =
∫ s

0
f(x, t)dt we observe that F

is a Carathéodory function which is locally Lipschitz with respect to the second
variable. We also observe that the functional

Ψ(u) =
∫
Rn
F (x, u)

is locally Lipschitz on E. Indeed, by (13), Hölder’s inequality and the embedding
E ⊂ Lp+1,

|Ψ(u)−Ψ(v)| ≤ C(‖u‖E , ‖v‖E)‖u− v‖E ,
where C(‖u‖E , ‖v‖E) > 0 depends only on max{‖u‖E , ‖v‖E}.

We impose to f the following additional assumptions

lim
ε↘0

esssup
{∣∣∣∣f(x, s)

s

∣∣∣∣; (x, s) ∈ Rn × (−ε, ε)
}

= 0 (14)

and there exists µ > 2 such that

0 ≤ µF (x, s) ≤ sf(x, s) for a.e. (x, s) ∈ Rn × [0,+∞). (15)

In Section 4 we will prove

Theorem 2. Under hypotheses (9), (13)–(15), problem (3) has at least a positive
solution in E.

Remark. The couple of assumptions (11), (12) is equivalent to the couple (13),
(14) in the sense that Theorems 1 and 2 hold under any one of these couples of
assumptions.

It seems not possible to use the above mentioned nonsmooth critical point theo-
ries to obtain an existence result for the quasilinear operator of (2) in the presence
of a function f which is discontinuous with respect to the second variable; indeed,
to prove that critical points of J (in the sense of [8, 9]) solve (2) in distributional
sense, one needs, for all given ϕ ∈ C∞c , the continuity of the map u 7→ J ′(u)[ϕ],
see [3]. Even if J 6∈ C1(E), we have at least J ∈ C1(W 1,p ∩ E) for p ≥ 3n

n+1 : this
smoothness property in a finer topology is in fact the basic (hidden) tool used in
Theorem 1.5 in [3]; however, one cannot prove the boundedness of the PS sequences
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in the W 1,p norm. On the other hand, the theory developed in [5, 6] only ap-
plies to Lipschitz continuous functionals and therefore it does not allow to manage
quasilinear operators as that in (2).

3. Proof of Theorem 1. Throughout this section we assume (6)–(12). From
(6) and (8) we have

u ∈ E =⇒
n∑

i,j=1

∂aij
∂s

(x, u)DiuDjuu ∈ L1(Rn) (16)

and therefore J ′(u)[u] can be written in integral form.
We first remark that positive solutions of (2) correspond to critical points of the

functional J+ defined by

J+(u) :=
1
2

∫
Rn

n∑
i,j=1

aij(x, u)DiuDju+
1
2

∫
Rn
b(x)u2 −

∫
Rn
F (x, u+) ∀u ∈ E,

where u+ denotes the positive part of u, i.e. u+(x) = max(u(x), 0).

Lemma 1. Let u ∈ E satisfy J ′+(u)[ϕ] = 0 for all ϕ ∈ C∞c ; then u is a weak
positive solution of (2).

For the proof of this result we refer to [7]; without loss of generality we can
therefore suppose that

f(x, s) = 0 ∀s ≤ 0, for a.e. x ∈ Rn

and, from now on, we make this assumption; for simplicity we denote J instead of
J+.

Let us establish the following boundedness criterion which applies, in particular,
to PS sequences2:

Lemma 2. Every sequence {um} ⊂ E satisfying

|J(um)| ≤ C1 and |J ′(um)[um]| ≤ C2‖um‖E

is bounded in E.

Proof. Consider {um} ⊂ E such that |J(um)| ≤ C1, then by (10) we get

Im :=
1
2

∫
Rn

n∑
i,j=1

aij(x, um)DiumDjum −
1
µ

∫
Rn
f(x, um)um +

1
2

∫
Rn
b(x)u2

m ≤ C1;

2We refer to [3, 8, 9] for the definition of PS sequences in our nonsmooth critical point
framework.
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by (16) we can evaluate J ′(um)[um] and by the assumptions we have

∣∣ ∫
Rn

n∑
i,j=1

aij(x, um)DiumDjum +
1
2

∫
Rn

n∑
i,j=1

∂aij
∂s

(x, um)DiumDjumum

−
∫
Rn
f(x, um)um +

∫
Rn
b(x)u2

m

∣∣ ≤ C2‖um‖E .

Therefore, by (8) and computing Im − 1
µJ
′(um)[um] we get

µ− 2− γ
2µ

∫
Rn

n∑
i,j=1

aij(x, um)DiumDjum +
µ− 2

2µ

∫
Rn
b(x)u2

m ≤ C3‖um‖E + C1;

by (7) this yields C4 > 0 such that C4‖um‖2E ≤ C3‖um‖E + C1 and the result
follows. ¤

Let us denote by Eloc the space of functions u satisfying
∫
ω

(|Du|2 + b(x)u2) <∞
for all bounded open set ω ⊂ Rn and by E∗loc its dual space; we establish that the
weak limit of a PS sequence solves (2):

Lemma 3. Let {um} be a bounded sequence in E satisfying

∫
Rn

n∑
i,j=1

aij(x, um)DiumDjϕ+
1
2

∫
Rn

n∑
i,j=1

∂aij
∂s

(x, um)DiumDjumϕ = 〈βm, ϕ〉

∀ϕ ∈ C∞c with {βm} converging in E∗loc to some β ∈ E∗loc. Then, up to a subse-
quence, {um} ⊂ E converges in Eloc to some u ∈ E satisfying

∫
Rn

n∑
i,j=1

aij(x, u)DiuDjϕ+
1
2

∫
Rn

n∑
i,j=1

∂aij
∂s

(x, u)DiuDjuϕ = 〈β, ϕ〉 ∀ϕ ∈ C∞c .

Proof. As b is uniformly positive and locally bounded, for all bounded open set
ω ⊂ Rn we have∫

ω

(|Du|2 + b(x)u2) <∞ ⇐⇒
∫
ω

(|Du|2 + u2) <∞;

therefore, the proof is essentially the same as Lemma 3 in [7]. The basic tool is
Theorem 2.1 in [2] which is used following the idea of [3]. ¤

The previous results allow to prove
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Proposition 1. Assume that {um} ⊂ E is a PS sequence for J ; then there exists
ū ∈ E such that (up to a subsequence)

(i) um ⇀ ū in E
(ii) um → ū in Eloc

(iii) ū ≥ 0 and ū solves (2) in weak sense.

Proof. By Lemma 2, the sequence {um} is bounded and (i) follows. To obtain (ii)
it suffices to apply Lemma 3 with βm = αm+f(x, um)−b(x)um ∈ E∗ where αm → 0
in E∗: indeed, if um ⇀ u in E, then βm → β in E∗loc with β = f(x, u) − b(x)u.
Finally, (iii) follows from Lemmas 1 and 3. ¤

In order to build a PS sequence for the functional J we apply the mountain-pass
Lemma [1] in the nonsmooth version [dm], see also Theorem 2.1 in [9]. Let us check
that J has such a geometrical structure.

First note that J(0) = 0; as the function F is superquadratic at +∞, we may
choose a nonnegative function e such that

e ∈ C∞c , e ≥ 0 and J(te) < 0 ∀t > 1.

Moreover, it is easy to check that there exist ρ, β > 0 such that ρ < ‖e‖E and
J(u) ≥ β if ‖u‖E = ρ: indeed by (12) we infer∫

Rn
F (x, u) ≤ ‖G‖q(δ)‖u‖δ2∗ + C‖u‖2∗2∗ ;

hence, by (7) we have J(u) ≥ C1‖u‖2E − C2‖u‖δE − C3‖u‖2
∗

E and the existence of
ρ, β follows.

So, J has a mountain pass geometry; if we define the class

Γ := {γ ∈ C([0, 1]; E); γ(0) = 0, γ(1) = e} (17)

and the minimax value
α := inf

γ∈Γ
max
t∈[0,1]

J(γ(t)), (18)

the existence of a PS sequence for J at level α follows by the results of [8, 9].
We have so proved

Proposition 2. Let Γ and α be as in (17), (18); then J admits a PS sequence {um}
at level α.

As we are on an unbounded domain, the problem lacks compactness and we
cannot infer that the above PS sequence converges strongly; however, by using
Proposition 1, the weak limit ū of the PS sequence is a nonnegative solution of (2):
the main problem is that it could be ū ≡ 0. To prove that this is not the case we
make use of the following technical result:
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Lemma 4. There exist p ∈ (2, 2∗) and C > 0 such that ‖u+
m‖p ≥ C.

Proof. Using the relations J ′(um)[um] = o(1) and J(um) = α + o(1), by assump-
tions (8) and (10) we have

2α = 2J(um)− J ′(um)[um] + o(1) =
∫
Rn

[
f(x, u+

m)um − 2F (x, u+
m)
]

− 1
2

∫
Rn

n∑
i,j=1

∂aij
∂s

(x, um)DiumDjumum + o(1)

≤
∫
Rn
f(x, u+

m)um + o(1).

Then, by (11), for all ε > 0 there exists fε ∈ L
2n
n+2 (Rn) such that

2α ≤
∫
Rn
|fε(x)u+

m(x)|+ ε‖u+
m‖2

∗

2∗ :

as ‖um‖2∗ is bounded, one can choose ε > 0 so that

α ≤
∫
Rn
|fε(x)u+

m(x)|. (19)

Now take r ∈ ( 2n
n+2 , 2): then for all δ > 0 there exist fδ ∈ Lr and fδ ∈ L 2n

n+2 such
that

fε = fδ + fδ and ‖fδ‖ 2n
n+2
≤ δ.

Then, by (19) and Hölder’s inequality we infer

α ≤ ‖fδ‖r‖u+
m‖p + δ‖u+

m‖2∗ ,

where p = r
r−1 ; as ‖um‖2∗ is bounded, one can choose δ > 0 so that

α

2
≤ ‖fδ‖r‖u+

m‖p

and the result follows. ¤
By the previous Lemma we deduce that {u+

m} does not converge strongly to 0
in Lp. Taking into account that ‖u+

m‖2 and ‖∇u+
m‖2 are bounded, by Lemma I.1

p. 231 in [11], we infer that the sequence {u+
m} “does not vanish” in L2, i.e., there

exists a sequence {ym} ⊂ Rn and C > 0 such that∫
ym+BR

|u+
m|2 ≥ C (20)
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for some R. We claim that the sequence {ym} is bounded: if not, up to a subse-
quence, it follows by (9) that ∫

Rn
b(x)u2

m → +∞

which contradicts J(um) = α + o(1). Therefore, by (20), there exists an open
bounded set ω ⊂ Rn such that ∫

ω

|um|2 ≥ C > 0. (21)

So, consider the PS sequence found in Proposition 2; by Proposition 1, it converges
in the L2

loc topology to some nonnegative function ū which solves (2) in weak sense;
finally, (21) entails ū 6≡ 0.

The proof of Theorem 1 is complete.

4. Proof of Theorem 2. In this section we assume (9) and (13)–(15); moreover,
we set f(x, s) ≡ 0 for s ≤ 0.

To prove Theorem 2, it is sufficient to show that the functional I has a critical
point u0 ∈ C, C being the cone of positive functions of E. Indeed,

∂I(u) = −∆u+ b(x)u− ∂Ψ(u) in E∗,

and, by Theorem 2.2 of [4] and Theorem 3 of [12], we have

∂Ψ(u) ⊂ [f(x, u(x)), f(x, u(x))] for a.e. x ∈ Rn,

in the sense that if w ∈ ∂Ψ(u) then

f(x, u(x)) ≤ w(x) ≤ f(x, u(x)) for a.e. x ∈ Rn. (22)

Thus, if u0 is a critical point of I, then there exists w ∈ ∂Ψ(u0) such that

−∆u0 + b(x)u0 = w in E∗.

The existence of u0 will be justified by a nonsmooth variant of the mountain-pass
Lemma (see Theorem 1 of [14]), even if the PS condition is not fulfilled. More
precisely, we verify the following geometric hypotheses:

I(0) = 0 and ∃v ∈ E such that I(v) ≤ 0 (23)

∃β, ρ > 0 such that I ≥ β on {u ∈ E; ‖u‖E = ρ}. (24)

Verification of (23). It is obvious that I(0) = 0. For the second assertion we need
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Lemma 5. There exist two positive constants C1 and C2 such that

f(x, s) ≥ C1s
µ−1 − C2 for a.e. (x, s) ∈ Rn × [0,+∞). (25)

Proof. From the definition we clearly have

f(x, s) ≤ f(x, s) a.e. in Rn × [0,+∞). (26)

Then, by (15),

0 ≤ µF (x, s) ≤ sf(x, s) for a.e. (x, s) ∈ Rn × [0,+∞), (27)

where
F (x, s) =

∫ s

0

f(x, t)dt.

By (27), there exist R > 0 and K1 > 0 such that

F (x, s) ≥ K1s
µ for a.e. (x, s) ∈ Rn × [R,+∞). (28)

The inequality (25) follows now by (26), (27) and (28). ¤
Verification of (23) continued. Choose v ∈ C∞c (Rn) \ {0} so that v ≥ 0 in Rn;

we obviously have ∫
Rn

(|Dv|2 + b(x)v2) < +∞.

Then, by Lemma 5,

I(tv) =
t2

2

∫
Rn

(|Dv|2 + b(x)v2)−Ψ(tv)

≤ t2

2

∫
Rn

(|Dv|2 + b(x)v2) + C2t

∫
Rn
v − C ′1tµ

∫
Rn
vµ < 0,

for t > 0 large enough.
Verification of (24). First observe that (13) and (14) imply that, for any ε > 0,

there exists a constant Aε such that

|f(x, s)| ≤ ε|s|+Aε|s|p for a.e. (x, s) ∈ Rn × R. (29)

By (29) and Sobolev’s embedding Theorem we have, for any u ∈ E

Ψ(u) ≤ ε

2

∫
Rn
u2 +

Aε
p+ 1

∫
Rn
|u|p+1 ≤ εC3 ‖u‖2E + C4 ‖u‖p+1

E ,
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where ε is arbitrary and C4 = C4(ε). Thus, by (9)

I(u) =
1
2

∫
Rn

(|Du|2 + b(x)u2)−Ψ(u) ≥ C5‖u‖2E − εC3‖u‖2E − C4‖u‖p+1
E ≥ β > 0,

for ‖u‖E = ρ, with ρ, ε and β sufficiently small positive constants. Denote

Γ = {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) 6= 0 and I(γ(1)) ≤ 0}

and
c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)).

Set
λI(u) = min

ζ∈∂I(u)
‖ζ‖E∗ .

Then, by Theorem 1 of [14], there exists a sequence {um} ⊂ E such that

I(um)→ c and λI(um)→ 0; (30)

since I(|u|) ≤ I(u) for all u ∈ E we may assume that {um} ⊂ C. So, there exists a
sequence {wm} ⊂ ∂Ψ(um) ⊂ E∗ such that

−∆um + b(x)um − wm → 0 in E∗. (31)

Note that for all u ∈ C, by (15) we have

Ψ(u) ≤ 1
µ

∫
Rn
u(x)f(x, u(x)).

Therefore, by (22), for every u ∈ C and any w ∈ ∂Ψ(u),

Ψ(u) ≤ 1
µ

∫
Rn
u(x)w(x).

Hence, if 〈·, ·〉 denotes the duality pairing between E∗ and E, we have

I(um) =
µ− 2

2µ

∫
Rn

(|Dum|2 + b(x)u2
m)

+
1
µ
〈−∆um + bum − wm, um〉+

1
µ
〈wm, um〉 −Ψ(um)

≥µ− 2
2µ

∫
Rn

(|Dum|2 + b(x)u2
m) +

1
µ
〈−∆um + bum − wm, um〉

≥µ− 2
2µ

‖um‖2E − o(1) ‖um‖E .
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This, together with (30), implies that the Palais-Smale sequence {um} is bounded
in E: thus, it converges weakly (up to a subsequence) in E and strongly in L2

loc to
some u0 ∈ C. Taking into account that wm ∈ ∂Ψ(um) for all m, that um ⇀ u0 in
E and that there exists w0 ∈ E∗ such that wm ⇀ w0 in E∗ (up to a subsequence),
we infer that w0 ∈ ∂Ψ(u0): this follows from the fact that the map u 7→ F (x, u) is
compact from E into L1. Moreover, if we take ϕ ∈ C∞c (Rn) and let Ω := suppϕ,
then by (31) we get ∫

Ω

(Du0Dϕ+ b(x)u0ϕ− w0ϕ) = 0;

as w0 ∈ ∂Ψ(u0), by using (4) p.104 in [4] and by definition of (−F )0, this implies∫
Ω

(Du0Dϕ+ b(x)u0ϕ) +
∫

Ω

(−F )0(x, u0;ϕ) ≥ 0.

By density, this hemivariational inequality holds for all ϕ ∈ E and (5) follows; this
means that u0 solves problem (3).

It remains to prove that u0 6≡ 0. If wm is as in (31), then by (15) (recall that
um ∈ C) and (30) (for large m) we get

c

2
≤ I(um)− 1

2
〈−∆um + bum − wm, um〉

=
1
2
〈wm, um〉 −

∫
Rn
F (x, um) ≤ 1

2

∫
Rn
umf(x, um).

(32)

Now, taking into account its definition, one deduces that f verifies (29), too. So,
by (32), we obtain

c

2
≤ 1

2

∫
Rn

(ε|um|2 +Aε|um|p+1) =
ε

2
‖um‖22 +

Aε
2
‖um‖p+1

p+1;

hence, {um} does not converge strongly to 0 in Lp+1. From now on, with the same
arguments as in the proof of Theorem 1 (see after Lemma 4), we deduce that u0 6≡ 0,
which ends our proof.
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