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1. Introduction

Let Ω ⊂ Rn (n ≥ 2) be open, bounded and with smooth boundary ∂Ω; we consider
the evolution Navier-Stokes equations with a pressure-dependent viscosity. Let f
be the external force acting on the fluid, let u0 be the initial velocity, then the
Cauchy-Dirichlet problem reads

∂tu−∇ · [η(p)(∇u+∇Tu)] +∇p+ (u · ∇)u = f in Ω× [0, T ]
∇ · u = 0 in Ω× [0, T ]
u = 0 on ∂Ω× [0, T ]
u(x, 0) = u0(x) in Ω

(1)

where u and p are respectively the (unknown) velocity and pressure of the fluid,
while η is its viscosity; here and in the sequel, we use the notations ∂t = ∂

∂t and
∇ = ∇x. It is well-known that viscosities of real fluids may depend on the pressure
and physical experiments show that η has an exponential growth with respect to
p, see [1, 11]. In a remarkable paper, Renardy [13] studies problem (1): under
suitable assumptions on η he obtains a local existence and uniqueness result for
(1) in the 3D case; also more general boundary conditions are considered in [13].
One of the basic remarks of Renardy is that the stationary problem may lose its
ellipticity unless

the eigenvalues of (∇u+∇Tu) are strictly less than
1

sup η′
: (2)
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if the loss of ellipticity occurs we cannot expect well-posedness of (1). Due to the
presence of the “multiplicative term” ∇· [η(p)(∇u+∇T u)] , to solve (1) one needs
to reason in functional spaces of smooth functions: a solution of (1) in such spaces
(i.e. u being continuously differentiable with respect to t and taking values in a
suitable space) does not exist if the compatibility condition between the initial and
the boundary data is not satisfied. To guarantee the existence of data satisfying
the equation at time t = 0, Renardy assumes that η is sublinear at infinity, that
η′ is bounded on R and that (2) holds; this is necessary in order to eliminate the
pressure: indeed, instead of the Neumann boundary value problem for Laplace
operator (as for the classical equations) one must here solve a similar problem for
a nonlinear operator which is elliptic if (2) holds.

For the stationary problem, in the 3D case, the following results are known:
given u, there exists a unique p satisfying the equation in a suitable weak sense (see
[13]) and given p, there exists a unique u satisfying the equation in a complemen-
tary sense (see [5]). More precisely, in [5] the author studies the different behaviour
of the stationary equation when projected onto the Helmholtz-Weyl spaces [15]:
for further features of this decomposition we refer to [6, 14]. Independently of the
space dimension, existence and uniqueness of (u, p) solving the stationary problem
in presence of almost conservative forces f has been proved in [7]: such result is
obtained by exploiting the projections of the equation onto these spaces.

In this paper we require η to satisfy the more realistic assumptions

η ∈ C3(R) and inf
x∈R

η(x) = ηo > 0 (3)

but to ensure the existence of data satisfying the equation at time t = 0 we take
small initial velocities u0. Then, independently of the space dimension, we prove
an existence and uniqueness result for (1) when f is almost conservative and u0
is sufficiently small; even if we pick some ideas from [13], the functional spaces
considered and the techniques involved are different from those of Renardy. We
first prove an existence and uniqueness result for a linear problem (see Proposition
2 below) and we apply a fixed point method to obtain a similar result for (1): in
order to obtain a contractive map we do not require as usual T to be small enough
but u0 and f to satisfy the above restrictions; then, the contractive map is not
defined on the whole functional space but only on a ball of it. In other words, in
presence of conservative forces and zero initial velocity we prove in Proposition 3
below that there exists a unique equilibrium solution; in Section 4 we prove that for
small initial velocities and almost conservative forces there exists a solution (u, p)
of (1) which is unique in a sufficiently small neighborhood of equilibria. We point
out that, due to the presence of the compatibility condition, it seems difficult to
apply an inversion argument as in [7] in order to prove existence and uniqueness.
We believe that the main interest of this paper is the unusual method employed
to obtain the result: we refer to Section 5 for further comments on our result and
on the techniques involved in the proof.



762 F. Gazzola ZAMP

2. The existence and uniqueness result

We assume that Ω ⊂ Rn is an open bounded set satisfying

∂Ω ∈ C2 . (4)

Bold capital letters (Ls, Wm,s,...) represent functional spaces of vector functions
and usual capital letters (Ls, Wm,s,...) represent spaces of scalar functions (to
simplify notations we delete the domain of definition Ω); | · |2 denotes the L2-
norm. With Wm,s we represent the Sobolev space of functions with generalized
derivatives up to order m in Ls, with ‖ · ‖m,s we denote the corresponding norm
and with W1,s

0 the W 1,s-closure of the space of smooth functions with compact
support in Ω. Finally, L∞ denotes the space of essentially bounded functions
endowed with the sup norm which is denoted by | · |∞.

We consider the spaces

Gs := {f ∈ Ls; ∇ · f = 0, γνf = 0} G⊥s := {f ∈ Ls; ∃g ∈W 1,s, f = ∇g}
Vs := {f ∈W1,s

0 ; ∇ · f = 0}

where γν denotes the normal trace operator (in the sequel γ denotes the trace
operator of order zero); it is well-known that Ls = Gs ⊕G⊥s . We denote by P
(resp. Q) the projectors of Ls onto Gs (resp. G⊥s ): P and Q are linear continuous
operators from Wm,s onto Wm,s ∩ Gs (resp. Wm,s ∩ G⊥s ), see [4]. Note that
Vs is an interpolation space between W2,s ∩Vs and Gs (see [9] and the previous
results in [2, 3]): by the results of Sections 1.2 and 3.2 in [12] we infer that there
exists α ∈ (0, 1) such that

Vs ⊆ (W2,s ∩Vs; Gs)α,∞ . (5)

For such α we introduce the Banach spaces Cα(0, T ; Wm,s) and C1,α(0, T ; Wm,s)
of Hölder continuous functions on [0, T ] with values in Wm,s: we denote by
‖ · ‖Cα(Wm,s) and ‖ · ‖C1,α(Wm,s) the corresponding norms.

As in [13] we assume that, for all t ∈ [0, T ], the mean value of p(t) over Ω is
given, say p̄(t): without loss of generality we take p̄(t) ≡ 0. Assume that

s > n ; (6)

for m ∈ {1, 2} and s satisfying (6) consider the space W
m,s

:= {g ∈Wm,s;
∫
Ω g =

0}. We will prove:

Theorem 1. Assume (3) (4) (6) and let T > 0, ψ ∈ Cα(0, T ;W
1,s

) be such that
ψ(0) ∈ W 2,s

; there exist two constants RT = RT (ψ) > 0 and UT = UT (ψ) > 0
such that if
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(i) ϕ ∈ Cα(0, T ; Gs) satisfies ϕ(0) ∈W1,s ∩Gs and
‖ϕ‖Cα(Ls) + ‖ϕ(0)‖1,s ≤ RT
(ii) f = ϕ+∇ψ
(iii) u0 ∈W3,s ∩Vs and ‖u0‖3,s ≤ UT
then there exists a unique p0 ∈W

2,s
such that

Q(−∇ · [η(p0)(∇u0 +∇Tu0)] +∇p0 + (u0 · ∇)u0 − f(0)) = 0.
Moreover, if f , u0 and p0 satisfy

−∇ · [η(p0)(∇u0 +∇Tu0)] +∇p0 + (u0 · ∇)u0 − f(0) = 0 on ∂Ω (7)

then (1) admits a unique solution

(u, p) ∈
(
Cα(0, T ; W2,s ∩Vs) ∩ C1,α(0, T ; Gs)

)
× Cα(0, T ;W

1,s
)

in a suitable neighborhood of (0, ψ).

Something should be said about the statement on the existence of p0 and on
assumption (7). Roughly speaking, since we deal with strict solutions (see, e.g.
[12]) the equation (1) needs to make sense at time t = 0. Therefore, by projecting
it onto the space G⊥s one has to prove the existence of a function p0 such that
Q(−∇ · [η(p0)(∇u0 +∇Tu0)] +∇p0 + (u0 · ∇)u0 − f(0)) = 0; this will be proved
in Proposition 1 below. Then, the equation is projected onto Gs: in the interior
of Ω the “free term” ∂tu|t=0 takes the values of P(∇· [η(p0)(∇u0 +∇Tu0)]− (u0 ·
∇)u0 + f(0)); when the boundary ∂Ω is attained ∂tu|t=0 is no longer a free term
because γ(∂tu|t=0) = 0. This is the reason of the compatibility condition (7): as
already mentioned in the introduction, a strict (Hölder-continuous) solution of (1)
does not exist if (7) is not satisfied. In Lemmas 1 and 4 below we determine a
sufficient condition for the existence of data satisfying (7).

3. Preliminary results

Define

X :=
(
Cα(0, T ; W2,s ∩Vs) ∩ C1,α(0, T ; Gs)

)
× Cα(0, T ;W

1,s
)

which is a Banach space when endowed with the norm

‖(u, p)‖X = ‖u‖Cα(W2,s) + ‖u‖C1,α(Ls) + ‖p‖Cα(W1,s)

for all (u, p) ∈ X: consider also the Banach space X0 = {(u, p) ∈ X; u(0) ∈
W3,s, p(0) ∈W 2,s} endowed with the norm ‖(u, p)‖X0 = ‖(u, p)‖X + ‖u(0)‖3,s+
‖p(0)‖2,s.
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Let F := {f ∈ Cα(0, T ; Ls); f(0) ∈ W1,s} and define ‖f‖F := ‖f‖Cα(Ls) +
‖f(0)‖1,s; consider the space

Y := F×
(
W3,s ∩Vs

)
and for all (f, u0) ∈ Y define the norm

‖(f, u0)‖Y = ‖f‖F + ‖u0‖3,s :

then, Y is a Banach space.

We first note that by (6) we infer

Cα(0, T ;W
1,s

) ⊂ L∞(0, T ;L∞) (8)

and that
W2,s , Cα(0, T ;W 1,s) are Banach algebras. (9)

The first part of Theorem 1 is proved by the following

Proposition 1. Assume (3) (4) (6): for all g ∈ W1,s there exists a constant
U = U(Qg) > 0 such that if u0 ∈W3,s ∩Vs and ‖u0‖3,s ≤ U then there exists a

unique p0 ∈W
2,s

satisfying

Q
(
−∇ · [η(p0)(∇u0 +∇Tu0)] +∇p0 + (u0 · ∇)u0 − g

)
= 0 .

Proof. Define the operator

Ψ(u, p, g) =
(
∇ · (−∇ · [η(p)(∇u+∇Tu)] +∇p+ (u · ∇)u− g),

γν(−∇ · [η(p)(∇u+∇Tu)] +∇p+ (u · ∇)u− g)
)

;

by (3), (6), (9) and well-known continuity properties of the operator γν , we have

Ψ ∈ C1
(

(W3,s ∩Vs)×W
2,s ×W1,s; Bs

)
where Bs = {(φ, ψ) ∈ Ls ×W 1−1/s,s(∂Ω); ∃h ∈ W1,s, φ = ∇ · h, ψ = γνh}:
then Bs is a Banach space. Next note that for all g ∈W1,s there exists a unique
pg ∈W

2,s
solving the problem ∆pg = ∇ · g in Ω

∂pg
∂ν

= γνg on ∂Ω :
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therefore, Ψ(0, pg, g) = 0.

Finally, note that Ψp(0, pg, g) is the linear (continuous) operator mapping W
2,s

into Bs such that

Ψp(0, pg, g)[q] =
(

∆q,
∂q

∂ν

)
:

therefore, Ψp(0, pg, g) is an isomorphism. The statement follows from the implicit
function theorem [16] and from the fact that the neighborhood of u0 to which it
can be applied only depends on Qg. �

Obviously, f(0) is the particular function g which should be inserted in the
statement of Proposition 1 to prove the first part of Theorem 1.

Next, we prove a crucial existence and uniqueness result for a linear problem
which is of interest independently of our context:

Proposition 2. Assume (3) (4) (6) and let T > 0, ψ ∈ Cα(0, T ;W
1,s

) be such
that ψ(0) ∈W 2,s

; then, for all (g, v0) ∈ Y there exists a unique q0 ∈W
2,s

solution
of the problem

Q
(
−∇ · [η(ψ(0))(∇v0 +∇T v0)] +∇(q0 − ψ(0))− g(0)

)
= 0 .

If the above function q0 satisfies the compatibility condition

−∇ · [η(ψ(0))(∇v0 +∇T v0)] +∇(q0 − ψ(0)) = g(0) on ∂Ω (10)

then there exists a unique solution (v, q) ∈ X0 of the linear problem
∂tv −∇ ·

[
η(ψ)(∇v +∇T v)

]
+∇(q − ψ) = g in Ω× [0, T ]

∇ · v = 0 in Ω× [0, T ]
v = 0 on ∂Ω× [0, T ]
v(0) = v0 in Ω .

(11)

Moreover, there exists a constant Cψ > 0 (depending on ‖ψ‖Cα(W1,s)) such that

‖(v, q − ψ)‖X ≤ Cψ‖(g, v0)‖Y .

Proof. To prove the first statement take q0 ∈W
2,s

such that

∇q0 = Q
(
∇ · [η(ψ(0))(∇v0 +∇T v0)] + g(0)

)
+∇ψ(0) .
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For all t ∈ [0, T ] define the operator Aψ(t) : W2,s ∩Vs → Gs by

Aψ(t)v = −P
(
∇ · [η(ψ(t))(∇v +∇T v)]

)
:

by (8) and by the arguments in the proof of Lemma 2 in [7] we can apply The-
orem 5.2 in [8] (see also [10]) and therefore the operator Aψ(t) is sectorial for all
t; this can also be obtained by reasoning as in Section 3.1.1 in [12]. Hence, Aψ(t)
generates an analytic semigroup in Gs. Note that the domain of Aψ(t) does not
depend on t (it is W2,s ∩ Vs for all t) and that the map t 7→ Aψ(t) is Hölder
continuous with values in L(W2,s ∩ Vs,Gs); then, by (5) and (10), all the as-
sumptions of Proposition 6.1.3 in [12] are fulfilled: therefore, there exists a unique
v ∈ Cα(0, T ; W2,s ∩Vs) ∩ C1,α(0, T ; Gs) solving the first of (11) projected onto
Gs and satisfying

‖v‖Cα(W2,s) + ‖v‖C1,α(Ls) ≤ C′ψ(‖Pg‖F + ‖v0‖3,s) .

Then, one takes q ∈ Cα(0, T ;W
1,s

) such that

∇q = Q
(
∇ ·
[
η(ψ)(∇v +∇T v)

]
+ g
)

+∇ψ :

the estimate of ‖q−ψ‖Cα(W1,s) is obtained by means of that relative to v and the
proof is complete. �

4. Proof of Theorem 1

Take f ∈ F, define ψ ∈ Cα(0, T ;W
1,s

) by

∇ψ(t) = Qf(t) ∀t ∈ [0, T ] (12)

and let
U = U(∇ψ(0)) (13)

be the constant found in Proposition 1; clearly, Pf(0) ∈W1,s∩Gs and we consider

Xf :=
{

(v, q) ∈ X0;

Q
(
−∇ · [η(q(0))(∇v(0) +∇T v(0))] +∇[q(0)− ψ(0)] + [v(0) · ∇]v(0)

)
= 0;

γ
(
∇[q(0)− ψ(0)]−Pf(0)−∇ · [η(q(0))(∇v(0) +∇T v(0))]

)
= 0
}
.
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To satisfy (7) a suitable relation between f and u0 is needed: therefore, we define

U0
f := {u0 ∈W3,s ∩Vs; ∃(u, p) ∈ Xf , u(0) = u0} .

We first prove

Lemma 1. For all f ∈ F the set Xf is closed in X0.
Moreover, there exists K > 0 such that if ‖Pf‖F ≤ K then there exists v0 ∈ U0

f

such that ‖v0‖3,s ≤ U (U as in (13)); in particular, Xf 6= ∅.

Proof. Since the operators Q and γ are continuous in W1,s we have that Xf is
closed.

If ‖Pf(0)‖1,s is small enough (and this is certainly the case if ‖Pf‖F ≤ K
for a suitable K) then, by the result in [7] we know that there exists a unique
(v0, q0) ∈ (W3,s ∩Vs)×W

2,s
such that

−∇ · [η(q0)(∇v0 +∇T v0)] +∇q0 + (v0 · ∇)v0 = f(0) in Ω :

hence v0 ∈ U0
f and (v0, q0) ∈ Xf . Moreover, it is proved in [7] that the operator

corresponding to the stationary problem is a local homeomorphism in a neighbor-
hood of (0, ψ(0)); therefore,

‖v0‖3,s + ‖q0 − ψ(0)‖2,s ≤ Γf

where Γf → 0 as ‖Pf(0)‖1,s → 0. Then, if K is small enough we have ‖v0‖3,s ≤ U .
�

Let Lψ : X0 → Y be the linear operator defined by (11), that is

Lψ(u, p) =
(
∂tu−∇ ·

[
η(ψ)(∇u+∇Tu)

]
+∇(p− ψ); u(0)

)
and let Rψ : X→ Cα(0, T ; Ls) be the “residual” operator defined by

Rψ(u, p) := ∇ · [(η(p) − η(ψ))(∇u+∇Tu)]− (u · ∇)u ;

in the sequel, we omit the subscript on L and R.

Lemma 2. Let f , ψ be as in (12), assume that ‖Pf‖F ≤ K (K as in Lemma 1)
and that u0 ∈ U0

f satisfies ‖u0‖3,s ≤ U (U as in (13)). Then, for all (u′, p′) ∈ Xf

satisfying u′(0) = u0 there exists a unique (u, p) ∈ Xf such that

L(u, p) =
(
Pf +R(u′, p′); u0

)
. (14)
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Proof. Lemma 1 ensures that the set specified by the assumptions is nonempty.
Existence and uniqueness of (u, p) ∈ X0 follow by Proposition 2 if the corre-

sponding compatibility condition 10 holds. By Proposition 1, there exists a unique
p0 ∈W

2,s
satisfying

Q
(
−∇ · [η(p0)(∇u0 +∇Tu0)] +∇p0 −∇ψ(0) + (u0 · ∇)u0

)
= 0 ;

by Proposition 2, there exists a unique q0 ∈W
2,s

such that

Q
(
−∇ · [η(p0)(∇u0 +∇Tu0)] +∇q0 −∇ψ(0) + (u0 · ∇)u0

)
= 0 :

hence, q0 = p0 and (10) is fulfilled because (u′, p′) ∈ Xf . This also proves that
(u, p) ∈ Xf . �

Lemma 2 defines a map Λ : Xf → Xf such that Λ(u′, p′) = (u, p); (1) admits
a solution if Λ admits a fixed point.

Let Br denote the X-ball of radius r centered at (0, ψ), that is

Br := {(u, p) ∈ X; ‖(u, p− ψ)‖X ≤ r} ;

we need a technical result:

Lemma 3. Assume (3), (6); then for all r > 0 there exists ηr > 0 such that if
‖pi − ψ‖Cα(W1,s) ≤ r (i = 1, 2) then

‖η(p1)− η(p2)‖Cα(W1,s) ≤ ηr‖p1 − p2‖Cα(W1,s) .

Moreover, the map r 7→ ηr is monotone non-decreasing.

Proof. For all k = 0, ..., 3, from (3) we infer that η(k) ∈ L∞loc(R) and, by (8), we get

ηkr := sup
(u,p)∈Br

|η(k)(p)|L∞(L∞) <∞ ;

hence, by Lagrange theorem and again by (8), for all k = 0, ..., 2 we obtain

|η(k)(p1)− η(k)(p2)|L∞(L∞) ≤ cηk+1
r ‖p1 − p2‖Cα(W1,s)

and the results follow. �
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Define Bfr = Br ∩Xf and, for all u0 ∈ U0
f , Bfr (u0) = {(u, p) ∈ Bfr , u(0) = u0}:

obviously, Bfr (u0) is closed in X0. Under suitable conditions, Λ maps the “small”
balls into themselves:

Lemma 4. Let f ∈ F and ψ satisfy (12). There exists a constant ρ = ρ(ψ) > 0
such that for all r ∈ (0, ρ]

(i) there exists Mr = M(r, ψ) > 0 such that if ‖Pf‖F ≤Mr then Bfr 6= ∅
(ii) there exists Kr ≤ Mr such that if ‖Pf‖F ≤ Kr, if u0 ∈ U0

f satisfies
‖(Pf, u0)‖Y ≤ Kr and Bfr (u0) 6= ∅, then Λ(Bfr (u0)) ⊆ Bfr (u0).

Proof. (i) For all r, take Mr ≤ K (K as in Lemma 1) and let (v0, q0) denote the
“stationary solution” as in the proof of Lemma 1: then

‖v0‖3,s + ‖q0 − ψ(0)‖2,s ≤ Γ(Mr)

with limx→0 Γ(x) = 0. Take (v, q) = (v0, ψ − ψ(0) + q0); if for a given r > 0 we
choose Mr small enough (say Mr ≤ Nr) we have (v, q) ∈ Bfr : indeed,

‖(v, q − ψ)‖X ≤ C0(‖v0‖3,s + ‖q0 − ψ(0)‖2,s) ≤ C0Γ(Mr)

and it suffices to take Nr such that Γ(Nr) = r
C0

. This proves that for all r > 0,
and all f ∈ Y satisfying ‖Pf‖F ≤Mr ≤ Nr we have Bfr 6= ∅.

(ii) Let r > 0 and take Kr ∈ (0,Mr). Take f ∈ Y such that ‖Pf‖Y +
Γ(‖Pf‖Y) ≤ Kr; then, by reasoning as in (i), the assumptions make sense: in
particular, there exists u0 such that Bfr (u0) 6= ∅. For all (u′, p′) ∈ Bfr (u0), by (6)
and (9), we obtain

‖R(u′, p′)‖Cα(Ls) ≤ c‖[η(p′)− η(ψ)](∇u′ +∇Tu′)‖Cα(W1,s) + ‖(u′ · ∇)u′‖Cα(Ls)

≤ c‖η(p′)− η(ψ)‖Cα(W1,s)‖u′‖Cα(W2,s) + c‖u′‖2Cα(W2,s)

≤ cηr‖p′ − ψ‖Cα(W1,s)‖u′‖Cα(W2,s) + c‖u′‖2Cα(W2,s) ≤ C1r
2

the third inequality being a direct consequence of Lemma 3; hence, by Proposition
2 and (14)

‖(u, p− ψ)‖X ≤ Cψ(‖(Pf, u0)‖Y + C1r
2) .

Let ρ := 1
2CψC1

(so that CψC1ρ
2 = ρ

2) and for all r ∈ (0, ρ] define Kr :=

min{U,Mr,
r

2Cψ } where U is as in (13); then, if (u′, p′) ∈ Bfr , we have

‖Λ(u′, p′)− (0, ψ)‖X = ‖(u, p− ψ)‖X ≤ r .
�

To prove that Λ is a contractive map, we prove that the operator R is Lipschitz-
continuous in Bfρ :
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Lemma 5. Let ρ be as in Lemma 4 and let r ∈ (0, ρ]; there exists a constant
Cr > 0 such that if (u′i, p

′
i) ∈ Bfr (i=1,2) then

‖R(u′1, p
′
1)−R(u′2, p

′
2)‖Cα(Ls) ≤ Cr‖(u′1 − u′2, p′1 − p′2)‖X .

Moreover, the map r 7→ Cr is monotone non-decreasing and lim
r→0

Cr = 0.

Proof. Take (u′i, p
′
i) ∈ Bfr and set Ri := R(u′i, p

′
i) (i = 1, 2); we have

R1 −R2 = ∇ ·
[
(η(p′1)− η(p′2))(∇u′1 +∇Tu′1)

]
+∇ ·

[
(η(p′2)− η(ψ))(∇(u′1 − u′2) +∇T (u′1 − u′2))

]
+(u′1 · ∇)(u′2 − u′1) + [(u′2 − u′1) · ∇]u′2

and therefore, by (9) and Lemma 3 we obtain

‖R1 −R2‖Cα(Ls) ≤ cηr
(
‖p′1 − p′2‖Cα(W1,s)‖u′1‖Cα(W2,s)+

‖p′1 − ψ‖Cα(W1,s)‖u′1 − u′2‖Cα(W2,s)

)
+ c(‖u′1‖Cα(W2,s) + ‖u′2‖Cα(W2,s))‖u′1 − u′2‖Cα(W2,s)

≤ Cr(‖p′1 − p′2‖Cα(W1,s) + ‖u′1 − u′2‖Cα(W2,s))

with r 7→ Cr being as in the statement. �

Making suitable assumptions on f , u0 and r we prove that Λ : Bfr (u0) →
Bfr (u0) is a contractive map:

Lemma 6. Let f ∈ F and ψ satisfy (12); there exists r̄ = r̄(ψ) > 0 and a constant
δ < 1 such that if u0 ∈ U0

f satisfies ‖(Pf, u0)‖Y ≤ Kr̄ (Kr̄ as in Lemma 4) then
for all (u′i, p

′
i) ∈ B

f
r̄ (u0) (i=1,2) we have

‖Λ(u′2, p
′
2)− Λ(u′1, p

′
1)‖X ≤ δ‖(u′2, p′2)− (u′1, p

′
1)‖X .

Proof. Take r̄ ≤ ρ: by Lemma 4 the setBfr̄ (u0) is nonempty. Let Λ(u′i, p
′
i) = (ui, pi)

(i = 1, 2), then by (14), L(ui, pi) =
(
Pf +R(u′i, p

′
i);u

′
i(0)

)
and therefore

L(u2 − u1, p2 − p1) =
(
R(u′2, p

′
2)−R(u′1, p

′
1);u′2(0)− u′1(0)

)
;

since u′1(0) = u′2(0) = u0, by Proposition 2 and Lemma 5 we get

‖Λ(u′2, p
′
2)−Λ(u′1, p

′
1)‖X = ‖(u2 − u1, p2 − p1)‖X ≤ CψCr‖(u′2 − u′1, p′2 − p′1)‖X .
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By Lemma 5 we can choose r̄ = r̄(ψ) so that δ := CψCr̄ < 1. �

Proof of Theorem 1. Let r̄ be as in Lemma 6; if u0 ∈ U0
f and ‖(Pf, u0)‖Y ≤ Kr̄,

then Lemmas 1 and 4 imply that Bfr̄ (u0) is closed and nonempty; Lemma 6 implies
that Λ has a unique fixed point (u, p) ∈ Bfr̄ (u0). By the definition of Λ given in
Lemma 2, (u, p) satisfies (7) and solves (1). �

5. Concluding remarks

Let us first notice that, as for the classical equations (i.e. for η(p) ≡ η), in presence
of conservative forces and zero initial velocity one can prove that the solution of
(1) describes the static of the fluid: in this case the existence of a suitable p0
satisfying the equation at time t = 0 and the corresponding compatibility condition
is straightforward. This result can be obtained as a trivial consequence of Theorem
1 or with a direct proof as follows:

Proposition 3. Assume (3) (4) (6); take T > 0, u0 ≡ 0 and f ∈ Cα(0, T ; G⊥s ).
Then (1) admits a unique solution (u, p) ∈ X given by

u ≡ 0 p(x, t) = ψ(x, t)

where ψ is the zero mean value potential of f with respect to x (i.e. ∇ψ = f and∫
Ω ψ = 0).

Proof. Let (u, p) ∈ X be a solution of (1): multiply the first of (1) by u(t) and
integrate over Ω to obtain

1
2
d

dt
|u(t)|22 +

∫
Ω
η(p(t))(∇u(t) +∇Tu(t)) : ∇u(t) = 0 for all t ∈ [0, T ] ;

by (3) we get d
dt |u(t)|22 ≤ 0 which, together with u0 ≡ 0 yields u(x, t) ≡ 0 and the

result follows. �

• In the proof of Theorem 1 a major role is played by Proposition 2: different
regularity results can be obtained by applying the same arguments, provided one
deals with a pair of optimal regularity (see [12]) for (11). �

• In Lemma 4, to prove that Bfr 6= ∅, we chose as initial velocity u0 the solution of
the stationary problem: the corresponding solution (u, p) ∈ X0 of (1) then satisfies
∂tu|t=0 = 0. �

• Define the operator

Φ(u, p) := ∂tu−∇ · [η(p)(∇u+∇Tu)] +∇p+ (u · ∇)u :
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by standard methods one can prove that Φ ∈ C1(X,Y); note that Φ′(0, 0) is
the linear operator corresponding to the classical Stokes problem. Moreover, by
Proposition 2 we infer that for all p ∈ Cα(0, T ;W

1,s
) the linear operator Φ′(0, p)

is injective and
γp := inf

‖(v,q)‖x=1
‖Φ′(0, p)[v, q]‖Y > 0 .

�
• As we already pointed out in the introduction, our result is somehow unusual as
we get a solution of (1) for T < +∞ and for small data (Pf, u0) ∈ Y; one should
expect either local existence for arbitrary data or global existence for small data.
In particular, for T = +∞ our result yields a solution only if (Pf, u0) = (0, 0):
in this case we obtain the trivial solution. On the other hand, we can say that
the equation in (1) is not really parabolic since the stationary equation may not
be elliptic: the restrictions on the data and on T are needed to ensure the well-
posedness of (1); in some sense, this is the price we must pay to weaken Renardy’s
assumptions on η. Moreover, it seems difficult to find analogies with the classical
Navier-Stokes equations: we think that (1) are not only more complicated but
also of completely different nature. Indeed, when we assign the initial data u0,
the pressure p is introduced constrained by the compatibility condition which is a
nonlinear problem not necessarily well-posed, instead of the very simple classical
linear elliptic Neumann problem (corresponding to the Hodge projection): this
means that p and u are not so “independent” as for the classical equations. The
classical equations are quasilinear: in this case, as u and p depend on each other, we
feel that the equations are more likely to be fully nonlinear. These are the reasons
of our somehow unusual method: the possible loss of ellipticity of the stationary
problem and the more strong interference of p and u yield some theoretical and
formal complications with respect to the standard parabolic theory and to the
classical Navier-Stokes equations.
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