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Abstract

The spectacular collapse of the Tacoma Narrows Bridge has attracted the attention of engineers,
physicists, and mathematicians in the last 74 years. There have been many attempts to explain this
amazing event, but none is universally accepted. It is however well established that the main culprit was
the unexpected appearance of torsional oscillations. We suggest a mathematical model for the study of
the dynamical behavior of suspension bridges which provides a new explanation for the appearance of
torsional oscillations during the Tacoma collapse. We show that internal resonances, which depend on
the bridge structure only, are the source of torsional oscillations.

1 Introduction

The collapse of the Tacoma Narrows Bridge (TNB), which occurred on November 7, 1940, is certainly the
most celebrated structural failure of all times, both because of the impressive video [38] and because of the
huge number of studies that it has generated. In the Appendix (Section 7.1) we quote some testimony of
witnesses and questions raised by the collapse. Soon after the TNB accident, three engineers were assigned
to investigate the collapse and report to the Public Works Administration. Their Report [1] considers ...the
crucial event in the collapse to be the sudden change from a vertical to a torsional mode of oscillation,
see [35, p.63]. In 1978, Scanlan [33, p.209] writes that The original Tacoma Narrows Bridge withstood
random buffeting for some hours with relatively little harm until some fortuitous condition “broke” the
bridge action over into its low antisymmetrical torsion flutter mode. In 2001, Scott [35] writes that Opinion
on the exact cause of the Tacoma Narrows Bridge collapse is even today not unanimously shared. After
more than seventy years, a full explanation of the reasons of the collapse is not available: in particular, the
main question which arises is

why did torsional oscillations appear suddenly? (Q)

Some explanations attribute the failure to a structural problem, some others to a resonance between the
frequency of the wind and the oscillating modes of the bridge. Further explanations involve vortices, due
both to the particular shape of the bridge and to the angle of attack of the wind. Finally, we mention
explanations based on flutter theory and self-excited oscillations due to the flutter speed of the wind. These
theories differ as to what caused the torsional oscillation of the bridge, but they all agree that the extreme
flexibility, slenderness, and lightness of the TNB allowed these oscillations to grow until they destroyed it.
In [5] we discuss in detail all these theories and explain why they fail to answer to (Q). A convincing answer
to (Q) needs the background of a reliable mathematical model well describing the behavior of suspension
bridges. In Section 7.2 we quickly revisit some models considered in literature.
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It is our purpose to introduce a new mathematical model for suspension bridges and to give a satisfactory
answer to (Q). In order to view the torsional oscillations, it appears natural to consider the cross section of
the roadway as a rod having two degrees of freedom: as far as we are aware, this was first suggested by
Rocard [32, p.121]. The degrees of freedom are the vertical displacement y of its barycenter with respect to
equilibrium and the angle of deflection from the horizontal position θ. The rod is linked at its endpoints to
two hangers C1 and C2, as in Figure 1. A crucial issue is the choice of the restoring force applied by the

Figure 1: Vertical (y) and torsional (θ) displacements of a cross section of the bridge.

hangers: due to the elastic behavior of steel and to the action of the sustaining cable, the force should be
taken nonlinear.

Inspired by the celebrated Fermi-Pasta-Ulam model [13], and also by a model previously studied by us
[2, 3, 6], we consider the bridge as finitely many cross sections (seen as rods acting as oscillators) linked
by linear forces. This discretization views a suspension bridge as in Figure 2, where the red cross sections
are the oscillators linked to the hangers (which act as nonlinear springs) while the grey part is a membrane
connecting two adjacent oscillators.

Figure 2: The discretized suspension bridge.

As pointed out in [25], the torsional oscillations that preceded the collapse were never observed until the
day of the collapse. Our model explains why torsional oscillations may be seen, or may be hidden, or may
even not appear, independently of the force applied to the bridge.

It is unlikely for an irregular wind to generate regular torsional oscillations or resonances which would
require the matching of its frequency with an internal frequency of the bridge. Hence, the answer to (Q)
should not be sought in the behavior of the wind; one should instead study very carefully what happens
inside the bridge. For this reason our model represents an isolated system, without any damping or forcing,
which therefore conserves energy. Nowadays, the dominant explanation of the Tacoma collapse relies on
the so-called aerodynamic forces generated by the wind-structure interaction, see Billah-Scalan [8]. These
forces act in several different ways according to how far is the structure from equilibrium, in particular
how large is the torsional angle (see (12) below), and may generate self-excitation and negative damping
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effects. So the attention should now be focused on the cause of wide torsional oscillations. In this paper
we emphasize a structural instability, large vertical oscillations may instantaneously switch to the more
destructive torsional ones even in isolated systems. In order to achieve this task, we need to strip the
model of any interaction with external effects such as the action of the wind, damping and dissipation, and
aerodynamic forces. This enables us to show that, in an ideally isolated bridge in vacuum, a structural
instability may occur provided enough energy is initially put inside the structure. The wind and vortex
shedding are usually responsible for introducing energy within the structure and our analysis starts after the
energy is inserted. The structural instability highlighted in the present paper should then be combined with
the well-known aerodynamic effect.

The model represented in Figure 1 views the cross section of the bridge as two coupled oscillators (vertical
and torsional). It is well-known that nonlinearly coupled oscillators can transfer energy between each other
if they are in resonance and this may occur only at certain energy levels. We call this phenomenon internal
resonance and we call critical energy threshold the minimal energy level where this occurs. The critical
threshold depends on all the parameters involved such as the explicit form of the nonlinear force, the length
of the cross section and the coupling constants. The transfer of energy may occur suddenly and implies
that the amplitude of the oscillations of the vertical oscillator decreases while that of the torsional oscillator
increases.

In Section 3 we exhibit some numerical results which highlight a transfer of energy between vertical and
torsional oscillators within the system describing the model in Figure 2. A substantial energy transfer occurs
only at certain energy levels which we call again critical energy thresholds. Our model reproduces fairly
well what was observed the day of the TNB collapse, see the experiments in Section 3 and the movies at
[4]. These observations are purely numerical and lack both an explanation and some procedure to compute
the critical energy thresholds.

For this reason, in Section 4 we study in detail the simpler model described by the double oscillator repre-
sented in Figure 1: we show that the critical energy threshold can be computed by analyzing the eigenvalues
of the linearization of the Poincaré map obtained by taking a section of the energy hypersurface. This anal-
ysis confirms that, when raising the total internal energy, there is a sudden switch between the regime where
the two oscillators behave almost independently and the regime where they are strongly coupled. The start-
ing spark for torsional oscillations is an internal resonance which creates a bifurcation of the Poincaré map
and occurs when a certain amount of energy is present in the rod.

In Section 5 we take advantage of this analysis. Although the full bridge model represented in Figure 2 is
described by a system with many degrees of freedom, we are able to determine the critical energy thresholds
by analyzing the eigenvalues of the linearization of an evolution map. We show that, when these thresholds
are reached, there is a sudden transfer of energy within the different fundamental vibrations of the bridge,
just as observed at the TNB, see (11) below. This enables us to conclude that

the bridge behaves driven by its own internal features,
independently of the angle of attack and of the frequency of the wind.

And the above discussion yields the following answer to (Q):

the sudden appearance of torsional oscillations is due to internal resonances which arise when a
certain amount of energy is present into the structure.

Hopefully, this answer will give hints on how to plan future bridges in order to prevent destructive torsional
oscillations without excessive costs for stiffening trusses.

This paper is organized as follows. In Section 2 we describe the model and in Section 3 we give the
results of some numerical experiments. In Section 4 we consider the simpler model consisting of a single
cross section and we provide an explanation of the results of Section 3. In Section 5 we extend the results
of Section 4 to the full model. In Section 6 we draw our conclusions and explain in detail why our results
give a satisfactory answer to (Q). Finally, the Appendix provides some details on the collapse of the TNB
and on prior mathematical models.
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2 Description of the model

The rod represented in Figure 1 has mass m and length 2`, it is free to rotate about its center with angular
velocity θ̇ and therefore has torsional kinetic energy m`2θ̇2/6. The center of the cross section behaves as an
oscillator where the forces are exerted by the two lateral hangers C1 and C2, and are denoted respectively
by f(y+ ` sin θ) and f(y− ` sin θ); these terms take into account also the gravity force. Newton’s equation,
describing the vertical-torsional oscillations of the rod, was first derived by McKenna [24] and reads

m`2

3
θ̈ = ` cos θ

(
f(y + ` sin θ)− f(y − ` sin θ)

)
, m ÿ = f(y − ` sin θ) + f(y + ` sin θ) . (1)

If f is linear, then (1) decouples and describes two independent oscillators. Note also that, by rescaling the
time t 7→

√
mt, we can set m = 1.

In order to model the length of the bridge we consider n parallel rods labeled by i = 1, . . . , n and we
assume that each rod interacts with the two adjacent ones by means of attractive linear forces. For the i-th
cross section (i = 1, ..., n), we denote by yi the downwards displacement of its midpoint and by θi its angle
of deflection from horizontal. We assume that the mass of each beam modeling a cross section ism = 1 and
its half-length is ` = 1. We set y0 = yn+1 = θ0 = θn+1 = 0 to model the connection between the bridge
and the ground. We have the following system of 2n equations:

θ̈i + 3
∂U

∂θi
(Θ, Y ) = 0

ÿi +
∂U

∂yi
(Θ, Y ) = 0

(i = 1, ..., n) , (2)

where (Θ, Y ) = (θ1 . . . , θn, y1, . . . , yn) ∈ R2n and

U(Θ, Y ) =
n∑
i=1

[
F (yi + sin θi) + F (yi − sin θi)

]
+

1

2

n∑
i=0

[
Ky(yi − yi+1)

2 +Kθ(θi − θi+1)
2
]
.

The constants Ky,Kθ > 0 represent the vertical and torsional stiffness of the bridge while F (s) =
−
∫ s
0 f(τ)dτ . The conserved total energy of the system is given by

E(Θ̇, Ẏ ,Θ, Y ) =
|Θ̇|2

6
+
|Ẏ |2

2
+ U(Θ, Y ) . (3)

The choice of the nonlinear restoring force f = −F ′ is delicate. Here we take

f(s) = −(s+ s2 + s3) and then F (s) =
s2

2
+
s3

3
+
s4

4
, (4)

see Figure 3, and there are several reasons for this choice. First of all, the same kind of force was used in

Figure 3: Graph of the restoring force f in (4) close to the origin.

the famous Fermi-Pasta-Ulam experiment [13] and more recently in engineering literature, see e.g. the work
by Plaut-Davis [30, Section 3.5], as a simple example of nonlinearity. It reproduces the linear Hooke law
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for small displacements, with elasticity constant equal to 1 (the corresponding linear behavior is represented
in Figure 3 with a thin line tangent to the graph of f ). Furthermore, the function f is concave at the
origin, that is f ′′(0) < 0, which means that the rate of increase of the restoring force of the prestressed
hangers grows with extension. Finally, the s3-term in f guarantees that the potential F is bounded from
below. The slackening of the hangers occurs for some s < 0 due to the fact that f also includes gravity.
Brownjohn [10, p.1364] explicitly writes that slackening does not have an instantaneous effect: The hangers
are critical elements in a suspension bridge and for large-amplitude motion their behaviour is not well
modelled by either simple on/off stiffness or invariant connections. This justifies the choice of a smooth f .
Summarizing, the choice (4) satisfies the minimal requirements for f to be an asymmetric perturbation of a
linear force with positive potential energy, even if it is not necessarily expected to yield accurate quantitative
information. We tested a fairly wide class of different nonlinearities and we saw that the qualitative behavior
of the system is not affected by the specific choice of the parameters in the nonlinearity.

We now define the nonlinear normal modes of the system (2). Let dst : Rn → Rn be the discrete sine
transform, that is, the linear invertible map defined for all x ∈ Rn by

xi =
2

n+ 1

n∑
j=1

(dstx)j sin

(
πij

n+ 1

)
and (dstx)j =

n∑
i=1

xi sin

(
πij

n+ 1

)
,

and note that, for any given k ∈ {1, . . . , n} and E0 > 0, there exists a unique α = α(k,E0) > 0 such that
E (0, α(k,E0)dst(ek), 0, 0) = E0, where ek is the k−th element of the canonical basis of Rn. If f were lin-
ear, then the initial condition (Θ̇(0), Ẏ (0),Θ(0), Y (0)) = (0, α(k,E0)dst(ek), 0, 0) would raise a periodic
solution to (2) for all k,E0; such solution is usually called a (linear) normal mode of the system. If f is non-
linear, e.g. as in (4), by a minimization algorithm we can compute numerically Y 0(k,E0), Y

1(k,E0) ∈ Rn
such that |Y 0(k,E0)| and |Y 1(k,E0) − α(k,E0)dst(ek)| are small (and tends to 0 as E0 → 0) and(
0, Y 1(k,E0), 0, Y

0(k,E0)
)

lies on the orbit of a periodic solution to the nonlinear problem (2).

Definition 1. (NONLINEAR NORMAL MODES)
We call the periodic solution of (2) with initial data (Θ̇(0), Ẏ (0),Θ(0), Y (0)) = (0, Y 1(k,E0), 0, Y

0(k,E0))
the k-th nonlinear normal mode of (2) at energy E0.

Our purpose is to study the stability of the nonlinear normal modes under small perturbations of the null
torsional initial data.

3 Numerical results

We consider (2) with n = 16 and Ky = Kθ = 320. Let Y 0(k,E0), Y
1(k,E0) ∈ Rn be as in Section 2:

Figure 4 represents the solutions to the system (2) with initial conditions(
Θ̇(0), Ẏ (0),Θ(0), Y (0)

)
= (Θ1, Y 1(k,E0), 0, Y

0(k,E0)) (5)

where Θ1 ∈ R16 is a random vector whose components lie in the interval [−5 · 10−6, 5 · 10−6], and with
(k,E0) = (1, 516), (2, 500), (3, 6000), each one on a line from the first to the third.

In all the pictures the black and grey plots represent θi(t) and yi(t) respectively for i = 1 . . . , 8 going from
left to right; the first one is the closest to a tower whereas the eighth one is in the center of the span. We only
display the first 8 plots of (θi, yi) because (θi, yi) ≈ (θ17−i, y17−i) if k is odd and (θi, yi) ≈ −(θ17−i, y17−i)
if k is even. In order to better explain the phenomenon, we enlarge the first picture of the second line, see
Figure 5. We observe that the (black) torsional oscillations are initially negligible with respect to the (grey)
vertical oscillations but, suddenly, they become visible, and then larger and larger, and their maximum
amplitude would suffice for an actual bridge to collapse. Even if the amount of energy E is large enough to
generate instability, the energy transfer does not occur instantaneously, it takes some time T = T (E) > 0.
This delay in time may be seen as a structural version of the Wagner effect [39] which was originally
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Figure 4: Unstable torsional oscillations (black) and vertical oscillations (grey) of the cross sections.

Figure 5: Sudden appearance of torsional oscillations.

discovered in the aerodynamic action of the wind on the airfoil of an aircraft: if the incidence of a wing
changes suddenly, the new lifting force resulting from the change in incidence is not set up instantaneously.
However, as soon as the instability is apparent, the oscillations suddenly grow up. In this respect, Billah-
Scalan [8] remark that when instability (or flutter) occurs for suspension bridges without a streamlined
deck, it tends to be very precipitate. Note also that it appears clearly in Figure 5 that the vertical (grey)
oscillations decrease in amplitude when the torsional (black) oscillations increase: this is what we call an
energy transfer between oscillating modes. Numerical experiments show that the sudden appearance of
wide torsional oscillations as in Figures 4 and 5 can be seen only if the energy is sufficiently large, that
is, above a critical energy threshold. Above this threshold a very small perturbation of the k-th mode in
any θi-variable can lead to a significant torsional motion, while below the threshold small initial torsional
oscillations remain small for all time. In the latter case, the amplitudes of both the torsional and the vertical
modes are constant, therefore the pictures are trivial and we do not display them.

We have also produced a dynamic representation of the solutions (Θ, Y ) to (2)-(5). The movies available
at [4] display the dynamics of the discretized bridge, and in particular the similarity to the original movie of
the Tacoma Narrows Bridge collapse [38].
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4 The single cross section model

In order to explain the results described in the previous section, we consider (2) with n = 1 and Ky =
Kθ = 1. We omit here the (redundant) index referring to the cross section. Since the energy (3) of the
system is a constant of motion, for any E0 > 0 the 3-dimensional submanifold E(θ̇, ẏ, θ, y) = E0 of the
phase space R4 is flow-invariant, that is, the motion is confined to this 3-dimensional energy surface. We
study a 2-dimensional section of this surface, the so-called Poincaré section (see e.g. [16, Section 11.5] or
[19, Section 1.4]), whose construction adapted to the problem at hand we now give in detail.

First observe that
the plane θ̇ = θ = 0 is flow-invariant; (6)

in particular, for all y1 ∈ R, the initial data (θ̇(0), ẏ(0), θ(0), y(0)) = (0, y1, 0, 0) yields a periodic solution
of system (2). We wish to study the stability of this solution.

Now fix E0 > 0 and consider the bounded set

UE0 := {(θ1, θ0) ∈ R2; E(θ1, 0, θ0, 0) < E0} .

For all (θ1, θ0) ∈ UE0 define

y1 = y1(E0, θ
1, θ0) :=

√
2[E0 − E(θ1, 0, θ0, 0)] > 0 ,

namely the unique positive value of y1 that satisfies E(θ1, y1, θ0, 0) = E0. It is easily shown that there exists
a first T = T (θ1, θ0) > 0 such that the solution of (2) with initial data

(θ̇(0), ẏ(0), θ(0), y(0)) = (θ1, y1(E0, θ
1, θ0), θ0, 0) (7)

satisfies y(T ) = 0 and ẏ(T ) > 0. The Poincaré map PE0 : UE0 → R2 is then defined by

PE0(θ1, θ0) := (θ̇(T ), θ(T )) (8)

where (θ(t), y(t)) is the solution to the system (2) with initial data (7). Note that, for such solution, one has
E = E0. In view of (6), the origin (0, 0) ∈ UE0 is a fixed point for the map PE0 for any E0 > 0. In Figure 6
we represent some iterates of the map PE0 for system (2) with different initial data (θ̇(0), θ(0)) ∈ UE0 . The
energies considered are E0 = 3.4, 3.5, 3.6, 3.8 and we observe a change of behavior between E0 = 3.5
and E0 = 3.6 so that the critical energy threshold of (2) (case n = 1) satisfies

3.5 < E < 3.6 .

Finer experiments yield E ≈ 3.56.
What we have just observed has a clear explanation in the theory of dynamical systems. The pictures in

Figure 6 show that if E < E, then any initial condition with small (θ̇(0), θ(0)) leads to solutions with small
(θ̇(t), θ(t)) for all t, while if E > E, any initial condition with small (θ̇(0), θ(0)) leads to large values of
(θ̇(t), θ(t)) for some t. Hence, if E0 < E then the origin is a stable fixed point of PE0 , whereas if E0 > E
the origin is unstable, that is, the system undergoes a bifurcation at E0 = E. The stability of the origin can
be determined by the eigenvalues λ1 and λ2 of the Jacobian JPE0(0, 0) of PE0 at (0, 0). Since the system
(2) is conservative, JPE0(0, 0) has determinant equal to 1, therefore one of the following cases applies:

(i) |λ1| = |λ2| = 1 and λ2 = λ1, in which case (0, 0) is stable for PE0 ;
(ii) λ1, λ2 ∈ R and 0 < |λ1| < 1 < |λ2|, in which case (0, 0) is unstable for PE0 .

Since the eigenvalues depend continuously on E0, the bifurcation, i.e. the loss of stability, may only occur
when λ1 = λ2 = 1 or λ1 = λ2 = −1. In the former case the Jacobian of PE0 − I at (0, 0) is not invertible,
therefore the fixed point is not guaranteed to be locally unique, and indeed two new stable fixed points are
created: this kind of bifurcation is called pitchfork. In the latter case the Jacobian of PE0 − I at (0, 0) is
invertible, but the Jacobian of P 2

E0
−I is not; then, by the implicit function theorem the fixed point is locally
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Figure 6: The Poincaré map for (2) in the plane (θ̇, θ): from left to right and top to bottom, the values of E0

are 3.4, 3.5, 3.6, 3.8. Stable fixed points are red and unstable fixed points are green.

unique, but periodic points of period 2 are not, and indeed two such points are created at the bifurcation;
this kind of bifurcation is called period doubling.

The experiments displayed in Figure 6 show that the bifurcation generates two new stable fixed points
(red color), therefore we have a pitchfork bifurcation. Since at the bifurcation point both eigenvalues of
the Jacobian of PE0 at (0, 0) are equal to 1, then PE(θ1, θ0) = (θ1, θ0) + o(θ1, θ0), so that small initial
data (θ1, θ0) yield solutions θ(t) to (2) being close to a periodic solution having the same period of y(t).
This is what we call an internal resonance. In our experiments we observe that, as E0 increases from 0,
the eigenvalues λ1 and λ2 move on the unit circle of the complex plane and meet at the point (1, 0) when
E0 = E. When E0 > E the eigenvalues move along the real line in opposite directions and the two new
stable (red) fixed points represent periodic solutions θ(t) having the same period of y(t).

In the case of a period doubling bifurcation we would have PE(θ1, θ0) = −(θ1, θ0) + o(θ1, θ0), so that
small initial data (θ1, θ0) would yield solutions θ(t) to (2) being close to a periodic solution having period
equal to the double of the period of y(t). This is another kind of internal resonance, which does not
happen in the experiment that we describe here, but can be observed with other nonlinearities, e.g. with
f(s) = −(s + s2). If E0 > E, then PE0 has two periodic points of period 2, corresponding to periodic
solutions θ(t) having the double of the period of y(t).

Summarizing, a necessary condition for a bifurcation to occur is a resonance between the oscillators; in
absence of resonance the double oscillator is torsionally stable and small initial torsional data remain small
for all time. What we have just explained leads us to the following definition and criterion:

Definition 2. (TORSIONAL STABILITY)
We say that the system (2) (for n = 1) is torsionally stable at energy E0 > 0 if the origin (0, 0) ∈ R2 is
stable for the Poincaré map PE0 . Otherwise, we say that the system is torsionally unstable.

Criterion 3. Let λ1 = λ1(E0) and λ2 = λ2(E0) be the complex eigenvalues of the Jacobian of the Poincaré
map PE0 at the origin (0, 0) ∈ R2. Then λ1λ2 = 1 and two cases may occur:
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(S) if |λ1| = |λ2| = 1 and λ2 = λ1, then the system (2) is torsionally stable;
(U) if λ1, λ2 ∈ R and 0 < |λ1| < 1 < |λ2|, then the system (2) is torsionally unstable.

We have observed above that equal eigenvalues yield a resonance between the oscillators, which may
occur only at particular values of the energy. When the energy is larger than such value, the system is in
the unstable regime, while when the energy is smaller the system is in the stable regime. In principle it may
happen that also at higher energy the system undergoes another bifurcation and the origin becomes again
stable. Then, we have shown that there exists E > 0 such that the system (2) is stable (case (S)) whenever
0 < E < E whereas the system (2) is unstable (case (U)) whenever E < E < E + δ for some δ > 0.

Definition 4. (CRITICAL ENERGY THRESHOLD)
When n = 1 we call

E := inf {E0 > 0; max{|λ1(E0)|, |λ2(E0)|} > 1}

the critical energy threshold of (2).

What we have seen in this section enables us to conclude that

the bifurcation is caused by a resonance between the nonlinear oscillators
and generates torsional instability.

Moreover, the Poincaré maps show that

the onset of torsional instability is generated by internal resonances.

This simple description is possible because we are dealing with a model with two degrees of freedom
only. In the next section we provide a suitable generalization of these results for the full bridge model.

5 Stability of the multiple beam system

We extend here the results obtained in the previous section to the full bridge model where n > 1. For
any mode k ∈ {1, ..., n} and any energy E0 > 0 let Y 1(k,E0) and Y 0(k,E0) be as in Section 2. Let
T (k,E0) > 0 be the period of the k-th nonlinear normal mode of (2) at energyE0 and let Ψk

E0
: R2n → R2n

be the evolution map defined by

Ψk
E0

(Θ1,Θ0) =
(

Θ̇(T (k,E0)),Θ(T (k,E0))
)
, (9)

where (Θ(t), Y (t)) is the solution to (2) with initial conditions(
Θ̇(0), Ẏ (0),Θ(0), Y (0)

)
= (Θ1, Y 1(k,E0),Θ

0, Y 0(k,E0)) .

We remark that the origin is a fixed point of Ψk
E0

and that Ψk
E0

is not a Poincaré map; in particular, the
iteration time T does not depend on (Θ1,Θ0). One could compute a Poincaré map even in the full model
case, but its construction is theoretically and computationally more complicated, and, due to the higher
dimensionality of the problem, it would not provide any additional insights. The maps Ψk

E0
enable us to

generalize Definition 2 as follows:

Definition 5. (TORSIONAL STABILITY)
We say that the k-th nonlinear normal mode of (2) at energy E0 > 0 is torsionally stable if the origin
(0, 0) ∈ R2n is stable for the evolution map Ψk

E0
. Otherwise, we say that it is torsionally unstable.
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In order to evaluate the stability of the k-th nonlinear normal mode, we study the Jacobian JΨk
E0

(0, 0) of
Ψk
E0

at (Θ1,Θ0) = (0, 0). To compute the derivatives of this map, we linearize (2) at (Θ, Y ) = (0, Y k),
where Y k(t) is the k-th nonlinear normal mode of (2) at energy E0. We are led to solve the system

ξ̈i + 3
n∑
j=1

∂2U

∂θi∂θj
(0, Y k(t))ξj = 0 (i = 1, ..., n) , (10)

where Ξ(t) = (ξ1(t), . . . , ξn(t)) is the variation of Θ ≡ 0. The l-th column of JΨk
E0

(0, 0) is the solution
(Ξ̇(T ),Ξ(T )) at time T (k,E0) of (10) with initial conditions (Ξ̇(0),Ξ(0)) = ηl (l = 1, ..., 2n), where ηl is
the l-th element of the canonical basis of R2n.

In principle, when n > 1 one cannot infer the full stability of the nonlinear normal mode Y k from its
linear stability, that is, when all the eigenvalues of JΨk

E0
(0, 0) have modulus 1. On the other hand, we have

numerical evidence that the model is torsionally stable if and only if all the eigenvalues of JΨk
E0

(0, 0) lie
on the unit circle. This leads to the following:

Criterion 6. Let λi = λi(k,E0) (i = 1, ..., 2n) be the eigenvalues of JΨk
E0

(0, 0). Then:
(S) if maxi |λi| = 1, then the k-th nonlinear normal mode of (2) at energy E0 is torsionally stable;
(U) if maxi |λi| > 1, then the k-th nonlinear normal mode of (2) at energy E0 is torsionally unstable.

We take again (4) while we fix n = 16 and Ky = Kθ = 320. In the graphs in Figure 7 we display
the largest modulus of the eigenvalues of JΨk

E0
(0, 0) as a function of the energy E0, with k = 1, 2, 3. It

Figure 7: Largest modulus of the eigenvalues of JΨk
E0

(0, 0) versus the energy E0, k = 1, 2, 3.

appears that for all such k there exists a largest Ek > 0 such that the k-th mode of (2) is torsionally stable
whenever E < Ek. It turns out that, for higher levels of energy, a mode may become stable again, but this
has a purely theoretical (mathematical) relevance since, in order to ensure that the bridge is safe, one should
consider only the lower energy threshold Ek; here we computed E1 ≈ 450, E2 ≈ 200, E3 ≈ 5100. All
our experiments have shown that a nonlinear normal mode is stable, that is small initial torsional data yield
small torsional oscillations for all time, whenever it is linearly stable.

Criterion 6 enables us to provide a rigorous definition of the critical energy threshold of each mode.

Definition 7. (CRITICAL ENERGY THRESHOLD)
We call critical energy threshold Ek of the k-th nonlinear normal mode of (2) the positive number

Ek := inf

{
E0 > 0; max

i
|λi(k,E0)| > 1

}
.

Figure 7 shows that Ek depends on k and the effective critical energy threshold E of the bridge satisfies

E ≤ min
1≤k≤n

Ek .

In order to show further that our model well explains the behavior of suspension bridges and is able
to reproduce the collapse of the TNB, we revisit our results trying to match the phenomenon described

10



by Farquharson [12] concerning the sudden appearance of torsional oscillations that contemporaneously
changed the vertical oscillations

...which a moment before had involved nine or ten waves, had shifted to two. (11)

Let us first introduce a new definition.

Definition 8. (FUNDAMENTAL VIBRATIONS)
For all j = 1, ..., n we call j-th vertical (respectively, torsional) fundamental vibration of a solution
(Θ(t), Y (t)) of (2) the function t 7→ (dstY (t))j (respectively, the function t 7→ (dstΘ(t))j), that is,
the j-th component of the discrete sine transform.

In Figure 8 we plot a simple moving average of the first four (vertical and torsional) fundamental vi-
brations of a solution to (2) in the case (k,E0) = (2, 500). The graphs show that initially most of the
dynamics is concentrated on the second vertical fundamental vibration, but at time t ≈ 50 part of the en-
ergy is transferred to the first torsional fundamental vibration; then the second vertical and the first torsional
fundamental vibrations begin a somehow periodic exchange of energy. All the other fundamental vibra-
tions, vertical and torsional, appear to be almost unaffected. The testimony (11) tells us that, at the TNB,
the appearance of torsional oscillations had changed the vertical oscillations form the ninth to the second
fundamental vibration.

Figure 8: The first four torsional (black) and vertical (grey) FV’s of a solution to (2).

The next step should be an accurate analysis of the nonlinear modes of a suspension bridge and of the
fundamental vibrations of its oscillations, see [7] for the linear case. Combined with our analysis, this could
give precise suggestions on how to plan bridges in order to higher Ek, at least for small k.

6 Our explanation of the Tacoma collapse

In [5] we analyze the collapses of the Broughton Suspension Bridge and of the Angers Bridge, which were
caused by a light and periodic external forcing that gave rise to a resonance with the natural frequencies
of the bridges. This should not be confused with the violent and disordered behavior of the wind at the
TNB. By no means, one may expect that a random and variable wind might match the natural frequency of
a bridge.

The model we suggest here views the bridge as an elastic structure formed by many coupled nonlinear
oscillators whose frequencies may synchronize, creating internal resonances. Since the model is nonlinear,
the frequencies depend on the energy involved and resonances may occur only if a certain amount of energy
is present into the structure, that is,

if the total energy within the structure is small, then the oscillators weakly interact and only a
negligible part of the energy of the vertical oscillators can be transferred to a torsional fundamental

vibration, whereas if the total energy is sufficiently large then the oscillators are in resonance and
tiny torsional oscillations may suddenly become wide.

An external action inserting energy inside the structure may exceed the critical thresholds of the bridge and
give rise to uncontrolled oscillations. The critical energy thresholds of the nonlinear normal modes of the
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bridge depend only on its structural parameters such as width, length, rigidity, mass, elasticity, stiffness, and
distance between hangers. Future bridges should be planned with structural parameters yielding very large
critical energy thresholds.

We believe that the TNB has collapsed because, on November 7, 1940, the wind inserted enough energy
to overcome the critical energy threshold of its 9th nonlinear normal mode. This gave rise to internal
resonances that were the onset of the destructive torsional oscillations. Then the aerodynamic forces self-
excited these oscillations until the collapse of the bridge. Is this the final answer to (Q)?

7 Appendix

7.1 The Tacoma Narrows Bridge collapse

The TNB was considered very light and flexible. Not only this was apparent to traffic after the opening, but
also it was felt during the construction. According to [35, pp.46-47], ...during the final stages of work, an
unusual rhythmic vertical motion began to grip the main span in only moderate winds ... these gentle but
perceptible undulations were sufficient to induce both bridgeworker nausea and engineering concern. The
undulatory motion of the span attracted the local interest and ...motorists ventured onto the TNB to observe
vehicles ahead of them slowly disappearing in the trough of a wave. So, it was not surprising that vertical
oscillations were visible on the day of the collapse. The wind was blowing at approximately 80 km/h and,
apparently, the oscillations were considerably less than had occurred many times before, see [35, p.49].
Hence, although the wind was the strongest so far since the bridge had been built, the motions were in line
with what had been observed earlier. However, a sudden change in the motion was alarming. Without any
intermediate stage, a violent destructive torsional movement started: the oscillation changed from nine or
ten smaller waves to the two dominant twisting waves. A witness to the collapse was Farquharson, the man
escaping in the video [38]. According to his detailed description [12] ...a violent change in the motion was
noted. This change appeared to take place without any intermediate stages and with such extreme violence
that the span appeared to be about to roll completely over.

Leon Moisseiff (1873-1943), who was charged with the project, had an eye to economy and aesthetics,
but he was not considered guilty for the TNB failure. For instance, Steinman-Watson [37] wrote that ...the
span failure is not to be blamed on him; the entire profession shares in the responsibility. It is simply that
the profession had neglected to combine, and apply in time, the knowledge of aerodynamics and of dynamic
vibrations with its rapidly advancing knowledge of structural design. The reason of this discharge probably
relies on forgotten similar collapses previously occurred: one should compare the torsional motion prior
to the collapse of the Brighton Chain Pier in 1836, as painted by William Reid [31, p.99], and torsional
motions prior to the TNB collapse, see Figure 9.

Figure 9: Torsional motion in the Brighton Chain Pier and in the Tacoma Narrows Bridge.

Similar torsional behaviors were displayed in several other bridges before 1940, see [35, Section 4.3],
[18, p.75], and also [14, Section 2]. So, it seems that torsional oscillations are to be expected in flexible
suspension bridges. Still, the natural questions which arise from the TNB collapse and from similar failures
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are the following [35, p.53]:
- how could a span designed to withstand 161 km/h winds and a static horizontal wind pressure of 146 kg/m2

succumb under a wind of less than half that velocity imposing a static force one-sixth the design limit?
- how could horizontal wind forces be translated into dynamic vertical and torsional motion?

In fact, the answers to these questions are strictly linked. The bridge was ready to withstand 161 km/h
wind provided that the oscillation would have been vertical. But since unexpected torsional oscillations
appeared, this considerably lowered the critical speed of the wind. Therefore, the two above questions
reduce to the main question (Q).

7.2 Previous mathematical models

The celebrated report by Navier [29] has been for about one century the only mathematical treatise of
suspension bridges. The second milestone contribution is certainly the monograph by Melan [27]. After
the TNB collapse, the scientific community felt the necessity to find accurate equations in order to attempt
explanations of what had occurred. In this respect, historical sources are [9, 36] which consider the function
representing the amplitude of the vertical oscillation as unknown but do not consider torsional oscillations.

In a model suggested by Scanlan-Tomko [34], the angle of twist α of the torsional oscillator (bridge deck
section) is assumed to satisfy the equation

I [α̈+ 2ζαωαα̇+ ω2
αα] = Aα̇+Bα , (12)

where I , ζα, ωα are, respectively, associated inertia, damping ratio, and natural frequency. The aerodynamic
force (the r.h.s. of (12)) is assumed to depend linearly on both α̇ and α with the positive constants A
and B depending on several parameters of the bridge. Constant coefficient second order linear equations
such as (12) have elementary solutions. Roughly speaking, one can say that chaos manifests itself as an
unpredictable behavior of the solutions in a dynamical system. With this characterization, there is no doubt
that chaos was somehow present in the dynamic of the TNB. From [16, Section 11.7] we recall that neither
linear differential equations nor systems of less than three first-order equations can exhibit chaos. Since
(12) may be reduced to a two-variables first order linear system, it cannot be suitable to fully describe
the disordered behavior of the bridge. In order to have a description of the bridge obeying the two rules
for chaos, the fourth order nonlinear ODE w′′′′ + kw′′ + f(w) = 0 (k ∈ R) was studied in [15] and it
was proved that solutions to this equation blow up in finite time with self-excited oscillations appearing
suddenly, without any intermediate stage. Following these general rules, we propose the explanation that
the structural instability generated the sudden excitation of the torsional mode and, once the torsional mode
was activated, (12) explains how aerodynamic forces led to the Tacoma collapse.

In [10, 14, 19] one may find further evidence that some nonlinearity should appear in any model aiming to
describe suspension bridges. Furthermore, it was recently confirmed by Luco-Turmo [22] that the flexibility
of the hangers is generally negligible so that their nonlinear behavior is mainly due to the cable; see also
[17] for more details on the behavior of hangers. For large displacements one cannot apply the linear Hooke
law of elasticity. This is also the opinion of McKenna [24, p.16]: We doubt that a bridge oscillating up
and down by about 10 meters every 4 seconds obeys Hooke’s law. Moreover, McKenna [24, p.4] comments
(12) by writing This is the point at which the discussion of torsional oscillation starts in the engineering
literature. He then claims that a key error in previous models was the linearization of (1) with respect to θ,
the term sin θ was usually replaced by θ whereas cos θ was replaced by 1: this is reasonable for small θ, but
appears inaccurate for large deflections. McKenna concludes by noticing that Even in recent engineering
literature ... this same mistake is reproduced. And indeed, [24, 26] show that numerical solutions to (1)
starting with large initial data die down in the linear model while they do not for the nonlinear model where
large oscillations continue for all time until the eventual collapse of the bridge: by linear model we mean
here that the approximation sin θ ≈ θ is made, whereas nonlinear means that sin θ is maintained. In these
experiments the restoring force is assumed to be piecewise linear. Supported by numerical experiments, our
opinion is that, although the approximation sin θ ≈ θ is inaccurate, it does not hide the main phenomenon,
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while we believe that the nonlinearity in the restoring force f plays the major role. Indeed, the nonlinearity
of f plays a significant role even when θ is small, that is when sin θ ≈ θ is acceptable.

The interaction between different components of the bridge is the most delicate part of any model. Lazer-
McKenna [20, Section 3.4] introduce a system describing the coupled motion of the roadway and the sus-
taining cable, see also [21] for the same system with different external sources. This model views the
roadway as a one-dimensional beam and, therefore, it cannot display torsional oscillations.

A model suggested by Moore [28] extends (1) to the entire length L of the roadway. Assuming that the
restoring forces are piecewise linear, the following generalization of problem (1) is obtained

θtt − ε1θxx = 3K
m` cos θ[(y − ` sin θ)+ − (y + ` sin θ)+]− δθt + h1(x, t)

ytt + ε2yxxxx = −K
m [(y − ` sin θ)+ + (y + ` sin θ)+]− δyt + g + h2(x, t)

θ(0, t) = θ(L, t) = y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0 ,

(13)

where ε1, ε2 are physical constants related to the flexibility of the beam, δ > 0 is the damping constant,
h1 and h2 are external forces, and g is the gravity acceleration. Multiple periodic solutions to (13) are
determined in [28]. The system (13) was complemented by Matas-Očenášek [23] with two further equations
governing the displacements of the lateral cables; then the displacements of the cables also appear in the
equations in (13). We believe that (13) is a nice reliable model which, however, may be improved in several
aspects. First, the restoring force needs not to be piecewise linear; second, it does not act on the whole
length of the roadway but only in those points where the hangers are present. As we have seen, the answer
to (Q) is hidden in a generalized version of system (1) independently of external forces.

Any model aiming to describe the complex behavior of a bridge has to face the difficult choice between
accurate but complicated equations on one hand and simplified but less reliable equations on the other hand.
Excessive linearizations lead to inaccurate models (such as (12)) and to unreliable responses. The model
suggested in the present paper seems to be a good compromise between these two choices. In particular, it
gives a satisfactory answer to (Q). We refer to [11] and to [14, Section 3.2] for a detailed story of further
mathematical models which, however, could not lead even to partial answers to (Q).
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