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Abstract

We consider a partially damped nonlinear beam-wave system of evolution PDE’s modeling the
dynamics of a degenerate plate. The plate can move both vertically and torsionally and, consequently,
the solution has two components. We show that the component from the damped beam equation
always vanishes asymptotically while the component from the (undamped) wave equation does not.
In case of small energies we show that the first component vanishes at exponential rate. Our results
highlight that partial damping is not enough to steer the whole solution to rest and that the partially
damped system can be less stable than the undamped system. Hence, the model and the behavior
of the solution enter in the framework of the so-called indirect damping and destabilization paradox.
These phenomena are valorized by the physical interpretation in the final section, leading to possible
new explanations of the Tacoma Narrows Bridge collapse. Several natural problems are left open.

Keywords: degenerate plates, partial damping, longitudinal and torsional components, asymptotic behavior.

AMS 2010 Subject Classification: 35G61, 35B40, 34D05.

Contents

1 Introduction 2

2 The phase space and weak solutions 4

3 Vanishing of the longitudinal component 6

4 Exponential decay of longitudinal components for small energies 8

5 Nonvanishing of the torsional component 10

6 Physical interpretation of the results in a suspension bridge 11
6.1 Some historical facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 The physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Bimodal solutions and numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References 18

1



1 Introduction

We consider initial value problems for the following system of PDE’s
utt + δut + uxxxx +

(∫
I
(u2 + θ2)

)
u+ 2

(∫
I
uθ
)
θ = 0

θtt − θxx + 2
(∫

I
uθ
)
u+

(∫
I
(u2 + θ2)

)
θ = 0

(x ∈ I, t > 0) , (1.1)

where I = (−π, π) and δ > 0, complemented with the boundary-interior conditions (in which 0 < a < 1)

u(±π, t) = u(±aπ, t) = θ(±π, t) = θ(±aπ, t) = 0 t ≥ 0. (1.2)

Due to the presence of the constraints at x = ±aπ, solutions of (1.1) fail to be smooth and a suitable
notion of weak solution is needed, see Definition 1. The system (1.1) models a degenerate rectangular
plate Ω = I × (−`, `) composed by a central beam in position I × {0}, whose vertical displacement u is
governed by (1.1)1, and by a continuum of cross sections of length 2` � π free to rotate around their
center placed on the beam, the resulting torsional angle θ being governed by (1.1)2. The plate is divided
in three adjacent spans, separated by two fixed piers in the positions x = ±aπ that generate the interior
constraints in (1.2). Finally, the short edges of the plate at x = ±π are hinged. The view from above of
this plate and the position of the piers are drawn in the left picture of Figure 1, in which the beam is

Figure 1: Left: fish-bone model for a degenerate plate with piers. Right: sketch of a suspension bridge.

the white midline and some cross sections are represented by the orthogonal black thin segments. The
undamped and unconstrained version of this model was called a fish-bone in [13], whereas the constraints
due to the piers were introduced in [27, 28] in order to analyze the stability of the deck of suspension
bridges, see the right picture in Figure 1 where a torsional displacement is emphasized. The reason
of partial damping, acting only in the beam equation (1.1)1, is that while the flexural (longitudinal)
displacement u can be damped by stiffening the beam with stronger elastic connections to the ground
at x = ±π and to the piers at x = ±aπ, there is no simple way to damp the torsional displacement θ
since the endpoints of the cross sections at y = ±` are free to move. We refer to Section 6 for full details
on the physical model and for the explanation why ` does not appear explicitly in (1.1).
A few words should be said about the interior constraints in (1.2). On the one hand, the model has

its own interest also without these constraints, in which case the plate has no intermediate piers and the
solutions of (1.1) are smooth with no need to deal with weak solutions, as in Definition 1. On the other
hand, not only the constraints merely require a minor additional effort but, more important, they better
describe the behavior of real bridges. They allow to obtain more reliable responses by introducing the
precise spatial parameters, see again Section 6. For this reason, the interior constraints appear as an
essential part of the model.
The “partially damped” feature of (1.1) raises several natural questions:

does the damping steer the u-component of any solution (u, θ) of (1.1) to zero?
does the damping steer the θ-component of any solution (u, θ) of (1.1) to zero?

if one of the u/θ-components tends to 0, is it possible to determine the decay rate?

2



Indirect (or partial) damping for coupled systems occurs in the modeling of many real life phe-
nomena such as fluid-structure interaction problems, or dynamical systems from biological sciences, or
Timoshenko-beam-systems. The challenging mathematical questions are as above, namely whether one
feedback or a minimum number of feedbacks can be regarded as a possible stabilizer for others. The
notion of indirect damping mechanisms was introduced by Russell [47] who studied energy dissipation
in energy conserving elastic systems with damping coming from coupling with other dissipators. Since
then, stabilization results (with the total energy decaying to 0) have been obtained for various kinds of
coupled systems including heat-wave, wave-wave, plate-wave, plate-plate, and others. With no hope of
being exhaustive, we mention here some works on the stability of coupled linear or nonlinear systems
with indirect damping and coupling either within the equations or within the boundary conditions. For
fairly different models, in [2, 3, 5, 7, 10, 32, 35, 43, 44, 46, 52, 56, 58] the total energy of the system
is shown to decay at different rates, some being integrable at infinity while some others are not. As
we shall see in Section 5, this integrability property plays a primary role in the overall behavior of the
degenerate plate system (1.1).
In the present paper we show that the response of (1.1) is completely different from all the just

mentioned systems. Although the stationary version of (1.1) has a variational structure, and hence a
natural energy associated to its solutions, we show that the partial damping is not enough to dissipate
the total energy and to steer the whole system to rest (the only stationary solution). We show that only
the beam tends to rest and that the rate of decay of its energy seems to depend on the amount of total
energy within the system. More precisely, we give the following answers to the above questions:

the u-component of any solution (u, θ) of (1.1) tends to zero;
the θ-component of any solution (u, θ) of (1.1) with θ 6≡ 0 does not tend to zero;

for small initial energies, the u-component of any solution (u, θ) of (1.1) tends to zero exponentially.

It turns out that, even if the total energy of (1.1) is decreasing, it does not tend to vanish as time
goes to infinity and the residual positive energy all concentrates on the torsional component: what
happens to the residual energy is an open problem, see Problem 2. Our numerical results in Section
6.3 also show that indirect damping may worsen the stability properties of undamped systems since
the θ-component of the undamped system (δ = 0) may be more stable than for the partially damped
system (1.1) where δ > 0, see Figures 2-3. The damping parameter conveys part of the initial energy
from (1.1)1 to (1.1)2 and, since the torsional displacements are more dangerous for the plate, the system
becomes more vulnerable.
The so-called destabilization paradox also has a long story, that presumably starts in 1952, when Ziegler

[57] observed that the critical force at which a nonconservative finite dimensional system with negligibly
low dissipation lost stability was much weaker than that in a system where dissipation was absent from
the very beginning. The same paradox has been observed in several mechanical and physical systems
[16, 17, 36]. A full understanding of this paradox is still out of reach, in spite of numerous studies on
the subject, see [15, 37, 51, 53] and references therein for finite dimensional models; even more obscure
appears the infinite dimensional case [38]. The infinite dimensional model (1.1) does not fit in the
framework of any of the above studies for at least two reasons. First, the dissipation is not due to
gyroscopic forces but it acts directly on only one of the PDE’s: this leads to a partial dissipation where
the total energy decreases but does not vanish asymptotically. Second, the stability analysis cannot be
performed through the linearized system due to the form of the nonlinear coupling terms which leads
to a degenerate case with stability eigenvalues having zero real part. Therefore, our stability analysis of
(1.1) should be seen as another real-life example of a new form of the destabilization paradox.
The model system (1.1) is fairly simplified and lacks a suitable external forcing term; this will be the

subject of future investigation. Nevertheless, even if obtained from an incomplete model, the phenomena
highlighted in the present paper have practical applications. Having the Tacoma Narrows Bridge (TNB)
collapse [4, 50, 55] in mind, we may afford a new explanation of how longitudinal oscillations switch to
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torsional oscillations, provoking bridges failures. Placing dampers in the longitudinal direction appears
feasible (for instance, by strengthening the central beam), while it is unclear how to reduce possible
torsional oscillations. Our results show that

it is not enough to damp the longitudinal oscillations
since they generate torsional oscillations which persist for all time.

And since the torsional oscillations were considered the main cause of the TNB collapse, see Section
6.1, this suggests that

the TNB collapse was induced by the longitudinal damping
and damping in future bridges should be placed with great care.

The proofs of the results are obtained by combining energy bounds with several delicate estimates
for some additional auxiliary functionals associated to (1.1). Our analysis of the system (1.1) starts by
showing that the total energy associated to (1.1) is decreasing along its solutions. The particular form
of (1.1) enables us to partially decouple the total energy and, by introducing two auxiliary functionals
(denoted by h and F in the proof of Theorem 1), we obtain some differential inequalities showing that
the part of the energy relative to u tends to vanish at infinity. Yet, this says nothing about the rate of
decay nor about the behavior of the θ-component. Therefore, we introduce a functional containing the
nonlinear part of (1.1) (denoted by a in Section 4) and, through a change of unknown function, we show
that if it is sufficiently small, then the u-component vanishes exponentially fast, see Theorem 2. In order
to ensure that the nonlinearity is small, we assume that the initial energy is small. If this condition
fails, we are not able to determine the rate of decay of u and also affording a conjecture appears as a
challenge, see Problem 1. These results are then used to prove that any solution of (1.1) (with θ 6≡ 0) has
nonvanishing θ-component. The proof of this fact, stated in Theorem 3, uses the quadratic integrability
of u to show that the θ-energy remains bounded away from 0 so that, as a classic property of oscillators,
θx cannot die off at infinity. We complement this result with some numerics for a particular bimodal
system, see (6.10), which highlights the increment of the amplitude of the torsional oscillation occurring
for both synchronized and asynchronized initial data, although the latter lead to a smaller increment.
This is why we believe that a complete theoretical proof is quite challenging, see Problem 2.
This paper is organized as follows. In Section 2 we set up the functional framework by defining the

phase space and what is meant by weak solution. We also recall some spectral properties of the linear
differential operators involved. In Section 3 we state and prove that the u-component of any solution
of (1.1) tends to vanish as time goes to infinity. In Section 4 we state and prove that the u-component
vanishes exponentially fast if the initial energy is sufficiently small. In Section 5 we state and prove
that all the nontrivial solutions of (1.1) have a nonvanishing torsional component. The new phenomena
highlighted in the present paper are valorized in Section 6 where we briefly recall the behavior of bridges,
we quote the numerical results, and we give physical interpretations to all our results.

2 The phase space and weak solutions

We introduce the spaces

V (I) := {u ∈ H2 ∩H1
0 (I); u(±aπ) = 0} , W (I) := {u ∈ H1

0 (I); u(±aπ) = 0} (2.1)

and we notice that the boundary and internal conditions

u(−π) = u(π) = u(−aπ) = u(aπ) = 0 (2.2)

are well defined since V (I) ⊂ W (I) ⊂ C0(I). These spaces are Hilbert spaces when endowed with the
scalar products

(u, v)V =

∫
I
u′′v′′ , (u, v)W =

∫
I
u′v′ .
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We denote, respectively, by V ′(I) andW ′(I) the dual spaces of V (I) andW (I) and by 〈·, ·〉V and 〈·, ·〉W
the duality products; the space L2(I) is the pivot space and the related norm will be denoted by ‖ · ‖2.
It is shown in [28] that V (I) is a subspace of H2 ∩ H1

0 (I) having codimension 2, whose orthogonal
complement is made by piecewise third order polynomials which do not match C3 at ±aπ. In fact,
V (I)⊥ contains functions that are more regular than H2(I); they are C2(I), but they fail to be C3

(except for the zero function) since each pier produces a discontinuity in the third derivative.
We then consider the set of the eigenvalues µ and the corresponding eigenfunctions e ∈ V (I) solving

the problem ∫
I
e′′v′′ = µ

∫
I
ev ∀v ∈ V (I). (2.3)

In our context, we also need to consider the following second order eigenvalue problem in W (I):∫
I
e′w′ = ν

∫
I
ew ∀w ∈W (I). (2.4)

Denoting by µ1 = λ41 the least eigenvalue of (2.3) and by ν1 = κ21 the least eigenvalue of (2.4), we have
the two Poincaré-type inequalities

λ41‖v‖22 ≤ ‖vxx‖22 ∀v ∈ V (I) , κ21‖w‖22 ≤ ‖wx‖22 ∀w ∈W (I) . (2.5)

We then denote
Λ = min{λ41, κ21} . (2.6)

Numerical results in [28] seem to show that the minimum is κ21, regardless of the position of the piers.
We point out that the operator L defined on V (I) by 〈Lu, v〉V =

∫
I u
′′v′′ is not the square of the operator

L defined on W (I) by 〈Lu, v〉W =
∫
I u
′v′. Moreover,

the eigenfunctions of (2.3) and (2.4) are qualitatively different (2.7)

since the latter are identically zero on at least one of the spans and, thereby, nonsmooth.
Thanks to the spaces V (I) and W (I), introduced in (2.1), we may define weak solutions of (1.1).

Definition 1. We say that the functions

u ∈ C0(R+;V (I)) ∩ C1(R+;L2(I)) ∩ C2(R+;V ′(I))

θ ∈ C0(R+;W (I)) ∩ C1(R+;L2(I)) ∩ C2(R+;W ′(I))

are weak solutions of (1.1)-(1.2) if

〈utt, ϕ〉V + δ

∫
I
utϕ+

∫
I
uxxϕ

′′ +

∫
I
(u2 + θ2) ·

∫
I
uϕ+ 2

∫
I
uθ ·

∫
I
θϕ = 0, (2.8)

〈θtt, ψ〉W +

∫
I
θxψ

′ + 2

∫
I
uθ ·

∫
I
uψ +

∫
I
(u2 + θ2) ·

∫
I
θψ = 0, (2.9)

for all (ϕ,ψ) ∈ V (I)×W (I) and all t > 0, where the spaces V (I) and W (I) are defined in (2.1).

We emphasize that the junction conditions (1.2) are “hidden” in the property that u(t) ∈ V (I) and
θ(t) ∈W (I) for all t ≥ 0. We complement (2.8)-(2.9) with some initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x) x ∈ I, (2.10)

assuming that u0 ∈ V (I), θ0 ∈ W (I), u1, θ1 ∈ L2(I). We recall the well-posedness of this problem, as
obtained in [27, Proposition 4.1].
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Proposition 1. For all u0 ∈ V (I), θ0 ∈W (I), u1, θ1 ∈ L2(I), there exists a unique weak solution (u, θ)
of (2.8)-(2.9)-(2.10). Moreover, u ∈ C2(I × R+) and uxx(−π, t) = uxx(π, t) = 0 for all t > 0.

Solutions (u(t), θ(t)) of (2.8) belong to the phase space V (I)×W (I) for all t:

we call u the longitudinal component of the solution and θ the torsional component of the solution.

If θ0(x) = θ1(x) = 0 (resp., u0(x) = u1(x) = 0) in (2.10), then the solution of (2.8)-(2.9)-(2.10) satisfies
θ(x, t) ≡ 0 (resp., u(x, t) ≡ 0). These initial conditions for θ or u give rise to purely longitudinal (resp.,
purely torsional) solutions. But, as we shall see, the interesting dynamics in (2.8)-(2.9) occurs whenever
both the longitudinal and torsional components are nonzero, creating a coupling with possible energy
transfer between the two components.

3 Vanishing of the longitudinal component

In this section we prove that the longitudinal component of any solution of (2.8)-(2.9) tends to vanish.

Theorem 1. For all u0 ∈ V (I), θ0 ∈ W (I), u1, θ1 ∈ L2(I), the longitudinal component of the corre-
sponding solution (u, θ) of (2.8)-(2.9)-(2.10) satisfies

lim
t→∞

(
‖ut(t)‖22 + ‖uxx(t)‖22

)
= 0 .

Proof. To the system (2.8)-(2.9) we associate the energy

E(t) =
‖ut(t)‖22

2
+
‖θt(t)‖22

2
+
‖uxx(t)‖22

2
+
‖θx(t)‖22

2
+
‖u(t) + θ(t)‖42

8
+
‖u(t)− θ(t)‖42

8
, (3.1)

which turns out to be a crucial tool in the analysis of the behavior of (2.8)-(2.9). Note that the “quartic
term” (which is reminiscent of von Kármán theory [54], see [30]) can also be written as

‖u(t) + θ(t)‖42
8

+
‖u(t)− θ(t)‖42

8
=

(
‖u(t)‖22 + ‖θ(t)‖22

)2
4

+

(∫
I
u(t)θ(t)

)2

.

By using (2.8)-(2.9) we readily see that

Ė(t) = −δ‖ut(t)‖22 (3.2)

so that t 7→ E(t) is nonincreasing and, in particular,

∃E∞ := lim
t→∞

E(t) ∈
[
0, E(0)

]
, E∞ ≤ E(t) ≤ E(0) ∀t ≥ 0 . (3.3)

Moreover, the identity

E(0) ≥ E(0)− E∞ = −
∫ ∞
0

Ė(t) dt = δ

∫ ∞
0
‖ut(t)‖22 dt (3.4)

shows that t 7→ ‖ut(t)‖22 is integrable over (0,∞).
Notice that Definition 1 merely ensures that ut ∈ C0(R+;L2(I)) and, apparently, one cannot take

ϕ = ut(t) in (2.8) in order to obtain (3.2). However, the choice ϕ = ut(t) is allowed by noticing that
(2.8)-(2.9) are satisfied in the sense of distributions in the three intervals I−, I0, I+ (although not on
the whole interval I), which allows to split any integral over I as the sum of three integrals; moreover, u
and θ are smooth classical solutions on each of these intervals, which allows to argue as in [33, Theorem
5.2.1]. In fact, one can also invoke the finite-dimensional Galerkin approximation, for which solutions
are smooth and any test is allowed, and then take the limit.
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Then we define the “u-energy”

F (t) :=
‖ut(t)‖22

2
+
‖uxx(t)‖22

2
+
‖u(t)‖42

4
.

By taking ϕ = ut(t) in (2.8) we get

Ḟ (t) = −‖θ(t)‖22
∫
I
u(t)ut(t)− 2

∫
I
u(t)θ(t) ·

∫
I
θ(t)ut(t)− δ‖ut(t)‖22 . (3.5)

Next, we consider the function

h(t) =
‖u(t)‖22

2

so that ḣ(t) =
∫
I u(t)ut(t) and, by using (2.8) with ϕ = u(t),

ḧ(t) = 〈utt(t), u(t)〉V + ‖ut(t)‖22

= −δ
∫
I
u(t)ut(t)− ‖uxx(t)‖22 − ‖u(t)‖42 − ‖θ(t)‖22‖u(t)‖22 − 2

[∫
I
θ(t)u(t)

]2
+ ‖ut(t)‖22 .

By recalling the above expression of ḣ(t), we may rewrite this identity as

‖uxx(t)‖22 = −ḧ(t)− δḣ(t)− ‖u(t)‖42 − ‖θ(t)‖22‖u(t)‖22 − 2

[∫
I
θ(t)u(t)

]2
+ ‖ut(t)‖22 .

Integrating over [0, T ] for some T > 0 and dropping the negative terms, we obtain∫ T

0
‖uxx(t)‖22dt ≤

∫ T

0
‖ut(t)‖22dt+ ḣ(0)− ḣ(T ) + δh(0) .

Then we notice that

|ḣ(T )| ≤
∫
I
|u(T )ut(T )| ≤ ‖u(T )‖22 + ‖ut(T )‖22

2
≤ C E(0)

in view of (2.5) and (3.3). By letting T →∞ and recalling (3.4), we then obtain∫ ∞
0
‖uxx(t)‖22dt <∞ .

Therefore, also t 7→ ‖u(t)‖22 and t 7→ ‖u(t)‖42 are integrable over (0,∞) and, hence,

F ∈ L1(0,∞). (3.6)

In particular, this proves that there exists an increasing sequence {tn} such that

lim
n→∞

tn = +∞ , lim
n→∞

F (tn) = 0 (3.7)

since, otherwise, the integral
∫∞
0 F would diverge. From now on, we denote by ωn positive numbers,

that may vary from line to line and also within the same line, such that

lim
n→∞

ωn = 0

in which the index n is the same as in (3.7). In particular, from F ∈ L1(0,∞) and (3.7) we infer that

F (tn) = ωn and
∫ ∞
tn

F (s) ds = ωn . (3.8)
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Finally, we notice that, by (3.5),

Ḟ (t) ≤ KF (t) for some K > 0 .

Fix an integer n and integrate this inequality over [tn, t] for t > tn to obtain

F (t) ≤ F (tn) +K

∫ t

tn

F (s) ds = ωn ∀t > tn

where the second equality follows from (3.8). This is none other than the definition of limit, that is,
this shows that

lim
t→∞

F (t) = 0 .

This completes the proof of Theorem 1. �

Theorem 1 leaves open two questions. First, the rate of decay of the longitudinal component, that we
address in Section 4. Second, Theorem 1 nothing says about the behavior of the torsional component:
we analyze this problem in Section 5.

4 Exponential decay of longitudinal components for small energies

In this section we show that if the initial data are sufficiently small, then the longitudinal component
of the solution of (2.8)-(2.9) decays exponentially.

Theorem 2. Let E = E(t) be as in (3.1). There exists β > 0 such that if u0 ∈ V (I), θ0 ∈ W (I),
u1, θ1 ∈ L2(I) are small enough in such a way that

E(0) ≤ β , (4.1)

then there exists C, η > 0 such that the longitudinal component of the corresponding solution (u, θ) of
(2.8)-(2.9)-(2.10) satisfies

‖ut(t)‖22 + ‖uxx(t)‖22 ≤ Ce−ηt ∀t ≥ 0 .

Proof. Let (u, θ) be a weak solution of (2.8)-(2.9) (according to Definition 1) and set a(t) := ‖u(t)‖22 +
‖θ(t)‖22 so that, by (4.1) and (3.3),

β ≥ ‖uxx(t)‖22
2

+
‖θx(t)‖22

2
+
‖u(t) + θ(t)‖42

8
+
‖u(t)− θ(t)‖42

8

by (2.5) ≥ λ41
2
‖u(t)‖22 +

κ21
2
‖θ(t)‖22 +

1

4

(
‖u(t)‖22 + ‖θ(t)‖22

)2
by (2.6) ≥ Λ

2
a(t) +

1

4
a(t)2

from which we infer that
a(t) <

2β

Λ
∀t ≥ 0 . (4.2)

We prove Theorem 2 by fixing σ such that

0 < σ <
δ

2
, 25σ(δ − σ)2 ≤ 4λ41(δ − 2σ) (4.3)

and, next, taking
β = Λσ(δ − σ) . (4.4)
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With these choices, we observe that

−σδ + σ2 ≤ a(t)− σδ + σ2 ≤ σδ − σ2 =⇒
∣∣a(t)− σδ + σ2

∣∣ ≤ σδ − σ2 ∀t ≥ 0 . (4.5)

Then, we rewrite (2.8) as

〈utt, ϕ〉V + δ

∫
I
utϕ+

∫
I
uxxϕ

′′ + a(t)

∫
I
uϕ+ 2

∫
I
θu ·

∫
I
θϕ = 0

which, if we put w(t) := u(t)eσt, becomes

〈wtt, ϕ〉V +

∫
I
wxxϕ

′′ = −(δ − 2σ)

∫
I
wtϕ+ σ(δ − σ)

∫
I
wϕ− 2

∫
I
θw ·

∫
I
θϕ− a(t)

∫
I
wϕ

for all t ∈ [0, T ] and all ϕ ∈ V (I). Formally take ϕ = wt(t) so that

1

2

d

dt

[
‖wt(t)‖22 +‖wxx(t)‖22

]
=
[
σδ−σ2−a(t)

] ∫
I
w(t)wt(t)− (δ−2σ)‖wt(t)‖22−2

∫
I
θ(t)w(t)

∫
I
θ(t)wt(t)

≤
(

2a(t) +
∣∣a(t) + σ2 − σδ

∣∣)‖w(t)‖2‖wt(t)‖2 − (δ − 2σ)‖wt(t)‖22 ,

where we used the Hölder inequality and the fact that ‖θ(t)‖22 ≤ a(t). We then use the first Poincaré
inequality in (2.5) to obtain

1

2

d

dt

[
‖wt(t)‖22 + ‖wxx(t)‖22

]
≤

2a(t) +
∣∣a(t) + σ2 − σδ

∣∣
λ21

‖wxx(t)‖2‖wt(t)‖2 − (δ − 2σ)‖wt(t)‖22

≤ γ‖wxx(t)‖2‖wt(t)‖2 − (δ − 2σ)‖wt(t)‖22

where, by (4.2)-(4.4)-(4.5),

γ <
4β/Λ + σδ − σ2

λ21
=

5σ(δ − σ)

λ21
. (4.6)

By combining this with the Young inequality

‖wxx(t)‖2‖wt(t)‖2 ≤
1

2

γ√
(δ − 2σ)2 + γ2 + δ − 2σ

‖wxx(t)‖22 +

√
(δ − 2σ)2 + γ2 + δ − 2σ

2γ
‖wt(t)‖22 ,

we get

d

dt

[
‖wt(t)‖22 + ‖wxx(t)‖22

]
− α

[
‖wt(t)‖22 + ‖wxx(t)‖22

]
≤ 0 with α =

γ2√
(δ − 2σ)2 + γ2 + δ − 2σ

.

Hence,
d

dt

[
e−αt

(
‖wt(t)‖22 + ‖wxx(t)‖22

)]
≤ 0

and, upon integration over (0, t), we finally infer

‖wt(t)‖22 + ‖wxx(t)‖22 ≤
(
‖wt(0)‖22 + ‖wxx(0)‖22

)
eαt ∀t ≥ 0 .

By undoing the change of unknowns and going back to u, we get

‖ut(t) + σu(t)‖22 + ‖uxx(t)‖22 ≤
(
‖u1 + σu0‖22 + ‖(u0)xx‖22

)
e(α−2σ)t ∀t ≥ 0 .

Hence, Theorem 2 is proved if we show that

η := 2σ − α > 0 . (4.7)
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By recalling the expression of α, we see that (4.7) is equivalent to

2σ(δ − 2σ) + 2σ
√

(δ − 2σ)2 + γ2 > γ2 .

In order to prove this fact, we notice that

2σ(δ − 2σ) + 2σ
√

(δ − 2σ)2 + γ2 > 4σ(δ − 2σ) ≥ 25σ2(δ − σ)2

λ41
> γ2 ,

where the first inequality is obvious, the second inequality is a consequence of (4.3), the third inequality
is a consequence of (4.6). Hence, also the claimed inequality (4.7) is proved and the exponential decay
of u follows. �

Remark 1. Recently, for a fully damped evolution equation and with a fairly different proof, Haraux
[34, Corollary 4.3] also obtained the exponential decay of solutions with small initial energy.

Problem 1. Theorem 2 leads to a natural question: does the longitudinal component of a solution of
(1.1) vanish exponentially also in presence of large initial energies? For the answer, we have different
hints leading to opposite feelings. In favor of a positive answer, we studied some bimodal solutions
of (1.1) (of the form (6.9) below) and we numerically saw that t 7→ eδt/2w(t) has a finite (positive)
limsup for small initial data: this suggests exponential decay with the same rate as the linear equation
ẅ + δẇ + γw = 0 for γ > δ2/4. By increasing the initial energy, we then detected a slower decay, still
at exponential rate but with exponent smaller than δ/2. Moreover, the plot of the graph of the solution
of the problem ÿ + 2ẏ + (3 + cos 2t)y + y3 = 0 with y(0) = 1 and ẏ(0) = 0 suggests polynomial decay.
For these reasons, in our opinion, a full answer to this question is extremely challenging.

5 Nonvanishing of the torsional component

In this section we show that all the solutions of (2.8)-(2.9) with initial data (θ0, θ1) 6= (0, 0) have a
nonvanishing torsional component.

Theorem 3. Assume that (θ0, θ1) 6= (0, 0). Then the torsional component θ = θ(t) of the corresponding
solution (u, θ) of (2.8)-(2.9)-(2.10) satisfies

lim sup
t→∞

‖θx(t)‖2 > 0 . (5.1)

Proof. Assume for contradiction that (5.1) does not hold, then

lim
t→∞
‖θx(t)‖2 = 0 (5.2)

and, from (2.9) and Theorem 1, also

lim
t→∞

θtt(t) = 0 in W ′(I) . (5.3)

By taking ψ = θ(t) in (2.9), we see that

d

dt

∫
I
θ(t)θt(t) = ‖θt(t)‖22 + 〈θtt(t), θ(t)〉W

= ‖θt(t)‖22 − ‖θx(t)‖22 − 2

(∫
I
u(t)θ(t)

)2

−
∫
I
u(t)2 ·

∫
I
θ(t)2 −

(∫
I
θ(t)2

)2

.
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Upon integration, this shows that, for all t > 0,∫ t+1

t
‖θt(s)‖22 ds =

∫
I
θ(t+ 1)θt(t+ 1)−

∫
I
θ(t)θt(t)

+

∫ t+1

t

[
‖θx(s)‖22 + 2

(∫
I
u(s)θ(s)

)2

+

∫
I
u(s)2

∫
I
θ(s)2 +

(∫
I
θ(s)2

)2
]
ds

and all the terms in the r.h.s. tend to zero as t→ +∞ in view of Theorem 1 and the assumption (5.2):
also recall that all the terms are bounded due to (3.3). Together with (5.3) this shows that also

lim
t→∞
‖θt(t)‖2 = 0 . (5.4)

Hence, if we define the “θ-energy” functional

G(t) :=
‖θt(t)‖22

2
+
‖θx(t)‖22

2
+
‖θ(t)‖42

4
, (5.5)

from (5.2) and (5.4) we deduce
lim
t→∞

G(t) = 0 . (5.6)

Moreover, by (2.9), we infer that

Ġ(t) = −2

∫
I
u(t)θ(t) ·

∫
I
u(t)θt(t)−

∫
I
u(t)2 ·

∫
I
θ(t)θt(t) (5.7)

and, by repeated use of the Hölder inequality, we obtain (for some c > 0)

−Ġ(t) ≤ 3‖u(t)‖22‖θ(t)‖2‖θt(t)‖2 ≤ cε(t)G(t) with ε(t) := ‖u(t)‖22 .

After division by G(t) > 0 and upon integration over (0, t), the last inequality yields

G(0) ≤ ec
∫ t
0 ε(s)dsG(t) .

By (3.6) we infer that ε ∈ L1(0,∞) so that, by letting t → ∞ and by using (5.6), the last inequality
implies that G(0) = 0, which contradicts the assumption that (θ0, θ1) 6= (0, 0). This contradiction
completes the proof. �

Problem 2. As shown by Theorem 1, the longitudinal component of (2.8)-(2.9) tends to vanish as
t→∞. Moreover, the total energy of the system is decreasing in view of (3.2). On the other hand, (5.1)
shows that some “residual energy” remains in the system, all concentrated on the torsional component.
One then wonders what kind of shape has the “residual torsional oscillation”. For bimodal systems such
as (6.10) below, it is natural to conjecture that θ tends to become periodic with a period depending
on the amount of residual energy which, however, appears difficult to quantify. Even harder seems to
be the case of multi-modal torsional components, since the residual energy may be spread on different
θ-modes with the possible appearance of almost periodic solutions.

6 Physical interpretation of the results in a suspension bridge

6.1 Some historical facts

Several bridges suffered unexpected oscillations both during construction and after inauguration, some-
times also leading to collapses, see e.g. [1]. Thanks to the videos available on the web [55], most people
have seen the spectacular collapse of the Tacoma Narrows Bridge (TNB), occurred in 1940: the torsional
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oscillations were considered the main cause of this dramatic event [4, 50]. But torsional oscillations lead-
ing to failures also appeared in several other bridges. Let us just mention the collapses of the Brighton
Chain Pier (1836), of the Menai Straits Bridge (1839), of the Wheeling Suspension Bridge (1854), of
the Matukituki Suspension Footbridge (1977). We refer to [29, Chapter I] for more historical events.
Here we just recall some of the phenomena that can be explained through our results by focusing

on the specific case of the TNB. On the day of the collapse, the bridge was oscillating longitudinally
as may other times before. According to Eldridge [4, V-3], a witness of the TNB collapse, the bridge
appeared to be behaving in the customary manner ... oscillating in a four noded manner ... these
motions, however, were considerably less than had occurred many times before. Nevertheless, a sudden
change in the motion was alarming, a violent destructive torsional movement started. A witness to
the collapse was Farquharson, the man escaping in the video [55]: according to his detailed testimony
in [23], a violent change in the motion was noted. This change appeared to take place without any
intermediate stages and with such extreme violence that the span appeared to be about to roll completely
over. Farquharson then continues with a fundamental description of the modes: The motion, which a
moment before had involved a number of waves (nine or ten) had shifted almost instantly to two. This
transition to torsional oscillations was unexpected [4, p.31]: Prior to 10:00 A.M. on the day of the
failure, there were no recorded instances of the oscillations being otherwise than the two cables in phase
and with no torsional motions. Nowadays everybody agrees the crucial event in the collapse to be the
sudden change from a vertical to a torsional mode of oscillation, see [50, p.63].
Since 1940, may attempts of explanations were made by engineers, physicists, mathematicians and...

others. In an article published in the New York Times [42] a few days after the collapse, one reads
Like all suspension bridges, that at Tacoma both heaved and swayed with a high wind. It takes only a
tap to start a pendulum swinging. Time successive taps correctly and soon the pendulum swings with
its maximum amplitude. So with the bridge. What physicists call resonance was established, with the
result that the swaying and heaving exceeded the limits of safety. Clearly, who wrote these lines was
not a scientist. The mathematicians Lazer-McKenna [39, § 1] remark that the phenomenon of linear
resonance is very precise. Could it really be that such precise conditions existed in the middle of the
Tacoma Narrows, in an extremely powerful storm? The physicists Green-Unruh [31] mention that
making the comparison to a forced harmonic oscillator requires that the wind generates a periodic force
tuned to the natural frequency of the bridge. The engineers, Billah-Scanlan [14] make a fool of physics
textbooks who attempt to explain the TNB collapse with an aerodynamic resonance. Hence, mechanical
resonance, intended as a perfect matching between the exterior wind and the parameters of the bridge,
is not the culprit for the TNB collapse. Billah-Scanlan [14, p.121] also claim that Scanlan-Tomko [49]
...demonstrated conclusively that the catastrophic mode of the old Tacoma Narrows bridge was a case
of what they termed single-degree-of-freedom torsional flutter due to complex, separated flow. McKenna
[41] wrote that Billah-Scanlan [14] ...offered a mathematical model which is only valid for very small
displacements and can only be verified in ideal wind tunnel experiments of “in torsion 0 ≤ α ≤ ±3o”.
We are asked to believe that these “penetrating insights” explain the Tacoma Narrows oscillation. To us,
the case is less than convincing. With some sarcasm McKenna comments by writing that apparently the
authors were not familiar with the concept of absolute value and he concludes by saying that [14] ...is
a perfectly good explanation of something that was never observed, namely small torsional oscillations,
and no explanation of what did occur, namely a large vertical oscillation with a double amplitude of five
ft. and a frequency of 38 per min. followed by a change to the torsional. And indeed, from the Report
[4, p.31] we recall that torsional oscillations were never recorded prior to the day of the TNB collapse.
Finally, McKenna concludes that ...if the explanation in [14] has any validity, why were small torsional
oscillations never observed? After all, the bridge was known to have oscillated vertically in winds of 3
m.p.h., and remained motionless in winds of 35 m.p.h., (when according to [14], “divergent amplitudes”
are reached). It is also worth noting that the bridge had survived winds of 48 m.p.h. without undergoing
torsional oscillations, [4], page 28.
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Not much progress was made since then. In 1978, Scanlan [48, p.209] writes The original Tacoma
Narrows Bridge withstood random buffeting for some hours with relatively little harm until some fortu-
itous condition “broke” the bridge action over into its low antisymmetrical torsion flutter mode. In 1999,
McKenna [40, § 2.3] writes that there is no consensus on what caused the sudden change to torsional
motion. In 2001, Scott [50] writes Opinion on the exact cause of the Tacoma Narrows Bridge collapse
is even today not unanimously shared. So, there seems to be no convincing explanation why torsional
oscillations appear: of course, a “fortuitous condition” is not an explanation. This open question is the
main motivation for the present paper.
A collection of observed phenomena shows that the mode of oscillation, even more than the amplitude,

is responsible for the switch to torsional oscillations. From the Report [4, p.20] we learn that, in the
months prior to the collapse, one principal mode of oscillation prevailed and the modes of oscillation
frequently changed. Moreover, oscillations with more than 10 nodes on the three spans were never seen
[4, p.28]. This is why, for some nonlinear evolution beam equations, the notion of prevailing mode was
introduced in [26]. And this is also the reason why, at least for qualitative results, we may consider
a (finite) system of ODE’s instead of the original PDE system (1.1). The two-modes system (6.10),
numerically analyzed in the next subsection, precisely considers the ninth longitudinal mode coupled
with the second torsional mode, whose frequencies are determined by (2.3) and (2.4).
It is clear that in absence of wind or external loads the deck of a bridge remains still. When the

wind hits a the deck of a bridge the flow creates vortices which generate a forcing lift that starts the
longitudinal oscillations of the deck. This explanation is accepted by the entire scientific community
and it has been studied with great precision in wind tunnel tests, see e.g. [50]. This is the point where
our analysis starts, namely when the longitudinal oscillations of the bridge reach an apparently periodic
motion which is maintained in amplitude by a somehow perfect equilibrium between the input of energy
from the wind and internal dissipation. Then, we “switch off the wind” (of course, this is possible in wind
tunnels) so that the structure is only subject to internal (longitudinal) dissipation, thereby obtaining
(1.1). In this situation, we have seen that the longitudinal oscillations tend to vanish (Theorems 1 and
2), while the torsional oscillations persist in time (Theorem 3). In the next subsection we numerically
study these phenomena in a simplified system with the parameters of the collapsed TNB.

6.2 The physical model

The system (1.1) (and its weak form (2.8)-(2.9)) was suggested in [27] as a model for suspension bridges.
The parameter 0 < a < 1 determines the relative measure of the side spans with respect to the main
span and most suspension bridges have equal side spans with

1

2
≤ a ≤ 2

3
.

The presence of destructive torsional oscillations in bridges (see Section 6.1) suggests to rule out beam
models and to consider instead plate models [12, 18, 24, 25, 29, 30]. If one digits “tacoma narrows bridge
collapse images” on Google, one finds pictures of the wide oscillations prior to the TNB collapse and one
sees that, while a torsional motion is visible on the main span, the side spans do not display torsional
displacements. From a mathematical point of view, this means that

the matching between the displacements on the three spans is in general not smooth.

This fact is confirmed by a careful look at the video [55] which clearly shows that, during the oscillations,
the connection between the main span and the side spans is not C1. In fact, the pictures on the web
and the video also show that

within the deck, only the displacement of the midline is smooth during the oscillations.
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This is why among several possible ways of modeling the deck of a bridge with piers, we chose a
degenerate plate, composed by a beam representing the midline of the plate and by cross sections that
are free to rotate around the beam, see Figure 1. This guarantees both a smooth midline displacement
and nonsmooth connections between spans. We consider symmetric side spans so that, after setting

I = (−π, π), I− = (−π,−aπ), I0 = (−aπ, aπ), I+ = (aπ, π),

the plate is identified with the planar rectangle

Ω = I × (−`, `) ⊂ R2,

while the three spans are identified with

Ω0 := I0 × (−`, `) (main span), Ω− = I− × (−`, `), Ω+ = I+ × (−`, `) (side spans).

The white midline in Figure 1 divides the roadway into two lanes and its vertical displacement is denoted
by u = u(x, t), for x ∈ I and t > 0. The equilibrium position of the midline is u = 0, with

u > 0 corresponding to a downwards displacement.

Each cross-section is free to rotate around the midline and its angle of rotation is denoted by α = α(x, t).
The vertical displacements of the two endpoints of the cross sections (in position x and at time t) are
given by

u(x, t) + ` sinα(x, t) and u(x, t)− ` sinα(x, t). (6.1)

Since we are not interested in describing accurately the behavior of the plate under large torsional
angles, for small α the following approximations are legitimate:

cosα ∼= 1 and sinα ∼= α. (6.2)

If we set θ = `α, this cancels the dependence on the width `, see [13] for the details. In view of (6.2),
the displacements (6.1) now read u(x, t)± θ(x, t).
We derive the Euler-Lagrange equations for this structure using variational methods, as a consequence

of an energy balance. Denoting by M > 0 the mass density, the kinetic energy of the central beam and
of the rod having half-length ` are (respectively) given by

M

2

∫
I
u2t ,

M

6
`2
∫
I
α2
t =

M

6

∫
I
θ2t . (6.3)

Moreover, there exists a constant µ > 0, depending on the shear modulus and on the moment of
inertia of the pure torsion, such that the total potential energy of the cross sections is given by

µ`2

2

∫
I
α2
x =

µ

2

∫
I
θ2x. (6.4)

The bending energy of the beam depends on its curvature: if EI > 0 is the flexural rigidity of the beam,
it is given by

EI

2

∫
I
u2xx.

Finally, the most delicate energy terms, which create the coupling between the longitudinal displace-
ment u and the torsional angle θ, are generated by the potentials

G(u+ θ) =
γ

4

(∫
I
(u+ θ)2

)2

, G(u− θ) =
γ

4

(∫
I
(u− θ)2

)2

. (6.5)
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This potential, considered in [19] for a single beam, is a good measure for the geometric nonlinearity
due to the displacements. In (6.5), not only the constant γ > 0 measures the nonlinearity of the system
but it also measures the strength of the coupling between u and θ: in the limit case γ = 0 the overall
system is linear and uncoupled. A cubic nonlinearity naturally arises when large deflections of a beam
or a plate are involved: in this case, the stretching effects suggest to use variants of the von Kármán
theory [54], see also [20, 21] for a modern point of view and [30] for the adaptation of this theory to
plates modeling bridges. In fact, when dealing with bridges, the nonlinearity should as well take into
account the behavior of the sustaining cables and, for this reason, also the engineering literature deals
with cubic nonlinearities, see e.g. [6, 8, 45]. By taking this into account, several cubic nonlinearities
were considered in [27] and the most reliable (better describing the dynamics of a bridge) appeared to
be the nonlocal one appearing in (1.1), although different nonlinearities may also be considered [11].
By putting all the above terms together and by taking all the constants (except γ) equal to 1, we find

that the total energy of the system (2.8)-(2.9) is given by

E(u, θ) =
1

2

∫
I
(u2t + θ2t + u2xx + θ2x) +

γ

4

[∫
I
(u+ θ)2

]2
+
γ

4

[∫
I
(u− θ)2

]2
. (6.6)

If we take γ = 1/2 and we emphasize its dependence on time, we obtain the energy in (3.1). This energy
balance yields the equations (1.1) that should be intended in the weak form (2.8)-(2.9).

Problem 3. In order to derive (1.1) we assumed small displacements, see (6.2). Clearly, this is allowed if
the interest is focused on small torsional oscillations, which is the case if one merely seeks the instability
of purely longitudinal oscillations. But, as we shall see below, torsional oscillations may grow up quickly
and, therefore, the linearization is no longer legitimate. If we do not assume (6.2), then we do not use
(6.3) and (6.4) while (6.5) becomes

G(u+ ` sinα) =
γ

4

(∫
I
(u+ ` sinα)2

)2

, G(u− ` sinα) =
γ

4

(∫
I
(u− ` sinα)2

)2

.

Does the resulting system exhibit different behaviors than (2.8)-(2.9)?

6.3 Bimodal solutions and numerical results

We now interpret the results stated throughout this paper and we complement them with some numerics.
We aim to reproduce some of the phenomena described in Section 6.1. In particular, we wish to
emphasize the possible change of oscillations from longitudinal to torsional.
In order to evaluate as well the role of the nonlinearity, we maintain the parameter γ in (6.6) thereby

obtaining a slightly more general system than (2.8)-(2.9):

〈utt, ϕ〉V + δ
∫
I utϕ+

∫
I uxxϕ

′′ + 2γ
∫
I(u

2 + θ2) ·
∫
I uϕ+ 4γ

∫
I uθ ·

∫
I θϕ = 0,

〈θtt, ψ〉W +
∫
I θxψ

′ + 4γ
∫
I uθ ·

∫
I uψ + 2γ

∫
I(u

2 + θ2) ·
∫
I θψ = 0,

(6.7)

for all (ϕ,ψ) ∈ V (I)×W (I) and all t > 0; obviously, (6.7) coincides with (2.8)-(2.9) when γ = 1/2.
Let eλ be an L2-normalized eigenfunction of (2.3) related to the eigenvalue λ4 and let ηκ be an L2-

normalized eigenfunction of (2.4) related to the eigenvalue κ2. There is a natural coupling between these
modes and, for some of them, the presence of the piers yields an additional coupling measured by the
coefficient

Aλ,κ = Aλ,κ(a) :=

∫
I
eληκ.

Note that A2
λ,κ < 1 in view of the Hölder inequality: recall that eλ 6≡ ηκ, see (2.7). Moreover, if eλ and

ηκ have opposite parities, then Aλ,κ = 0. But there are also cases where Aλ,κ 6= 0, see [28]. If Aλ,κ = 0,
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then the space 〈eλ〉 × 〈ηκ〉 is invariant. This means that if, for some real numbers c1, c2, c3, c4, we take
initial data such as

(u0, u1) = (c1, c2)eλ , (θ0, θ1) = (c3, c4)ηκ , (6.8)

then the solution of (6.7) has the form(
u(x, t), θ(x, t)

)
=
(
w(t)eλ(x), z(t)ηκ(x)

)
. (6.9)

We call solutions such as (6.9) bimodal solutions.
For the TNB one had that a = 14/25 and, in such case, the ninth longitudinal eigenvalue is λ4 ≈ 633

whereas the second torsional eigenvalue is κ2 ≈ 3.189, see [28]. These eigenvalues correspond to the
oscillations seen the day of the collapse, as described in Section 6.1. The associated eigenfunctions eλ
and ηκ have opposite parities so that, according to what we have just explained, we have Aλ,κ = 0.
Then we take initial data as (6.8) so that the solution of (6.7) has the form (6.9). By plugging (6.9)
into (6.7) we see that the couple (w, z) solves the system ẅ(t) + δẇ(t) + 633w(t) + 2γ

(
w(t)2 + z(t)2

)
w(t) = 0

z̈(t) + 3.189 z(t) + 2γ
(
w(t)2 + z(t)2

)
z(t) = 0

(t ≥ 0) . (6.10)

From Theorem 2 we know that w(t) → 0 as t → ∞ (vanishing longitudinal component) while from
Theorem 3 we know that z(t) 6→ 0 (nonvanishing torsional component). We numerically studied system
(6.10) with initial conditions (6.8) and the most surprising result was the following.
Main numerical result (I): partial damping increases torsional oscillations.
F With γ = 25, c1 = 5, c3 = 0.01, c2 = c4 = 0, δ = 0.1, we obtained the plots in Figure 2 where an

increment of the amplitude of the torsional oscillation is quite visible: it goes from 0.01 (initially) to
more than 0.03, yielding a rate of increment for z of more than a factor 3.
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Figure 2: For t ∈ [0, 100], plot of the longitudinal component w (left) and of the torsional component z
(right) of the solution of (6.10) with c1 = 5, c3 = 0.01, c2 = c4 = 0 (δ = 0.1).

F With the very same parameters, except for the damping parameter that was set to be δ = 0 (no
damping), we obtained the plots in Figure 3 that should be compared with Figure 2. It is evident that
in Figure 3 the longitudinal component maintains the same amplitude of oscillation (as expected since
the first equation is undamped) and that the torsional component does not increment its amplitude.
The explanation is that, with this choice of the parameters, the system (6.10) is of the kind

ẅ(t) + λ4w(t) + 2γ
(
w(t)2 + z(t)2

)
w(t) = 0 , z̈(t) + κ2z(t) + 2γ

(
w(t)2 + z(t)2

)
z(t) = 0

with λ4 > κ2. Then we know from [27, Proposition 4.2] that the longitudinal mode is linearly stable
with respect to the torsional mode which means that, regardless of the initial data, one does not
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Figure 3: For t ∈ [0, 100], plot of the longitudinal component w (left) and of the torsional component z
(right) of the solution of (6.10) with c1 = 5, c3 = 0.01, c2 = c4 = 0 (δ = 0).

expect an increment of the torsional oscillations. On the contrary, Figure 2 shows that the torsional
oscillations may increase whenever δ > 0. This enables us to reach the unexpected conclusion stated in
the Introduction, namely

although the longitudinal damping decreases the total energy, see (3.2),
it may increase the (destructive) torsional energy.

In other words, partial damping can lead to disasters! �

Main numerical result (II): the role of synchronization.
For system (6.10) with γ = 25, the torsional energy (5.5) and its derivative (5.7) become

G(t) =
ż(t)2

2
+ 3.189

z(t)2

2
+

25

2
z(t)4 , Ġ(t) = −50w(t)2z(t)ż(t) .

Therefore, for the previous experiment where c1 = 5, c3 = 0.01, c2 = c4 = 0, we initially have that
Ġ(t) > 0, as long as z(t)ż(t) < 0, see Figure 4 (left) where we depict the graph of t 7→ G(t) for t ∈ [0, 0.2].
In order to understand if the increment of torsional oscillations (see the right picture in Figure 2) is due
this initial increment of G, we tried some asynchronized initial data. For the same δ = 0.1, we chose
c1 = 5, c4 = 0.0178, c2 = c3 = 0, namely initial data yielding the very same initial energy but, now,
with Ġ(t) < 0 on a first interval of time, as long as z(t)ż(t) > 0, see Figure 4 (right).

0.05 0.10 0.15 0.20

0.005

0.010

0.015

0.020

0.025

0.05 0.10 0.15 0.20

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Figure 4: For t ∈ [0, 0.2], plots of t 7→ G(t) for the two above choices of initial conditions.

The resulting solution of (6.10) is depicted in Figure 5, to be compared with Figure 2. It turns out
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Figure 5: For t ∈ [0, 100], plot of the longitudinal component w (left) and of the torsional component z
(right) of the solution of (6.10) with c1 = 5, c4 = 0.0178, c2 = c3 = 0 (δ = 0.1).

that the longitudinal part w has qualitatively the same behavior while the torsional part, although
increasing in amplitude, increases much less than in Figure 2. This suggests that

any choice of the initial data leads to an increment of the torsional energy,
although asynchronized data lead to a smaller increment.

This means that asynchronization can only mitigate the energy transfer but it cannot eliminate it! As
a consequence, it appears out of reach to prove a general statement on the energy transfer, regardless
of the initial conditions. �

Further numerical results: variation of the involved parameters.
• By increasing δ we saw that the transfer of energy occurred more quickly: this means that stronger

dampers anticipate the appearance of torsional oscillations. Quite surprisingly, variations of δ do not
affect the rate of increment of z. Hence, the only difference seems to occur between δ = 0 and δ > 0.
• By increasing γ we saw that the rate of increment of z was larger: it tends to 1 as γ → 0 and it

tends to some (apparently) finite limit as γ →∞, always increasing.
• The rate of increment of z was decreasing with respect to c3, reaching a positive limit value as

c2 → 0, reaching 1 when c3 ≈ c1, becoming less than 1 for c3 > c1. This means that if the torsional
oscillation is initially large, then it is also damped. Overall, the parameter influencing the rate of growth
was the ratio c1/c3.
• By plotting the function t 7→ eδt/2w(t) we a found a finite nonzero limit as t→∞ for small initial

data. This seems to say that the longitudinal component decays exponentially to 0 like e−δt/2, as in
the linear case. For large initial data the decay was still exponential but at a lower rate. We could not
detect a precise rule nor decays other than exponential.
• We also tested the response of the system for varying a (position of the piers) but we could not

detect a simple rule governing this variation. This topic certainly deserves more attention and will also
be the object of subsequent investigation. �
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