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Abstract

We introduce a new optimal control problem aiming to suggest possible lockdown strategies
in case of pandemic virus proliferation. Starting from the (nonlinear) logistic equation, the model
takes into account the drawback of the lockdown strategy by coupling it with a second logistic
equation evaluating the health effects deriving from economic losses. The control parameter is
the lockdown strength and the optimal control is sought in order to minimize the percentage
of the overall affected population, counting both the directly affected humans and the humans
affected by the economic loss. Our results show that, in some cases, the optimal control is a
total lockdown strategy while, in other cases, the lockdown should be milder.
AMS Subject Classification: 34H05, 93C10, 97M60.
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1 Introduction

In 1798, in his masterpiece study of the “future improvements of Society”, the English economist
Thomas Robert Malthus [10] suggested a model for the dynamics of populations. His monograph
was published under the pseudonym of J. Johnson, only much later discovered to be Malthus
himself. The Malthus model, which assumes the existence of infinite quantities of both space and
food, may be briefly described as follows. The variation of a population of individuals (e.g. viruses)
merely depends on the natality and mortality rates, assumed to be constants. If the population
is initially (at time t = 0) made by y0 > 0 individuals and if we denote by y(t) the population at
time t, we expect that, in average, in any interval of time ∆t there is a quantity of individuals born
which is proportional to the population and to the interval of time, that is, equal to ny(t)∆t where
n > 0 is the natality rate. Similarly, we expect a number my(t)∆t of deaths in the same interval of
time, where m > 0 is the mortality rate. The population at time t+ ∆t is given by the population
at time t plus the born population and minus the dead population, namely

y(t+ ∆t) = y(t) + (n−m)y(t)∆t ⇐⇒ y(t+ ∆t)− y(t)

∆t
= (n−m)y(t)

and, taking the limit as ∆t→ 0, we obtain the differential equation

ẏ(t) = ρy(t) (ρ = n−m). (1.1)

Its unique solution under the condition y(0) = 1 is given by y(t) = eρt, which is an increasing
exponential if ρ > 0 (natality larger than mortality) and decreasing if ρ < 0; if n = m then
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y(t) remains constant. Clearly, this model is fairly simplified and gives inaccurate responses. The
weakest point is the initial assumption of infinite quantities of space and food, an assumption
allowing for an unbounded increment of the population. In fact, the lack of food and space decreases
the natality rate and increases the mortality rate. It is then quite natural to expect ρ to be
decreasing with respect to y, which leads to a nonlinear equation.

It was the Belgian mathematician Pierre François Verhulst [11, 12] who introduced the so-called
logistic equation in 1838, an equation able to take into account the decrement of food and space as
the population increases. Before deriving it, let us observe that, in case of pandemic, y = y(t) is
also proportional to the number of humans affected by the virus. Then, the probability to have an
increment of affected people is proportional to the remaining population with risk of being affected.
Denoting by p the overall human population, we then obtain the following variant of (1.1):

ẏ(t) = ρ

(
1− y(t)

p

)
y(t). (1.2)

This is the logistic equation and it belongs to the class of Bernoulli equations, taking their name
from the work of Jacob Bernoulli [3] in 1695. Also (1.2) can be solved explicitly, as we recall in
Section 2. Assuming that only one individual is affected at time t = 0, we obtain the Cauchy
problem y(0) = 1 and the resulting solution is

y(t) =
p

1 + (p− 1)e−ρt
(1.3)

whose graph is displayed in Figure 1 for ρ = 0.1, p = 105. Figure 1 shows a good agreement with
the curves of the Coronavirus affections during year 2020, all over the world, see [13]. Therefore,
(1.2) is nowadays considered a good model to describe the dynamics of populations.
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Figure 1: Graph of the solution (1.3) of the logistic equation (1.2) for ρ = 0.1, p = 105.

In order to build a model able to take into account the problems that arose during the Coronavirus
propagation, we make a couple of preliminary remarks. First, one may wonder whether a continuous
function (in fact, C1) is well-suited to measure the number of affected humans which is an integer
number. This may be explained by taking into account the percentage of affection of each human.
More precisely, the affection itself cannot be considered just on or off, different degrees of affection
are present in humans, starting with weak symptoms until a full infection is reached. Therefore,
the assumption that y ∈ C0 is fully justified.

The second remark concerns the lockdown, namely a control imposed by the Governments during
the Coronavirus diffusion in order to reduce the speed of propagation of the virus. The lockdown
consists in prohibiting to a certain amount of the population to circulate freely. As shown by
a statistic published in the Financial Times [2], each Country/Region decided its own lockdown
strategy in order to minimize the number of affected people and the economic impact, see also
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[7]. Clearly, these two targets are competing with each other: a strong lockdown decreases the
number of affected people but increases the economic losses and viceversa. Since also the economic
losses themselves represent an affection of the population in terms of welfare, these two numbers
may somehow be put on the same level. In particular, economic losses induce both decrements
of salaries and of the quality of food and, hence, increment of diseases due to the bad quality of
food and decrement of the possibility of treating health problems due to lower incomes. Moreover,
an iterated quarantine prevents primary medical treatments and has physical and psychological
consequences such as post-traumatic stress symptoms, confusion, and anger [6].

In the sequel, we call

directly affected the humans attained by the virus,
indirectly affected the humans losing health as a consequence of the lockdown.

The data from [2] show the results, in terms of the (directly and indirectly) affected humans,
depending on the adopted lockdown strategies. But, among so many data, it appears impossible
to derive an optimal lockdown strategy able to minimize the overall affected humans.

The purpose of this paper is to suggest a new optimal control problem aiming to determine the
best lockdown strategy. Denoting by y1(t) and by y2(t), respectively, the directly affected and
indirectly affected humans at time t, the suggested control problem reads

ẏ1(t) = ρ
(

1− y1(t)
p−α(t)

)
y1(t) ,

ẏ2(t) = kα(t)
(
α(t) + 1− y2(t)

)
y2(t) ,

y1(0) = 1 , y2(0) = 1 ,

α(t) ∈ [0, p− 1] ∀t ≥ 0 , (1.4)

where p is the population, α(t) is the control function measuring the lockdown restrictions. The
unknowns y1 and y2 are governed by different equations and are independent quantities. Some
individual may be affected both directly and indirectly so that the constraints are that y1 ≤ p and
y2 ≤ p, but there is no such constraint on their sum. The derivation and a detailed interpretation
of (1.4) is given in Section 2. According to the two equations in (1.4), larger α yield both smaller y1
and larger y2 and viceversa, which emphasizes the opposite impact that α has on y1 and y2. The
optimization problem consists in minimizing the sum y1(T ) + y2(T ) at some time T > 0.

We first analyze the case where the admissible controls are constant, namely the Government
decides once forever the lockdown strategy. In Theorem 1 we prove that the optimal (constant)
control is never a null lockdown while, under suitable assumptions on k and ρ, it can be a total
lockdown. We recall that the total lockdown strategy was adopted by some African Countries [1].

Then we analyze the case of general bounded controls α. In 1956, the Russian mathematician
Lev Pontryagin, together with his students [4], formulated what is nowadays called the Pontryagin
Minimum Principle (PMP in the sequel); we refer to [8] for a bibliography list of 54 items which
appeared before year 1961 on the PMP. Thanks to the PMP, in Theorem 3 we prove that, also
among bounded controls, the optimal control is bounded away from zero and can be a total lock-
down. Necessary and sufficient conditions are provided, as well as some information on the optimal
lockdown strategy. Our proofs take great advantage of the structure of the problem which allows
for an almost explicit characterization of the costate, see (5.6).

We believe that these results validate our model and we hope that the suggested model might
be considered as a good starting point towards a “perfect model” able to take into account also
other factors, such as memory effects or different payoff functionals. In Section 6 we complement
our results with some remarks and some possible future developments.
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2 Derivation of the model and statement of the main results

Assume that a pandemic virus has affected one human, among a given population formed by p� 1
humans, and we denote by α = α(t) the lockdown control parameter, namely the measure of the
restrictions imposed by the Government at time t in order to reduce the directly affected humans.
We consider (e.g.) the case where

p ≥ 5000 , α ∈ A := L∞(R+; [0, p− 1]) (2.1)

although much larger p are expected to better describe a population. The control α may also be
discontinuous but, since it is bounded, both equations in (1.4) admit a unique Lipschitz-continuous
solution, see e.g. [5]. The two unknown functions y1 = y1(t) and y2 = y2(t) represent, respectively,
the directly and indirectly affected humans at time t.

We assume that ρ > 0 (natality larger than mortality among viruses), that k > 0 (positive speed
for indirect affections), these parameters having obvious meanings: ρ and k represent, respectively,
the speed of propagation of direct and indirect affections. If a Region has good quality of health
assistance then ρ is small, while a bad health assistance means that ρ is large. Moreover, if a Region
has wealth (in any sense) then k is large, while if it is poor then k is small (e.g., low wealth means
low risk for economic losses). Clearly, the optimal choice of the Government strongly depends on
the values of these parameters: large ρ and small k suggest a strategy with less direct affections
and viceversa. The optimal lockdown strategy should follow the already mentioned principle that
larger α yield both smaller y1 and larger y2, and viceversa.

We set up a fixed-time-free-endpoint control problem by introducing the payoff functional

JT (α) = y1(T ) + y2(T ) , (2.2)

measuring the overall affected humans at time T > 0. The purpose of the Government is to choose
the optimal control α minimizing the functional JT , that is,

find α∗ ∈ A such that JT (α∗) = inf
α∈A

JT (α) . (2.3)

Let us first restrict our attention to the case of a “lazy Government” that aims to take a decision
once forever and never change strategy. In this case, the admissible controls are constants:

A0 = {α ∈ A; ∃γ ∈ [0, p− 1], α(t) ≡ γ} .

By maintaining the very same payoff functional (2.2), in Section 3 we prove the following result.

Theorem 1. Assume (2.1) and let T > 0. There exists an optimal control α0 ∈ A0, associated
with a C∞ solution (y01, y

0
2) of (1.4), minimizing JT in (2.3) over A0, that is,

JT (α0) = y01(T ) + y02(T ) = min
α∈A0

JT (α) .

Moreover, denoting by γ0 ∈ [0, p− 1] the constant value of α0(t), we have:
• for all T, ρ, k > 0, γ0 > 0;
• for all T, ρ > 0, if

k ≥ p

(p− 1)(2p− 1)T
, (2.4)

then γ0 < p− 1;
• for all T, ρ > 0, if

k ≤ k(T, ρ) :=
1

T

1− e−ρT

1 + (p− 1)e−ρT
2 + log(p− 1)

2p(p− 1)
, (2.5)

then γ0 = p− 1.
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The interpretation of Theorem 1 is evident and gives strength to our model.

For lazy Governments, the optimal strategy is never to have null lockdown while it can be
a total lockdown if the propagation rate k of indirectly affected humans is sufficiently small.

Note that (2.4) is independent of ρ and refined (but less explicit) ρ-dependent bounds for k are
available, see (3.7) below. Also (2.5) can be refined at the cost of a more complicated condition,
see (3.9) (3.10) (3.12) below. For given T > 0, the map ρ 7→ k(T, ρ) is increasing. Hence, the total
lockdown strategy is more convenient if the propagation rate ρ of directly affected humans is large.

But the optimal control for (2.3) needs not to be constant. Before tackling the full optimal
control problem for α ∈ A, let us establish some general properties of the solutions of (1.4).

Proposition 2. For any T > 0 and any α ∈ A the solution of (y1, y2) of (1.4) satisfies:

1 ≤ y1(t) ≤
p

1 + (p− 1)e−ρt
≤ p

1 + (p− 1)e−ρT
< p ∀t ∈ [0, T ] ; (2.6)

1 ≤ y2(t) ≤
p

1 + (p− 1)e−kp(p−1)t
≤ p

1 + (p− 1)e−kp(p−1)T
< p ∀t ∈ [0, T ] . (2.7)

Moreover,
• if α(t) ≡ 0 in [0, T/2] and α(t) ≡ p− 1 in [T/2, T ], then ẏ1(t) < 0 in [T/2, T ];

• if α(t) ≡ p− 1 in [0, T/2] and α(t) ≡ (p−1)(1−e−kp(p−1)T/2)

2+(p−1)e−kp(p−1)T/2 in [T/2, T ], then ẏ2(t) < 0 in [T/2, T ].

We believe that (2.6)-(2.7) might be improved with the inequality

∀T > 0 , ∀α ∈ A , y1(t) + y2(t) < p+ 1 ∀t ∈ [0, T ] . (2.8)

This conjecture is based on the validity of (2.8) for α ∈ A0 (constant controls), see (3.5) below.
Furthermore, concerning the possibility of decreasing y1 and y2, we conjecture that

∀T > 0 , ∀α ∈ A , ẏ1(t) + ẏ2(t) > 0 ∀t ∈ [0, T ]. (2.9)

This conjecture is based on some naive numerical experiments, see also Remark 13 below. However,
since neither (2.8) nor (2.9) are directly connected with the optimal control problem considered in
the present paper, we do not investigate them any further and we leave them as open problems.

We now turn to the general result, for controls α ∈ A. In this setting, our main result reads:

Theorem 3. Assume (2.1) and let T > 0. There exists an optimal control α∗ ∈ A, associated with
a Lipschitzian solution (y∗1, y

∗
2) of (1.4), minimizing JT in (2.3), that is,

JT (α∗) = y∗1(T ) + y∗2(T ) = min
α∈A

JT (α) .

Moreover, there exists a function Φ ∈ C0[0, T ] (depending on the solution) such that

if Φ(t) > 0, then α∗(t) = p− 1; if Φ(t) < 0, then α∗(t) ∈
(
ρe−ρT

2kp3
,
3(p− 1)

4

)
.

Finally, if

k ≤ 4

p(2p− 1)2
ρe−ρT , (2.10)

then α∗(t) ≡ p− 1 in [0, T ], whereas if

k >
4 ρ

p3
[
1 + (p− 1)e−kTp(p−1)

]
, (2.11)

then α∗(t) 6≡ p− 1 in [0, T ].
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Translating the results into the lockdown language, Theorem 3 yields the conclusions

the possible transition from a total lockdown to a weaker strategy is not continuous;

a total lockdown is the best strategy if the indirect diffusion coefficient k is small;

a total lockdown is not the best strategy if the indirect diffusion coefficient k is large;

a null lockdown is never the best strategy.

If a Government is ready to modify the lockdown strategy in the considered interval of time [0, T ],
then the optimal control may be variable in time. As expected in view of the inclusion A0 ⊂ A,
the condition (2.10) is more restrictive than (2.5), see Proposition 11 below. In Theorem 3, (2.10)
(resp. (2.11)) gives a sufficient condition (resp. necessary condition) for the optimal control to be
a total lockdown, both depending on T . What happens in the range

4

p(2p− 1)2
ρe−ρT < k <

4 ρ

p3
[
1 + (p− 1)e−kp(p−1)T

]
,

is an open problem: which is the critical value of k = k(ρ, T ) for which we have a full lockdown
optimal control? As a byproduct of our proof, we obtain a slightly more precise characterization
of α∗ (in a non total lockdown regime), see Remark 12. A further open problem is to give a better
description of the optimal control in the cases when it is not constant.

It is well-known that for nonlinear optimal control problems some physical constraints may appear
a posteriori. This is the case of the moon lander problem, see e.g. [9], in which constrains on the
position, the velocity and the mass of the spacecraft are derived after having characterized the
optimal control. As we shall see, the same happens for problem (2.3) related to (1.4).

3 Proof of Theorem 1

The payoff functional in (2.2) may be written in a more explicit (but complicated) form. To see
this, let us start with the Cauchy problem for the autonomous Bernoulli equation considered in the
introduction:

ẏ(t) = ρ

(
1− y(t)

p

)
y(t) , y(0) = 1. (3.1)

With the change of unknown z(t) = 1/y(t), we obtain the linear equation ż+ ρz = ρ/p. By solving
this equation with z(0) = 1 and by taking y = 1/z, we find the solution (1.3). In fact, (3.1) may
also be solved by separating variables but this is no longer possible if a non-autonomous control is
inserted in (3.1). We may then apply the same strategy to determine explicitly y1 solving (1.4) for
a given α. We obtain that, for given α ∈ A, the unique solution of (1.4)1 satisfying y1(0) = 1 is

y1(t) =
eρt

1 + ρ
∫ t
0

eρs

p−α(s) ds
, (3.2)

while the unique solution of (1.4)2 satisfying y2(0) = 1 is

y2(t) =
eA2(t)

1 + k
∫ t
0 α(s)eA2(s) ds

, where A2(t) = k

∫ t

0
[α(τ)2 + α(τ)] dτ . (3.3)

The expressions (3.2)-(3.3) enable us to write the payoff functional as

JT (α) =
eρT

1 + ρ
∫ T
0

eρs

p−α(s) ds
+

eA2(T )

1 + k
∫ T
0 α(s)eA2(s) ds

. (3.4)
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This form is fairly complicated but, at least for constant controls, it may be fruitfully exploited
to derive some important information. Let us compute the payoff in the particular case of constant
controls α(t) ≡ γ ∈ [0, p− 1]. From (3.2)-(3.3) we infer that

y1(t) =
p− γ

1 + (p− γ − 1)e−ρt
, y2(t) =

γ + 1

1 + γe−k(γ2+γ)t
(3.5)

and, in turn,

JT (γ) =
p− γ

1 + (p− γ − 1)e−ρT
+

γ + 1

1 + γe−kT (γ2+γ)
. (3.6)

By differentiating with respect to γ, we find

d

dγ
JT (γ) =

e−ρT − 1

[1 + (p− γ − 1)e−ρT ]2
+

1 + [kTγ(γ + 1)(2γ + 1)− 1]e−kT (γ
2+γ)

[1 + γe−kT (γ2+γ)]2
.

As expected, the first term is negative while the second is positive. We then have

d

dγ
JT (γ)

∣∣∣
γ=0

=
e−ρT − 1

[1 + (p− 1)e−ρT ]2
< 0 ∀T, ρ, k > 0 ,

which shows that JT (γ) < JT (0) for γ > 0 sufficiently small; therefore α(t) ≡ 0 is not the optimal
control among constant controls. This proves the first item in Theorem 1.

Moreover, we have that

d

dγ
JT (γ)

∣∣∣
γ=p−1

= e−ρT − 1 +
1 + [kTp(p− 1)(2p− 1)− 1]e−kTp(p−1)

[1 + (p− 1)e−kTp(p−1)]2
.

The limit, as k →∞, of the right hand side of this identity is e−ρT > 0 for all given T > 0. Hence,
if k is sufficiently large (depending on ρ), then

d

dγ
JT (γ)

∣∣∣
γ=p−1

> 0 , (3.7)

which shows that JT (γ) < JT (p − 1) for γ in a left neighborhood of p − 1; hence, if (3.7) holds,
then α(t) ≡ p− 1 is not the optimal control among constant controls.

Let us then seek a sufficient condition, independent of ρ, for (3.7) to hold. By dropping e−ρT , we
see that (3.7) is certainly satisfied if

1 + [kTp(p− 1)(2p− 1)− 1]e−kTp(p−1)

[1 + (p− 1)e−kTp(p−1)]2
≥ 1 ,

that is, after computing the squared term and simplifying, if

kTp(p− 1)(2p− 1)− 1− 2(p− 1) ≥ (p− 1)2e−kTp(p−1) .

In turn, since e−kTp(p−1) < 1, the latter is certainly satisfied if (2.4) holds. This proves the second
item in Theorem 1.
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For the third item, we first notice that (3.6) yields

JT (γ)− JT (p− 1) =
p− γ

1 + (p− γ − 1)e−ρT
− 1 +

γ + 1

1 + γe−kT (γ2+γ)
− p

1 + (p− 1)e−kTp(p−1)

=
(p− γ − 1)(1− e−ρT )

1 + (p− γ − 1)e−ρT
+
γ + 1− p+ (γ + 1)(p− 1)e−kTp(p−1) − pγe−kT (γ2+γ)

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

=
(p− γ − 1)(1− e−ρT )

1 + (p− γ − 1)e−ρT
+

(p− γ − 1)[e−kTp(p−1) − 1] + pγ[e−kTp(p−1) − e−kT (γ2+γ)]
[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

= (p− γ − 1)

[
1− e−ρT

1 + (p− γ − 1)e−ρT
− 1− e−kTp(p−1)

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

]
(3.8)

− pγ(p− γ − 1)

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

e−kT (γ
2+γ) − e−kTp(p−1)

p− γ − 1
∀γ ∈ [0, p− 1) .

Therefore, JT (γ) > JT (p− 1) for all γ ∈ [0, p− 1) if and only if

1− e−kTp(p−1)

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]
+

pγ[e−kT (γ
2+γ) − e−kTp(p−1)]

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

1

p− γ − 1

<
eρT − 1

eρT + p− γ − 1
∀γ ∈ [0, p− 1) . (3.9)

Let us now derive explicit (simpler) sufficient conditions for (3.9) to hold. To this end, we need
a couple of calculus inequalities.

Lemma 4. Assume (2.1). For all k, T > 0 one has

1− e−kTp(p−1)

1 + (p− 1)e−kTp(p−1)
<

p(p− 1)

2 + log(p− 1)
kT . (3.10)

Proof. Putting s = p(p− 1)kT , we see that (3.10) follows if we show that

es − 1

es + p− 1
<

s

2 + log(p− 1)
∀s > 0 . (3.11)

To this end, we define f(s) :=
(
es + p − 1

)
s −

[
2 + log(p − 1)

]
(es − 1). Then we notice that

f ′(s) =
[
s−1− log(p−1)

]
es+p−1 and f ′′(s) =

[
s− log(p−1)

]
es. Therefore, s 7→ f ′(s) attains its

absolute minimum at s = log(p− 1) and f ′
(

log(p− 1)
)

= 0. Hence, s 7→ f(s) is strictly increasing
in [0,∞) and, since f(0) = 0, this finally means that f(s) > 0 for all s. This proves (3.11) and,
consequently, (3.10).

Lemma 5. Assume (2.1) and (2.5), then the following inequality holds:

pγ[e−kT (γ
2+γ) − e−kTp(p−1)]

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

1

p− 1− γ
<

p(p− 1)

2 + log(p− 1)
kT . (3.12)

Proof. We rewrite the fraction on the left hand side of (3.12) and we split it as

γ e−kT (γ
2+γ)

1 + γe−kT (γ2+γ)
p

1 + (p− 1)e−kTp(p−1)
1− e−kT (p−1−γ)(p+γ)

p− 1− γ
. (3.13)
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Let us estimate the three terms in (3.13). For the first term, we observe that

x

1 + x
<
p− 1

p
if 0 ≤ x < p− 1 .

Since γ e−kT (γ
2+γ) ≤ γ < p− 1, we then deduce

γ e−kT (γ
2+γ)

1 + γe−kT (γ2+γ)
<
p− 1

p
. (3.14)

For the second term in (3.13), we notice that (2.5) implies

kT <
2 + log(p− 1)

2p(p− 1)

and, therefore,

p(p− 1) kT <
2 + log(p− 1)

2
=⇒ ekTp(p−1) < e

√
p− 1 =⇒ (p− 1)e−kTp(p−1) >

√
p− 1

e
,

which implies that
p

1 + (p− 1)e−kTp(p−1)
<

ep√
p− 1

. (3.15)

For the third term in (3.13) we use the inequality 1− e−x < x, valid for all x > 0, and we find

1− e−kT (p−1−γ)(p+γ)

p− 1− γ
=

1− e−kT (p−1−γ)(p+γ)

kT (p− 1− γ)(p+ γ)
kT (p+ γ) < kT (2p− 1) , (3.16)

since γ < p− 1. By inserting (3.14)-(3.15)-(3.16) into (3.13) we obtain

pγ[e−kT (γ
2+γ) − e−kTp(p−1)]

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

1

p− 1− γ
< kT e (2p− 1)

√
p− 1 .

Then (3.12) follows by recalling (2.1).

Finally, let us go back to (3.8) and estimate

JT (γ)− JT (p− 1)

p− γ − 1
=

1− e−ρT

1 + (p− γ − 1)e−ρT
− 1− e−kTp(p−1)

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

− pγ[e−kT (γ
2+γ) − e−kTp(p−1)]

[1 + γe−kT (γ2+γ)][1 + (p− 1)e−kTp(p−1)]

1

p− γ − 1

by Lemmas 4-5 >
1− e−ρT

1 + (p− 1)e−ρT
− 2p(p− 1)

2 + log(p− 1)
kT .

Therefore, if (2.5) holds, then JT (γ) > JT (p− 1) for all γ ∈ [0, p− 1), which proves the third item
in Theorem 1.
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4 Proof of Proposition 2

Recalling that

1− y1(t)

p− α(t)
≥ 1− y1(t) and α(t) + 1− y2(t) ≥ 1− y2(t) ,

the inequalities y1(t), y2(t) ≥ 1 for all t ∈ [0, T ] are straightforward.
Since α(t) ≥ 0, we have that

ẏ1(t) = ρ

(
1− y1(t)

p− α(t)

)
y1(t) ≤ ρ

(
1− y1(t)

p

)
y1(t) .

Proceeding exactly as for (3.1) (but with the inequality ≤) we reach (1.3) with the same inequality,
that is, (2.6).

Similarly, since α(t) ≤ p− 1, we have that

ẏ2(t) = kα(t)
(
α(t) + 1− y2(t)

)
y2(t) ≤ k(p− 1)

(
p− y2(t)

)
y2(t)

at least in a right neighborhood of t = 0; in fact, this inequality holds as long as y2(t) < p and we
now show that this is always the case. Indeed, by proceeding as for (3.1) (but with the inequality
≤) we reach the inequality (2.7), which confirms that y2(t) < p for all t ≥ 0.

For the second statement, note that if α(t) ≡ 0 in [0, T/2], then by (3.5) we have

y1(t) =
p

1 + (p− 1)e−ρt
∀t ∈

[
0, T2

]
=⇒ y1

(
T
2

)
=

p

1 + (p− 1)e−ρT/2
> 1 .

Furthermore, if α(t) ≡ p − 1 in [T/2, T ], then y1 is governed by the Bernoulli equation ẏ1(t) =
ρ
(
1− y1(t)

)
y1(t) and, therefore, ẏ1(t) < 0.

Finally, if α(t) ≡ p− 1 in [0, T/2], then by (3.5) we have

y2(t) =
p

1 + (p− 1)e−kp(p−1)t
∀t ∈

[
0, T2

]
=⇒ y2(T ) =

p

1 + (p− 1)e−kp(p−1)T/2

=⇒ y2(T ) >
(p− 1)(1− e−kp(p−1)T/2)
2 + (p− 1)e−kp(p−1)T/2

+ 1 .

Then the same argument as for y1 shows that ẏ2(t) < 0 in [T/2, T ]. This completes the proof of
Proposition 2.

5 Proof of Theorem 3

We first prove a fundamental technical statement.

Lemma 6. Let p > 1, A > 0, 0 ≤ B < (p− 1)A, and consider the function

φ(s) = As2 −Bs− 1

p− s
∀s ∈ [0, p) .

(i) If B > (2p− 1)A− 2
√
A, then φ(p− 1) = mins∈[0,p−1] φ(s).

(ii) If B < (2p− 1)A− 2
√
A, then there exists σ ∈ ( B2A , p− 1) such that φ(σ) = mins∈[0,p−1] φ(s) <

φ(p− 1).
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Proof. Although based on simple arguments, the proof is quite delicate and, for the sake of clarity,
we prefer to start without assuming the inequality B < (p− 1)A.

We first observe that

φ(s) > φ(p− 1) ⇐⇒ As2 −Bs− 1

p− s
> A(p− 1)2 −B(p− 1)− 1

⇐⇒ A(s− p+ 1)(s+ p− 1)−B(s− p+ 1)− s− p+ 1

p− s
> 0 .

Hence, after simplification by (s− p+ 1) < 0 and multiplication by (s− p) < 0, we have

φ(s) > φ(p− 1) ∀s ∈ [0, p− 1) ⇐⇒ A(s+ p− 1)−B − 1

p− s
< 0 ∀s ∈ [0, p− 1)

⇐⇒ ψ(s) := As2 − (A+B)s+Ap+Bp+ 1−Ap2 > 0 ∀s ∈ [0, p− 1) . (5.1)

The second order polynomial ψ(s) maintains positive sign over R provided that its discriminant
is negative, which means [B − (2p− 1)A]2 < 4A and, hence,

(2p− 1)A− 2
√
A < B < (2p− 1)A+ 2

√
A =⇒ ψ(s) > 0 ∀s ∈ [0, p− 1) . (5.2)

On the other hand, if the discriminant is positive, namely

either B < (2p− 1)A− 2
√
A or B > (2p− 1)A+ 2

√
A ,

then a necessary and sufficient condition for (5.1) to hold is that the least zero of ψ(s) is greater
than or equal to p− 1 (recall A+B > 0), that is,

A+B −
√

[B − (2p− 1)A]2 − 4A

2A
≥ p− 1 ⇐⇒ B − (2p− 3)A ≥

√
[B − (2p− 1)A]2 − 4A .

Before squaring, we need to impose B ≥ (2p− 3)A; then the above condition is equivalent to

B ≥ max
{

2(p− 1)A− 1, (2p− 3)A
}
. (5.3)

Note that the lower bound for B in (5.2) is tangent to the first lower bound in (5.3) at the point
(A,B) = (1, 2p− 3) and, for A 6= 1, the corresponding graph of the former is above the line defined
by the latter; see Figure 2, where the thick straight line has equation B = 2(p − 1)A − 1 and
represents the first equality case in (5.3), the dotted straight line has equation B = (2p− 3)A and
represents the second equality case in (5.3), while the two thin curved lines represent the equality
cases in (5.2).

Figure 2 clarifies the general behavior of φ for varying A and B, with no constraint. Let us
now impose the constraint that B < (p − 1)A. The region defined by this inequality should be
intersected with the former shaded region, giving the shaded region in Figure 3, thereby simplifying
the above analytic description.

Together with (5.1), this proves item (i) in the statement and also item (ii) but with σ ∈ (0, p−1).
Therefore, we still need to improve the lower bound for σ when B > 0. To this end, we go back to
the function φ and we notice that

φ′(s) = 2As−B − 1

(p− s)2
≤ − 1

(p− s)2
< 0 ∀s ∈

(
0,
B

2A

]
so that the minimum of φ(s) over [0, p− 1] cannot be attained in the above interval.
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Figure 2: Shaded (resp. white) region representing item (i) (resp. (ii)), without assuming B < (p− 1)A.

Figure 3: Shaded (resp. white) region representing item (i) (resp. (ii)), assuming B < (p− 1)A.

A full comprehension of Lemma 6 will be possible only after introducing dynamic coefficients
A and B, see Proposition 10 below. Here, we just emphasize that Lemma 6 has the following
consequence and refinement.

Lemma 7. Let p > 1, 0 < A < kpeρT

ρ , 0 ≤ B < (p− 1)A, and consider the function φ in Lemma 6.

(i) If either 4/(2p − 1)2 < A < 4/p2 and B > (2p − 1)A − 2
√
A or A ≤ 4/(2p − 1)2, then

φ(p− 1) = mins∈[0,p−1] φ(s).

(ii) If either 4/(2p − 1)2 < A < 4/p2 and B < (2p − 1)A − 2
√
A or A ≥ 4/p2, then there exists

σ ∈ (ρe
−ρT

2kp3
, 3(p−1)4 ) such that φ(σ) = mins∈[0,p−1] φ(s) < φ(p− 1).

Proof. (i) This is a restatement of item (i) in Lemma 6, see also Figure 3.
(ii) The three least derivatives of φ (as in Lemma 6) are

φ′(s) = 2As−B − 1

(p− s)2
, φ′′(s) = 2A− 2

(p− s)3
, φ′′′(s) = − 6

(p− s)4
. (5.4)

A first consequence of (5.4) is that φ′′ vanishes at most once, whatever A is. But since we are
assuming here that A > 1/p3 (recall (2.1)), we infer that φ′′ vanishes exactly once. More precisely,
φ′′(s) = 0 for s = p− 1/ 3

√
A.

Furthermore, under the assumptions of item (ii) of the present lemma, item (ii) in Lemma 6
ensures that there exists σ ∈ (0, p−1) such that φ(σ) = mins∈[0,p−1] φ(s) < φ(p−1). Combined with
the uniqueness of the flex point, this means that there exists a unique global minimum σ ∈ (0, p−1)
where φ′(σ) = 0. In turn, this means that any s ∈ (0, p − 1) such that φ′(s) > 0 gives an upper
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bound for σ. By taking a convex combination of the assumed inequalities, we obtain

B <
p+ 1

2p

[
(p− 1)A

]
+
p− 1

2p

[
(2p− 1)A− 2

√
A
]

=⇒ 3(p− 1)

2
A > B +

p− 1

p

√
A .

By combining this with (5.4), we find that

φ′
(

3(p− 1)

4

)
=

3(p− 1)

2
A−B − 16

(p+ 3)2
>
p− 1

p

√
A− 16

(p+ 3)2
> 0 ,

where we also used both the assumptions A > 4/(2p− 1)2 and (2.1). Hence, σ < 3(p− 1)/4.
Finally, we need to find a lower bound for σ. Since A < kpeρT /ρ, we know that

φ′(s) = 2As−B − 1

(p− s)2
<

2kpeρT

ρ
s− 1

(p− s)2
< 0 ∀s ∈

(
0, ρe

−ρT

2kp3

]
, φ′(0) < 0 .

Hence, σ > ρe−ρT

2kp3
.

As we shall see below, the most difficult situation, possibly leading to discontinuous optimal
controls, is the “intermediate range”, that is, 4/(2p− 1)2 < A < 4/p2. In this case, we have

φ′(s) <
8

p2
s− 1

(p− s)2
< 0 ∀s ∈

(
0, 18
]

=⇒ σ > 1
8 .

With these technical results at hand, we may tackle the optimal control problem.

Lemma 8. The minimization problem (2.3) admits a solution α∗ ∈ A. Moreover, there exists a
function Φ ∈ C0[0, T ] (depending on the corresponding solution (y∗1, y

∗
2) of (1.4)) such that

if Φ(t) > 0, then α∗(t) = p− 1; if Φ(t) < 0, then α∗(t) ∈
(
y∗2(t)− 1

2
,
3(p− 1)

4

)
.

Proof. By the explicit form of the solutions in (3.2)-(3.3) and by the Alaoglu Theorem, we know
that there exists an optimal control: from now on we denote by α∗ ∈ A the optimal control and by
y∗ = (y∗1, y

∗
2) the related solution of (1.4). In order to determine α∗ we use the PMP.

To this end, we switch to the vector notation and we define

y =

 y1

y2

 ∈ R2 , λ =

 λ1

λ2

 ∈ R2 , a ∈ [0, p− 1] .

Then, for all y1, y2 ∈ R and a ∈ [0, p− 1] we put

f1(y1, a) = ρ

(
y1 −

y21
p− a

)
, f2(y2, a) = k a

(
(a+ 1)y2 − y22

)
,

f(y, a) = f(y1, y2, a) =

 f1(y1, a)

f2(y2, a)

 ∈ R2 ,

so that (1.4) can be written as

ẏ(t) = f
(
y(t), α(t)

)
with α ∈ A .
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Since the functional JT , defined in (2.2), is a terminal payoff (with no running payoff), the
Hamiltonian relative to (1.4) reads

H(y, λ, a) = f(y, a) · λ = ρ

(
y1 −

y21
p− a

)
λ1 + k a

(
(a+ 1)y2 − y22

)
λ2 ∀y, λ ∈ R2, a ∈ [0, p− 1].

According to the PMP, there exists a Lipschitz-continuous costate λ =
(
λ1(t), λ2(t)

)
∈ R2 (time-

dependent Lagrange multiplier) that satisfies

λ̇(t) = −∇yH
(
y∗(t), λ(t), α∗(t)

)
for a.e. t ∈ [0, T ] , λ1(T ) = λ2(T ) = 1 , (5.5)

the final condition being a consequence of the explicit (terminal) payoff functional JT in (2.2). We
claim that the solution λ = (λ1, λ2) of (5.5) satisfies

λ1(t) =
y∗1(T )2

y∗1(t)2
· e−ρ(T−t) , λ2(t) =

y∗2(T )

y∗2(t)
· e−k

∫ T
t α∗(s)y∗2(s)ds , ∀t ∈ [0, T ]. (5.6)

Indeed, the system (5.5) may be split in the two independent linear scalar ODEs

λ̇1(t) = ρ

(
2y∗1(t)

p− α∗(t)
− 1

)
λ1(t) , λ̇2(t) = kα∗(t)

(
2y∗2(t)− α∗(t)− 1

)
λ2(t)

and, since λ1(T ) = λ2(T ) = 1, we find

λ1(t) = e
−ρ

∫ T
t

(
2y∗1(s)

p−α∗(s)−1
)
ds
, λ2(t) = e−k

∫ T
t α∗(s)

(
2y∗2(s)−α∗(s)−1

)
ds . (5.7)

By using (1.4)1, we see that

2y∗1(s)

p− α∗(s)
− 1 = 2

(
y∗1(s)

p− α∗(s)
− 1

)
+ 1 = −2

ρ

ẏ∗1(s)

y∗1(s)
+ 1

and, hence,

−ρ
∫ T

t

(
2y∗1(s)

p− α∗(s)
− 1

)
ds =

∫ T

t

(
2
ẏ∗1(s)

y∗1(s)
− ρ
)
ds = 2 log

y∗1(T )

y∗1(t)
− ρ(T − t) .

By plugging this into (5.7)1 we find (5.6)1.
By using (1.4)2, we see that

α∗(s)
(
2y∗2(s)− α∗(s)− 1

)
= α∗(s)y∗2(s)− α∗(s)

(
α∗(s) + 1− y∗2(s)

)
= α∗(s)y∗2(s)− 1

k

ẏ∗2(s)

y∗2(s)

and, hence,

−k
∫ T

t
α∗(s)

(
2y∗2(s)− α∗(s)− 1

)
ds = log

y∗2(T )

y∗2(t)
− k

∫ T

t
α∗(s)y∗2(s)ds .

By plugging this into (5.7)2 we find (5.6)2.
The second consequence of the PMP states that

H
(
y∗(t), α∗(t), λ(t)

)
= min

a∈[0,p−1]
H
(
y∗(t), a, λ(t)

)
for a.e. t ∈ [0, T ] .
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In our setting, this means that

ρ

(
y∗1(t)− y∗1(t)2

p− α∗(t)

)
λ1(t) + kα∗(t)

(
(α∗(t) + 1)y∗2(t)− y∗2(t)2

)
λ2(t)

= min
a∈[0,p−1]

{
ρ

(
y∗1(t)− y∗1(t)2

p− a

)
λ1(t) + k a

(
(a+ 1)y∗2(t)− y∗2(t)2

)
λ2(t)

}
.

By dropping the α∗-independent term, this problem also reads

kα∗(t)
(

(α∗(t) + 1)y∗2(t)− y∗2(t)2
)
λ2(t)−

ρy∗1(t)2λ1(t)

p− α∗(t)

= min
a∈[0,p−1]

{
k a
(

(a+ 1)y∗2(t)− y∗2(t)2
)
λ2(t)−

ρy∗1(t)2λ1(t)

p− a

}
.

Furthermore, after dividing by ρy∗1(t)2λ1(t) > 0 (recall (5.6)1) and introducing the time-dependent
functions

A(t) =
k y∗2(t)λ2(t)

ρ y∗1(t)2λ1(t)
, B(t) =

k
(
y∗2(t)2 − y∗2(t)

)
λ2(t)

ρ y∗1(t)2λ1(t)
, φt(a) = A(t)a2 −B(t)a− 1

p− a
, (5.8)

the minimization problem can be further simplified to

φt
(
α∗(t)

)
= min

a∈[0,p−1]
φt(a) for a.e. t ∈ [0, T ] . (5.9)

We then apply Lemma 7 to the minimization problem (5.9) and we infer that, for a.e. t ∈ [0, T ], if B(t) > (2p− 1)A(t)− 2
√
A(t), then α∗(t) = p− 1;

if B(t) < (2p− 1)A(t)− 2
√
A(t), then α∗(t) ∈

(
B(t)
2A(t) ,

3(p−1)
4

)
.

(5.10)

Since A,B ∈ C0[0, T ], by taking

Φ(t) := B(t)− (2p− 1)A(t) + 2
√
A(t) (5.11)

we obtain the characterization of α∗, as in the statement.

By combining (5.6) with (5.8) we obtain

A(t) = k
ρ
y∗2(T )
y∗1(T )

2 e
ρ(T−t)−k

∫ T
t α∗(s)y∗2(s)ds, B(t) = k

ρ
y∗2(T )
y∗1(T )

2

(
y∗2(t)−1

)
eρ(T−t)−k

∫ T
t α∗(s)y∗2(s)ds, (5.12)

so that, by Proposition 2,

B(t) ≤ (p− 1)(1− e−kTp(p−1))
1 + (p− 1)e−kTp(p−1)

A(t) < (p− 1)A(t) , (5.13)

which justifies the assumption in Lemma 6. These formulas play a crucial role in the proof of the
quantitative properties related to (2.10)-(2.11). We use them to prove the sufficient condition and
the necessary condition for the optimal control to be the total lockdown, as stated in Theorem 3.

Lemma 9. If (2.10) holds, then α∗(t) ≡ p − 1 in [0, T ]. If (2.11) holds, then α∗(t) 6≡ p − 1 in
[0, T ].
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Proof. Assume (2.10). By recalling the initial conditions y∗1(0) = y∗2(0) = 1 in (1.4), and using the
expressions (5.6), we get

λ1(0) = y∗1(T )2 · e−ρT , λ2(0) = y∗2(T ) · e−k
∫ T
0 α∗(s)y∗2(s)ds ≤ y∗2(T ) , ∀t ∈ [0, T ].

Note that, whatever α∗ is, by Proposition 2 we have 1 ≤ y∗1(t), y∗2(t) < p for all t ≥ 0; hence,
from (2.10) and (5.8) we obtain

A(0) =
k λ2(0)

ρ λ1(0)
≤ k y∗2(T )

ρ y∗1(T )2
eρT <

k p

ρ
eρT ≤ 4

(2p− 1)2
. (5.14)

Note that (5.12), combined with the facts that α∗(t) ≤ p− 1 and y∗2(t) < p for all t, implies that

Ȧ(t) =
k y∗2(T )

ρ y∗1(T )2
· eρT ·

(
kα∗(t)y∗2(t)− ρ

)
· e−ρt−k

∫ T
t α∗(s)y∗2(s)ds < 0,

where we used the fact that (2.10) yields

k ≤ 4

p(2p− 1)2
ρe−ρT <

ρ

p(p− 1)
.

Therefore t 7→ A(t) is strictly decreasing and then, by (5.14),

A(t) < A(0) <
4

(2p− 1)2
∀t > 0 .

Therefore, (2p−1)A(t)−2
√
A(t) < 0 ≤ B(t) for all t ≥ 0, In terms of the function Φ in (5.11), this

means that Φ(t) > 0 for all t ≥ 0. Then we conclude that α∗(t) ≡ p−1 in [0, T ] by using Lemma 8.
Assume (2.11) and, for contradiction, assume also that α∗(t) ≡ p− 1 in [0, T ]. Then (3.5) yields

y∗1(T ) = 1 , y∗2(T ) =
p

1 + (p− 1)e−kTp(p−1)
,

which, inserted into (5.12), gives

A(T ) =
k

ρ

p

1 + (p− 1)e−kTp(p−1)
>

4

p2

since (2.11) holds. By continuity of the function A(t), we infer that A(t) > 4
p2

in a right neigh-

borhood of t = T . By Lemma 8, we reach a contradiction: we have α∗(t) < 3(p−1)
4 in the same

neighborhood.

Putting together all the above lemmas completes the proof of Theorem 3.

6 Further results and comments

By going through the proof of Theorem 3, in particular Lemma 7, and after a careful look at Figure
3, we derive the following “dynamic” statement.

Proposition 10. Let A and B be as in (5.8). If there exists t ∈ (0, T ) such that

t 7→ B(t)− (2p− 1)A(t)− 2
√
A(t) vanishes and changes sign at t
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then α∗ is discontinuous at t.

Proof. We give here a mostly geometric proof which, in our opinion, is much more illustrative than
a fully rigorous algebraic proof. Moreover, the algebraic proof can be derived from the following
geometric arguments.

Let us maintain A(t) < 4/p2 fixed and discuss the graph of φt as B(t) varies, see (5.8). Since

φ′t(p− 1) = 2A(t)(p− 1)−B(t)− 1 <
8(p− 1)

p2
− 1 < 0 ∀p ≥ 100 ,

the possible (qualitative) graphs are displayed in Figure 4 when B(t) ≶ (2p − 1)A(t) − 2
√
A(t).

If B(t) > (2p− 1)A(t)− 2
√
A(t) (left picture) we have φt(p− 1) = mins∈[0,p−1] φt(s), as stated in

Figure 4: Graph of φt when B(t) > (left), = (center), < (right) than (2p− 1)A(t)− 2
√
A(t).

Lemma 6: we are here in the situation of negative discriminant for the second order polynomial
ψ in (5.2). Then we let B(t) decrease (moving downwards in Figure 2) and we reach the curve
B(t) = (2p− 1)A(t)− 2

√
A(t); this corresponds to the middle graph in Figure 4 in which there are

two minimum points for φt in the interval [0, p− 1], one in the interior and another one at p− 1. If
B(t) decreases further and enters the region where B(t) < (2p− 1)A(t)− 2

√
A(t) (white region in

Figures 2 and 3), the graph of φt is as on the right in Figure 4: here the minimum of φt is only in the
interior of [0, p−1] creating thereby a discontinuity in the control α∗. This happens every time that
the line B(t) = (2p−1)A(t)−2

√
A(t) is crossed at some point (A,B) with 4/(2p−1)2 < A < 4/p2,

see Figure 3.

Let us now compare the sufficient conditions in Theorems 1 and 3 for the optimal control to be
a total lockdown.

Proposition 11. Assume (2.1), T > 0. Then the condition (2.10) is more restrictive than (2.5).

Proof. The statement amounts to prove that

ρT e−ρT
1 + (p− 1)e−ρT

1− e−ρT
<

2 + log(p− 1)

8(p− 1)
(2p− 1)2 . (6.1)

To this end, we first claim that

ρT e−ρT
1 + (p− 1)e−ρT

1− e−ρT
< p ∀ρ, T > 0 . (6.2)

Put s = ρT and consider the function h ∈ C0[0,∞) defined by

h(s) =
s

es − 1

[
1 + (p− 1)e−s

]
for s > 0 , h(0) = p .
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By differentiating, we find that

h′(s) =
(p− 1)(s− 1)e−s + p− 2− 2(p− 1)s+ (1− s)es

(es − 1)2
=:

g(s)e−s

(es − 1)2

=⇒ g(s) = (p− 1)(s− 1) + (p− 2)es − 2(p− 1)ses + (1− s)e2s .

Then we compute

g′(s) = (1− 2s)e2s + (2s− 2ps− p)es + p− 1 , g′′(s) = (2− 3p)es − 2(p− 1)ses − 4se2s,

which shows that g′(0) = 0 and g′′(s) < 0 for all s. This implies that g′(s) < 0 for all s and, since
g(0) = 0, also that g(s) < 0 for all s. Back to the function h, this shows that h′(s) < 0 for all
s > 0, so that h(s) < p for all s > 0. This proves (6.2).

By (6.2), the inequality (6.1) certainly holds if

2p(p− 1)

2 + log(p− 1)
≤ (2p− 1)2

4
= p(p− 1) +

1

4
.

Since the left hand side is smaller than p(p−1), this inequality holds. This completes the proof.

The second part of this section consists in some remarks, used throughout the paper.

Remark 12. Lemmas 6-7-8 tell us that if α∗(t) 6= p − 1, then s = α∗(t) is a minimum point for
the function φt in (5.8), see (5.9). Therefore, φ′t

(
α∗(t)

)
= 0 which, combined with (5.4) and the

explicit expressions in (5.12), shows that

k

ρ

y∗2(T )

y∗1(T )2
eρ(T−t)−k

∫ T
t α∗(s)y∗2(s)ds

(
2α∗(t) + 1− y∗2(t)

)(
p− α∗(t)

)2
= 1 for a.e. t ∈ [0, T ] .

Quite surprisingly, this “explicit” characterization of α∗ depends on y∗1 only through its final value
while it depends much more directly on y∗2. Unfortunately, this formula is not usable, precisely
because it requires the knowledge of the final state (at time t = T ). On the other hand, from (1.4)1
we infer that

α∗(t) = p− ρ y∗1(t)2

ρy∗1(t)− ẏ∗1(t)
.

This different characterization of α∗ merely depends on y∗1 but, again, it is not usable because also
its derivative ẏ∗1 is involved.

Remark 13. In connection with conjecture (2.9), notice that the PMP also implies that the Hamil-
tonian is constant, that is,

ρ

(
y∗1(t)− y∗1(t)2

p− α∗(t)

)
λ1(t) + kα∗(t)

(
(α∗(t) + 1)y∗2(t)− y∗2(t)2

)
λ2(t) ≡ H

for some H ∈ R. Since at t = 0 we have

ρ

(
1− 1

p− α∗(0)

)
λ1(0) + kα∗(0)2λ2(0) > 0

whatever α∗(0) ∈ [0, p−1] is, this proves that H > 0 and, hence, that at least one between 1− y∗1(t)
p−α∗(t)

and α∗(t) + 1− y∗2(t) is strictly positive for any t ≥ 0. In turn, by (1.4), at least one between ẏ∗1(t)
and ẏ∗2(t) is strictly positive. This fact is not as strong as (2.9) but, at least, it gives a hint in its
direction.
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Remark 14. We have that

∀ξ > p the map t 7→
(
y∗2(t)− ξ

)
e−k

∫ T
t α∗(s)y∗2(s)ds is negative and strictly decreasing.

Indeed, negativity follows directly from Proposition 2, see (2.7). For the monotonicity, we differen-
tiate and, by using (1.4)2, we get

d

dt

((
y∗2(t)− ξ

)
e−k

∫ T
t α∗(s)y∗2(s)ds

)
= kα∗(t)y∗2(t)

(
α∗(t) + 1− ξ

)
e−k

∫ T
t α∗(s)y∗2(s)ds < 0 .

We conclude this section (and the paper) with some open problems and by mentioning some
possible future developments of the model developed here. First, we believe that the optimal
control α∗(t) never suggests a mild lockdown at some t and a total lockdown at some later t: is it
possible to prove that α∗ is non-increasing? Second, is it possible to improve the property in Remark
13 and to prove conjecture (2.9), at least for the optimal state? This means that ẏ∗1(t) + ẏ∗2(t) > 0
for all t. Finally, instead of the payoff functional (2.2) one could consider a convex combination of
y1 and y2, that is JT (α) = βy1(T ) + (1− β)y2(T ) for some β ∈ (0, 1): is there a (sufficiently small)
value of β yielding a null lockdown (α∗ ≡ 0) as optimal control?
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