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Abstract. We study a general class of functionals oV&}'' and we approximate their
infimum by means of the minimum in the space of web functions. We provide several tools
for estimating this approximation and we study in detail some meaningful models.

1 Introduction

Let £2 be an open bounded convex domainRt (n > 2), let f:IRT — IR be a
lower semicontinuous (l.s.c.) function and consider the functidrdgfined by

J(u) = /Q F(Vul) — u] de

This kind of functionals (with possibly nonconvex functiofjsarises from various
fields of mathematical physics and optimal design, see [3,5,23,24]. We study the
following problem of existence of minima,

min  J(u).
ueWy ' (£2)

It is well-known that if f is not convex and superlinear then the minimum may not
exist. In such case, one usually introduces the relaxed functional and considers its
minimum, which coincides with the minimum dfif the latter exists. In particular,

we mention a problem from elasticity [5,22,23]: we wish to place two different
linearly elastic materials (of different shear moduli) in the plane dorfiaéo as to
maximize the torsional rigidity of the resulting rod; moreover, the proportions of
these materials are prescribed. Such a problem may not have a solution, therefore
one may construct new composite materials by mixing them together on a micro-
scopic scale. Mathematically, this corresponds to the introduction of the relaxed
problem which does have a minimum. Hence there exists an optimal design if one
is allowed to incorporate composites. However, the resulting design may not be
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so easy to manufacture and therefore one may try to find an optimal design in a
simpler class of possible designs.

Motivated by this application, we will be concerned with the following mini-
mization problem

min J(u), (1)
whereK is the subset of¥,"' (£2) of functions depending only on the distance
from the boundary (2. As in [19], we callweb functionshe functions inC and we
recall that when? is a ball, web functions are none other than radially symmetric
functions. Web functions were introduced in order to approximate the infimum of
the functional/ overW01"1 (£2). As proved in [14,19], under very mild assumptions
on f, the minimum ofJ overC always exists even for nonconvex functighdlore
precisely, in [19] it is proved that if is superlinear at infinity and? is a regular
polygon inIR? then.J admits a unique minimum ove€ whose explicit form is
given in terms off. This result was extended in [14] to general convex domains
2 Cc R" (n > 2) and to functions with at least linear growth at infinity.

The aim of this paper is to give estimates of the “error” one makes by means of
such approximation. More precisely, thanks to a “normalization” (see Proposition
1 below) we may always reduce our discussion to functipeatisfyingf(0) = 0
so thatJ(0) = 0; then, by Proposition 2 below we exclude the trivial cases where
the minimum of.J over W, ' (£2) exists and is: = 0 (which is a web function!),
so that the following ratio is well-defined

mingex J(u)

E=- .
1nfu€W(},1(m J(u)

@)

SincekC ¢ W' (2) one hast € [0, 1] and€ represents theelative errorof the
above mentioned approximation: the clo&es to 1, the better the approximation
is. The level0 for the functional is chosen as a reference level because0 is
the rest function; the value & yields the relative error with respect to the rest
function.

The outline of this paper is as follows.

In next section we establish some general estimat&sweé first obtain a result
by a symmetrization method, namely we estimate the infimum W{H(Q) by
means of the (explicit) minimum of the corresponding problem in the symmetrized
ball; since we also obtain the explicit value of (1), this yields the estimate. We apply
this result to some particular domaifisand we show that for “thin” domains this
estimate loses interest: then, we obtain a different estimate by “truncating and
shifting” the functionf and by applying previous results by Cellina [10]; we show
that this estimate improves the first one for thin domains. We also study in more
detail the case wherg(s) = s?/p (p > 1) and we obtain an estimate &fwhich
involves optimal Sobolev embedding constants: in Sect. 4 we show that in some
cases this estimate is sharper than the first two.

In Sect. 3 we consider some meaningful models and we apply our results:
we consider the three cases where the funcfiaa convex superlinear, convex
asymptotically linear, nonconvex. The results obtained show that the approximation
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by means of web functions is in general satisfact@rys(close tol). The proofs
of all the results are given in Sect. 5.

2 Notation and general results

Let 2 ¢ IR™ (n > 2) be a bounded open convex set andéy denote its
inradius, namely the supremum of the radii of the open balls contain&d he

Lebesgue measure and thedimensional Hausdorff measure of a getc IR”

will be denoted respectively b§(A) andH™(A). We denote bw,, = f;f(in//z) the

Lebesgue measure of the unit b&llin IR™ and we recall tha#" (0 B;) = nwy,.
Assume that

L(12)
Hr=1(00)
FBeR, f(s)>Ms—b Vs>0. 3)

f # +oo isals.c. function s.t. M >

The second condition is certainly satisfiedfifs superlinear at infinity or i/ >
W, see [14].

We denote byf* the polar function off and by f** the bipolar function off,
see [17]. It is well-known thaf** is the greatest convex l.s.c. function which is
pointwise less or equal thah Let

o =max{s > 0; f**(s) =min f**}; (4)
we also define thaormalized non-decreasing bipolar functigp, of f by

0 fo<s<ogo

fax(s) = {f**(s) — (o) ifs>0o.

Obviously, if f** is non-decreasing anff*(0) = 0, thenf** = f... Finally, we
denote byf. the polar function off... which coincides with/* if f(0) = 0 andf
is non-decreasing and convex. Our first result states that any furjtatisfying
(3) may be normalized without altering the minimization problem:

Proposition 1. Assume thaf satisfies(3), let o be as in(4) and let f... be the
normalized non-decreasing bipolar function fafthen

inf / F(Vu)—u] = min / Fur (V) — )+ £(2) () . (5)
(9] 2

ueWy ' (£2) ueWH (2)
Define the set of web functions relative fb
K= {uecWy'(92); u(z) = u(d(zx,2)) Yz € 2},

whered(-, 02) denotes the distance function from the boundary. We also consider
the one-parameter family of subsets(@fiefined by

2y ={z € 2; d(z,002) >t} Vit € [0, W]
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and their boundaried(2;; we clearly have?, = 2 and 2y, = 0. In the sequel a
major role is played by the functions

_ L(f)
v(t) = T (00,

Consider the functionals
J(U)=/Q[f(\VUI)—u} J**(U)=/Q[f**(IVUI)—u]

and the corresponding values

aft) =H""H0R,)  tel0,Wq].

I = min J,.(u I.. = min J..(u).
min Jy (u) e o (u)

Note that by the results in [14,19] and by Proposition 1 we have
I = Hlel)rcl J(u)+ L(2)f*(0) .

We are concerned with the estimate of the relative efrdefined in (2). With the
above notations we hae= I /I... If I... = 0, then the problem “degenerates”
(it loses interest) because the web functioes 0 minimizes.J,.; in other words,
we also havd = 0 and there is no need to approximate the minimum! In order
to avoid this trivial case, we have to take into account a necessary condition:

Proposition 2. Assume thaf satisfieg3) and thatl.. < 0. Thenf,.(Wg,) > 0.

In order to have the relative errérwell-defined, Proposition 2 tells us that we
have to assume thdt. (W) > 0; as we will see, in some cases more stringent
assumptions are needed. Note that the condjtids) = 0 for somes > 0 implies
that the right derivative of,. at0is greater or equal than Hence, if this derivative
vanishes then we hav&(s) > 0 for everys > 0.

The basic tool which will be used in this paper in order to estirdate

Theorem 1. Let2 C IR" be an open bounded convex set andilet (%f))l/".
Assume thaf satisfieg3) and f..(£) > 0, then

Wa
oo B aOROwE ©

" nw, fOR t"ilf*(%)dt

This result is obtained by means of a symmetrization method, see Sect. 5 below.
In order to use Theorem 1, the explicit form of the functiaiig) andv (¢) is needed.
In the next two corollaries we apply Theorem 1 to some particular cases. We first
deal with cubes ilR":

Corollary 1. Let¢ > 0, 2 = (0, ¢)" and assume thatsatisfieg3) and f.(—%)
> 0. Then, .

0

—1/n 1/n
féwn t’n—l f* ( w'ré %)dt
éw;l/" ¢ :
Je " e (Lt

E>
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Next, we deal with planar regular polygons as domains. As stated in [19, The-
orem 2], when the number of sides tends to infinity, the corresponding sequence
of minimizing web functions converges (in a suitable sense) to the unique radial
minimum in the circumscribed ball. Here, we rephrase this result in a more precise
fashion:

Corollary 2. Letp > 0, m € IN (m > 3) and let{2™ be a regular polygon ofn

sidesinscribed inthe balB, C IR?; assume thaf satisfie3) andf.(§4/ %) >
0. Leté&,, be the corresponding relative error, then
pcos = t
m (L dt
57” Z 0 f (2) Om — Ttani .

OPCOsﬁtf*(%nt)dt ) T m

In particular, lim, o0 &, = 1.

In the previous result, if one merely wants the asymptotic behaviéy,othe
assumption orf, may be relaxed tg. () > 0.

We now study the asymptotic behavior &f in (6) in the case of “vanishing
domains”. To this end, we make a further assumptiorfon

Fv,6§ >0 S.t. fiu(s) ~ vs? ass —0; )

by this we mean that, (s) = vs® 4+ o(s°) ass — 0. This assumption implies that
f«(s) > O0forall s > 0 and no further positiveness requirementfoiis needed. An
interesting fact is that if we tak® to be a cube, theé; in (6) tends to a constant
(depending only om, § but not on the particular functioyi considered) as the
measure of the cube tends(io

Theorem 2. Let¢ > 0, let 2 = (0,¢)™ and assume thaf satisfies(3) and (7);
let &, be asin(6), then
lim &1 — Wy, §/n 8)
[ (27> ' (

Note that the term inside parenthesis in the limit in (8) is just the ratio between
the measure of the unit ball and the measure of the circumscribed cube: of course,
this is a consequence of the symmetrization method.

The next result shows that Theorem 1 loses interest for “thin” domains (i.e.
domains(? with a small inradiusVy,):

Theorem 3. Let 2 ¢ IR"™ be an open bounded convex set and assume fthat
satisfieg3) and f..(Wy) > 0. Let M be asin(3), letR = (%f))l/” and assume

that
Wao < min{ M _r
0 min 5 2(n T 1) .
Let&; be asin(6), then

1 R -1
< 1 . 9
51—(n+1WQ > ©)
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For fixedL(£2), asWy, — 0the ratioR/ Wy, tends to infinity and (9) states that
&1 approaches zero. Therefore, for thin domains the estimate (6) is not satisfactory.
In particular, if0 < A < £and2 = (0,¢)"~! x (0,\) and if we letA — 0,
then&; — 0. Of course, this does not mean that the same is trué€ f@n the
contrary, we conjecture that the minimum ovémvell approximates the infimum
overW, ' (£2) for a suitable class of thin domains, see Propositions 4 and 5 below.
When dealing with thin domains, the next result seems more useful:

Theorem 4. Let {2 ¢ IR"™ be an open bounded convex set such that < M,
assume thaf satisfieg3) and f.(Wy) > 0. Then

oo Wo )" a() f.(v()dt
= W,
F+(Wa) [y ¢ L(52;)dt

To see how Theorem 4 improves Theorem 1 for thin domains, consider the
following example:

Example 1.Let f(s) = s*/2 and let2 = (0,1) x (0,2Wg), 0 < Wy, < 1/2.
Let us denote by (W) and &> (W,) respectively the r.h.s. of (6) and (10).
We have that, is monotone decreasing 46, 1/2], limyy, 0 E2(Wq) = 2/3
and&;(1/2) = 3/8. On the other handf; is monotone increasing 0, 1/2],
approache$ asWy, tends to0 and&;(1/2) = /4. The explicit computation of

& andé, gives thats, > & for 0 < Wy, < 37=YIT =127 ~ () 18],

As a consequence of Theorem 4, we obtain

—&. (10)

Corollary 3. Under the assumptions of Theorem 4, one has

_SQ9/¢ 1 W
In particular,
Wo
52(“”%- 12

Finally, in the particular case wheis) = " for somep > 1, in order to
estimate, a method involving optimal embedding constants may also be used:

Theorem 5. Letp > 1, £2 C IR"™ be an open bounded convex set and assume that
f(s) = %. Let

YulP
S=5(02) = Jo V0l
ueWo (@) ([ lul)
Then
1 WQ D
E>Sr1 / at)vr=1(t)dt =E&; . (13)
0

In spite of its simple and elegant form, the previous result may not be so easily
applied. Besides the already mentioned problem of determining explicitly the func-
tionsa andv, here a major problem is also how to determine the (possibly sharp)
constantS. Nevertheless, in Sect. 4, we quote some examples of planar rectangles
for which Theorem 5 improves Theorems 1 and 4.
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3 Estimates and applications

In this section we discuss the general results given in the previous section and we
apply them to some particularly interesting models.

3.1 Some convex superlinear problems

Consider first the case whefé¢s) = % so that the functional becomes

J(u)/Q(W;Pu> da .

The minimization problem of is associated to the Euler equation

—Au=1 in{?
{uzo onof?. (14)
The unique solution of (14) is precisely the minimum of the functiohaler the
spaceI/Vol’l(Q) (in fact the solution is smooth). This equation describes a viscous
incompressible fluid moving in straight parallel streamlines through a straight pipe
of cross sectior?, see [28]. In the two-dimensional context, (14) also has different
interpretations, see e.g. [4]: consider the torsion problem of along cylindrical beam
in R® whose axis is the:; axis and whose uniform cross-sectithis a simply
connected region of the plang, x5; the state of stress in the interior of the beam
is determined by a warping functianwhich satisfies (14).

We restrict our attention to some particular domdihghich allow us to obtain
the “exact” value of and, as a consequence, to evaluate how fine the estimate of
Theorem 1 is.

We first consider the case of a square:

Proposition 3. If f(s) = % and$2 = (0,1)?, then€ ~ 0.889.

Therefore, in this case the approximation by means of web functions is satisfac-
tory since is close tol. In order to compare the value fobtained in Proposition
3 with the lower bound fo€ obtained in Corollary 1, we refer to Proposition 6 be-
low: inthe caser = p = 2ityields the estimaté€ > 0.785 which is approximately
the 88.3% of the value 0.889.

If we shrink the length of two parallel sides of the square,tihen the approx-
imation tends to become optimal:

2

Proposition 4. Let f(s) = %, let/ € (0,1) and letf2 = (0,¢) x (0,1). Then
& —1lasl—0.

Proposition 4 does not come unexpected; indeed, when0 we can say in
some sense that the problem becomemensional.

Apart from circles and regular polygons, the simplest planar domains seem to
be ellipses. However, as will be shown in the proof of the next result, the explicit
forms of the functions andr are complicated and one has to proceed numerically.
With the aid of Mathematica we obtain
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Proposition 5. Let f(s) = %2 let0 < b < 1andlet

2
Q:{(a:,y)EIRZ; x2+%b/2<1}.

Then, we have the following approximate value§;of

b 001 01 02 03 04 05 06 07 08 09
£~ 0.895 0.897 0.903 0.914 0.928 0.945 0.962 0.977 0.989 0.997

Moreover,lim £ = 1.
b—1

We point out that even in the simple cagg) = % the behavior of for thin
rectangles (small in Proposition 4) and thin ellipses (smalin Proposition 5)s
not the same. We believe that the non optimal behavior of thin ellipses is due to
their curvature.

Next, we deal with a slightly more general class of functign§Ve consider
the case wherg¢(s) = s”/p for somep > 1 so that the functional to minimize is

() :/Q ('V;”p —u) dx .

Here, the corresponding Euler equation is the degenerate elliptic problem

{ —Apu=1 1in{? (15)

u=0 onoaf?,

whereA,u = div(|Vul[P~2Vu). This operator may be used for the description of
some phenomena in glaciology [26,27] and for the study of non-Newtonian fluids
in rheology [2]. We also refer to the introduction in [16] for further applications.
The unique solution of (15) is the minimum of the functiodal

An application of Corollary 1 yields

Proposition 6. Letp > 1. If f(s) = % and{? = (0,1)", then

Note that the lower bound fa& in Proposition 6 tends tbasp — 1 (i.e. as the
functional “loses coercivity”) and tends to

Jr
2(n—1)/nnl/n]"1/n(n/2)

asp — oo: in particular, whem = 2 this limit is about0.886.
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3.2 A convex asymptotically linear problem

Consider the functiorf(s) = v/1+ s> — 1 so that the functional to minimize is
the following

J(u)z/ﬂ(m—l—u) dx .

Associated to the functional we have the Euler equation

di( Vu ) 1 inn
T A N
V14 |Vul? (16)

u=20 onos?

whose solutions are the celebrated Delaunay surfaces of constant mean curvature,
see [15]. We takg (s) = v/1 + s2 — 1 instead of the usudl(s) = v/1 + s2 so that
£(0) = 0 and¢ is well-defined.

In this case we have/ = 1 and if we wish to fulfill (3) the set? must be
“sufficiently small”, namely

v (0) = 7—[71[:(1!(28)(2) <1. (17)

It is well-known [18,21] that ifv,(0) exceeds the limit valué then (16) admits

no solutions, see also [20] for the blow up of tH&">°-norms of the solutions of
(16) asv;(0) — 1~. This shows that the restriction (17) is not purely technical.
However, in order to apply Theorem 1, a further restriction is needed. Indeed, in
the case wher@ = (0, ¢)"™, (17) yields¢ < 2n while in the next result we require

a smaller upper bound fdr

Proposition 7. Let f(s) = V1 + s2—1,letd < nwy/™ and let2 = (0,¢)™. Then
2npntl f(f/zn "1 —r2dr — "
1/n .
wpn 1 foé/"w" rn=1y/1 — r2dr — (»

Note that the integrals in the r.h.s. of (18) may be determined explicitly. In
particular, ifn = 2 then (18) becomes

E>

(18)

3/2
32432 (1-5)" - 32
£> :
302+ 87 (1— 2)°% _ gz

so that the lower bound in (18) is a decreasing functiof of
Note also that as — 0 we havef.(s) ~ % and therefore, according to

,Vn > 2.

w2/
4

Theorem 2, we havim £ >
£—0
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3.3 Some nonconvex problems
Lethy(t) = at?, ha(t) = Bt2 + v (Witha > 8 > 0,7 > 0) and
ft) = min{hl(t), ha(t)}, t=0, (19)

and consider the functiondl(u) = [,,[f(|Vu|) —u] dz. The problem of minimiz-

ing J over the spacéfVO1 1(()) arises from elasticity [5,22,23]. We wish to place
two different linearly elastic materials (of shear modgjj and ﬁ) in the plane
domainf? so as to maximize the torsional rigidity of the resulting rod; moreover, the
proportions of these materials are prescribed. By applying Corollary 1 we obtain

Proposition 8. Let/ > 0, £2 = (0, ¢)? and assume thaf is as in(19), leta =
2,/ 222, then

522 if ¢ < 2y/7a

. wBla - B)F*
T da(a— B)0* — 1287aBvy(a — B)2 + 10247202 322
if 2v/ma < £ < 4a

> (o — B)0* — 1287 (o — B) Byl? + 40967322
T Ao — B)et — 1287 (o — B) B2 + 102472 0322

if ¢ > 4a .

If ¢ is small, then the minimum of of J... has small gradient&va| in the
main part of the squar®. Therefore we havg¢ ~ h; and the problem reduces to
that of Proposition 6 (witlp = 2). This is why we find} as a lower bound fof.
Similarly, if £ — oo then we havef =~ hy, and the problem tends again to that of
Proposition 6.

Finally, we consider the case where

0 ift=1
fAy=<¢1 ift=2 (20)
oo elsewhere

This function was studied in [8] in an attempt to simplify the functjpim (19)

by retaining its essential feature of lacking convexity. For simplicity, we only deal
with the case of square8 = (0, ¢)? for ¢ > 0. By [10, Theorem 1] we know that

if £ < 2thenf& = 1. On the other hand, the functiondlis known to have no
minimum inW,"! (£2) if ¢ € (2,2 + 2¢) for sufficiently smalke, see [8] (we write

2 4 2¢ instead of2 + ¢ for later convenience). Therefore, we wish to prove that
& — 1 as? — 2. The next result also gives the rate of such convergence:

Proposition 9. Assume thaf is as in(20) and lete € (0,1), 2 = (0,2 + 2¢)2.
Thené > -

We point out that this result is not proved by means of the general statements
of Sect. 2.
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4 Some applications of Theorem 5

Throughout this sectiof;, £; and&; are respectively the constants defined in (6),
(10) and (13). We show that in some cases we [fave & or & > & so that
Theorem 5 gives a finer estimate&than Theorems 1 or 4.

In order to apply Theorem 5 we need to determine the constae give a
lower bound for such constant in planar rectangles:

Lemma 1. Let0 < £ < 1 and let2 = (0,1) x (0, ). Thens > 2-0+0"

Proof. By a density argument it suffices to prove that

IVolp _ 20721+ 6)”
loly = 2=t

Yo e CF(2)stv>0. (21)

So, takev € C2°(£2) suchthav(x) > 0in 2 and denote by; = 0/0z; (i = 1, 2).
Then, sincey = 0 on 942, if we denotes™ = max|s, 0] ands™ = min(s, 0], we
have

1 1
/ Oro(€r, o) des + / (Oro(€r, 22)]dEs
0 0
1
= / 311)(51,932)5151 = ’U(l,Iz) - U(O,ig) = 0 VIQ .
0
Furthermore,

1 1 1
/ [010(E1, 22)]dés — / [010(E1, 02)]~dEy = / 1010(61, 22)[dEy Ve .
0 0 0

These two equations show that
1 1 1
/ [010(&1, 2)] T dEy = 3 / |01v(€1, 22)dE1 Vo (22)
0 0
If we proceed similarly with the other variable we obtain

L 1 £
[on@ et =3 [ o el = @)
0 0

Since
v(1,2) :/ Ovv(ér, z2)dér = / Oov(z1,62)dés V(z1,22) € (2,
0 0

by Fubini’s Theorem and (22)-(23) we obtain

ol

/ v(x1, x2)dx1des
19)

1+e ( / D10(Ey, 22 d51+/ Do xl,sg)d&) drrdas
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11"'5/Q<€/Oml[aw(§l’xz)}+d§1+/0m2[320(x1,52)]+d§2>d$1d$2

%—;—é /!2 ([Oro(zy, 22)]* + [O20(21, 22)]7) dayday

14

- 2(1+0) /Q ([01v(z1, 22)| + 020 (21, 22)|) dw1ds -

<

IN

Hence, if we use Blder’s inequality and the inequality +b)P < 27/2(a? +b?)P/?
(which holds for alla, b > 0) we get

¢ ¢(p—1)/p

Jolli € = —=
V2(1 + 0) V2(1 +0)

which proves (21). O

()] PV, = IVollp

Now we prove that if2 = (0,1)? andp is “close” to 1, ther€; > &,. Indeed,
Lemma 1 and (13) yield

p—1 —2)/(2p—2
Ea > L~ 9(p=2)/(2p-2)
3*3p—2

On the other hand, &, is as in (10), we get

g b1 3
27 3p—221/0-D)

and we haveg; > &, for p sufficiently close to 1.
Finally, for allp > 1 we haveélin% E = ;p;_llz@*ffp)/(?p*?) > 0 which,
—
together with Theorem 3, shows tt&t > &; for ¢ small enough.

5 Proofs of the results

Proof of Proposition 1Any minimizing sequencew,,} of both the L.h.s. and
the r.h.s. of (5) may be chosen so thi®t,,(z)| > o for a.e.x € 2. Hence,
J F(IVum|) = [ f-(|Vuy,|) and the result follows. O

Proof of Proposition 2For contradiction, iff. (W, ) = 0then by the very definition
of polar function we have that...(s) > sW, for everys > 0. Sincef,.(0) = 0,
from [10, Theorem 1] (see also [9,29]) we conclude that the funatien 0 is a
minimizer of J... over W, ' (£2), contradiction. O

In order to prove Theorem 1, we first recall the basic definitions of the Schwarz
symmetrization, see e.g. [4]. Given the $gtwe denote by?® the ball centered
at the origin such thaf(£2°) = £(£2). Letu be a real-valued function defined in
12, then we define its symmetrized functiaft £2° — IR by u*(z) = sup{u; x €
Dy}, whereD,, = {y € £2; u(y) > u}.
In the sequel, we denote

Sy(u) = /[f(|Vu|) —ul, Io=  min Sy(u).

ueWy (029)



Some estimates of the minimizing properties of web functions 57

Explicit form of the minimizing web function.
Consider the functions anda defined in Sect. 2 then, the unique web function
w which minimizesJ overC is given by

d(z,002)
w(z) = g(d(z,02)) = / (L) (v(s))ds (24)

This follows from formula (6) in [14] and by taking into account thigf)’(¢) =
(f«)_(t) for a.e.t. Indeed, we recall that by Theorem 4.1 in [14] we know that the
functionv is strictly decreasing and therefofé. )’ (v(s)) = (f«)"_(v(s)) for a.e.
ERS [O, W_Q]

Moreover, by (7) and (8) in [14], the corresponding (minimum) value of the
functional is given by

Wa
e = ) = [ a0l 0) - s(0)ar

Indeed, from (24), we see that(¢) > 0 for a.e.t and we haveéq’' (t)| = ¢'(¢) for
a.et e [0,Wp].
Using again the strict monotonicity ofwe have

F(F)' @) = v(t) (f) (V1) = fu(v(t))  fora.et € [0, W] .

Then, integrating by parts the term én(see Lemma 5.6 in [14] wherd(¢) =
a(t)v(t)) we obtain

We
o= [ a0 (25)
0
In the case of regular polygonsiR? an equivalent explicit form ofv and I
may be given, see [19].

The symmetrization method.
Thanks to well-known results in [1, 7] we obtain

Lemma 2. Assume thaff satisfies(3) and thatf is convex and non-decreasing.
Then

nf [ == min [ (V) -

weWy ' (2) ueWy ' (£29)

Proof. We show that, for everyi € W,''(£2) we haveJ(u) > S;(@*). Since
J(lu|) < J(u) forallu € W,"'(£2), we may assume that > 0. Then, by the
properties of the symmetrized function (see [4]) we have

[a-] v, oo

Next, by Proposition 2.1 in [7] and by arguing as in the proof of
Lemma 3.1in [7], one ha§, f(|Va|) dz > [,. f(|V@®|) dz. This, together with
(26) concludes the proof. O
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Proof of Theorem 1For any bounded convex sét C IR" we havef?®* = Br(0)
with B = (EX2)1/n andag(t) = nw,(R — t)"', vp(t) = =L Therefore,
according to (25) we have

oo [ () o [ (.

Since f.(£) > 0 we havel, < 0 so that, by Lemma 2, we also havg, < 0.

Moreover, Lemma 2 yields
Ix _ Ic

Ly — I
Theorem 1 follows now directly from (25), (28) and (27). O

&=

(28)

Remark 1.By Theorem 3.6 in [13] (see also [11]) the minimization problem

win [ (#(Val)
%) J o=

uEWOI’l( s
admits a unique solution, which is radially symmetric (and decreasing). More-
over, by (11) in [13] we know that its derivativ€ (r) (with respect tor = |z|)
satisfies the Euler-Lagrange inclusierf: € 0f..(u}(r)). Whenf € C*(IR4)
andf is strictly increasing and strictly convex the above inclusion simply becomes
ul(r) = —(f")7' (%), see Remark 1 in [20] for related results concerning the

S

corresponding Euler equation. O

Proof of Corollary 1.Take/ > 0 ands2 = (0, ¢)", then{2®* = By and

14 L
L(2) = (=2 aft)=H""102) = 2n(l —2t)"*

L—2t 14

Then, by (25) and by the change of variables * 1/25 , we infer
z/w}t/" 1/n
I = —nwn/ -1y, <”” t) dt . (30)
0 2 n

This, together with (28) and (27), yields the estimaté of O

Remark 2.A more elegant form of the estimate &imay be obtained by using the
convexity of f,. Indeed, by (27) we obtain

1/TL [/wl/n

w n t
I, — I < - "(f) = .
s IC_< 5 )wn/o t(f)<n)dt
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This, together with (28) and (27), yields

1/n
w’!‘L

wl/mn
(1= ) fo/ e () (L) dt

nfy g (£) de

However, the estimate in the statement of Corollary 1 is sharper and therefore we
will not make use of the latter. O

Proof of Corollary 2.The constants and functions relative to the poly@gsh are

givenbyWom = pcos =, Ry, = py/ ms;fr%’i s (£) = 2m (pcos = — t) tan =,
Um(t) = 5 (pcos Z — t). Therefore, (25) and the change of variables p cos =
— t yield

I
pcos I

I;C:—2mtan£ Sf« (f) ds .
m 0 2

Moreover, (27) and the change of variables /.- cot - ¢ yield

m

5 I
pCos o7

I, = metanz Sfx ((Tmf) ds .
m Jo 2

Sincef.(§4/ %) > 0, we havel,; < 0 (for all m) and the estimate &, follows
from (28). O

Proof of Theorem ZThe constant$V;, R and the functions, v relative tof? are
given in (29). Then, by (7) and (27) we get

Cfor!" 5 ~y s
|Is] ~ nw / "y dt = ———— asl{ — 0.
’ " Jo n? (n+ J)wf/nn‘s_l

Furthermore, by (7) and (30) we obtain

2fwk/™ IRLIALE) y s
—1Wn +
[T ann7/0 t" 55 3 dt = " 5)25n5_1€” as!{ — 0.

Taking the ratio and applying (28) shows tléat(defined in (6)) tends to the value
in (8) as? — 0. O

Proof of Theorem 3Since0 < v(t) < Wy, for everyt € [0, W], we have that
0 < f.(v(t)) < fu(Wgq) for everyt € [0, W], hence by (25) we get

Wa

We
el = [ a0 < £.0Va) [ aode

0
= £,(Wa)L(R2) = f.(Wo)wnR™ . (31)
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By (3) and the assumptiod¥, < M and f.(Wg) > 0, we may findg > 0
such that’==l2) = W, Sincef. is the polar function off.., we havef. (z) >
Bz — f.«.(B) for everyz > 0. Then, by (27) we get

R o ¢ R . t

Rn+1 "

From the definition ofs we have thatt > f.(Wy)/W, hence

f(Wea) (R n
> - W .
|Is| Z Wn Wo n+ 1 oR (32)
The conclusion now follows from (31) and (32). O

Proof of Theorem 4By the very definition of polar function we have thft. (s) >
sWa— f«(Wgq) foreverys > 0, hencef..(s) > f(s) = max{0, sWpo—f.(Wq)}
for everys > 0. Let us define the functional

J = [ (F0va) = ude, we Wy (@),

By [9,10,29] we have that the functian(z) = =0V2) (2 90), z € 2,is a

2
minimizer of J on W, (£2). Sincef.. > f we deduce that

~ Wa
inf J>.J(0) = _f(Wa) L(£2,) dt,
Wit (9) We 0

where we have used (25) applied foand the fact thatf, (s) = £+{*2)s for
s € [0, Wg,]. The estimate (10) then follows. O

Proof of Corollary 3.For every fixed3 > 0 we have thatf.(z) > 8z — fu(0),
for everyz > 0. Then

WQ WQ
/ () fo(v(t)) dt > / a(®)[Br(t) — fur(B) di (33)
0 0

Wa

=0 a(t)v(t)dt — fu (B)L(2).  (34)

0
From (10) and (33)—(34) we have that

Wa Fes(B)L(2)
£2 B 35
~ fi(Wq) [ fOW”a(t)V(t)dt (35)
The right hand side in (35) is maximized choosifige 0f.({o), with (o =
Y] 2 o (t)(t) dt, obtaining

f«(C0)/Co
£ Wa) Wa -
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Since the map — f.(z)/zis monotone increasing 40, +o0), then (11) follows.
Concerning (12), by (11) it is enough to prove that

1 Wa Wa L(£2)
L’(Q)/O a(t)v(t)dt > hrl (36)

We recall thatA(t) = a(t)v(t) = [V a(s)ds = L(2,), t € [0, W)]. From

t
the Brunn-Minkowski theorem (see [6]) we have that the function = A(t)*/"

is concave orf0, Wy,]. Sincey(0) = £(2)Y/™ andy (W) = 0 we deduce that
~(t) > %?(WQ —t),t € [0,Wg], hence

Wa B Wa ﬁ(_Q) Wea . _E(Q)WQ
0 A(t)dt_/o (0= 5 /0 (Wo -ty de = =252,

and (36) is proved. O

Proof of Theorem Srirst note that

P

£16) = Flo) == Lostr (37)

Next, we remark that ifi € W, ' (£2) minimizes.J, thenw solves (15)7 €
Wol”( ) andw > 0 on {2. By multiplying the equation in (15) by and by
integrating by parts we obtain

/Q\VH\I’:/QE, (38)

s _ l1-p [ _
f(s) = =, uminimizesJ] — J@u)=—— [ @. (39)
D p 2

so that

Sinceu > 0in £2, by (38) and by definition o, we have|, u < = By (39)
this gives

1-— 1
I, =J@ > TPSW

Therefore, by definition of and by (25) (withf, given by (37)) we get

8:

~| ~
i‘a

> ST /WI2 a(t)r7I(t)dt . O (40)

0

Proof of Proposition 3By separating the variables one finds that the unique solution
w of (14) is given by

_ T — a2 sin|( 2k + )7z
u(zr,y) = 3 Z

(2k + 1)3(er+Dm 4 1)
X {exp [(2k + 1)7ry] + exp[(% + )71 —y)]}.
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Therefore, by (39) we have

1
L, = J(u) = — ¢ u
@)= [ @
1 8 > L(2k+1)m _ 1 1
==Y € ~ —0.0175721.  (41)

24 " w5 L R 4T (2 + 1)P

On the other hand, we hawd, = 1, a(t) = 4(1 — 2t), v(t) = L2,
fi(s) = § Therefore, (25) yields

112 5 1
Ix = —= 1—2t)%dt = —— .
em—g | a-arta-—g
This, together with (41), give§ = 0.889. O

Proof of Proposition 4By arguing as in the proof of Proposition 3 we find that the
unique solutionz of (14) is given by

lx — 22 3 40?7 & sin[(2k + 1)7z]

2 3 ~ (2k + 1)3(e@k+1)7/C 4 1)

x { exp[(2k + 1)my/0] + exp[(2k + )7 (1 —y)/4]} .

ﬂ('x’ y) =

Therefore, by (39) we have

1 /3 84 0 (2k+1)7r/£_1 1
J(ﬂ):——/ﬂ:——+—§ c
n

2 24 " w5 L eCRDT/E LT (2k 4+ 1)°

Since the sum of the series is bounded away frema and0 as¢ — 0, we infer

that
3

J(@) = 75—4 +o(£?) as{ — 0. (42)

In order to evaluate the minimum of over &, note that in this case we have
Wo = £ anda(t) = 2(1 + £ — 4t), v(t) = 200220 Then, from (25) we get

2(1+0—4t) *
1[92 (0= 26)2(1 — 2t)2
Iic = Ixc(f) = —= dt
k= Ixll) 4/0 1+ 0—4t
1 1-7¢ l
=—(1-0%log—— 4+ —(1+7—4
A e A vty )
03 5
—_ﬁ‘f'O(E) asl/! = 0.
This, together with (42) proves thét— 1 as¢ — 0. O

Proof of Proposition 5The unique solutiom of (14) is given by

b2 _ b2$2 _ y2

@ y) = 2(1 + b?)
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Then, if B; denotes the unit ball ifiR?, by (39) we infer
1
I** = u) = —— u
T =3 /Q !

——bg/ (1 - 22— y?)dad ™ (43)
a0+ Jp, YR = T80 )

The boundary of the ellips® may be represented parametricallyras cos 6,
y = bsind, 6 € [0, 2x]. The outward normal vector has components

bcos @ sin 6
\/sin29 + b2 cos? 6 \/sin29 + b2 cos? 0 ,
and therefore a parametric representatiof@f (0 <t < b= Wy)forz,y >0
is given by

cosf

\/(12 sin? 6 + b2 cos? 0 ™
sin 0 o€ [9,5, 2} ’ (44)

r=acosf —tb

y=0bsinf — ta

\/a2 sin? 6 + b2 cos2 0

p ) t2 — bt
¢ = arcsin 4/ max [bQ(l—bQ)’ O} .

where

This value o, comes from the fact thatif> v? then two different inward normal

segments t@{2 of lengtht may intersect. In particular, for these valueg,ab(2;

63

is not a regular curve and this tells us that any web function which is not constant

on 2y is not inC*(£2).
From (44) we infer that fox, y > 0 we have
sin 0
(sin O + b2 cos? )3/2
cosf
(sin? @ + b2 cos2 §)3/2

T =—sinf+tb -
0 c [&,5}

1y = bcos b — tb?
and therefore

w/2
aft) = 4 / VIEOP + 5O)F do
0
w/2 th
:4/ |:\/Sin20+b2C0829:| do
0

sin? 6 + b2 cos? 0

Moreover,

£@) =5 [ (wdy—ydn

/2 th?
:2/ [b—( —tV/sin? 0 + b2 cos2 0
04

sin? @ + b2 cos2 §)3/2

t2b
+—————1| df
sin? 0 + b2 cos? 9]
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On the other hand, by (25) we havg = f% Ob ﬁa((t) +) ¢t and a numerical
computation with Mathematica allows to determine the approximate valu€s of
given in the statement of Proposition 5.

Finally, if b — 1, by the explicit value of(t) and£({2;) found above and by
Lebesgue Theorem, we haliey,_,1 Ixx = —x/16 which, together with (43), gives

limbﬁlg = 1. O

Proof of Proposition 6By (37) we see thaf satisfies (7) withh = p/(p — 1). By
a rescaling argument one sees thain (6) is independent of. Then, the result
follows from Theorem 2. O

Proof of Proposition 7Consider the modified functional
:/ V1+|Vul2 —u,
2

so that/, (u) = J(u) + L£(£2) for all u € W' (£2) and we can argue instead on

the functional/, (see also Proposition 1) and obtain
mingex Jy(u) — 0"

infuewol,l(Q) JJr(u) —

Therefore, we consider the function(s) = +1+s2. Then, g.(s) =
—+/1 — s2 which is defined ifs € [0, 1] (we only need to consider> 0).

If w minimizes.J, andu; minimizes the “symmetrized functionalS;, by
Lemma 2 and (27) we get

Ji(w)= min / V14 |Vu|? —u = nw, 4
weWwl(29) V14 |u |2

Z/nwl/”
:wn/ i/ n? — r2dr=w,n"*! / rTIV1 —r2dr .
0 0

On the other hand, (25) yields
0/2
I = / (€ — 26)m=1/In2 — (0 = 20)2dt
0
£/2n
= onpntl / r" /1 — r2dr .
0

The estimate of now follows by applying (28) and (45). O
Proof of Proposition 8We havef,.(t) = hi(t) if 0 < ¢t < tq, fu(t) = at +b

if t1 <t <t f**(t) = ho(t) if ty < t, wheret; = ,/%,tg =/ g

a=2 0“” b= . Moreover, the polar function is given bf (t) = £ jf

5:

(45)

n—1

Ogtga,f*():@—fyn‘tza,andbyCoroIIarylweget

YRV T
JEVT (LT ae

E >
L)/
SV Lf(Lyat
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Hence, the result follows after integration. O

Proof of Proposition 9Let f be as in (20), thetf...(s) = 0if s € [0,1], fix(s) =
s —11if s € [1,2], and+oco elsewhere. For akt € (0,1) consider the function
fo(s) =0if s € [0,1 +¢], fo(s) = 57==if s € [1 +¢,2], and+oo elsewhere.
Denote byJ.. e J. the functionals associated o, and f.

Jou(u) = /Q FullVul) =], Jo(u) = /Q e Vul) — ]

Since f.(s) > max{0, 7~ (s — 1 — )} and since;:- > 1 + 5, by Theorem 1

in [10] we have that the (unique) minimum of J. over W, (£2) is given by
ue(x) = (1 + ¢)d(x,02) and hence

L > min J. = J(ue) = —é(1+€)4
wh 1(9) 3
where we have used the fact that< f.
Next, note that in this case we halg, = 1 +
v(t) = (1+e—t)/2andf.(s) = sif s € [0,1], fu(s
Hence, by (25) we infer

g, a(t) =81 +¢e—1),
)=2s—1if s € [1,00).

1+e 1+
I,C:f/O alt) f. (v(t)) dt 74/0 (1+5—t)2dt:f§(1+5)3

We can now conclude that

5:
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