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Abstract. We study a general class of functionals overW 1,1
0 and we approximate their

infimum by means of the minimum in the space of web functions. We provide several tools
for estimating this approximation and we study in detail some meaningful models.

1 Introduction

LetΩ be an open bounded convex domain ofIRn (n ≥ 2), let f : IR+ → IR be a
lower semicontinuous (l.s.c.) function and consider the functionalJ defined by

J(u) =
∫
Ω

[f(|∇u|) − u] dx .

This kind of functionals (with possibly nonconvex functionsf ) arises from various
fields of mathematical physics and optimal design, see [3,5,23,24]. We study the
following problem of existence of minima,

min
u∈W 1,1

0 (Ω)
J(u) .

It is well-known that iff is not convex and superlinear then the minimum may not
exist. In such case, one usually introduces the relaxed functional and considers its
minimum, which coincides with the minimum ofJ if the latter exists. In particular,
we mention a problem from elasticity [5,22,23]: we wish to place two different
linearly elastic materials (of different shear moduli) in the plane domainΩ so as to
maximize the torsional rigidity of the resulting rod; moreover, the proportions of
these materials are prescribed. Such a problem may not have a solution, therefore
one may construct new composite materials by mixing them together on a micro-
scopic scale. Mathematically, this corresponds to the introduction of the relaxed
problem which does have a minimum. Hence there exists an optimal design if one
is allowed to incorporate composites. However, the resulting design may not be
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so easy to manufacture and therefore one may try to find an optimal design in a
simpler class of possible designs.

Motivated by this application, we will be concerned with the following mini-
mization problem

min
u∈K

J(u) , (1)

whereK is the subset ofW 1,1
0 (Ω) of functions depending only on the distance

from the boundary∂Ω. As in [19], we callweb functionsthe functions inK and we
recall that whenΩ is a ball, web functions are none other than radially symmetric
functions. Web functions were introduced in order to approximate the infimum of
the functionalJ overW 1,1

0 (Ω). As proved in [14,19], under verymild assumptions
onf , theminimumofJ overK always exists even for nonconvex functionsf . More
precisely, in [19] it is proved that iff is superlinear at infinity andΩ is a regular
polygon inIR2 thenJ admits a unique minimum overK whose explicit form is
given in terms off . This result was extended in [14] to general convex domains
Ω ⊂ IRn (n ≥ 2) and to functionsf with at least linear growth at infinity.

The aim of this paper is to give estimates of the “error” one makes by means of
such approximation. More precisely, thanks to a “normalization” (see Proposition
1 below) we may always reduce our discussion to functionsf satisfyingf(0) = 0
so thatJ(0) = 0; then, by Proposition 2 below we exclude the trivial cases where
the minimum ofJ overW 1,1

0 (Ω) exists and isu ≡ 0 (which is a web function!),
so that the following ratio is well-defined

E =
minu∈K J(u)

infu∈W 1,1
0 (Ω) J(u)

. (2)

SinceK ⊂ W 1,1
0 (Ω) one hasE ∈ [0, 1] andE represents therelative errorof the

above mentioned approximation: the closerE is to 1, the better the approximation
is. The level0 for the functional is chosen as a reference level becauseu ≡ 0 is
the rest function; the value ofE yields the relative error with respect to the rest
function.

The outline of this paper is as follows.
In next section we establish some general estimates ofE : we first obtain a result

by a symmetrization method, namely we estimate the infimum overW 1,1
0 (Ω) by

means of the (explicit) minimum of the corresponding problem in the symmetrized
ball; since we also obtain the explicit value of (1), this yields the estimate.We apply
this result to some particular domainsΩ and we show that for “thin” domains this
estimate loses interest: then, we obtain a different estimate by “truncating and
shifting” the functionf and by applying previous results by Cellina [10]; we show
that this estimate improves the first one for thin domains. We also study in more
detail the case wheref(s) = sp/p (p > 1) and we obtain an estimate ofE which
involves optimal Sobolev embedding constants: in Sect. 4 we show that in some
cases this estimate is sharper than the first two.

In Sect. 3 we consider some meaningful models and we apply our results:
we consider the three cases where the functionf is convex superlinear, convex
asymptotically linear, nonconvex. The results obtained show that the approximation
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by means of web functions is in general satisfactory (E is close to1). The proofs
of all the results are given in Sect. 5.

2 Notation and general results

Let Ω ⊂ IRn (n ≥ 2) be a bounded open convex set and letWΩ denote its
inradius, namely the supremum of the radii of the open balls contained inΩ. The
Lebesgue measure and them-dimensional Hausdorff measure of a setA ⊂ IRn

will be denoted respectively byL(A) andHm(A). We denote byωn = 2πn/2

nΓ (n/2) the

Lebesguemeasure of the unit ballB1 in IRn andwe recall thatHn−1(∂B1) = nωn.
Assume that

f �≡ +∞ is a l.s.c. function s.t. ∃M >
L(Ω)

Hn−1(∂Ω)
∃b ∈ IR , f(s) ≥ Ms − b ∀s ≥ 0 . (3)

The second condition is certainly satisfied iff is superlinear at infinity or ifM >
WΩ , see [14].

We denote byf∗ the polar function off and byf∗∗ the bipolar function off ,
see [17]. It is well-known thatf∗∗ is the greatest convex l.s.c. function which is
pointwise less or equal thanf . Let

σ = max{s ≥ 0; f∗∗(s) = min f∗∗} ; (4)

we also define thenormalized non-decreasing bipolar functionf∗∗ of f by

f∗∗(s) =
{

0 if 0 ≤ s ≤ σ
f∗∗(s) − f∗∗(σ) if s ≥ σ .

Obviously, iff∗∗ is non-decreasing andf∗∗(0) = 0, thenf∗∗ = f∗∗. Finally, we
denote byf∗ the polar function off∗∗ which coincides withf∗ if f(0) = 0 andf
is non-decreasing and convex. Our first result states that any functionf satisfying
(3) may be normalized without altering the minimization problem:

Proposition 1. Assume thatf satisfies(3), let σ be as in(4) and letf∗∗ be the
normalized non-decreasing bipolar function off ; then

inf
u∈W 1,1

0 (Ω)

∫
Ω

[f(|∇u|)−u] = min
u∈W 1,1

0 (Ω)

∫
Ω

[f∗∗(|∇u|)−u]+L(Ω)f∗∗(σ) . (5)

Define the set of web functions relative toΩ

K = {u ∈ W 1,1
0 (Ω); u(x) = u(d(x, ∂Ω)) ∀x ∈ Ω} ,

whered(·, ∂Ω) denotes the distance function from the boundary. We also consider
the one-parameter family of subsets ofΩ defined by

Ωt = {x ∈ Ω; d(x, ∂Ω) > t} ∀t ∈ [0,WΩ ]
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and their boundaries∂Ωt; we clearly haveΩ0 = Ω andΩWΩ
= ∅. In the sequel a

major role is played by the functions

ν(t) =
L(Ωt)

Hn−1(∂Ωt)
, α(t) = Hn−1(∂Ωt) t ∈ [0,WΩ ] .

Consider the functionals

J(u) =
∫
Ω

[f(|∇u|) − u] J∗∗(u) =
∫
Ω

[f∗∗(|∇u|) − u]

and the corresponding values

IK = min
u∈K

J∗∗(u) I∗∗ = min
u∈W 1,1

0 (Ω)
J∗∗(u) .

Note that by the results in [14,19] and by Proposition 1 we have

IK = min
u∈K

J(u) + L(Ω)f∗∗(σ) .

We are concerned with the estimate of the relative errorE defined in (2). With the
above notations we haveE = IK/I∗∗. If I∗∗ = 0, then the problem “degenerates”
(it loses interest) because the web functionu ≡ 0 minimizesJ∗∗; in other words,
we also haveIK = 0 and there is no need to approximate the minimum! In order
to avoid this trivial case, we have to take into account a necessary condition:

Proposition 2. Assume thatf satisfies(3) and thatI∗∗ < 0. Thenf∗(WΩ) > 0.

In order to have the relative errorE well-defined, Proposition 2 tells us that we
have to assume thatf∗(WΩ) > 0; as we will see, in some cases more stringent
assumptions are needed. Note that the conditionf∗(s) = 0 for somes > 0 implies
that the right derivative off∗∗ at0 is greater or equal thans. Hence, if this derivative
vanishes then we havef∗(s) > 0 for everys > 0.

The basic tool which will be used in this paper in order to estimateE is

Theorem 1. LetΩ ⊂ IRn be an open bounded convex set and letR = (L(Ω)
ωn

)1/n.

Assume thatf satisfies(3) andf∗(Rn ) > 0, then

E ≥
∫WΩ

0 α(t)f∗(ν(t))dt

nωn

∫ R

0 tn−1f∗( t
n )dt

= E1 . (6)

This result is obtained bymeans of a symmetrizationmethod, see Sect. 5 below.
In order to useTheorem1, the explicit formof the functionsα(t) andν(t) is needed.
In the next two corollaries we apply Theorem 1 to some particular cases. We first
deal with cubes inIRn:

Corollary 1. Let� > 0,Ω = (0, �)n and assume thatf satisfies(3) andf∗( �

nω
1/n
n

)
> 0. Then,

E ≥
∫ �ω−1/n

n

0 tn−1f∗(
ω1/n

n

2
t
n )dt∫ �ω

−1/n
n

0 tn−1f∗( t
n )dt

.
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Next, we deal with planar regular polygons as domains. As stated in [19, The-
orem 2], when the number of sides tends to infinity, the corresponding sequence
of minimizing web functions converges (in a suitable sense) to the unique radial
minimum in the circumscribed ball. Here, we rephrase this result in a more precise
fashion:

Corollary 2. Let ρ > 0, m ∈ IN (m ≥ 3) and letΩm be a regular polygon ofm

sides inscribed in the ballBρ ⊂ IR2; assume thatf satisfies(3)andf∗(ρ4

√
3
√

3
π ) >

0. LetEm be the corresponding relative error, then

Em ≥
∫ ρ cos π

m

0 tf∗( t2 )dt∫ ρ cos π
m

0 tf∗(σmt
2 )dt

, σm =
√

m

π
tan

π

m
.

In particular, limm→∞ Em = 1.

In the previous result, if one merely wants the asymptotic behavior ofEm, the
assumption onf∗ may be relaxed tof∗(ρ2 ) > 0.

We now study the asymptotic behavior ofE1 in (6) in the case of “vanishing
domains”. To this end, we make a further assumption onf :

∃γ, δ > 0 s.t.f∗(s) ∼ γsδ ass → 0 ; (7)

by this we mean thatf∗(s) = γsδ + o(sδ) ass → 0. This assumption implies that
f∗(s) > 0 for all s > 0 and no further positiveness requirement onf∗ is needed. An
interesting fact is that if we takeΩ to be a cube, thenE1 in (6) tends to a constant
(depending only onn, δ but not on the particular functionf considered) as the
measure of the cube tends to0:

Theorem 2. Let � > 0, letΩ = (0, �)n and assume thatf satisfies(3) and (7);
let E1 be as in(6), then

lim
�→0

E1 =
(ωn

2n
)δ/n

. (8)

Note that the term inside parenthesis in the limit in (8) is just the ratio between
the measure of the unit ball and the measure of the circumscribed cube: of course,
this is a consequence of the symmetrization method.

The next result shows that Theorem 1 loses interest for “thin” domains (i.e.
domainsΩ with a small inradiusWΩ):

Theorem 3. Let Ω ⊂ IRn be an open bounded convex set and assume thatf

satisfies(3) andf∗(WΩ) > 0. LetM be as in(3), letR = (L(Ω)
ωn

)1/n and assume
that

WΩ < min
{
M,

R

2(n+ 1)

}
.

LetE1 be as in(6), then

E1 ≤
(

1
n+ 1

R

WΩ
− 1
)−1

. (9)
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For fixedL(Ω), asWΩ → 0 the ratioR/WΩ tends to infinity and (9) states that
E1 approaches zero. Therefore, for thin domains the estimate (6) is not satisfactory.
In particular, if 0 < λ < � andΩ = (0, �)n−1 × (0, λ) and if we letλ → 0,
thenE1 → 0. Of course, this does not mean that the same is true forE . On the
contrary, we conjecture that the minimum overK well approximates the infimum
overW 1,1

0 (Ω) for a suitable class of thin domains, see Propositions 4 and 5 below.
When dealing with thin domains, the next result seems more useful:

Theorem 4. LetΩ ⊂ IRn be an open bounded convex set such thatWΩ < M ,
assume thatf satisfies(3) andf∗(WΩ) > 0. Then

E ≥ WΩ

∫WΩ

0 α(t)f∗(ν(t))dt

f∗(WΩ)
∫WΩ

0 L(Ωt) dt
= E2 . (10)

To see how Theorem 4 improves Theorem 1 for thin domains, consider the
following example:

Example 1.Let f(s) = s2/2 and letΩ = (0, 1) × (0, 2WΩ), 0 < WΩ ≤ 1/2.
Let us denote byE1(WΩ) and E2(WΩ) respectively the r.h.s. of (6) and (10).
We have thatE2 is monotone decreasing on[0, 1/2], limWΩ→0 E2(WΩ) = 2/3
andE2(1/2) = 3/8. On the other hand,E1 is monotone increasing on[0, 1/2],
approaches0 asWΩ tends to0 andE1(1/2) = π/4. The explicit computation of
E1 andE2 gives thatE2 > E1 for 0 < WΩ < 3π−√

9π2−12π
4π ≈ 0.181.

As a consequence of Theorem 4, we obtain

Corollary 3. Under the assumptions of Theorem 4, one has

E ≥ f∗(ζ)/ζ
f∗(WΩ)/WΩ

, ∀ 0 < ζ ≤ 1
L(Ω)

∫ WΩ

0
L(Ωt) dt . (11)

In particular,

E ≥ (n+ 1)
f∗
(

WΩ

n+1

)
f∗(WΩ)

. (12)

Finally, in the particular case wheref(s) = sp

p for somep > 1, in order to
estimateE , a method involving optimal embedding constants may also be used:
Theorem 5. Letp > 1, Ω ⊂ IRn be an open bounded convex set and assume that
f(s) = sp

p . Let

S = S(Ω) = inf
u∈W 1,p

0 (Ω)
u�=0

∫
Ω

|∇u|p(∫
Ω

|u|)p .

Then

E ≥ S
1

p−1

∫ WΩ

0
α(t)ν

p
p−1 (t) dt = E3 . (13)

In spite of its simple and elegant form, the previous result may not be so easily
applied. Besides the alreadymentioned problem of determining explicitly the func-
tionsα andν, here a major problem is also how to determine the (possibly sharp)
constantS. Nevertheless, in Sect. 4, we quote some examples of planar rectangles
for which Theorem 5 improves Theorems 1 and 4.
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3 Estimates and applications

In this section we discuss the general results given in the previous section and we
apply them to some particularly interesting models.

3.1 Some convex superlinear problems

Consider first the case wheref(s) = s2

2 so that the functionalJ becomes

J(u) =
∫
Ω

( |∇u|2
2

− u

)
dx .

The minimization problem ofJ is associated to the Euler equation{−∆u = 1 in Ω
u = 0 on∂Ω .

(14)

The unique solution of (14) is precisely the minimum of the functionalJ over the
spaceW 1,1

0 (Ω) (in fact the solution is smooth). This equation describes a viscous
incompressible fluid moving in straight parallel streamlines through a straight pipe
of cross sectionΩ, see [28]. In the two-dimensional context, (14) also has different
interpretations, see e.g. [4]: consider the torsion problem of a long cylindrical beam
in IR3 whose axis is thex3 axis and whose uniform cross-sectionΩ is a simply
connected region of the planex1, x2; the state of stress in the interior of the beam
is determined by a warping functionu which satisfies (14).

We restrict our attention to some particular domainsΩ which allow us to obtain
the “exact” value ofE and, as a consequence, to evaluate how fine the estimate of
Theorem 1 is.

We first consider the case of a square:

Proposition 3. If f(s) = s2

2 andΩ = (0, 1)2, thenE ≈ 0.889.

Therefore, in this case the approximation bymeans of web functions is satisfac-
tory sinceE is close to1. In order to compare the value ofE obtained in Proposition
3 with the lower bound forE obtained in Corollary 1, we refer to Proposition 6 be-
low: in the casen = p = 2 it yields the estimateE > 0.785which is approximately
the 88.3% of the value 0.889.

If we shrink the length of two parallel sides of the square to0, then the approx-
imation tends to become optimal:

Proposition 4. Let f(s) = s2

2 , let � ∈ (0, 1) and letΩ = (0, �) × (0, 1). Then
E → 1 as� → 0.

Proposition 4 does not come unexpected; indeed, when� → 0 we can say in
some sense that the problem becomes1-dimensional.

Apart from circles and regular polygons, the simplest planar domains seem to
be ellipses. However, as will be shown in the proof of the next result, the explicit
forms of the functionsα andν are complicated and one has to proceed numerically.
With the aid of Mathematica we obtain
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Proposition 5. Letf(s) = s2

2 , let 0 < b < 1 and let

Ω =
{
(x, y) ∈ IR2; x2 +

y2

b2
< 1
}

.

Then, we have the following approximate values ofE ;

b 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E ≈ 0.895 0.897 0.903 0.914 0.928 0.945 0.962 0.977 0.989 0.997

Moreover,lim
b→1

E = 1.

We point out that even in the simple casef(s) = s2

2 the behavior ofE for thin
rectangles (small� in Proposition 4) and thin ellipses (smallb in Proposition 5)is
not the same. We believe that the non optimal behavior of thin ellipses is due to
their curvature.

Next, we deal with a slightly more general class of functionsf . We consider
the case wheref(s) = sp/p for somep > 1 so that the functional to minimize is

J(u) =
∫
Ω

( |∇u|p
p

− u

)
dx .

Here, the corresponding Euler equation is the degenerate elliptic problem

{−∆pu = 1 in Ω
u = 0 on∂Ω ,

(15)

where∆pu = div(|∇u|p−2∇u). This operator may be used for the description of
some phenomena in glaciology [26,27] and for the study of non-Newtonian fluids
in rheology [2]. We also refer to the introduction in [16] for further applications.
The unique solution of (15) is the minimum of the functionalJ .

An application of Corollary 1 yields

Proposition 6. Letp > 1. If f(s) = sp

p andΩ = (0, 1)n, then

E ≥
(
ω

1/n
n

2

) p
p−1

.

Note that the lower bound forE in Proposition 6 tends to0 asp → 1 (i.e. as the
functional “loses coercivity”) and tends to

√
π

2(n−1)/nn1/nΓ 1/n(n/2)

asp → ∞: in particular, whenn = 2 this limit is about0.886.
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3.2 A convex asymptotically linear problem

Consider the functionf(s) =
√

1 + s2 − 1 so that the functional to minimize is
the following

J(u) =
∫
Ω

(√
1 + |∇u|2 − 1 − u

)
dx .

Associated to the functionalJ we have the Euler equation


−div

( ∇u√
1 + |∇u|2

)
= 1 in Ω

u = 0 on∂Ω
(16)

whose solutions are the celebrated Delaunay surfaces of constant mean curvature,
see [15]. We takef(s) =

√
1 + s2 −1 instead of the usualf(s) =

√
1 + s2 so that

f(0) = 0 andE is well-defined.
In this case we haveM = 1 and if we wish to fulfill (3) the setΩ must be

“sufficiently small”, namely

νΩ(0) =
L(Ω)

Hn−1(∂Ω)
< 1 . (17)

It is well-known [18,21] that ifνΩ(0) exceeds the limit value1 then (16) admits
no solutions, see also [20] for the blow up of theW 1,∞-norms of the solutions of
(16) asνΩ(0) → 1−. This shows that the restriction (17) is not purely technical.
However, in order to apply Theorem 1, a further restriction is needed. Indeed, in
the case whereΩ = (0, �)n, (17) yields� < 2n while in the next result we require
a smaller upper bound for�.

Proposition 7. Letf(s) =
√

1 + s2 − 1, let � ≤ nω
1/n
n and letΩ = (0, �)n. Then

E ≥ 2nnn+1
∫ �/2n
0 rn−1

√
1 − r2dr − �n

ωnnn+1
∫ �/nω

1/n
n

0 rn−1
√

1 − r2dr − �n
. (18)

Note that the integrals in the r.h.s. of (18) may be determined explicitly. In
particular, ifn = 2 then (18) becomes

E ≥
3�2 + 32

(
1 − �2

16

)3/2
− 32

3�2 + 8π
(
1 − �2

4π

)3/2 − 8π

so that the lower bound in (18) is a decreasing function of�.
Note also that ass → 0 we havef∗(s) ∼ s2

2 and therefore, according to

Theorem 2, we havelim
�→0

E ≥ ω2/n
n

4 , ∀n ≥ 2.
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3.3 Some nonconvex problems

Let h1(t) = αt2, h2(t) = βt2 + γ (with α > β > 0, γ > 0) and

f(t) = min{h1(t), h2(t)} , t ≥ 0 , (19)

and consider the functionalJ(u) =
∫
Ω
[f(|∇u|)−u] dx. The problem of minimiz-

ing J over the spaceW 1,1
0 (Ω) arises from elasticity [5,22,23]. We wish to place

two different linearly elastic materials (of shear moduli1
2α and 1

2β ) in the plane
domainΩ so as tomaximize the torsional rigidity of the resulting rod;moreover, the
proportions of these materials are prescribed. By applying Corollary 1 we obtain

Proposition 8. Let � > 0, Ω = (0, �)2 and assume thatf is as in(19), let a =

2
√

αβγ
α−β , then

E ≥ π

4
if � ≤ 2

√
πa

E ≥ πβ(α − β)�4

4α(α − β)�4 − 128παβγ(α − β)�2 + 1024π2α2β2γ2

if 2
√
πa < � < 4a

E ≥ π(α − β)�4 − 128π(α − β)βγ�2 + 4096παβ2γ2

4(α − β)�4 − 128π(α − β)βγ�2 + 1024π2αβ2γ2 if � ≥ 4a .

If � is small, then the minimum ofu of J∗∗ has small gradients|∇u| in the
main part of the squareΩ. Therefore we havef ≈ h1 and the problem reduces to
that of Proposition 6 (withp = 2). This is why we findπ4 as a lower bound forE .
Similarly, if � → ∞ then we havef ≈ h2 and the problem tends again to that of
Proposition 6.

Finally, we consider the case where

f(t) =




0 if t = 1
1 if t = 2
∞ elsewhere.

(20)

This function was studied in [8] in an attempt to simplify the functionf in (19)
by retaining its essential feature of lacking convexity. For simplicity, we only deal
with the case of squaresΩ = (0, �)2 for � > 0. By [10, Theorem 1] we know that
if � ≤ 2 thenE = 1. On the other hand, the functionalJ is known to have no
minimum inW 1,1

0 (Ω) if � ∈ (2, 2 + 2ε) for sufficiently smallε, see [8] (we write
2 + 2ε instead of2 + ε for later convenience). Therefore, we wish to prove that
E → 1 as� → 2+. The next result also gives the rate of such convergence:

Proposition 9. Assume thatf is as in(20) and letε ∈ (0, 1), Ω = (0, 2 + 2ε)2.
ThenE ≥ 1

1+ε .

We point out that this result is not proved by means of the general statements
of Sect. 2.
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4 Some applications of Theorem 5

Throughout this sectionE1, E2 andE3 are respectively the constants defined in (6),
(10) and (13). We show that in some cases we haveE3 > E1 or E3 > E2 so that
Theorem 5 gives a finer estimate ofE than Theorems 1 or 4.

In order to apply Theorem 5 we need to determine the constantS. We give a
lower bound for such constant in planar rectangles:

Lemma 1. Let0 < � < 1 and letΩ = (0, 1) × (0, �). ThenS ≥ 2p/2(1+�)p

�2p−1 .

Proof. By a density argument it suffices to prove that

‖∇v‖pp
‖v‖p1

≥ 2p/2(1 + �)p

�2p−1 ∀v ∈ C∞
c (Ω) s.t.v ≥ 0 . (21)

So, takev ∈ C∞
c (Ω) such thatv(x) ≥ 0 inΩ and denote by∂i = ∂/∂xi (i = 1, 2).

Then, sincev = 0 on ∂Ω, if we denotes+ = max[s, 0] ands− = min[s, 0], we
have ∫ 1

0
[∂1v(ξ1, x2)]+dξ1 +

∫ 1

0
[∂1v(ξ1, x2)]−dξ1

=
∫ 1

0
∂1v(ξ1, x2)dξ1 = v(1, x2) − v(0, x2) = 0 ∀x2 .

Furthermore,∫ 1

0
[∂1v(ξ1, x2)]+dξ1 −

∫ 1

0
[∂1v(ξ1, x2)]−dξ1 =

∫ 1

0
|∂1v(ξ1, x2)|dξ1 ∀x2 .

These two equations show that∫ 1

0
[∂1v(ξ1, x2)]+dξ1 =

1
2

∫ 1

0
|∂1v(ξ1, x2)|dξ1 ∀x2 . (22)

If we proceed similarly with the other variable we obtain∫ �

0
[∂2v(x1, ξ2)]+dξ2 =

1
2

∫ �

0
|∂2v(x1, ξ2)|dξ2 ∀x1 . (23)

Since

v(x1, x2) =
∫ x1

0
∂1v(ξ1, x2)dξ1 =

∫ x2

0
∂2v(x1, ξ2)dξ2 ∀(x1, x2) ∈ Ω ,

by Fubini’s Theorem and (22)-(23) we obtain

‖v‖1 =
∫
Ω

v(x1, x2)dx1dx2

=
1

1 + �

∫
Ω

(
�

∫ x1

0
∂1v(ξ1, x2)dξ1 +

∫ x2

0
∂2v(x1, ξ2)dξ2

)
dx1dx2
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≤ 1
1 + �

∫
Ω

(
�

∫ x1

0
[∂1v(ξ1, x2)]+dξ1+

∫ x2

0
[∂2v(x1, ξ2)]+dξ2

)
dx1dx2

≤ �

1 + �

∫
Ω

(
[∂1v(x1, x2)]+ + [∂2v(x1, x2)]+

)
dx1dx2

=
�

2(1 + �)

∫
Ω

(|∂1v(x1, x2)| + |∂2v(x1, x2)|) dx1dx2 .

Hence, if we use Ḧolder’s inequality and the inequality(a+b)p ≤ 2p/2(a2+b2)p/2

(which holds for alla, b ≥ 0) we get

‖v‖1 ≤ �√
2(1 + �)

[L(Ω)](p−1)/p‖∇v‖p =
�(2p−1)/p
√

2(1 + �)
‖∇v‖p ,

which proves (21). �
Now we prove that ifΩ = (0, 1)2 andp is “close” to 1, thenE3 > E2. Indeed,

Lemma 1 and (13) yield

E3 ≥ p − 1
3p − 2

2(p−2)/(2p−2) .

On the other hand, ifE2 is as in (10), we get

E2 =
p − 1
3p − 2

3
21/(p−1)

and we haveE3 > E2 for p sufficiently close to 1.

Finally, for all p > 1 we havelim
�→0

E3 = p−1
2p−12

(2−3p)/(2p−2) > 0 which,

together with Theorem 3, shows thatE3 > E1 for � small enough.

5 Proofs of the results

Proof of Proposition 1.Any minimizing sequence{um} of both the l.h.s. and
the r.h.s. of (5) may be chosen so that|∇um(x)| ≥ σ for a.e.x ∈ Ω. Hence,∫
f(|∇um|) =

∫
fσ(|∇um|) and the result follows. �

Proof of Proposition 2.For contradiction, iff∗(WΩ) = 0 then by the very definition
of polar function we have thatf∗∗(s) ≥ sWΩ for everys ≥ 0. Sincef∗∗(0) = 0,
from [10, Theorem 1] (see also [9,29]) we conclude that the functionu ≡ 0 is a
minimizer ofJ∗∗ overW

1,1
0 (Ω), contradiction. �

In order to prove Theorem 1, we first recall the basic definitions of the Schwarz
symmetrization, see e.g. [4]. Given the setΩ, we denote byΩs the ball centered
at the origin such thatL(Ωs) = L(Ω). Let u be a real-valued function defined in
Ω, then we define its symmetrized functionus:Ωs → IR by us(x) = sup{µ; x ∈
Ds

µ}, whereDµ = {y ∈ Ω; u(y) ≥ µ}.
In the sequel, we denote

SJ(u) =
∫
Ωs

[f(|∇u|) − u] , Is = min
u∈W 1,1

0 (Ωs)
SJ(u) .
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Explicit form of the minimizing web function.
Consider the functionsν andα defined in Sect. 2 then, the unique web function

w which minimizesJ overK is given by

w(x) = φ(d(x, ∂Ω)) =
∫ d(x,∂Ω)

0
(f∗)′(ν(s))ds . (24)

This follows from formula (6) in [14] and by taking into account that(f∗)′(t) =
(f∗)′−(t) for a.e.t. Indeed, we recall that by Theorem 4.1 in [14] we know that the
functionν is strictly decreasing and therefore(f∗)′(ν(s)) = (f∗)′−(ν(s)) for a.e.
s ∈ [0,WΩ ].

Moreover, by (7) and (8) in [14], the corresponding (minimum) value of the
functional is given by

IK = J(w) =
∫ WΩ

0
α(t)[f(φ′(t)) − φ(t)]dt .

Indeed, from (24), we see thatφ′(t) ≥ 0 for a.e.t and we have|φ′(t)| = φ′(t) for
a.e.t ∈ [0,WΩ ].

Using again the strict monotonicity ofν we have

f((f∗)′(ν(t))) = ν(t) (f∗)′(ν(t)) − f∗(ν(t)) for a.e.t ∈ [0,WΩ ] .

Then, integrating by parts the term inφ (see Lemma 5.6 in [14] whereA(t) =
α(t)ν(t)) we obtain

IK = −
∫ WΩ

0
α(t)f∗(ν(t))dt . (25)

In the case of regular polygons inIR2 an equivalent explicit form ofw andIK
may be given, see [19].

The symmetrization method.
Thanks to well-known results in [1,7] we obtain

Lemma 2. Assume thatf satisfies(3) and thatf is convex and non-decreasing.
Then

inf
u∈W 1,1

0 (Ω)

∫
Ω

[f(|∇u|) − u] ≥ min
u∈W 1,1

0 (Ωs)

∫
Ωs

[f(|∇u|) − u] .

Proof. We show that, for everyu ∈ W 1,1
0 (Ω) we haveJ(u) ≥ SJ(us). Since

J(|u|) ≤ J(u) for all u ∈ W 1,1
0 (Ω), we may assume thatu ≥ 0. Then, by the

properties of the symmetrized function (see [4]) we have∫
Ω

u =
∫
Ωs

us . (26)

Next, by Proposition 2.1 in [7] and by arguing as in the proof of
Lemma 3.1 in [7], one has

∫
Ω
f(|∇u|) dx ≥ ∫

Ωs f(|∇us|) dx. This, together with
(26) concludes the proof. �
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Proof of Theorem 1.For any bounded convex setΩ ⊂ IRn we haveΩs = BR(0)
with R = (L(Ω)

ωn
)1/n andαB(t) = nωn(R − t)n−1, νB(t) = R−t

n . Therefore,
according to (25) we have

Is = −nωn

∫ R

0
(R − t)n−1f∗

(
R − t

n

)
dt = −nωn

∫ R

0
tn−1f∗

(
t

n

)
dt .

(27)
Sincef∗(Rn ) > 0 we haveIs < 0 so that, by Lemma 2, we also haveI∗∗ < 0.
Moreover, Lemma 2 yields

E =
IK
I∗∗

≥ IK
Is

. (28)

Theorem 1 follows now directly from (25), (28) and (27). �

Remark 1.By Theorem 3.6 in [13] (see also [11]) the minimization problem

min
u∈W 1,1

0 (Ωs)

∫
Ωs

[f(|∇u|) − u]

admits a unique solutionus which is radially symmetric (and decreasing). More-
over, by (11) in [13] we know that its derivativeu′

s(r) (with respect tor = |x|)
satisfies the Euler-Lagrange inclusion− r

n ∈ ∂f∗∗(u′
s(r)). Whenf ∈ C1(IR+)

andf is strictly increasing and strictly convex the above inclusion simply becomes
u′
s(r) = −(f ′)−1

(
r
n

)
, see Remark 1 in [20] for related results concerning the

corresponding Euler equation. �

Proof of Corollary 1.Take� > 0 andΩ = (0, �)n, thenΩs = BR and

WΩ =
�

2
R =

�

ω
1/n
n

(29)

L(Ωt) = (� − 2t)n α(t) = Hn−1(∂Ωt) = 2n(� − 2t)n−1

ν(t) =
� − 2t
2n

t ∈
[
0,

�

2

]
.

Then, by (25) and by the change of variabless = �−2t
ω

1/n
n

, we infer

IK = −nωn

∫ �/ω1/n
n

0
tn−1f∗

(
ω

1/n
n

2
t

n

)
dt . (30)

This, together with (28) and (27), yields the estimate ofE . �

Remark 2.A more elegant form of the estimate ofE may be obtained by using the
convexity off∗. Indeed, by (27) we obtain

Is − IK ≤
(

1 − ω
1/n
n

2

)
ωn

∫ �/ω1/n
n

0
tn(f∗)′

(
t

n

)
dt .
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This, together with (28) and (27), yields

E ≥ IK
Is

≥ 1 − (1 − ω1/n
n

2 )
∫ �/ω1/n

n

0 tn(f∗)′
(
t
n

)
dt

n
∫ �/ω

1/n
n

0 tn−1f∗
(
t
n

)
dt

.

However, the estimate in the statement of Corollary 1 is sharper and therefore we
will not make use of the latter. �

Proof of Corollary 2.The constants and functions relative to the polygonΩm are

givenbyWΩm = ρ cos π
m ,Rm = ρ

√
m sin 2π

m

2π ,αm(t) = 2m
(
ρ cos π

m − t
)
tan π

m ,

νm(t) = 1
2

(
ρ cos π

m − t
)
. Therefore, (25) and the change of variabless = ρ cos π

m− t yield

IK = −2m tan
π

m

∫ ρ cos π
m

0
sf∗

(s
2

)
ds .

Moreover, (27) and the change of variabless =
√

π
m cot π

m t yield

Is = −2m tan
π

m

∫ ρ cos π
m

0
sf∗

(
σm

s

2

)
ds .

Sincef∗(ρ4

√
3
√

3
π ) > 0, we haveIs < 0 (for allm) and the estimate ofEm follows

from (28). �

Proof of Theorem 2.The constantsWΩ , R and the functionsα, ν relative toΩ are
given in (29). Then, by (7) and (27) we get

|Is| ∼ nωn

∫ �/ω1/n
n

0
tn−1γ

tδ

nδ
dt =

γ

(n+ δ)ωδ/n
n nδ−1

�n+δ as� → 0 .

Furthermore, by (7) and (30) we obtain

|IK| ∼ nωnγ

∫ �/ω1/n
n

0
tn−1ω

δ/n
n

2δ
tδ

nδ
dt =

γ

(n+ δ)2δnδ−1 �
n+δ as� → 0 .

Taking the ratio and applying (28) shows thatE1 (defined in (6)) tends to the value
in (8) as� → 0. �

Proof of Theorem 3.Since0 ≤ ν(t) ≤ WΩ for everyt ∈ [0,WΩ ], we have that
0 ≤ f∗(ν(t)) ≤ f∗(WΩ) for everyt ∈ [0,WΩ ], hence by (25) we get

|IK| =
∫ WΩ

0
α(t)f∗(ν(t)) dt ≤ f∗(WΩ)

∫ WΩ

0
α(t) dt

= f∗(WΩ)L(Ω) = f∗(WΩ)ωnR
n . (31)
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By (3) and the assumptionsWΩ < M andf∗(WΩ) > 0, we may findβ > 0
such thatf∗∗(β)

β = WΩ . Sincef∗ is the polar function off∗∗, we havef∗(z) ≥
βz − f∗∗(β) for everyz ≥ 0. Then, by (27) we get

|Is| = nωn

∫ R

0
tn−1f∗

(
t

n

)
dt ≥ nωn

∫ R

0
tn−1

[
β
t

n
− f∗∗(β)

]
dt

= ωnβ

(
Rn+1

n+ 1
− WΩR

n

)
.

From the definition ofβ we have thatβ ≥ f∗(WΩ)/WΩ , hence

|Is| ≥ ωn
f∗(WΩ)
WΩ

(
Rn+1

n+ 1
− WΩR

n

)
. (32)

The conclusion now follows from (31) and (32). �
Proof of Theorem 4.By the very definition of polar function we have thatf∗∗(s) ≥
sWΩ−f∗(WΩ) for everys ≥ 0, hencef∗∗(s) ≥ f̂(s) = max{0, sWΩ−f∗(WΩ)}
for everys ≥ 0. Let us define the functional

Ĵ(u) =
∫
Ω

[f̂(|∇u|) − u] dx, u ∈ W 1,1
0 (Ω).

By [9,10,29] we have that the function̂u(x) = f∗(WΩ)
WΩ

d(x, ∂Ω), x ∈ Ω, is a

minimizer ofĴ onW 1,1
0 (Ω). Sincef∗∗ ≥ f̂ we deduce that

inf
W 1,1

0 (Ω)
J ≥ Ĵ(û) = −f∗(WΩ)

WΩ

∫ WΩ

0
L(Ωt) dt,

where we have used (25) applied tôJ and the fact that̂f∗(s) = f∗(WΩ)
WΩ

s for
s ∈ [0,WΩ ]. The estimate (10) then follows. �
Proof of Corollary 3.For every fixedβ > 0 we have thatf∗(z) ≥ βz − f∗∗(β),
for everyz ≥ 0. Then∫ WΩ

0
α(t)f∗(ν(t)) dt ≥

∫ WΩ

0
α(t)[βν(t) − f∗∗(β)] dt (33)

= β

∫ WΩ

0
α(t)ν(t) dt − f∗∗(β)L(Ω) . (34)

From (10) and (33)–(34) we have that

E ≥ WΩ

f∗(WΩ)

[
β − f∗∗(β)L(Ω)∫WΩ

0 α(t)ν(t) dt

]
. (35)

The right hand side in (35) is maximized choosingβ ∈ ∂f∗(ζ0), with ζ0 =
1

L(Ω)

∫WΩ

0 α(t)ν(t) dt, obtaining

E ≥ f∗(ζ0)/ζ0
f∗(WΩ)/WΩ

.
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Since themapz �→ f∗(z)/z is monotone increasing on(0,+∞), then (11) follows.
Concerning (12), by (11) it is enough to prove that

1
L(Ω)

∫ WΩ

0
α(t)ν(t) dt ≥ WΩ L(Ω)

n+ 1
. (36)

We recall thatA(t) = α(t)ν(t) =
∫WΩ

t
α(s) ds = L(Ωt), t ∈ [0,WΩ ]. From

the Brunn-Minkowski theorem (see [6]) we have that the functionγ(t) = A(t)1/n

is concave on[0,WΩ ]. Sinceγ(0) = L(Ω)1/n andγ(WΩ) = 0 we deduce that
γ(t) ≥ L(Ω)

WΩ
(WΩ − t), t ∈ [0,WΩ ], hence

∫ WΩ

0
A(t) dt =

∫ WΩ

0
γn(t) dt ≥ L(Ω)

WΩ
n

∫ WΩ

0
(WΩ − t)n dt =

L(Ω)WΩ

n+ 1
,

and (36) is proved. �
Proof of Theorem 5.First note that

f∗(s) = f∗(s) =
p − 1
p

s
p

p−1 . (37)

Next, we remark that ifu ∈ W 1,1
0 (Ω) minimizesJ , thenu solves (15),u ∈

W 1,p
0 (Ω) andu > 0 on Ω. By multiplying the equation in (15) byu and by

integrating by parts we obtain∫
Ω

|∇u|p =
∫
Ω

u , (38)

so that

f(s) =
sp

p
, u minimizesJ =⇒ J(u) =

1 − p

p

∫
Ω

u . (39)

Sinceu > 0 in Ω, by (38) and by definition ofS, we have
∫
Ω
u ≤ S

1
1−p . By (39)

this gives

I∗∗ = J(u) ≥ 1 − p

p
S

1
1−p .

Therefore, by definition ofE and by (25) (withf∗ given by (37)) we get

E =
IK
I∗∗

≥ S
1

p−1

∫ WΩ

0
α(t)ν

p
p−1 (t) dt . �� (40)

Proof of Proposition 3.By separating the variables one finds that the unique solution
u of (14) is given by

u(x, y) =
x − x2

2
− 4

π3

∞∑
k=0

sin[(2k + 1)πx]
(2k + 1)3(e(2k+1)π + 1)

× {
exp[(2k + 1)πy] + exp[(2k + 1)π(1 − y)]

}
.
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Therefore, by (39) we have

I∗∗ = J(u) = −1
2

∫
Ω

u

= − 1
24

+
8
π5

∞∑
k=0

e(2k+1)π − 1
e(2k+1)π + 1

1
(2k + 1)5

≈ −0.0175721 . (41)

On the other hand, we haveWΩ = 1
2 , α(t) = 4(1 − 2t), ν(t) = 1−2t

4 ,

f∗(s) = s2

2 . Therefore, (25) yields

IK = −1
8

∫ 1/2

0
(1 − 2t)3dt = − 1

64
.

This, together with (41), givesE ≈ 0.889. �
Proof of Proposition 4.By arguing as in the proof of Proposition 3 we find that the
unique solutionu of (14) is given by

u(x, y) =
�x − x2

2
− 4�2

π3

∞∑
k=0

sin[(2k + 1)πx]
(2k + 1)3(e(2k+1)π/� + 1)

× {
exp[(2k + 1)πy/�] + exp[(2k + 1)π(1 − y)/�]

}
.

Therefore, by (39) we have

J(u) = −1
2

∫
Ω

u = − �3

24
+

8�4

π5

∞∑
k=0

e(2k+1)π/� − 1
e(2k+1)π/� + 1

1
(2k + 1)5

.

Since the sum of the series is bounded away from+∞ and0 as� → 0, we infer
that

J(u) = − �3

24
+ o(�3) as� → 0 . (42)

In order to evaluate the minimum ofJ overK, note that in this case we have
WΩ = �

2 andα(t) = 2(1 + � − 4t), ν(t) = (�−2t)(1−2t)
2(1+�−4t) . Then, from (25) we get

IK = IK(�) = −1
4

∫ �/2

0

(� − 2t)2(1 − 2t)2

1 + � − 4t
dt

=
1

256
(1 − �)4 log

1 − �

1 + �
+

�

128
(1 + �2 − 4�)

= − �3

24
+ o(�3) as� → 0 .

This, together with (42) proves thatE → 1 as� → 0. �
Proof of Proposition 5.The unique solutionu of (14) is given by

u(x, y) =
b2 − b2x2 − y2

2(1 + b2)
.
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Then, ifB1 denotes the unit ball inIR2, by (39) we infer

I∗∗ = J(u) = −1
2

∫
Ω

u

= − b3

4(1 + b2)

∫
B1

(1 − x2 − y2)dxdy = − πb3

8(1 + b2)
. (43)

The boundary of the ellipseΩ may be represented parametrically asx = cos θ,
y = b sin θ, θ ∈ [0, 2π]. The outward normal vector has components(

b cos θ√
sin2 θ + b2 cos2 θ

,
sin θ√

sin2 θ + b2 cos2 θ

)
,

and therefore a parametric representation of∂Ωt (0 ≤ t < b = WΩ) for x, y ≥ 0
is given by


x = a cos θ − tb

cos θ√
a2 sin2 θ + b2 cos2 θ

y = b sin θ − ta
sin θ√

a2 sin2 θ + b2 cos2 θ

θ ∈
[
θt,

π

2

]
, (44)

where

θt = arcsin

√
max

[
t2 − b4

b2(1 − b2)
, 0
]
.

This value ofθt comes from the fact that ift > b2 then two different inward normal
segments to∂Ω of lengtht may intersect. In particular, for these values oft, ∂Ωt

is not a regular curve and this tells us that any web function which is not constant
onΩb2 is not inC1(Ω).

From (44) we infer that forx, y ≥ 0 we have


ẋ = − sin θ + tb
sin θ

(sin2 θ + b2 cos2 θ)3/2

ẏ = b cos θ − tb2
cos θ

(sin2 θ + b2 cos2 θ)3/2

θ ∈
[
θt,

π

2

]

and therefore

α(t) = 4
∫ π/2

θt

√
|ẋ(θ)|2 + |ẏ(θ)|2 dθ

= 4
∫ π/2

θt

[√
sin2 θ + b2 cos2 θ − tb

sin2 θ + b2 cos2 θ

]
dθ .

Moreover,

L(Ωt) =
1
2

∫
∂Ωt

(x dy − y dx)

= 2
∫ π/2

θt

[
b − tb2

(sin2 θ + b2 cos2 θ)3/2
− t
√

sin2 θ + b2 cos2 θ

+
t2b

sin2 θ + b2 cos2 θ

]
dθ .
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On the other hand, by (25) we haveIK = − 1
2

∫ b

0
L2(Ωt)
α(t) dt and a numerical

computation with Mathematica allows to determine the approximate values ofE
given in the statement of Proposition 5.

Finally, if b → 1, by the explicit value ofα(t) andL(Ωt) found above and by
Lebesgue Theorem, we havelimb→1 IK = −π/16which, together with (43), gives
limb→1 E = 1. �
Proof of Proposition 6.By (37) we see thatf satisfies (7) withδ = p/(p − 1). By
a rescaling argument one sees thatE1 in (6) is independent of�. Then, the result
follows from Theorem 2. �
Proof of Proposition 7.Consider the modified functional

J+(u) =
∫
Ω

√
1 + |∇u|2 − u ,

so thatJ+(u) = J(u) + L(Ω) for all u ∈ W 1,1
0 (Ω) and we can argue instead on

the functionalJ+ (see also Proposition 1) and obtain

E =
minu∈K J+(u) − �n

infu∈W 1,1
0 (Ω) J+(u) − �n

. (45)

Therefore, we consider the functiong(s) =
√

1 + s2. Then, g∗(s) =
−√

1 − s2 which is defined ifs ∈ [0, 1] (we only need to considers ≥ 0).
If u minimizesJ+ andus minimizes the “symmetrized functional”SJ , by

Lemma 2 and (27) we get

J+(u)≥ min
u∈W 1,1

0 (Ωs)

∫
Ωs

√
1 + |∇u|2 − u = nωn

∫ R

0

rn−1√
1 + |u′

s(r)|2
dr

=ωn

∫ R

0
rn−1

√
n2 − r2dr=ωnn

n+1
∫ �/nω1/n

n

0
rn−1

√
1 − r2dr .

On the other hand, (25) yields

IK =
∫ �/2

0
(� − 2t)n−1

√
4n2 − (� − 2t)2dt

= 2nnn+1
∫ �/2n

0
rn−1

√
1 − r2dr .

The estimate ofE now follows by applying (28) and (45). �
Proof of Proposition 8.We havef∗∗(t) = h1(t) if 0 ≤ t ≤ t1, f∗∗(t) = at + b

if t1 ≤ t ≤ t2, f∗∗(t) = h2(t) if t2 ≤ t, wheret1 =
√

βγ
α(α−β) , t2 =

√
αγ

β(α−β) ,

a = 2
√

αβγ
α−β , b = βγ

β−α . Moreover, the polar function is given byf∗(t) = t2

4α if

0 ≤ t ≤ a, f∗(t) = t2

4β − γ if t ≥ a, and by Corollary 1 we get

E ≥
∫ �/

√
π

0 tf∗(
√
π

4 t)dt∫ �/
√
π

0 tf∗( t2 )dt
.
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Hence, the result follows after integration. �
Proof of Proposition 9.Let f be as in (20), thenf∗∗(s) = 0 if s ∈ [0, 1], f∗∗(s) =
s − 1 if s ∈ [1, 2], and+∞ elsewhere. For allε ∈ (0, 1) consider the function
fε(s) = 0 if s ∈ [0, 1 + ε], fε(s) = s−1−ε

1−ε if s ∈ [1 + ε, 2], and+∞ elsewhere.
Denote byJ∗∗ eJε the functionals associated tof∗∗ andfε

J∗∗(u) =
∫
Ω

[f∗∗(|∇u|) − u] , Jε(u) =
∫
Ω

[fε(|∇u|) − u] .

Sincefε(s) ≥ max{0, 1
1−ε (s − 1 − ε)} and since 1

1−ε ≥ 1 + ε, by Theorem 1

in [10] we have that the (unique) minimumuε of Jε overW
1,1
0 (Ω) is given by

uε(x) = (1 + ε)d(x, ∂Ω) and hence

I∗∗ ≥ min
W 1,1

0 (Ω)
Jε = Jε(uε) = −4

3
(1 + ε)4 ,

where we have used the fact thatfε ≤ f .
Next, note that in this case we haveWΩ = 1 + ε, α(t) = 8(1 + ε − t),

ν(t) = (1 + ε − t)/2 andf∗(s) = s if s ∈ [0, 1], f∗(s) = 2s − 1 if s ∈ [1,∞).
Hence, by (25) we infer

IK = −
∫ 1+ε

0
α(t)f∗(ν(t)) dt = −4

∫ 1+ε

0
(1 + ε − t)2 dt = −4

3
(1 + ε)3 .

We can now conclude that

E =
IK
I∗∗

≥ 1
1 + ε

. ��
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Anal. Non Lińeaire14, 1997, 339–352
11. A. Cellina, S. Perrotta, On minima of radially symmetric functionals of the gradient,

Nonlinear Anal.23 (1994), 239–249



66 G. Crasta, F. Gazzola

12. G. Crasta, On theminimumproblem for a class of non-coercive non-convex functionals,
SIAM J. Control Optim.38 (1999), 237–253

13. G. Crasta, Existence, uniqueness and qualitative properties of minima to radially sym-
metric non-coercive non-convex variational problems, Math. Z.235, 2000, 569–589

14. G. Crasta, Variational problems for a class of functionals on convex domains, to appear
in J. Differential Equations
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