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Abstract. For a class of anisotropic elliptic problems in bounded domains Ω we
show that the convexity of Ω plays an important role in regularity and nonexistence
results. Using recent results in [9] we improve some statements in [3].

1. Introduction. Let Ω ⊂ Rn (n ≥ 3) be a smooth bounded domain, consider n
numbers mi ≥ 2 for all i = 1, ..., n, take λ > 0 and p > 1. In a recent paper [3],
it was shown that existence and nonexistence results for nontrivial solutions to the
following anisotropic quasilinear elliptic problem




−
n∑

i=1

∂i

(|∂iu|mi−2∂iu
)

= λup−1 in Ω

u ≥ 0 in Ω
u = 0 on ∂Ω

(1)

are in fact related to the regularity of the solutions to the following “coercive regu-
larized” problem



−

n∑

i=1

∂i

[
(|∂iw|mi−2 + ε(1 + |Dw|2)(m−−2)/2)∂iw

]
+ λ|w|p−2w = f in Ω

w = 0 on ∂Ω
(2)

where ε > 0, m− := min{m1, . . . , mn} and f is a smooth function; here and in the
sequel, ∂i = ∂/∂xi for i = 1, ..., n.

If mi = 2 for all i, then (1) reduces to the widely studied semilinear equation
−∆u = λup−1. In recent years, an increasing interest has turned towards anisotropic
problems. With no hope of being complete, let us mention the pioneering works on
anisotropic Sobolev spaces [6, 11, 14, 15, 16] and more recent regularity results for
anisotropic problems [1, 2, 4, 8, 9, 10, 19].
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280



ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS 281

Since the anisotropy in (1) weights differently each single partial derivative, one
expects the geometry of the domain Ω to play a crucial role in related results. This
is precisely what happens for optimal Sobolev embedding theorems which only
hold under suitable assumptions on the geometry of Ω, see examples and counter-
examples in [6, 14, 15].

In view of these facts, also results concerning (1) and (2) should strongly de-
pend on the geometry of Ω. In the present note, we show that the regularity and
nonexistence results in [3] can be strengthened provided the domain Ω is convex.
In [3] it was shown that any weak solution of (1) (see Definition 1 below) is in fact
bounded whenever p is at most critical in a suitable sense; by taking advantage of
recent results in [9] (see also [8]), in Theorem 1 we prove that if Ω is convex then the
solutions are also globally Lipschitz continuous. Similarly, the full C2,γ regularity
of the solution of (2) was obtained in [3] assuming that the exponents mi’s are not
too spread; it was also suggested in [3, Problem 3] that this condition could possibly
be removed. In Theorem 2, we show that this assumption can indeed be dropped,
whenever Ω is convex. By combining a nice idea by Otani [12] with the celebrated
Pohožaev identity [13], one can show that this regularity result for (2) is related to
nonexistence results for (1) when the exponent p is critical with respect to Sobolev
inequality. As a consequence, for convex domains Ω we can drop again the assump-
tion on the mi’s in [3]: in Theorem 3 we obtain a nonexistence result for (1) for at
least critical exponents p in convex α-starshaped domains Ω (see Definition 2).

This paper is organized as follows. In next section we introduce the basic tools
needed to study (1) and (2) and we state our results. The proofs are postponed to
the last section.

2. Results. Throughout the paper we assume that Ω is an open bounded domain
of Rn. Further, we always require that the exponents p and mi’s appearing in (1)
satisfy

p > 1 , mi ≥ 2 ∀i = 1, ..., n ,

n∑

i=1

1
mi

> 1 (3)

(notice that, as a consequence, we necessarily have n ≥ 3). Set

m− := min{m1, . . . , mn} , m+ := max{m1, . . . , mn} ,

m∗ =
n∑n

i=1
1

mi
− 1

, m∞ = max{m+,m∗} .

For every q ∈ [1, +∞] we denote by q′ := q/(q − 1) its conjugate exponent. Let
m = (m1, ...,mn), and denote by W 1,m

0 (Ω) the closure of C∞c (Ω) with respect to
the norm

‖u‖1,m =
n∑

i=1

‖∂iu‖mi .

When the exponents mi’s are not “too far apart”, the critical exponent for the
embedding W 1,m

0 (Ω) ⊂ Lq(Ω) is m∗ (which coincides with nm/(n −m), the usual
critical exponent for the harmonic mean m of the mi’s). On the other hand, if the
mi’s are “too much spread out” it coincides with m+. Therefore, since possibly
m+ > m∗, the effective critical exponent is in fact m∞. In [3] it was shown that
existence results for (1) are quite different according to whether m∞ equals m∗ or
m+.

Let us first make clear what we mean by solution of (1):
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Definition 1. We say that u ∈ W 1,m
0 (Ω) ∩ L(p−1)m′

∞(Ω) is a weak solution of (1)
if u ≥ 0 a.e. in Ω and

n∑

i=1

∫

Ω

|∂iu|mi−2∂iu∂iv = λ

∫

Ω

up−1v ∀v ∈ W 1,m
0 (Ω) . (4)

If in addition u ∈ L(p−1)m′
−(Ω), we say that u is a mild solution. If u ∈ L∞(Ω) we

say that u is a strong solution.

In [3, Theorem 2] it was proved that every weak solution to (1) is actually a
strong solution provided one of the following situations occurs

(i) p < m∞ (ii) p = m∞ and m∞ > m+ .

Here we strengthen such result with the following (note that no regularity is assumed
on the boundary):

Theorem 1. Assume that the exponents mi’s and p satisfy (3), and that one of the
above conditions (i) or (ii) holds. If u is a weak solution to (1), then, u ∈ W 1,∞

loc (Ω).
Moreover, if Ω is convex, then u ∈ W 1,∞(Ω).

In a completely different fashion we also prove a regularity result for the coercive
problem (2):

Theorem 2. Assume that Ω is convex with ∂Ω ∈ C2,γ , and that the exponents mi’s
and p satisfy (3). Let λ > 0 and f ∈ C∞c (Ω). Then, for all ε > 0, problem (2)
admits a unique (classical) solution w ∈ C2,γ(Ω).

This statement should be compared with [3, Theorem 5], where the same thesis
was obtained on possibly non convex domains under the additional assumption
m+/m− < (n + 2)/n, here dropped.

If we keep the convexity assumption on the domain Ω, thanks to Theorem 2 we
may also improve the nonexistence result obtained in [3, Theorem 6] for problem (1)
in the at least critical case p ≥ m∗. Such result is stated on α-starshaped domains,
according to the definition below applied with

αi = n

(
1

mi
− 1

m∗

)
; (5)

notice that the above αi are all strictly positive provided

m+ < m∗ . (6)

Definition 2. Let α = (α1, ..., αn) ∈ Rn with αi > 0 for all i. We say that a
bounded smooth domain Ω ⊂ Rn is α-starshaped with respect to the origin if

n∑

i=1

αixiνi ≥ 0 on ∂Ω , (7)

with ν = (ν1, . . . , νn) denoting the outer normal to ∂Ω. We say that Ω is strictly
α-starshaped with respect to the origin if (7) holds with strict inequality. If these
inequalities hold after replacing xi by xi−Pi, we say that Ω is (strictly) α-starshaped
with respect to the center P = (P1, . . . Pn). If Ω is (strictly) α-starshaped with
respect to some of its points, we simply say that Ω is (strictly) α-starshaped.
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We refer to [3] for some properties of α-starshaped domains. Let us just mention
that a convex domain is not necessarily α-starshaped and that a simple example of
a convex α-starshaped domain (for any α) is a ball.

We can now state our main nonexistence result:

Theorem 3. Assume that Ω is convex with ∂Ω ∈ C2,γ , and that the exponents mi’s
and p satisfy (3) and (6). Let α = (α1, ..., αn) with αi as in (5). Assume that either
p > m∗ and Ω is α-starshaped, or p = m∗ and Ω is strictly α-starshaped. Then, for
every λ > 0, the unique mild solution of (1) is u ≡ 0.

3. Proofs. We first prove Theorem 2. To this end, we establish a uniform boundary
gradient estimate; it can essentially be drawn from [5, Chapter XIV], but for the
sake of completeness we enclose a quick proof via a barrier argument.

Lemma 1. Assume that Ω is convex, and let u ∈ C2(Ω) ∩ C1(Ω) be a solution to
the boundary value problem

{
Qu := aij(Du)Diju + b(x, u) = 0 in Ω
u = 0 on ∂Ω ,

where the operator Q is elliptic, the function b = b(x, z) is nonincreasing in z, and
the following structure condition holds for some nondecreasing function µ on R+:

|b(x, z)| ≤ µ(|z|)aij(ξ)ξiξj for |ξ| ≥ µ(|z|) . (8)

Then there exists a constant C = C(M, µ(M)), with M = supΩ |u|, such that
|Du| ≤ C on ∂Ω.

Proof. For x0 ∈ ∂Ω, let P = P(x0) be a hyperplane with x0 ∈ P ∩ Ω = P ∩ ∂Ω,
and set d(x) := dist(x,P). Define the parameters k and a by

k := (µ(M))2eMµ(M) and a :=
eMµ(M) − 1

k
.

We claim that the functions

w± := ±ψ(d) = ± 1
µ(M)

log(1 + kd) ,

are respectively a so-called upper and lower barrier at x0 for the function u and the
operator Q on the neighborhood N of x0 given by N := {x ∈ Ω : d(x) < a}. Were
this claim proved, the lemma would follow at once. Indeed recall that, by definition
of upper and lower barrier, one has

(i) ±Qw± < 0 in N ∩ Ω;
(ii) w±(x0) = 0;
(iii) w− ≤ u ≤ w+ on ∂(N ∩ Ω).

Then the comparison principle ensures that w− ≤ u ≤ w+ in N ∩ Ω; using (ii), it
follows ∂w

∂ν

−
(x0) ≤ ∂u

∂ν (x0) ≤ ∂w
∂ν

+
(x0), and so

|Du(x0)| ≤ ψ′(0) = µ(M)eMµ(M) =: C .

It remains to show that w± are actually barriers. Let us check that w+ satisfies
conditions (i)-(iii) above (the check for w− being completely analogous). One has

Qw+ = ψ′(d)aij(Dw+)Dijd + ψ′′(d)aij(Dw+)DidDjd + b(x,w+)

=
ψ′′(d)

(ψ′(d))2
aij(Dw+)Diw

+Djw
+ + b(x,w+) .
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Now observe that, for all x ∈ N ∩ Ω, there holds

|Dw+(x)| = ψ′(d(x)) =
k

µ(M)(1 + kd(x))
≥ k

µ(M)(1 + ka)
= µ(M) ≥ µ(w+(x)) ,

where in the last inequality we have used the fact that µ is nondecreasing and
w+(x) ≤ ψ(a) = M in N ∩ Ω. Hence, by (8) and using again the monotonicity of
µ, we get

Qw+ ≤
{ ψ′′(d)

(ψ′(d))2
+ µ(M)

}
aij(Dw+)Diw

+Djw
+ = 0 ,

and (i) is proved. Condition (ii) is immediately satisfied. Finally, also (iii) is
fulfilled since, for x ∈ ∂(N ∩ Ω), there holds w+(x) ≥ 0 = u(x) if x ∈ ∂Ω ∩N , and
w+(x) = M ≥ u(x) otherwise.

Another tool needed for the proof of Theorem 2 is the following Leray-Schauder
principle (see [7]):

Lemma 2. Let X be a Banach space and let T : X → X be a compact operator.
Assume that there exists K > 0 such that ‖x‖X ≤ K for all x ∈ X satisfying
x = σTx for some σ ∈ [0, 1]. Then, T has a fixed point.

Proof of Theorem 2. It is not restrictive to assume that λ = 1. Fix γ ∈ (0, 1). For
all v ∈ C1,γ(Ω) define

b(x, v) := f(x)− |v|p−2v ,

ai(x, v) := |∂iv|mi−2 + ε(1 + |Dv|2)(m−−2)/2 (i = 1, ..., n) ,

and consider the following linear problem


−

n∑

i=1

∂i

(
ai(x, v)∂iu

)
= b(x, v) in Ω

u = 0 on ∂Ω .

(9)

By Theorem 6.16 in [5], problem (9) admits a unique solution u ∈ C2,γ(Ω).
Hence, together with the compact embedding C2,γ(Ω) ⊂ C1,γ(Ω), (9) defines a
compact operator T : C1,γ(Ω) → C1,γ(Ω) such that Tv = u = unique solution of
(9).

Take σ ∈ [0, 1] and assume that u ∈ C1,γ(Ω) solves u = σTu, namely


−

n∑

i=1

∂i

(
ai(x, u)∂iu

)
= σb(x, u) in Ω

u = 0 on ∂Ω ;
(10)

then, we just said that u ∈ C2,γ(Ω).
We want now to prove uniform (w.r.t. σ) boundedness for solutions of (10). Set

k := (sup |f |)1/(p−1) and Ωk := {x ∈ Ω : |u(x)| > k}. By multiplying the equation
in (10) with ϕ = (sign u)max{|u| − k, 0} and integrating over Ω, we have

∫

Ωk

n∑

i=1

|∂iu|mi ≤
∫

Ωk

[ n∑

i=1

|∂iu|mi + ε(1 + |Du|2)(m−−2)/2|Du|2
]

= σ

∫

Ωk

(|u| − k)[f · (signu)− |u|p−1] ≤ 0 ,

which shows that
‖u‖∞ ≤ k ∀σ ∈ [0, 1] . (11)
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Now, observe that the boundary value problem (10) satisfies the assumptions of
Lemma 1. Indeed, the first equation in (10) can be written under the form

aij(Dv)Dijv + b(x, v) = 0 ,

where the coefficients aij satisfy the ellipticity condition aij(ξ)ξiξj ≥ ε|ξ|2, and the
structure condition (8) is fulfilled: in fact, for |ξ| ≥ µ(|z|) :=

{
(‖f‖∞+|z|p−1)/ε

}1/3,
there holds

|b(x, z)| = ∣∣f(x)− |z|p−2z
∣∣ ≤ ‖f‖∞ + |z|p−1

= εµ3(|z|) ≤ εµ(|z|)|ξ|2 ≤ µ(|z|)aij(ξ)ξiξj .

Then, taking (11) into account, Lemma 1 gives a uniform boundary gradient bound:

∃C > 0 such that |Du| ≤ C on ∂Ω ∀σ ∈ [0, 1] . (12)

In turn, together with Theorems 15.6 and 13.2 in [5], (12) gives a uniform C1,γ-
bound, namely

∃C > 0 such that ‖u‖C1,γ(Ω) ≤ C ∀σ ∈ [0, 1] . (13)

This enables us to apply Lemma 2 and ensures the existence of a solution u ∈
C2,γ(Ω) of problem (2). On the other hand, a solution of (2) is a critical point of
the integral functional

J(u) =
∫

Ω

[
j(Du) +

1
p
|u|p − fu

]
,

with j(ξ) :=
n∑

i=1

|ξi|mi

mi
+

ε

m−

(
1 + |ξ|2)m−/2. Therefore, the uniqueness of the

solution follows by the strict convexity of the functional J .

Proof of Theorem 1. By [3, Theorem 2], we have u ∈ L∞(Ω). The local Lipschitz
continuity follows from Example 4 of [8] with the choices gi(t) = tmi−1 and ai ≡ 1.
(See also Example 7 of [9]).

The global Lipschitz continuity is only a little harder. We follow the argument
in [17, Theorem 5] (or [18, Theorem 7.2]) except that those references assume that
the solution is continuously differentiable in Ω; in other words, since we already
have an interior gradient bound, we must construct a barrier to deduce a global
gradient bound. This may be done as in the proof of Theorem 2. Indeed, (8) may
be satisfied recalling that u is bounded and that by (3)

δ := min
|ξ|≥1

n∑

i=1

|ξi|mi

mi
> 0 .

To deduce the claimed global bound, fix a point x0 ∈ Ω and set R =dist(x0, ∂Ω).
It follows from the just mentioned barrier argument that |u(x)| ≤ CR in B(x0, R).
Then, the form of the gradient estimate in [8] (with ρ there equal to R here, so the
quantity σ/ρ in the last display on page 518 of [8] is bounded by a known constant)
implies that Du is bounded in B(x0, R/2) by a constant independent of R. Hence
u is globally Lipschitz.

Proof of Theorem 3. Since the solution in Theorem 2 is smooth up to the boundary,
we may write the corresponding Pohožaev identity [13]. Then, repeating the same
steps in the proof of [3, Theorem 6] (a suitable double passage to the limit, inspired
by a nice paper of Otani [12]), one obtains Theorem 3.
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Poincaré A.N.L., 17 (2000), 147–168.
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