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Abstract

We study a variant of the classical safe landing optimal control problem in aerospace engi-
neering, introduced by Miele [14], where the target was to land a spacecraft on the moon by
minimizing the consumption of fuel. A more modern model consists in replacing the space-
craft by a hybrid gas-electric drone. Assuming that the drone has a failure and that the thrust
(representing the control) can act in both vertical directions, the new target is to land safely
by minimizing time, no matter of what the consumption is. In dependence of the initial data
(height, velocity, and fuel), we prove that the optimal control can be of four different kinds, all
being piecewise constant. Our analysis covers all possible situations, including the nonexistence
of a safe landing strategy due to the lack of fuel or for heights/velocities for which also a total
braking is insufficient to stop the drone.
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1 Introduction

In 1962 Miele [14, Section 4.8] raised the question of how to land safely a spacecraft on the moon
surface (a so-called moon lander), so as to use the least possible amount of fuel. This problem was
solved by Meditch [13] in 1964, by using tools from optimal control theory. Nowadays, this became
a classical problem and it is mentioned in most of the textbooks on optimal control theory, see e.g.
[8, 9]. A more modern model consists in replacing the spacecraft with a hybrid gas-electric drone,
see Figure 1. A complete answer to the original question requires a painstaking analysis of several
critical curves in the phase space. We recently revisited this problem in [10] and we emphasized a
possible misunderstanding and confusion between these critical curves.

It is our purpose to tackle here a different, but related, optimal control problem. Imagine that
the drone has a failure during flight so that the target becomes to land safely in the least possible
time: how should a pilot drive the drone on the moon surface in a minimum time? To model this
problem, we introduce the variables

h(t) = height of the drone at time t, v(t) = ḣ(t) = velocity of the drone,
m(t) = mass of the drone, α(t) = thrust at time t.

Therefore, we have the physical constraint that h(t) ≥ 0 for all t, see again Figure 1.

Figure 1: Illustration of the moon lander (or drone) problem.

The function α(t) plays the role of the control. While in the classical problem in [14] the thrust
can act only as a brake against gravity, which translates into the constraint that 0 ≤ α(t) ≤ 1, for
our minimum time problem it acts in both directions (upwards and downwards), which translates
into −1 ≤ α(t) ≤ 1; it is precisely this additional freedom for α which distinguishes the two
problems. If α(t) = 0, the thrust is switched off and the drone is in free fall, while α(t) > 0 (resp.
α(t) < 0) means that the thrust is applied against gravity (resp. in the direction of gravity). As
the gas (or fuel) is burnt, the mass m(t) of the drone changes over time with a rate of change
inversely proportional to α(t). According to Newton’s second law, the motion of the drone is then
(the upward direction is the positive direction)

m(t)ḧ(t) = −gm(t) + α(t). (1.1)

Since the target is to land safely in the least possible time, the minimization problem reads

min P (α) := τ =

∫ τ

0
dt (1.2)

where τ is the first time when h(t) = v(t) = 0, among the solutions (v, h,m, α) of the 3× 3 system
ḣ(t) = v(t)

v̇(t) = −g + α(t)
m(t)

ṁ(t) = −k|α(t)|

(1.3)
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with some initial conditions

h(0) = h0 > 0, v(0) = v0, m(0) = m0 ≥ ms, (1.4)

where m0 represents total initial mass (the sum of the initial mass of fuel plus the mass ms of the
empty drone). Too heavy drones cannot land safely because their weight would be larger than the
full braking power of the thrust. This leads to the inequality gms < 1 which says that the free
fall of an empty drone can be slowed down. But, clearly, if the drone is empty there is no fuel to
burn... Then it is physically more realistic to assume that

gm0 < 1 , (1.5)

so that the thrust is able to slow down the drone even if it is full of fuel. As outlined in [10], the
failure of (1.5) also has a mathematical consequence since the so-called safe landing curve has a
turning point. Therefore, (1.5) is unavoidable in a reasonable physical and mathematical setting.

Modern techniques of optimal control theory, introduced in the 1980s (see e.g. [15, 16], the
textbooks [1, 3, 7, 11, 12] and the references therein), are often used in literature to study aerospace
problems. This approach is well described in the survey article [17], where the author shows how to
combine usual techniques of optimal control theory, as the Pontryagin Minimum Principle (PMP),
and results of geometric nonlinear optimal control, to analyze some aerospace models. It is out of
reach to provide an exhaustive list of references dealing with aerospace problems, let us just mention
a few of them. In [6], the optimal control reentry problem of a spatial shuttle is set in the geometric
framework. In [4, 5], local geometric results are combined with numerical simulations and conjugate
point arguments. More recently, [2] deals with geometric analysis and numerical algorithm, based on
indirect methods, and provides high numerical precision for optimal trajectories; see also [18] that
contains a refined geometric study of the extremals coming from PMP, which allows to implement
efficient numerical methods solving the problem of the guidance of a rocket.

According to [17], in order to determine optimal trajectories the first step is to make explicit
the minimization conditions from the PMP, while geometric tools provide a complement to the
PMP whenever it gives insufficient information about the optimal control problem. However, in
our particular model, the PMP leads to a precise description of the optimal control. To fully solve
the minimum time problem for the safe landing of the drone, by using the PMP in Theorem 1
we show that the possible optimal controls are only of four kinds, depending on the switch on/off
of the thrust. In Theorem 3 we order these four possible controls, we establish which of them
better performs in minimizing the landing time. Then we turn to the characterization of the
optimal control. In Theorem 4 we give a full response: for any triad of initial data (v0, h0,m0) we
determine explicitly the optimal control.

The last purpose of the present paper is focused on the applications. Theorem 5 provides precise
“friendly” instructions to the pilot of the drone in order to reach a safe landing in minimum
time. These instructions are complemented with the analysis of how the optimal control varies in
dependence of the initial mass m0 (amount of fuel): this is described in Figure 5. These proofs are
quite lengthy and involve a large number of basic (but quite delicate) computations throughout
the paper; this is the price to pay for having precise answers to these practical aerospace queries.
We also complement these instructions with some numerics: in Section 4, we quote some numerical
results that show how disregarding the precise instructions (hence, performing a wrong manoeuvre),
the pilot cannot safely land the drone.

All the proofs are postponed to Section 5. Some further remarks and possible future perspectives
are collected in Section 6.
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2 Characterization of the optimal control

In this section we determine the candidates optimal controls. In the first result we find the possible
forms of admissible controls, namely controls able to steer the solution of (1.3) safely to rest, that
is, with the physical constraints that (v(τ), h(τ)) = (0, 0) for some τ > 0 and h(t) > 0 for t ∈ (0, τ).
Since controls may be discontinuous, here and in the sequel their characterization is intended a.e.
in [0, τ ], without further mention.

Theorem 1. Let m0 > ms and (v0, h0) ∈ R×R+ \ {(0, 0)} be fixed. If α is an optimal control for
the minimum time problem (1.2)-(1.3), then there exist 0 ≤ t1 ≤ t2 < τ such that

α(t) =


−1 if t ∈ [0, t1)

0 if t ∈ (t1, t2)

1 if t ∈ (t2, τ ].

(2.1)

Theorem 1, whose proof is given in Section 5.1, shows that, if it exists, the optimal control can
take four possible forms. Let us characterize all of them in the following definition.

Definition 2. We say that α is a {−1, 0, 1}-control if there exist 0 < t1 < t2 < τ such that

α(t) = −1 in [0, t1), α(t) = 0 in (t1, t2), α(t) = 1 in (t2, τ ].

Similarly, we define a {−1, 1}-control and a {0, 1}-control (with a unique switch time in (0, τ)), and
a {1}-control (with no switch time). When admissible, these four kinds of controls will be called
eligible.

As stated in the following theorem, whose proof is postponed to Section 5.2, there exists a
hierarchy between eligible controls allowing to deduce which of them is the optimal one.

Theorem 3. Assume (1.4). If an optimal control α for (1.2)-(1.3) exists, then it is necessarily
eligible, see Definition 2. Therefore, if no eligible control exists, then the optimal control problem
has no solution. Moreover:
• if there exists an admissible {1}-control, then it is unique, no other eligible controls exist and,

hence, it is optimal;
• if there exists an admissible {−1, 1}-control, then it is the unique optimal one;
• there exist at most two {−1, 0, 1}-controls, and if a {−1, 0, 1}-control exists, the optimal one

has the largest switch time t1;
• if there exist no admissible {−1, 1}-control, no admissible {−1, 0, 1}-control, and there exists

an admissible {0, 1}-control, then the latter is unique and it is optimal.

The overall analysis will allow to deduce both when eligible controls exist, and their optimality.
The existence of a {1}-control means that full braking is the unique possible strategy for a safe
landing. If it exists, a {−1, 1}-control is the optimal one since it accelerates towards safe landing
as much as possible, then it fully brakes. The remaining cases require some free fall time (α = 0)
since the fuel is not enough to be used at all time.

All the four cases in Theorem 3 may occur, but Theorem 3 does not explain which is the optimal
control, depending on the initial conditions. Theorem 3 is used in the next section, in order to
provide exact instructions for pilots of the drone for a safe landing, depending on the position,
velocity, and mass at the time where the failure occurs.
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3 Instructions for the pilot

In this section we determine the initial data (v0, h0,m0) ∈ R × R+ × [ms, 1/g) that allow for a
safe landing of the drone, namely there exists a control α and τ ∈ [0,∞) such that the solution of
(1.3) satisfies h(τ) = v(τ) = 0. In Theorem 4 we classify the data in dependence of the optimal
control that they require, according to Theorem 3, while in Theorem 5 we translate the results into
instructions for the pilot of the drone, in order to reach a safe landing on the moon surface. We
introduce several auxiliary functions whose graphs are the boundaries of the regions in the phase
plane (v, h) that contain initial data allowing for a safe landing.

Once the mass of the empty drone ms > 0 is given, consider the function

v 7→ Ψ(ms, v) :=
m0 +ms

k2

[
1 +

g

2
(m0 −ms)

]
− m0

k
v − 2

k2

√
m0mse

(
g(m0−ms)−kv

)
/2 , v ∈ R ,

and the values

v−ms
:=

g

k
(m0 −ms)−

1

k
log

m0

ms
< 0 , v+

ms
:=

g

k
(m0 −ms) +

1

k
log

m0

ms
> 0 . (3.1)

In Section 5.3 we prove that v 7→ Ψ(ms, v) is strictly decreasing and that there exists a unique
vms ∈ (0, v+

ms
) satisfying Ψ(ms, v) > 0 in [v−ms

, vms) and Ψ(ms, vms) = 0, see Figure 2. Moreover,
these numbers enable us to define another positive and strictly decreasing function

v 7→ Γm0(v) , ∀v ∈ [v−ms
, 0] , Γm0(0) = 0 ,

see the precise definition in (5.23). We also introduce the equation of the critical parabola

h+
v2

2g
= R(m0) , for v ∈ (v−ms

, Vm0 ], where

Vm0 :=
√

2gR(m0) and R(m0) :=
ms −m0

k2
+

1

2gk2
log2 m0

ms
+
ms

k2
log

m0

ms
;

(3.2)

the point (Vm0 , 0) is where the critical parabola intersects the v-axis for v > 0, see Figure 2.
We notice that

Ψ(ms, v
−
ms

) = R(m0)−
(v−ms

)2

2g
= Γm0(v−ms

). (3.3)

Next we define, for v ∈ [|v−ms
|, v+

ms
], the function

P0(v) :=R(m0)− v2

2g + v
gk + m0−ms

k2
− 1

gk2
log m0

ms
+

m0+ms+
1
g log

m0
ms
−kvg

k2
log

m0+ms
2 +

1
2g log

m0
ms
−kv2g

m0
. (3.4)

Then P0(|v−ms
|) = R(m0)− |v

−
ms |2
2g and P0(v) > R(m0)− v2

2g for all v > |v−ms
|. In Lemma 10 in Section

5.3 we prove that there exists a unique wms ∈ (vms , v
+
ms

) such that P0(v) > 0 in [|v−ms
|, wms) and

P0(wms) = 0. Figure 2 depicts the points and curves defined above, in the two cases vms ≶ Vm0

that may both occur, see Lemma 24.
In order to simplify notations, we finally introduce the function

Z(v) :=

 R(m0)− v2

2g if v−ms
≤ v ≤ |v−ms

|

P0(v) if |v−ms
| ≤ v ≤ wms

. (3.5)

In Remark 11 below we show that Z ∈ C1[v−ms
, wms ], which justifies the smooth graph in Figure 2.

The main theorem on existence of optimal controls in dependence on the initial data then reads

5



Figure 2: Two different mutual positions between the curves appearing in Theorem 4.

Theorem 4. Let (v0, h0,m0) ∈ R× R+ × [ms, 1/g).
(i) if either v0 < v−ms

, or v0 ∈ [v−ms
, 0) and h0 < Γm0(v0), or v0 ≥ v−ms

and h0 > Z(v0), then there
exists no admissible control;

(ii) if v0 ∈ [v−ms
, 0) and h0 = Γm0(v0), then there exists a unique eligible control which is the

optimal one, it is a {1}-control;
(iii) if either v0 ∈ (v−ms

, 0] and Γm0(v0) < h0 ≤ Ψ(ms, v0), or v0 ∈ (0, vms ] and 0 ≤ h0 ≤
Ψ(ms, v0), then there exists a unique {−1, 1}-control, the optimal one; there exists at most a further
eligible control, a {0, 1}-control;

(iv) if v0 ∈ (v−ms
, |v−ms

|] and h0 = R(m0)− v20
2g , then there exists a unique eligible control which is

the optimal one, it is a {0, 1}-control;
(v) if either v0 ∈ (v−ms

, wms ] and max{0,Ψ(ms, v0)} < h0 < Z(v0) (if v0 > vms also h0 = 0 is
allowed), or v0 ∈ (|v−ms

|, wms ] and h0 = P0(m0), then there exist at most one {0, 1}-control and
two {−1, 0, 1}-controls. A {−1, 0, 1}-control certainly exists, and the optimal one is the {−1, 0, 1}-
control with the largest first switch time.

If v0 > v−ms
in (ii), or h0 < Ψ(ms, v0) in (iii), then some fuel is left at landing. In all the other

cases landing occurs with no fuel left.

Item (i) in Theorem 4 defines both a “crash-region” and a “lack-of-fuel-region”. If v0 ∈ [v−ms
, 0)

and 0 < h0 < Γm0(v0), then the drone is too close to the moon and the thrust is not powerful
enough to guarantee a safe landing, the drone will reach the surface of the moon (h = 0) with
negative velocity (v < 0) and it will crash. If v0 ∈ [v−ms

, wms ] and h0 > Z(v0), then the drone does
not contain enough fuel to allow safe landing.

In Figure 3 we depict the regions of the (v, h)-plane with different optimal controls, according
to Theorem 4. This region is divided in four subregions. The {1}-region and the {0, 1}-region

Figure 3: Initial data (v0, h0) allowing for a safe landing and associated optimal controls.
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merely consist in arcs of lines whose equations are, respectively, h = Γm0(v) and h+ v2

2g = R(m0).
The {−1, 1}-region and the {−1, 0, 1}-region have nonempty interior but they are neither open nor
closed. The {−1, 1}-region contains the part of its boundary where h = Ψ(ms, v) and where h = 0
but not the part where h = Γm0(v). The {−1, 0, 1}-region contains the part of its boundary where

h = P0(v) and where h = 0 but not the parts where h = Ψ(ms, v) and h+ v2

2g = R(m0).
We complement Theorem 4 with the a 3D-visualization of the dynamics of (1.3) in correspondence

of the optimal control. The first picture in Figure 4 represents the orbit for a {1}-optimal control,

Figure 4: Dynamics in the 3D phase space, following the controls in Theorem 4.

with no switch and the m-component strictly decreasing in time, starting from m0 and stopping at
some m(τ) ∈ [ms,m0). The second picture represents the orbit for a {−1, 1}-optimal control, with
one switch and the m-component strictly decreasing in time, starting from m0 and stopping at
some m(τ) ∈ [ms,m0). The third picture represents the orbit for a {−1, 0, 1}-optimal control, with
two switches and the m-component strictly decreasing in the first and third time interval, while it
is constant in the second interval; in this case there is total fuel consumption so that m(τ) = ms.
The fourth picture represents the orbit for a {0, 1}-optimal control, with one switch and the m-
component being constant in the first interval and strictly decreasing in the second interval; also
in this extremal case there is total fuel consumption and m(τ) = ms.

In general, the residual amount of fuel at landing is m(τ)−ms. In the next statement, we exclude
the trivial case where (v0, h0) = (0, 0) for which there is no dynamics and τ = 0.

Theorem 5. Let (v0, h0,m0) ∈ R× R+ × [ms, 1/g).
(i) If v0 ∈ [v−ms

, 0) and h0 = Γm0(v0) then the optimal control is α(t) ≡ 1 in [0, τ ], where τ > 0 is
the unique solution of

v0 = gτ +
1

k
log

(
1− kτ

m0

)
. (3.6)

(ii) If either v0 ∈ (v−ms
, 0] and Γm0(v0) < h0 ≤ Ψ(ms, v0), or v0 ∈ (0, vms ] and 0 ≤ h0 ≤ Ψ(ms, v0),

then the optimal control is α(t) ≡ −1 in [0, t1) and α(t) ≡ 1 in (t1, τ ], where τ > t1 > 0 is the
unique couple solving the system

v0 = gτ +
1

k
log

m0(m0 − kτ)

(m0 − kt1)2
, h0 =

2t1 − τ
k

− g

2
τ2 +

m0

k2
log

(m0 − kt1)2

m0(m0 − kτ)
. (3.7)

Moreover, if h0 = Ψ(ms, v0), then m(τ) = ms, hence

t1 =
m0

k
−
√
m0ms

k
e(g(m0−ms)−kv0)/2 , τ =

m0 −ms

k
. (3.8)

(iii) If v0 ∈ (v−ms
, |v−ms

|] and h0 = R(m0) − v20
2g , then the optimal control is α(t) ≡ 0 in [0, t2) and

α(t) ≡ 1 in (t2, τ ], where

t2 =
v0

g
+

1

gk
log

m0

ms
− m0 −ms

k
, τ =

v0

g
+

1

gk
log

m0

ms
. (3.9)
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Moreover, there is no fuel left at landing: m(τ) = ms.
(iv) If one of the following couples of conditions holds

v0 ∈ (v−ms
, |v−ms

|] and Ψ(ms, v0) < h0 < R(m0)− v20
2g ,

v0 ∈ (|v−ms
|, Vm0 ] and max{0,Ψ(ms, v0)} < h0 ≤ R(m0)− v20

2g (if v0 > vms also h0 = 0 is allowed),

v0 ∈ (|v−ms
|, wms ] and h0 = P0(v0) ,

then the optimal control is α(t) ≡ −1 in [0, t1), α(t) ≡ 0 in (t1, t2), and α(t) ≡ 1 in (t2, τ ], where
0 < t1 < t2 < τ is the unique triple solving the system

τ = m0−ms
k + (t2 − t1), v0 = gτ − 1

k log (m0−kt1)2

m0ms
,

h0 +
v20
2g = −m0−ms

k2
+ 1

2gk2
(kv0 − g(m0 −ms)) log m0

ms

+2t1
k + 1

2gk2

(
log m0

ms
+ g(m0 +ms)− kv0

)
log (m0−kt1)2

m0ms
.

(3.10)

(v) System (3.10) admits two triples of solutions 0 < ti1 < ti2 < τ i (i = 1, 2) if v0 ∈ (|v−ms
|, wms ] and

max
{

0, R(m0)− v20
2g ,Ψ(ms, v0)

}
< h0 < P0(v0) ,

(if v0 > max{Vm0 , vms} also h0 = 0 is allowed). If t11 > t21, the optimal control is α(t) ≡ −1 in
[0, t11), α(t) ≡ 0 in (t11, t

1
2), and α(t) ≡ 1 in (t12, τ

1].
In all the other cases, there exists no admissible control and safe landing is impossible either because
of the lack of fuel (too large distance or velocity) or of an unavoidable crash (drone initially too
close to the moon surface).

Finally, we describe how the (planar) regions of initial data (v0, h0) ∈ R×R+ allowing for a safe
landing change as the mass m0 −ms of initial fuel varies. The rigorous statement would be quite
lengthy and unpleasant. Therefore, we prefer to describe graphically the results in Figure 5, where
the gray lines represent the deformation of the black ones when increasing the initial amount of
fuel. The full justifications are provided in Section 5.6 by studying, in several steps, the variations
of each of the lines depicted in Figure 2.

Figure 5: Variation of safe landing initial data (v0, h0) as m0 increases (from black to gray lines).
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In Figure 6 we also represent the 3D region of admissible initial data (v0, h0,m0). The dotted
line (1) is the curve v0 = v−ms

, it is the projection on the plane h0 = 0 of the curve (2) and the gray
surface joining these two curves corresponds to initial data for which the optimal control is {1}.
The curve (3) is symmetric with respect to the plane v0 = 0 of (2) and the yellow surface joining
them corresponds to initial data with {0, 1}-optimal controls: the intersection of this surface with
planes such as m0 = C are parabolas. The curve (4) lies in the plane h0 = 0 and has equation
v0 = wms : it is connected to (3) with the blue surface that contains initial data for which the
optimal control is {−1, 0, 1}. Such control is also optimal in the planar (white) region between the
curve (4) and the curve (5) whose equation is v0 = vms . Still in the plane h0 = 0, but now between
the lines (5) and the axis (v0 = 0), the optimal control is {−1, 1}. Moreover, the lines (5) and (2)
are connected by a surface (that we do not represent) separating the regions with {−1, 1}-controls
and {−1, 0, 1}-controls. The whole region is contained between the planes m0 −ms = 0 (which is
intersected only at the point (0, 0,ms)) and the plane m0 = 1/g which is not attained in view of
(1.5). The intersections between the remaining part of the boundary of this 3D region with some
planes m0 = C are represented with the light lines and reproduce the pattern in Figures 3 and 5.

Figure 6: Three-dimensional representation of the admissible region for the initial data (v0, h0,m0).

4 Numerical evaluation of a wrong manoeuvre from the pilot

In this section we investigate the consequences of a wrong manoeuvre, namely what can happen if
the pilot does not follow the optimal control described in Theorem 5. We fix some values for the
involved parameters. For gravity, we take the approximation g = 10m/s2. We consider a drone of
mass ms = 0, 05kg = 50g with initial fuel of 30g, that is, m0 = 0.08kg = 80g. These values fulfill
condition (1.5). Also take k = 10−2 so that (1.3)3 becomes

ṁ(t) = −|α(t)|
100

=⇒ m(t) = 0.08− 1

100

∫ t

0
|α(s)|ds . (4.1)
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We argue directly on the original equation (1.1) that we rewrite as

ḧ(t) = −g +
α(t)

m(t)
= −10 +

α(t)

m(t)
. (4.2)

To (4.2) we associate initial data which account for the maximum altitude of the drone: h(0) =
h0 > 0, ḣ(0) = v0 = 0 and we consider the region where the manoeuvre is more delicate for the
pilot, namely when the optimal control is of the kind {−1, 0, 1}. How much time is lost if the
pilot does not follow with exactitude the instructions in Theorem 5 (iv)? Moreover, can a wrong
manoeuvre cause the crash of the drone?

If we take v0 = 0, we fall in the first case of Theorem 5 (iv) and we have the constraint Ψ(ms, 0) <
h0 < R(m0) which, with the above choice of the parameters, becomes

25.4 ≈ 1495− 400
√

10e0.15 < h0 < −300 + 500 log2 8

5
+ 500 log

8

5
≈ 45.45

We then choose as initial data
h0 = 30 , v0 = 0 , (4.3)

to be associated with (4.2). Hence, (3.10) becomes

t2 = τ + t1 − 3, τ = 10 log
(8− t1)2

40
, 20t1 + 50

(
1.3 + log

8

5

)
log

(8− t1)2

40
= 33 + 15 log

8

5
.

The last equation yields t1 ≈ 0.5334 which, inserted into the second equation, yields τ ≈ 3.32;
finally, the first equation gives t2 ≈ 0.8534. Therefore, the instructions for the pilot are:

switch the full thrust downwards for a total time of 0.5334,
then turn off the thrust until time 0.8534,

finally switch the full thrust upwards until safe landing.

If the pilot follows these instructions, then the drone lands safely at time τ = 3.32. The behavior
of the optimal dynamics is displayed in the left picture of Figure 7. Note that the condition
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Figure 7: Optimal dynamics, dynamics with too early switch t1, dynamics with too late switch t1.

τ + t1 − t2 = 3 ensures that all the fuel is burnt at time τ . So, by maintaining this constraint
and with τ = 3.32, let us see the consequences of a wrong manoeuvre from the pilot, for both too
early and too late switch t1. By taking t1 = 0.5, we find t2 = 0.82 and the mid picture in Figure
7; it turns out that the drone never reaches the ground level h = 0. By taking t1 = 0.6, we find
t2 = 0.92 and the right picture in Figure 7; it turns out that the drone reaches the ground level
h = 0 with negative velocity v < 0 and, hence, crashes.

Let us also analyze the case where the pilot is not able to put the drone in free fall, thereby
restricting to {−1, 1}-controls. For a better comprehension, we study the dynamics for t ∈ [0, 4]
even if |α(t)| ≡ 1 implies that the fuel ends at time t = 3 and the behavior for t > 3 fails to
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describe a physical situation. In the left picture of Figure 8, we plot the dynamics for the {−1, 1}-
control with switch time at t1 = 0.8; it turns out that the drone reaches the ground (h = 0) with
negative velocity (v < 0) and, hence, crashes. In the middle picture we plot the dynamics for the
{−1, 1}-control with switch time at t1 = 0.67; it turns out that the drone never reaches the ground
(h > 0) although the velocity vanishes (v = 0) at some time. These results suggest that for some
t1 ∈ (0.67, 0.8) one might obtain a safe landing. We found that this occurs when t1 = 0.722, see
the right picture in Figure 8 where h(t) = v(t) = 0 for t = 3.185; but safe landing is not reached
because the drone remains without fuel for t > 3.
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Figure 8: Dynamics for {−1, 1}-controls with different switch times.

5 Proofs

5.1 Proof of Theorem 1

The proof of Theorem 1 consists of three steps, the main ingredient being the Pontryagin Minimum
Principle (PMP).

Step 1: use of the PMP.
By the PMP we know that, if an optimal solution (v, h,m, α) exists, then

(p, µ) 6= (0, 0) such that µ ≥ 0,

with p = (p1, p2, p3) solving the adjoint equation
ṗ1(t) = 0

ṗ2(t) = −p1(t)

ṗ3(t) = p2(t)α(t)
m(t)2

(5.1)

and the transversality condition p(τ) ∈ NC = R×R× (−∞, 0] (the normal cone at the endpoint).
This means that

p3(τ) = 0 if m(τ) > ms , p3(τ) ≤ 0 if m(τ) = ms .

We consider the (autonomous) Hamiltonian

H(v, h,m, a, p1, p2, p3, µ) := p1v + p2

( a
m
− g
)
− k|a|p3 + µ,

which vanishes along an optimal trajectory, namely an optimal control α satisfies

p1(t)v(t) + p2(t)

(
α(t)

m(t)
− g
)
− k|α(t)|p3(t) + µ ≡ 0 in [0, τ ] , (5.2)

11



and fulfills the following minimality condition:

p2(t)
α(t)

m(t)
− k|α(t)|p3(t) = min

−1≤a≤1

{
p2(t)

a

m(t)
− k|a|p3(t)

}
in [0, τ ] .

Since for any C1, C2 ∈ R we have

min
−1≤a≤1

{
C1|a|+ C2a

}
=


C1 + C2 if C2 < min{0,−C1}

0 if |C2| < C1

C1 − C2 if C2 > max{0, C1} ,

the optimal control is then characterized by the (geometric and analytic) rule

α(t) =


1 if p2(t)

m(t) < min{0, kp3(t)}

0 if |p2(t)
m(t) | < −kp3(t)

−1 if p2(t)
m(t) > max{0,−kp3(t)}.

(5.3)

Step 2: we prove that
α(t) ∈ {−1, 0, 1} in [0, τ ]. (5.4)

The explicit representation (5.3) leaves some incertitude on the value of α on the switch lines
(the lines corresponding to equalities in (5.3)) where we merely know that

α(t) ∈ [−1, 0] if p2(t)
m(t) = −kp3(t), p3(t) < 0

α(t) ∈ [−1, 1] if p2(t) = p3(t) = 0

α(t) ∈ [0, 1] if p2(t)
m(t) = kp3(t), p3(t) < 0

α(t) ∈ {−1, 1} if p2(t) = 0, p3(t) > 0.

Since this indeterminacy of α may create troubles, our purpose here is to show (5.4). From the
adjoint equation (5.1) we deduce that

p1(t) ≡ γ1 , p2(t) = γ2 − γ1t , p3(t) = γ3 +

∫ t

0

γ2 − γ1s

m(s)2
α(s)ds , (5.5)

for some γ1, γ2, γ3 ∈ R. Notice that, if p2(t) > 0 or kp3(t) < p2(t)
m(t) ≤ 0 (hence α ∈ [−1, 0]), then

d

dt

(p2(t)

m(t)
+ kp3(t)

)
=
−γ1m(t) + k|α(t)|p2(t)

m(t)2
+ k

p2(t)α(t)

m(t)2
= − γ1

m(t)
. (5.6)

Similarly, if p2(t) < 0 or 0 ≤ p2(t)
m(t) < −kp3(t) (hence α ∈ [0, 1]), then

d

dt

(p2(t)

m(t)
− kp3(t)

)
=
−γ1m(t) + k|α(t)|p2(t)

m(t)2
− kp2(t)α(t)

m(t)2
= − γ1

m(t)
. (5.7)

By (5.5) we see that either p2(t) vanishes for at most one t or p2(t) ≡ 0. In the first case, the
switch line p2 = 0 is crossed at most once. The second case is ruled out if we show that γ1 6= 0. In
fact, in view of (5.6)-(5.7), also (5.4) follows if we prove that

either γ1 6= 0 or α(t) ≡ 1 . (5.8)
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In order to prove (5.8), we assume that γ1 = 0 and we show that, necessarily, α(t) ≡ 1. If γ1 = 0,
then p2(t) ≡ γ2 and we analyze the three possibilities for γ2.

If γ2 > 0, then p2(t)
m(t) > 0 for all t and, hence α(t) ∈ [−1, 0] in [0, τ ], contradicting the safe landing.

Indeed, α(t) ≤ 0 in a left neighborhood of τ , would mean v̇(t) ≤ −g < 0 with the impossibility of
reaching v(τ) = 0 from v(t) < 0.

If γ2 = 0, then p3 ≡ p3(τ) ≤ 0. If p3(τ) = 0, then from (5.2) we infer that µ = 0 and hence
(p, µ) = (0, 0), a contradiction. If p3(τ) < 0, then α(t) ≡ 0, against safe landing as above.

If γ2 < 0, then α(t) ∈ [0, 1] and, by (5.7),

γ2

m(t)
− kp3(t) ≡ C for some C ∈ R ;

inserted into (5.2), this gives (recall α(t) = |α(t)|)

Cα(t) =

(
γ2

m(t)
− kp3(t)

)
α(t) ≡ gγ2 − µ < 0 .

This shows that C < 0 and, hence, that α(t) ≡ 1, see the picture in (5.3). This completes the proof
of (5.8) and, hence, of (5.4).

Step 3: characterization of one-way switches, taking into account the physical constraints.
We observe that safe landing tells us that either there are no switches (α(t) ≡ 1) or that γ1 > 0.

Otherwise v̇(t) = ḧ(t) ≤ −g < 0 in a left neighborhood
of τ , in contradiction with v(τ) = h(τ) = 0 coming from
v(t) < 0 and h(t) > 0. In turn, by (5.1) and (5.6)-(5.7),
the functions governing the switches have a given mono-
tonicity. This is better seen in the “one-way switches
pattern” displayed in the figure on the right.

Therefore, the only possibilities are discrete values of α, ordered as follows:

{1} , {−1, 1} , {0, 1} , {−1, 0, 1} .

This shows that α has to be as in (2.1) for some 0 ≤ t1 ≤ t2 < τ .

5.2 Proof of Theorem 3

The proof of Theorem 3 is obtained by combining a number of preliminary results. The first two
statements establish a hierarchy of times between the eligible controls determined by Theorem 1.

Proposition 6. Let m0 > ms and (v0, h0) ∈ R× R+ be fixed. Assume that, for some 0 ≤ t̄1 < τ1,
some 0 < t1 < t2 < τ2, and some 0 < t̄3 < τ3, the three functions

α1(t) =

 −1 in [0, t̄1)

1 in (t̄1, τ1]
, α2(t) =


−1 in [0, t1)

0 in (t1, t2)

1 in (t2, τ2]

, α3(t) =

 0 in [0, t̄3)

1 in (t̄3, τ3]
,

are admissible controls, namely the associated trajectories (vi, hi,mi) (i = 1, 2, 3) of (1.3) satisfy
(vi(τi), hi(τi),mi(τi)) ∈ {0} × {0} × [ms,+∞). Then, τ1 < τ2 < τ3.
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Proof. Assume by contradiction that τ1 ≥ τ2; we need to rule out three possibilities.
If t̄1 ≤ t1 (which includes t̄1 = 0), from (1.3) we deduce that

v̇1(t) = v̇2(t) in (0, t̄1), v̇1(t) > v̇2(t) in (t̄1, τ2).

Hence, v1(t) = v2(t) for any t ∈ (0, t̄1], then v1(t) > v2(t) for any t ∈ (t̄1, τ2]. In particular,
v1(τ2) > v2(τ2) = 0, contradicting v1(t) < 0 in (t̄1, τ2).

If t1 < t̄1 < τ2, then

v̇1(t) = v̇2(t) in (0, t1), v̇1(t) < v̇2(t) in (t1, t̄1), v̇1(t) > v̇2(t) in (t̄1, τ1).

Hence, v1(t) = v2(t) and h1(t) = h2(t) for any t ∈ (0, t1], then v1(t) < v2(t) for any t ∈ (t1, t̄1].
If v1(t) < v2(t) when t ∈ (t̄1, τ2), then h1(τ2) < h2(τ2) = 0. If there exists t̄ ∈ (t̄1, τ2) such that
v1(t̄) = v2(t̄), then v1(τ2) > v2(τ2) = 0. In both cases we reach a contradiction since h1(t) > 0 and
v1(t) < 0 in (t̄1, τ2).

If t̄1 ≥ τ2, then
v̇1(t) = v̇2(t) in (0, t1), v̇1(t) < v̇2(t) in (t1, τ2),

yielding h1(τ2) < h2(τ2) = 0, again a contradiction.
Assume now by contradiction that τ2 ≥ τ3; again, we need to rule out three possibilities.
If t2 ≥ τ3, from (1.3) we infer that

v̇2(t) < v̇3(t) in (0, t1), v̇2(t) ≤ v̇3(t) in (t1, τ3),

yielding h2(τ3) < h3(τ3) = 0, a contradiction.
If t2 < τ3 and t2 − t1 < t̄3, we deduce that

v̇2(t) < v̇3(t) in (0, t1), v̇2(t) ≤ v̇3(t) in (t1, t2), v̇2(t) > v̇3(t) in (t2, τ3).

If t2 < τ3 and t2 − t1 ≥ t̄3, then

v̇2(t) < v̇3(t) in (0, t1) , v̇2(t) ≤ v̇3(t) in (t1, τ3) .

Reasoning as above we obtain a contradiction in both cases, ending the proof.

Admissible {−1, 0, 1}-controls have the time-hierarchy illustrated by the next statement.

Proposition 7. Let m0 > ms and (v0, h0) ∈ R × R+ be fixed. Assume that, for some 0 < t1 <
t2 < τ1 and some 0 < t̄1 < t̄2 < τ2, the two functions

α1(t) =


−1 in [0, t1)

0 in (t1, t2)

1 in (t2, τ1]

, α2(t) =


−1 in [0, t̄1)

0 in (t̄1, t̄2)

1 in (t̄2, τ2]

,

are admissible controls, namely the associated trajectories (vi, hi,mi) (i = 1, 2) of (1.3) satisfy
(vi(τi), hi(τi),mi(τi)) ∈ {0} × {0} × [ms,+∞), see (1.4). If t1 > t̄1, then τ1 < τ2 while if t1 = t̄1,
then τ1 = τ2 and α1 ≡ α2.

Proof. The proof follows arguing by contradiction and by mimicking the proof of Proposition 6.
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Assume that the initial conditions (v0, h0,m0) in (1.4) are fixed. Let us make explicit the dy-
namics of (1.3) in the three different regimes for α established by Theorem 1.

When α(t) = −1 in (0, t1), the thrust is oriented downwards and (1.3) reads

ḣ(t) = v(t) , v̇(t) = −g − 1

m(t)
, ṁ(t) = −k,

so that, after integration,
m(t) = m0 − kt

v(t) = −gt+ 1
k log m(t)

m0
+ v0

h(t) = − t
k + v0t− g

2 t
2 − m(t)

k2
log m(t)

m0
+ h0.

(5.9)

When α(t) = 0 in (t1, t2), the thrust is switched off and the free fall is described by

ḣ(t) = v(t) , v̇(t) = −g , ṁ(t) = 0,

so that 
m(t) ≡ m(t1)

v(t) = −g(t− t1) + v(t1)

h(t) = −g
2(t− t1)2 + v(t1)(t− t1) + h(t1).

(5.10)

In this case we have conservation of energy, namely

h(t) +
v(t)2

2g
= h(t1) +

v(t1)2

2g
, for any t ∈ [t1, t2].

When α(t) = 1 in (t2, τ), the thrust is oriented upwards and (1.3) becomes

ḣ(t) = v(t) , v̇(t) = −g +
1

m(t)
, ṁ(t) = −k,

and, since h(τ) = v(τ) = 0,
m(t) = k(τ − t) +m(τ)

v(t) = g(τ − t)− 1
k log m(t)

m(τ)

h(t) = 1
k (t− τ)− g

2(τ − t)2 + m(t)
k2

log m(t)
m(τ) .

(5.11)

Theorem 1 shows that eligible controls are the only candidates to be the optimal controls. But
not all the categories of eligible controls exist for any initial data (v0, h0,m0).

Proposition 8. Let m0 > ms and (v0, h0) ∈ R×R+ be fixed. There exists at most one admissible
control among {1}-controls and {−1, 1}-controls. If it exists, then it is the optimal control.

Proof. Clearly, there exists at most one admissible {1}-control; to see this, it suffices to impose
α(t) ≡ 1 in (1.1). Then, in light of Proposition 6, the proof will be complete if we show that:

Claim 1: there exists at most one admissible {−1, 1}-control;
Claim 2: if there exists an admissible {1}-control, then there are no admissible {−1, 1}-controls.

15



In order to prove Claim 1, let α be an admissible {−1, 1}-control so that there exist 0 < t < τ
such that

α(t) =

 −1 in [0, t)

1 in (t, τ ]
, h(τ) = v(τ) = 0 .

Then (1.3)3 yields m(t) = m0 − kt in [0, τ ] and, recalling (5.9) gives

v(t) = v0 − gt+
1

k
log

m0 − kt
m0

, h(t) = h0 + v0t−
t

k
− g

2
t
2

+
m0 − kt
k2

log
m0

m0 − kt
,

while recalling (5.11) gives

v(t) = g(τ − t) +
1

k
log

m0 − kτ
m0 − kt

, h(t) =
t− τ
k
− g

2
(τ − t)2 +

m0 − kt
k2

log
m0 − kt
m0 − kτ

.

By equating the two above expressions for v(t) and h(t) we find

v0 = gτ +
1

k
log

m0(m0 − kτ)

(m0 − kt)2
, h0 =

2t− τ
k
− g

2
τ2 +

m0

k2
log

(m0 − kt)2

m0(m0 − kτ)
.

By taking a linear combination of these two relationships we infer that

2t+ (m0g − 1)τ − gk

2
τ2 = kh0 +m0v0 ⇐⇒ t(τ) =

1

2

(gk
2
τ2 + (1−m0g)τ + kh0 +m0v0

)
,

which shows that τ 7→ t(τ) is strictly increasing by recalling (1.5).
Assume by contradiction that there exist two admissible {−1, 1}-controls α1 6= α2, with switch

and final times (t1, τ1) and (t2, τ2), respectively. By the just proved monotonicity, if t1 < t2 then
τ1 < τ2 and two cases may occur.

If t2 < τ1, then from (1.3)2, and recalling that m1(t) = m0 − kt = m2(t), we deduce that

v̇2(t) = v̇1(t) in (0, t1) ∪ (t2, τ1), v̇2(t) < v̇1(t) in (t1, t2) .

If t2 ≥ τ1, then
v̇2(t) = v̇1(t) in (0, t1), v̇2(t) < v̇1(t) in (t1, τ1) .

In both cases we have v̇2(t) ≤ v̇1(t) with strict inequality on a nonempty subinterval of (0, τ1).
Therefore, v2(t) ≤ v1(t) with strict inequality on a nonempty subinterval of (0, τ1) and, by inte-
grating (1.3)1 over (0, τ1), we obtain h2(τ1) < h1(τ1) = 0, contradiction.

In any case, we reached a contradiction, thereby proving Claim 1.
Concerning Claim 2, let α1 be an admissible {1}-control steering the solution of (1.3) to (v, h) =

(0, 0) in time τ1, and assume that there exists an admissible {−1, 1}-control α2 with switch and
final times t2 and τ2. We have again that m1(t) = m0 − kt = m2(t) and τ1 < τ2. Arguing as
above, we find v2(t) ≤ v1(t) with strict inequality on a nonempty subinterval of (0, τ1) and, then,
h2(τ1) < h1(τ1) = 0, contradiction proving Claim 2.

We are now in position to give the proof of Theorem 3. In [10] we defined the switching curve
for {0, 1}-controls and we showed that, for given initial data m0 > ms and (v0, h0) ∈ R×R+, there
exists at most one admissible {0, 1}-control, whose switch position is uniquely determined by the
switch time. Hence, collecting these results and the statements from Propositions 6-8 (see also
Proposition 18 below), we obtain the proof of the theorem.
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5.3 Some auxiliary functions and their properties

We analyze the functions introduced in Section 3 and prove several technical results needed in the
proofs of Theorems 4 and 5.

The first result defines two implicit functions,
v = vm and v = vm, relating the velocity v
and the mass m, that are needed in the sequel.
In order to clarify the geometric context, we
believe that the picture on the right may be
helpful for the reader. It depicts the functions
defined in the statement and in the proof.

The statement is as follows:

Lemma 9. Assume that (1.5) holds and let

v+
m :=

g

k
(m0 −m) +

1

k
log

m0

m
, v−m :=

g

k
(m0 −m)− 1

k
log

m0

m
,

Ψ(m, v) :=
m0 +m

k2

[
1 +

g

2
(m0−m)

]
− m0

k
v− 2

k2

√
m0me

(
g(m0−m)−kv

)
/2 ∀(m, v) ∈ [ms,m0]×R .

Then m 7→ v+
m is positive and strictly decreasing over [ms,m0] while m 7→ v−m is negative and strictly

increasing over [ms,m0]. Moreover, for any m ∈ [ms,m0) there exists a unique couple (vm, vm)
such that Ψ(m, vm) = Ψ(m, vm) = 0; this couple satisfies the inequalities vm < v−m < 0 < vm < v+

m.
Finally, the map v 7→ Ψ(m, v) is positive, strictly decreasing and strictly concave over [v−m, vm] and
its derivative vanishes at v = v−m.

Proof. By differentiating with respect to m we infer that

dv+
m

dm
= −g

k
− 1

km
< 0 ∀m ∈ [ms,m0] ,

which proves that m 7→ v+
m is strictly decreasing. Since v+

m0
= 0, positivity of v+

m is also proved.
Similarly, by differentiating and by (1.5), we have

dv−m
dm

=
1−mg
km

> 0 ∀m ∈ [ms,m0] ,

so that m 7→ v−m is strictly increasing and, since v−m0
= 0, v−m is strictly negative on [ms,m0).

By differentiating the function Ψ with respect to v, we obtain

∂Ψ

∂v
(m, v) = −m0

k
+

1

k

√
m0me

(
g(m0−m)−kv

)
/2


< 0 if v > v−m

= 0 if v = v−m

> 0 if v < v−m .

(5.12)

In particular, v 7→ ∂Ψ
∂v (m, v) is strictly decreasing and v 7→ Ψ(m, v) is strictly concave.

Next, notice that
m0

m
eg(m0−m)−kv+m = 1
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so that, by differentiating with respect to m and by using (1.5), we infer that

∂Ψ

∂m
(m, v) =

1− gm
k2

[
1−

√
m0

m
e

(
g(m0−m)−kv

)
/2
] 

> 0 if v > v+
m

= 0 if v = v+
m

< 0 if v < v+
m .

In particular, since v+
m > 0, this shows that m 7→ Ψ(m, 0) is strictly decreasing and, hence,

Ψ(m, 0) > Ψ(m0, 0) = 0 for all m ∈ [ms,m0) . (5.13)

Since, by (5.12) the map v 7→ Ψ(m, v) is strictly decreasing in [v−m, v
+
m], for any m ∈ [ms,m0),

(5.13) implies that
Ψ(m, v−m) > Ψ(m, 0) > 0 ∀m ∈ [ms,m0) . (5.14)

Recall that, by the Lagrange Theorem, for any m ∈ [ms,m0) there exists ξm ∈ (m,m0) such that

logm0 − logm =
m0 −m
ξm

=⇒ m0 −m
m0

< log
m0

m
<
m0 −m
m

. (5.15)

This inequality will repeatedly be used throughout the paper. Here, we use (5.15) to obtain

Ψ(m, v+
m) =

1

k2

[
(m0 −m)

(
1− g

2
(m0 −m)

)
−m0 log

m0

m

]
<

1

k2

[
(m0 −m)

(
1− g

2
(m0 −m)

)
− (m0 −m)

]
= − g

2k2
(m0 −m)2 < 0 ∀m ∈ [ms,m0) .

Hence, there exists a unique vm ∈ (0, v+
m) such that Ψ(m, vm) = 0.

Using again (5.12) and the fact that

lim
v→−∞

Ψ(m, v) = −∞ ,

(5.14) shows that there exists a unique vm < v−m such that Ψ(m, vm) = 0. By the monotonicity
stated in (5.12), apart of vm and vm, there exists no additional v ∈ R such that Ψ(m, v) = 0.

The behavior of the function P0, defined in Section 3, is analyzed in the following lemma.

Lemma 10. The function P0 is strictly decreasing over [|v−ms
|, v+

ms
] and there exists a unique

wms ∈ (|v−ms
|, v+

ms
) such that P0(wms) = 0. Moreover, wms > vms.

Proof. Notice that

P0(v) = C − v2

2g
+

v

gk
+

2gα− kv
gk2

log
2gα− kv

2gm0
,

for α = m0+ms
2 + 1

2g log m0
ms

and some constant C. Hence, we have that

P ′0(v) = −v
g
− 1

gk
log

2gα− kv
2gm0

, P ′0(|v−ms
|) =

v−ms

g
< 0, P ′0(v+

ms
) = −m0 −ms

k
< 0, (5.16)

where we used the facts that 2gα+ kv−ms
= 2gm0 and 2gα− kv+

ms
= 2gms. Furthermore,

P ′′0 (v) = −1

g
+

1

g(2gα− kv)
, P ′′′0 (v) =

k

g(2gα− kv)2
> 0 .
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This shows that the map v 7→ P ′0(v) is strictly convex which, combined with (5.16), implies that

P ′0(v) < 0 in [|v−ms
|, v+

ms
] (5.17)

and, hence, that v 7→ P0(v) is strictly decreasing over [|v−ms
|, v+

ms
].

Moreover, by (3.3) and (5.14), P0(|v−ms
|) = R(m0)− |v

−
ms |2
2g = Ψ(ms, v

−
ms

) > 0. By (5.15), we also
have that

P0(v+
ms

) =
m0 −ms

k2
− m0

k2
log

m0

ms
− g

2k2
(m0 −ms)

2 < 0.

Since P0(|v−ms
|)P0(v+

ms
) < 0 and P ′0(v) < 0 in [|v−ms

|, v+
ms

], there exists a unique wms ∈ (|v−ms
|, v+

ms
)

such that P0(wms) = 0.
To prove the last statement of the lemma, we claim that

Q(v) := P0(v)−Ψ(ms, v) > 0, for any v ∈ [|v−ms
|, v+

ms
). (5.18)

To this end, we notice that, by (5.12),

Q(|v−ms
|) = Ψ(ms, v

−
ms

)−Ψ(ms, |v−ms
|) > 0,

Q(v+
ms

) =
m0 −ms

k2
− m0

k2
log

m0

ms
− g

2k2
(m0 −ms)

2

− m0 +ms

k2
− g

2k2
(m2

0 −m2
s) +

gm0(m0 −ms)

k2
+
m0

k2
log

m0

ms
+

2ms

k2
= 0,

Q′(v+
ms

) = −m0 −ms

k
− 1

gk
log

m0

ms
+

1

gk
log

m0

ms
+
m0

k
− ms

k
= 0,

Q′′(v) = −1

g
+

1

g(2gα− kv)
+

1

2

√
m0mse

(
g(m0−ms)−kv

)
/2,

Q′′′(v) =
1

g

k

(2gα− kv)2
− k

4

√
m0mse

(
g(m0−ms)−kv

)
/2,

Qiv(v) =
1

g

2k2

(2gα− kv)3
+
k2

8

√
m0mse

(
g(m0−ms)−kv

)
/2.

Since kv < kv+
ms

= g(m0 −ms) + log m0
ms

< g(m0 + ms) + log m0
ms

= 2gα, we infer that Qiv(v) > 0;
hence, the map v 7→ Q′′′(v) is strictly increasing in [|v−ms

|, v+
ms

). Furthermore, by recalling (1.5) and
the calculus inequality 0 < x2yex−y < 1, valid whenever 0 < y < x < 1, we infer that

Q′′′(|v−ms
|) =

k

4g3m2
0

(
1− (gm0)2(gms)e

gm0−gms

)
> 0,

yielding Q′′′(v) > 0 for any v ∈ [|v−ms
|, v+

ms
]. In turn, v 7→ Q′′(v) is strictly increasing and v 7→ Q′(v)

is strictly convex. Moreover,

Q′′(v+
ms

) =
1− 2gms

2g2ms
+
ms

2
=

(gms)
2 − 2gms + 1

2g2ms
=

(1− gms)
2

2g2ms
> 0.

Therefore, two cases may occur: either Q′(v) < 0 in (|v−ms
|, v+

ms
) or there exists v̄ ∈ (|v−ms

|, v+
ms

)
such that Q′(v) > 0 in (|v−ms

|, v̄) and Q′(v) < 0 in (v̄, v+
ms

). In both cases, we get (5.18).
The inequality (5.18) implies that P0(vms) = Q(vms) > 0, hence, since P0(wms) = 0 and P0 is

strictly decreasing by (5.17), the claimed inequality wms > vms follows.
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Remark 11. The derivative of the map v 7→ R(m0)− v2

2g equals −v
g . Its value at v = |v−ms

| coincides

with P ′0(|v−ms
|), see (5.16). Therefore, the function Z in (3.5) is smooth, Z ∈ C1[v−ms

, wms ].

Following (3.2), we put

R(m) :=
ms −m
k2

+
1

2gk2
log2 m

ms
+
ms

k2
log

m

ms
, for m ∈ [ms,m0].

At this stage we fix (v0, h0) ∈ R× R+ and we define, for t ∈
[
0, m0−ms

k

]
, the function

D(t) = R(m0 − kt)−
(v0 − gt+ 1

k log m0−kt
m0

)2

2g
− h0 +

t

k
− v0t+

g

2
t2 +

m0 − kt
k2

log
m0 − kt
m0

(5.19)

that measures the distance of a trajectory (v(t), h(t)) solving (5.9) (for a control α = −1) from
the critical parabola corresponding to an initial mass of fuel m0 − kt. The next lemma states the
main properties of D: recall that v−ms

is defined in (3.1), R(m0) and Vm0 are defined in (3.2), wms

is characterized by Lemma 10.

Lemma 12. Let (v0, h0) ∈ R× R+ and let D be as in (5.19) and P0 as in (3.4).

(i) If v−ms
< v0 ≤ |v−ms

| and h0 +
v20
2g = R(m0), then D(0) = 0 and D(t) < 0 for all t ∈

(
0, m0−ms

k

]
.

(ii) If |v−ms
| < v0 ≤ Vm0 and h0 +

v20
2g = R(m0), then D(0) = 0 and there exists a unique t∗ ∈(

0, m0−ms
k

)
such that D(t∗) = 0.

(iii) If v−ms
< v0 ≤ Vm0 and h0 +

v20
2g < R(m0), then D(0) > 0 and there exists a unique t∗ ∈(

0, m0−ms
k

)
such that D(t∗) = 0.

(iv) If |v−ms
| < v0 ≤ wms and h0 = P0(v0), then D

(v0+v−ms
2g

)
= 0 and D(t) < 0, for any t 6= v0+v−ms

2g .

(v) If |v−ms
| < v0 ≤ Vm0 and R(m0)− v20

2g < h0 < P0(v0), or Vm0 < v0 ≤ wms and 0 ≤ h0 < P0(v0),

then there exists a unique couple (t∗1, t
∗
2) such that 0 < t∗1 <

v0+v−ms
2g < t∗2 <

m0−ms
k and D(t∗1) =

D(t∗2) = 0.

Proof. Clearly, t 7→ D(t) is smooth and we first prove the following three properties:

D(0) = R(m0)− v2
0

2
− h0, D

(
m0−ms

k

)
< 0, v0 ≤ wms ⇒ D̈(t) < 0 in [0, m0−ms

k ]. (5.20)

The first property (5.20)1 follows by replacing t = 0 in (5.19). By using (5.15), we infer that

D
(
m0−ms

k

)
= −

(v0 − 1
k log m0

ms
)2

2g
− h0 +

m0 −ms

k2
− m0

k2
log

m0

ms
< 0 ,

which proves (5.20)2. Then we rewrite (5.19) as

D(t) = γ +
2t

k
+

log(m0 − kt)
k

(
m0 +ms

k
+

1

gk
log

m0

ms
− v0

g

)
,

where γ = γ(v0, h0,m0,ms, k, g) is some constant. Hence, if we differentiate D(t), we get

kḊ(t) = 2−
(
m0 +ms +

1

g
log

m0

ms
− kv0

g

)
1

m0 − kt
. (5.21)

Assuming that v0 ≤ wms , by Lemma 10 and (3.1) we deduce

v0 ≤ wms < v+
ms

=
g

k
(m0 −ms) +

1

k
log

m0

ms
<
g

k
(m0 +ms) +

1

k
log

m0

ms
;
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then, by differentiating (5.21), we infer that

D̈(t) = −
(
m0 +ms +

1

g
log

m0

ms
− kv0

g

)
1

(m0 − kt)2
< 0 ,

which proves (5.20)3. The three properties in (5.20) enable us to prove all the items.
Under the assumptions of item (i), (5.20)1 implies that D(0) = 0, whereas (5.21) implies that

kḊ(0) =
1

gm0

(
g(m0 −ms)− log

m0

ms
+ kv0

)
=

k

gm0

(
v0 + v−ms

)
≤ 0.

Combined with (5.20)3 this shows that D(t) < 0 for t ∈
(
0, m0−ms

k

]
.

By (5.20)1 we see that in case (ii) we have D(0) = 0 while (5.21) implies Ḋ(0) > 0. Combined
with (5.20)2-(5.20)3 this shows that there exists a unique t∗ ∈

(
0, m0−ms

k

)
such that D(t∗) = 0.

In case (iii) the two conditions (5.20)1-(5.20)2 imply that D(0)D(m0−ms
k ) < 0. Then (5.20)3

proves again that there exists a unique t∗ ∈ (0, m0−ms
k ) such that D(t∗) = 0.

The condition v0 < v+
ms

is equivalent to tM :=
v0+v−ms

2g < m0−ms
k . By replacing into (5.21) and

noticing that

m0 +ms +
1

g
log

m0

ms
− kv0

g
= 2(m0 − ktM ),

we find that Ḋ(tM ) = 0. Together with (5.20)3, this implies that tM is the (unique) absolute
maximum point for D in [0, m0−ms

k ]. After some lengthy computations we see that

D(tM ) =
ms −m0 + ktM

k2
+

1

2gk2
log2 m0 − ktM

ms
+
ms

k2
log

m0 − ktM
ms

−
(v0 − gtM + 1

k log m0−ktM
m0

)2

2g
− h0 +

tM
k
− v0tM +

g

2
t2M +

m0 − ktM
k2

log
m0 − ktM

m0

=
ms −m0

k2
+

1

2gk2
log2 m0

ms
+
ms

k2
log

m0

ms
− h0 −

v2
0

2g

+
2tM
k

+
1

k2
log

m0 − ktM
m0

(
m0 +ms +

1

g
log

m0

ms
− kv0

g

)
=R(m0)− h0 −

v2
0

2g
+

2tM
k

+
2(m0 − ktM )

k2
log

m0 − ktM
m0

= P0(v0)− h0 .

If h0 = P0(v0), the above arguments show that D(t) < D(tM ) = 0 for all t 6= tM , proving item (iv).
If h0 < P0(v0), then D(tM ) > 0. Moreover, for both the assumptions in item (v), by (5.20)1 we

infer that D(0) < 0. Combined with (5.20)2 and (5.20)3, these two inequalities prove item (v).

Remark 13. The function D in (5.19) is defined over the interval
[
0, m0−ms

k

]
, that contains in-

stants of time. In Lemma 12 we dealt with the two arguments m0−ms
k and

v0+v−ms
2g , both representing

instants of time: the former is the ratio between a mass and a variation of mass, while the latter
is a ratio between the velocity and and the gravity acceleration.

In Lemma 14 we provide a condition ensuring that the trajectory (v(t), h(t)) intersects the critical
parabola corresponding to an initial amount of fuel m0 − kt in an admissible region.

Lemma 14. Let D be as in (5.19) and, for t ∈
[
0, m0−ms

k

]
and v−ms

< v0 < wms, define

η(t) = v0 − v−ms
+

2

k
log

m0 − kt
m0

.

If h0 > Ψ(ms, v0), then η(t) > 0 whenever D(t) = 0.
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Proof. It is straightforward that η(0) > 0 and η̇(t) = − 2
m0−kt < 0. Then we define

t̄ :=
m0

k

(
1− e−

k
2

(v0−v−ms )
)
∈
[
0, m0−ms

k

)
and we notice that η vanishes if and only if t = t̄: moreover, η(t) > 0 if and only if t < t̄. Hence,
by distinguishing the cases in Lemma 12, the statement follows if we prove that

t∗ < t̄ in cases (ii)− (iii), tM =
v0+v−ms

2g < t̄ in case (iv), t∗2 < t̄ in case (v) . (5.22)

We first prove (5.22)2 and, hence, we assume that v0 > |v−ms
|. To this end, we define the function

F (v0) := t̄− tM =
m0

k

(
1− e−

k
2

(v0−v−ms )
)
−
v0 + v−ms

2g
, for v0 ∈ [|v−ms

|, v+
ms

].

We have that

F (|v−ms
|) =

m0

k

(
1− ekv

−
ms

)
> 0, F (v+

ms
) =

m0

k

(
1− e− log

m0
ms

)
− m0 −ms

1
k = 0,

and, by (1.5),

F ′(v0) =
m0

2
e−

k
2

(v0−v−ms ) − 1

2g
=
m0

2

(
e−

k
2

(v0−v−ms ) − 1

gm0

)
<
m0

2

(
1− 1

gm0

)
< 0.

Hence, for any v0 ∈ (|v−ms
|, wms), F (v0) = t̄ − tM > 0; recall that wms < v+

ms
by Lemma 10. This

proves (5.22)2.
To obtain (5.22)1 and (5.22)3, by the properties of D outlined in Lemma 12, it is enough to prove

that D(t̄) < 0. Notice that

2t̄

k
−Ψ(ms, v0) =

m0v0

k
+
m0 −ms

k2
− g

2k2
(m2

0 −m2
s) ,

1

k
log

m0ms

(m0 − kt̄)2
= v0 −

g

k
(m0 −ms).

These two facts and some tedious computations enable us to show that

D(t̄) = R(m0 − kt̄)−
(
v0 − gt̄+ 1

k log m0−kt̄
m0

)2
2g

− h0 +
t̄

k
− v0t̄+

g

2
t̄2 +

m0 − kt̄
k2

log
m0 − kt̄
m0

= Ψ(ms, v0)− h0 < 0,

whenever h0 > Ψ(ms, v0), ending the proof.

5.4 Proof of Theorem 4

We assume that m0 > ms is fixed and we argue on the remaining initial data (v0, h0).
By Lemma 9 the map m 7→ v−m is negative and strictly increasing over the interval [ms,m0] and

v−m0
= 0. Therefore, this map is invertible and we denote by

m(v) : [v−ms
, 0]→ [ms,m0]

its inverse map (also strictly increasing). Then consider the map

m 7→ h(m) := Ψ(m, v−m) = −m0 −m
k2

− g

2k2
(m0 −m)2 − m0

k2
log

m

m0
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which is positive and strictly decreasing over [ms,m0] with h(m0) = 0, see [10, Theorem 1]. These
facts enable us to define the strictly decreasing composite function

Γm0(v) := h
(
m(v)

)
∀v ∈ [v−ms

, 0] , v−ms
=
g

k
(m0 −ms)−

1

k
log

m0

ms
< 0 . (5.23)

Next, for t ∈
[
0, m0−ms

k

]
, we define

v−ms
(t) :=

g

k
(m0 − kt−ms)−

1

k
log

m0 − kt
ms

, (5.24)

h−ms
(t) := −m0 − kt−ms

k2
− g

2k2
(m0 − kt−ms)

2 − m0 − kt
k2

log
ms

m0 − kt
.

Notice that
(
v−ms

(t), h−ms
(t)
)

corresponds to the extreme point
(
v−ms

(t),Γm0−kt(v
−
ms

(t))
)

of the
switching curve, when the initial amount of fuel is m0−kt and, (v−ms

(0), h−ms
(0)) = (v−ms

,Γm0(v−ms
)).

The proof of Theorem 4 is performed by steps, we analyze the optimal control (if any) in de-
pendence on the initial data, following Theorem 3. We first determine conditions ensuring the
existence of a {1}-control.

Proposition 15. Let Γm0 be as in (5.23). Let (v0, h0) be such that v0 ∈ [v−ms
, 0) and h0 =

Γm0(v0), then there exists a unique, hence optimal, eligible control, a {1}-control. In particular, if
m0v0 + kh0 ≥ 0 then there exists no admissible {1}-control.

Proof. According to (5.11), an admissible {1}-control exists if and only if there exists τ > 0 such
that the solution of (1.3) satisfies h(τ) = v(τ) = 0 and

m0 = kτ +m(τ) , v0 = gτ − 1

k
log

m0

m(τ)
, h0 = −τ

k
− g

2
τ2 +

m0

k2
log

m0

m(τ)
. (5.25)

This gives τ = m0−m(τ)
k and, since the possible residual fuel satisfies m(τ) ∈ [ms,m0), an admissible

{1}-control exists if and only if there exists m ∈ [ms,m0) such that

v0 =
g

k
(m0 −m)− 1

k
log

m0

m
= v−m , h0 = −m0 −m

k2
− g

2k2
(m0 −m)2 +

m0

k2
log

m0

m
= Γm0(v−m) .

Hence, there exists an admissible {1}-control if and only if there exists m ∈ [ms,m0) such that
(v0, h0) =

(
Γm0(v−m), v−m

)
, proving the first part of the proposition since m 7→ v−m is strictly increas-

ing by Lemma 9. If such m exists, by taking a linear combination of the expressions (5.25) for v0

and h0, by (1.5) we find that

m0v0 + kh0 =
m0 −m

k

(g
2

(m0 +m)− 1
)
< 0 .

Hence, if the converse inequality holds, there exists no admissible {1}-control.
By Proposition 8 we deduce that if there is a {1}-control, then a {−1, 1}-control cannot exist.

Further, for (v0, h0) as in the hypotheses, neither a {0, 1}-control nor a {−1, 0, 1}-control exist, see
the analysis in [10] and Proposition 18 below respectively. The unique eligible control is then the
optimal one, ending the proof.

Following again Theorem 3, the next step is to investigate the existence of {−1, 1}-controls.
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Proposition 16. There exists an admissible {−1, 1}-control if and only if (v0, h0) are such that

either v0 ∈ (v−ms
, 0] and Γm0(v0) < h0 ≤ Ψ(ms, v0) ,

or v0 ∈ (0, vms ] and 0 ≤ h0 ≤ Ψ(ms, v0) .

In these cases, there exists at most a further eligible control, a {0, 1}-control. The unique {−1, 1}-
control is the optimal control.

Proof. Since the solution of (1.3) is continuous, by (5.9) and (5.11) there exists an admissible
{−1, 1}-control α if and only if there exist 0 < t1 < τ such that

g(τ − t1) +
1

k
log

m

m0 − kt1
= −gt1 +

1

k
log

m0 − kt1
m0

+ v0,

τ − t1
k

+
g

2
(τ − t1)2 − m0 − kt1

k2
log

m0 − kt1
m

=
t1
k
− v0t1 +

g

2
t21 +

m0 − kt1
k2

log
m0 − kt1
m0

− h0,

for some m = m(τ) ∈ [ms,m0). By using the notations of Lemma 9, this yields

t1 =
m0

k
− 1

k

√
m0me

(
g(m0−m)−kv0

)
/2 = −∂Ψ

∂v
(m, v0),

h0 =
2

k
t1 −

m0

k
v0 −

m0 −m
k2

(
1− g

2
(m0 +m)

)
= Ψ(m, v0).

From the proof of Lemma 9, we learn that t1 > 0 if and only if v0 > v−m, whereas h0 ≥ 0 if and
only if v0 ∈ [vm, vm], implying the constraint v0 ∈ (v−m, vm].

Notice that, by Propositions 8 and 18, neither an admissible {1}-control nor an admissible
{−1, 0, 1}-control exist in this case. There is at most a further eligible control, a {0, 1}-control, see
[10, Theorem 5]. Hence, the {−1, 1}-control is the optimal one, see Proposition 6. This completes
the proof.

As a consequence of [10, Theorem 5], we have the following statement.

Proposition 17. Let Γm0 be as in (5.23), R(m0) and Vm0 be as in (3.2). There exists an admissible
{0, 1}-control if and only if

either v−ms
< v0 ≤ 0 and Γm0(v0) < h0 ≤ R(m0)− v20

2g ,

or 0 < v0 ≤ Vm0 and 0 ≤ h0 ≤ R(m0)− v20
2g .

Proposition 18. Let (h0, v0) ∈ R+ × (vms , v
+
ms

).

(i) If

v0 ∈ (v−ms
, |v−ms

|] and h0 = R(m0)− v20
2g ,

then, there exists a unique eligible control, it is a {0, 1}-control;

(ii) if

either v0 ∈ (v−ms
, |v−ms

|] and Ψ(ms, v0) < h0 < R(m0)− v20
2g ,

or v0 ∈ (|v−ms
|, Vm0 ] and max{0,Ψ(ms, v0)} < h0 ≤ R(m0)− v20

2g

(when v0 > vms also h0 = 0 is allowed),

or v0 ∈ (|v−ms
|, wms ] and h0 = P0(v0) ,

then, there exists a unique {−1, 0, 1}-control which is then optimal;
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(iii) if

v0 ∈ (|v−ms
|, wms ] and max

{
0, R(m0)− v20

2g ,Ψ(ms, v0)
}
< h0 < P0(v0) ,

(when v0 > max{Vm0 , vms} also h0 = 0 is allowed), then, there exist two admissible {−1, 0, 1}-
controls. The control with largest first switch time is the optimal one.

Soft landing occurs with no fuel left. Moreover, in cases (ii) and (iii), if h0 ≤ R(m0) − v20
2g there

exists only a further eligible control, a {0, 1}-control, otherwise the {−1, 0, 1}-controls are the unique
eligible ones.

Proof. By Propositions 15 and 16 we know that there are no admissible {1}-controls nor {−1, 1}-
controls in all the cases (i), (ii), (iii). On the other hand, by the analysis in [10], if v0 ∈ (v−ms

, Vm0 ]

and h0 ≤ R(m0) − v20
2g , then there exists a {0, 1}-control, and, if h0 > R(m0) − v20

2g a {0, 1}-control
cannot exist.

Suppose that there exists a {−1, 0, 1}-control with first switch in t1 > 0. Then, by (5.9), we have

m(t1) = m0−kt1 , v(t1) = v0−gt1+
1

k
log

m(t1)

m0
, h(t1) = h0−

t1
k

+v0t1−
g

2
t21−

m(t1)

k2
log

m(t1)

m0
.

The admissible {−1, 0, 1}-control exists if and only if the point (v(t1), h(t1)), in the (v, h)-plane,
belongs to the the critical parabola corresponding to an initial mass of fuel m0 − kt1 and v(t1) >
v−ms

(t1), see (5.24).
In order to analyze the mutual position between (v(t1), h(t1)), the critical parabola corresponding

to an initial mass of fuel m0 − kt1, and the extreme point (v−ms
(t1), h−ms

(t1)), see again (5.24), we
consider the time-dependent functions D and η analyzed in Lemma 12 and 14 respectively. We
have that a {−1, 0, 1}-control with first switch in t1 does exist if and only if

D(t1) = 0 and η(t1) = v(t1)− v−ms
(t1) > 0. (5.26)

If D(t1) < 0, then (v(t1), h(t1)) stays above the critical parabola, while if D(t1) = 0 and v(t1) <
v−ms

(t1), then (v(t1), h(t1)) reaches the critical parabola on the left hand side of the extreme ad-
missible point (v−ms

(t1), h−ms
(t1)). In both cases, by the analysis performed in [10, Theorem 4], no

{0, 1} admissible control exists for the problem with initial data (v(t1), h(t1),m0− kt1), preventing
the existence of the {−1, 0, 1}-control with first switch in t1. If D(t1) = 0 and v(t1) = v−ms

(t1), we
get the contradictory existence of a {−1, 1} admissible control.

As proved in Lemma 12, in case (i), D(t) < 0, for any t ∈
(
0, ms−m0

k

]
, hence no admissible

{−1, 0, 1}-control exists. On the other hand, in case (ii) there exists a unique t∗ ∈
(
0, ms−m0

k

)
such

that D(t∗) = 0, while in case (iii) there exist two t∗1, t
∗
2 ∈

(
0, ms−m0

k

)
satisfying D(t∗1) = D(t∗2) = 0.

Taking t1 = t∗ in (ii) and t1 = t∗1, or t1 = t∗2 in (iii), since h0 > Ψ(ms, v0) in light of Lemma 14
we deduce that η(t1) = v(t1) − v−ms

(t1) > 0, yielding (5.26). Notice that in case (ii) the unique
{−1, 0, 1} admissible control is the optimal one, while in (iii) the optimal {−1, 0, 1}-control is
obtained by taking t1 = t∗2, see Propositions 6 and 7. Notice that the soft landing occurs with no
fuel left.

Collecting Propositions 15, 16, 17, 18, we obtain the proof of Theorem 4.

5.5 Proof of Theorem 5

Proof. (i) Applying Theorem 4, we know that the optimal control is a {1}-control. By (5.11) we
infer (3.6). Since by (1.5) the map

τ 7→ gτ +
1

k
log

(
1− kτ

m0

)
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is strictly decreasing over [0, m0
k ), there exists a unique τ > 0 satisfying (3.6). Finally, since

α(t) ≡ 1, by (5.11) we also infer that m(τ) = m0 − kτ −ms.
(ii) By Proposition 16 there exists a unique {−1, 1}-control α and it is the optimal control. Then

there exist a unique couple 0 < t1 < τ such that

α(t) =

 −1 in (0, t1)

1 in (t1, τ)
, h(τ) = v(τ) = 0 .

In turn, (1.3)3 yields m(t) = m0 − kt in (0, τ) and, recalling (5.9) gives

v(t1) = v0 − gt1 +
1

k
log

m0 − kt1
m0

, h(t1) = h0 + v0t1 −
t1
k
− g

2
t21 +

m0 − kt1
k2

log
m0

m0 − kt1
,

while recalling (5.11) gives

v(t1) = g(τ − t1) +
1

k
log

m0 − kτ
m0 − kt1

, h(t1) =
t1 − τ
k
− g

2
(τ − t1)2 +

m0 − kt1
k2

log
m0 − kt1
m0 − kτ

.

By equating the two above expressions for v(t1) and h(t1) we find (3.7).
Finally, since |α(t)| ≡ 1, we infer that m(τ) = m0 − kτ . In case h0 = Ψ(ms, v0), by Theorem 4

we get m(τ) = ms, and (3.8) follows.
(iii) The existence of a unique eligible control α (of type {0, 1}) follows by statement (iv) in

Theorem 4. Hence,

α(t) =

 0 in (0, t2)

1 in (t2, τ)
, h(τ) = v(τ) = 0 .

for some τ > t2 > 0. We further know that m(τ) = ms. Imposing the continuity of the correspond-
ing trajectory in t2, by (5.10) and (5.11), we get

τ =
m0 −ms

k
+ t2 , −gt2 + v0 = g(τ − t2)− 1

k
log

m0

ms
,

hence (3.9).
(iv) − (v) The existence of an optimal {−1, 0, 1}-control follows by Theorem 4. The optimal

control α is defined as

α(t) =


−1 in (0, t1)

0 in (t1, t2)

1 in (t2, τ)

, h(τ) = v(τ) = 0, m(τ) = ms,

where (t1, t2, τ) are obtained by imposing continuity of the corresponding trajectory in t1 and t2.
By (5.9), (5.10), and (5.11), we get

ms = m0 − k(τ − t2 + t1) , v(t1) = −gt1 +
1

k
log

m0 − kt1
ms

+ v0 ,

g(τ − t2)− 1

k
log

m0 − kt1
ms

= −g(t2 − t1) + v(t1) ,

h(t1) = − t1
k

+ v0t1 −
g

2
t21 −

m0 − kt1
k2

log
m0 − kt1
m0

+ h0 ,
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1

k
(t2 − τ)− g

2
(τ − t2)2 +

m0 − kt1
k2

log
m0 − kt1
ms

= −g
2

(t2 − t1)2 + v(t1)(t2 − t1) + h(t1) .

A number of simple computations then allows to obtain (3.10). By Proposition 18, in case (iv) the
solution (t1, t2, τ) is unique, while in case (v) there are two solutions, the optimal one corresponds
to the solution with the largest first switch time t1.

5.6 Proof of the variation with respect to the initial mass of fuel

In this section we justify rigorously the movements (from black to gray) in Figure 5, by studying
the variations of the lines depicted in Figure 2 as the mass m0 −ms of initial fuel changes.

Assume that m0 ∈
(
ms,

1
g

)
and let R(m0) and Vm0 be as in (3.2). We claim that

m0 7→ R(m0) is strictly increasing, m0 7→ Vm0 is strictly increasing. (5.27)

By definition of Vm0 it suffices to prove (5.27)1. To this end, we use (1.5) and (5.15) to deduce

dR(m0)

dm0
=

1

k2m0

[
1

g
log

m0

ms
− (m0 −ms)

]
>
m0 −ms

k2m0

[
1

gm0
− 1

]
> 0.

Next, we analyze the behavior of the extremal point
(
v−ms

,Γm0(v−ms
)
)

as m0 varies.

Lemma 19. Let v−ms
be as in (3.1) and let Γm0 be as in (5.23). Then

m0 7→ v−ms
is strictly decreasing, m0 7→ Γm0(v−ms

) is strictly increasing. (5.28)

Proof. To prove (5.28)1, we notice that, by (1.5),

d v−ms

dm0
=
gm0 − 1

km0
< 0 .

For (5.28)2 we analyze the behavior of the extremal point of the switching curve. This is the
initial point of safe landing with {1}-control and no fuel left at landing. By (5.11)1 we then see
that m0 = m(0) = kτ +ms, that is, τ = m0−ms

k . By replacing this into (5.11)3 we infer that

Γm0(v−ms
) = h0 = h(0) = −m0 −ms

k2
− g

2k2
(m0 −ms)

2 +
m0

k2
log

m0

ms
.

Therefore,

k2 dΓm0(v−ms
)

dm0
= log

m0

ms
− g(m0 −ms) > 0

where the inequality follows from (5.15). This proves (5.28)2.

In particular, (5.28)1 shows that the interval of definition of the map v 7→ Γm0(v) enlarges as m0

increases. Further, by their explicit expression in (3.1), we deduce immediately that,

m0 7→ |v−ms
| and m0 7→ v+

ms
are strictly increasing.

Finally, we notice that the very same proof of Lemma 19 shows that, for any residual mass m(τ) ≥
ms, if the initial mass m0 is increased then the terminal point (corresponding to t = 0 in (5.11))
moves “up and left” as in Figure 5.

Consider now the function Ψ introduced in Lemma 9. To analyze the monotonicity of Ψ(ms, v)
with respect to m0 (for a fixed v ∈ (v−ms

, v+
ms

)), we study the function

F (m0, v) := (m0 +ms)
[
1 +

g

2
(m0 −ms)

]
−m0kv − 2

√
m0mse

(
g(m0−ms)−kv

)
/2.

Note that, for any fixed m0 ∈
(
ms,

1
g

)
, we have F (m0, v) = k2Ψ(ms, v).
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Lemma 20. Let F = F (m0, v) be as above, then
∂F

∂m0
(m0, v) > 0 for all v ∈ [v−ms

, vms ].

Proof. For any fixed v ∈ (v−ms
, v+
ms

), we have that

∂F

∂m0
(m0, v) = −kv + (1 + gm0)

(
1−

√
ms

m0
e(g(m0−ms)−kv)/2

)
.

Notice that

∂F

∂m0
(m0, v

−
ms

) = −kv−ms
> 0 and

∂F

∂m0
(m0, v

+
ms

) =
m0 −ms

m0
− log

m0

ms
< 0,

see Lemma 9 and (5.15). Furthermore, for any v ∈ (v−ms
, v+
ms

), by using (1.5) we infer that

∂2F

∂v∂m0
(m0, v) = −k + (1 + gm0)

k

2

√
ms

m0
e(g(m0−ms)−kv)/2 <

∂2F

∂v∂m0
(m0, vm−

s
) = k

gm0 − 1

2
< 0.

The three above inequalities show that there exists a unique ṽms ∈
(
v−ms

, v+
ms

)
such that

∂F

∂m0
(m0, v)


> 0 for v ∈ [v−ms

, ṽms),

= 0 for v = ṽms ,

< 0 for v ∈ (ṽms , v
+
ms

)

and the proof of the lemma will be complete if we show that vms < ṽms .
By Lemma 9 and (5.12), for any fixed m0, the function v 7→ F (m0, v) = k2Ψ(ms, v) is strictly

decreasing and F (m0, vms) = 0. Then the inequality vms < ṽms follows if we show that

F (m0, ṽms) < 0. (5.29)

To this end, notice that ṽms < v+
ms

implies

F (m0, ṽms) = ms −
g

2
(m2

0 +m2
s)− (1− gm0)

√
m0mse

(
g(m0−ms)−kṽms

)
/2

< ms −
g

2
(m2

0 +m2
s)− (1− gm0)

√
m0mse

(
g(m0−ms)−kv+ms

)
/2 = −g

2
(m0 −ms)

2 < 0,

showing (5.29) and completing the proof.

To study the monotonicity of P0 in (3.4) with respect to m0, we introduce the function

H(m0, v) := k2R(m0)− (kv)2

2g + kv
g +m0 −ms − 1

g log m0
ms

+
(
m0 +ms + 1

g log m0
ms
− kv

g

)
log

m0+ms
2 +

1
2g log

m0
ms
−kv2g

m0
,

satisfying (for any fixed m0), H(m0, v) = k2P0(v).

Lemma 21. Let H = H(m0, v) be as above, then
∂H

∂m0
(m0, v) > 0 for all v ∈ (|v−ms

|, wms ].
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Proof. With some computations we obtain

∂H

∂m0
(m0, v) =

1

gm0

(
kv + (1 + gm0) log

m0+ms
2 + 1

2g log m0
ms
− kv

2g

m0

)
.

Therefore, by (5.15),

∂H

∂m0
(m0, |v−ms

|) =
k|v−ms

|
gm0

> 0 and
∂H

∂m0
(m0, v

+
ms

) =
m0 −ms

m0
− log

m0

ms
< 0.

Moreover, by using once more (1.5), for any v ∈ (|v−ms
|, v+

ms
) we obtain

gm0
∂2H

∂v∂m0
(m0, v) = k

gms + log m0
ms
− kv − 1

gm0 + gms + log m0
ms
− kv

< k
gms + log m0

ms
− k|v−ms

| − 1

gm0 + gms + log m0
ms
− kv

= k
gm0 − 1

gm0 + gms + log m0
ms
− kv

< 0.

The three above inequalities show that there exists a unique w̃ms ∈ (|v−ms
|, v+

ms
) such that

∂H

∂m0
(m0, v)


> 0 for v ∈ (|v−ms

|, w̃ms)

= 0 for v = w̃ms

< 0 for v ∈ (w̃ms , v
+
ms

)

and the proof of the lemma will be complete if we show that wms < w̃ms .
By Lemma 10, the map v 7→ H(m0, v) = k2P0(v) is strictly decreasing and H(m0, wms) = 0.

Then the inequality wms < w̃ms follows if we show that

H(m0, w̃ms) < 0. (5.30)

Notice that, by (1.5),

gm0
∂H

∂m0

(
m0,

1
k log m0

ms

)
=log m0

ms
− (1 + gm0) log 2m0

m0+ms
> log m0

ms
− 2 log 2m0

m0+ms
=log (m0+ms)2

4m0ms
>0,

yielding w̃ms >
1
k log m0

ms
. By monotonicity of v 7→ H(m0, v) we then obtain

H(m0, w̃ms) < H(m0,
1
k log m0

ms
) = ms log

m0 +ms

2ms
−m0 log

2m0

m0 +ms

= m0

[
ms

m0
log

1 + ms
m0

2ms
m0

+ log
1 + ms

m0

2

]
.

Since the function x 7→ x log 1+x
2x + log 1+x

2 is negative for x ∈ (0, 1), we infer the claimed inequality
(5.30), which proves the statement.

The results in the present section “prove the dynamics in Figure 5”. The monotonicity in (5.27)
shows that the critical parabola moves upwards as m0 increases. Lemma 21 shows that also the
graph of P0 moves upwards. These two facts show that the upper curve in Figure 5, which is the
graph of the function Z defined in (3.5), moves upwards. Lemma 19 and the arguments that follow
show both that the switching curve h0 = Γm0(v0) moves upwards and that the extremal corner
point

(
v−ms

,Γm0(v−ms
)
)

at the left in Figure 5 moves upwards and leftwards. Finally, Lemma 20
shows that the intermediate curve in Figure 5, graph of h = Ψ(ms, v) and separation line between
optimal {−1, 1}-controls and optimal {−1, 0, 1}-controls, also moves upwards as m0 increases.
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6 Final comments

In this final section we state some (marginal) further results. The first deals with Theorem 4.

Remark 22. By analyzing Proposition 17 we deduce that, in item (v) of Theorem 4:

if v0 ∈ (|v−ms
|, wms ] and max

{
0, R(m0)− v20

2g ,Ψ(ms, v0)
}
< h0 < P0(v0) , (if v0 > max{Vm0 , vms}

also h0 = 0 is allowed), then there exist exactly two {−1, 0, 1}-controls, otherwise, the {−1, 0, 1}-
control is unique. Further, both in (iii) and in (v) of Theorem 4, if h0 > R(m0) − v20

2g , then no
{0, 1}-control exists.

The second remark concerns Theorem 5.

Remark 23. If in case (v) of Theorem 5 we have that h0 = P0(v0), then the unique solution of
(3.10) is given by

t1 =
v0

2g
+
m0 −ms

2k
− 1

2gk
log

m0

ms
, τ =

v0

g
+

1

gk
log

(
1
2(m0 +ms) + 1

2g log m0
ms
− kv0

2g

)2
m0ms

t2 =
v0

2g
− m0 −ms

2k
+

1

2gk
log

m0

ms
+

2

gk
log

1
2(m0 +ms) + 1

2g log m0
ms
− kv0

2g

m0
.

Concerning Figure 2, we show that both the situations described may occur. In the following
lemma we discuss the mutual position of vms and Vm0 in dependence on ms and m0.

Lemma 24. The map v 7→ Ψ(ms, v) satisfies:
• if gms < 2(

√
2 − 1) ≈ 0.82, there exists m > ms such that if m0 < m, then vms < Vm0 and

Ψ(ms, v) < R(m0)− v2

2g for all v ∈ (v−ms
, Vm0 ];

• if gms > 2(
√

2− 1), there exists m > ms such that if m0 < m, then vms > Vm0 and there exists

a unique v∗ ∈ (0, Vm0) such that Ψ(ms, v∗) = R(m0)− v2∗
2g with Ψ(ms, v) < R(m0)− v2

2g in (v−ms
, v∗)

and Ψ(ms, v) > R(m0)− v2

2g in (v∗, Vm0 ].

Proof. We refine (5.15) with the second order Lagrange formula:

∃ξ1, ξ2 ∈ (ms,m0) s.t. log
m0

ms
=
m0 −ms

ξ1
, log

m0

ms
=
m0 −ms

ms
− 1

2ξ2
2

(m0 −ms)
2 . (6.1)

We then use both formulas in (6.1) in order to rewrite

kVm0 =

[
log2 m0

ms
+ 2g

(
ms log

m0

ms
− (m0 −ms)

)]1/2

=

[
(m0 −ms)

2

ξ2
1

− gms

ξ2
2

(m0 −ms)
2

]1/2

=

[
1

ξ2
1

− gms

ξ2
2

]1/2

(m0 −ms) (6.2)

so that

g(m0 −ms)− kVm0 =

(
g −

[
1
ξ21
− gms

ξ22

]1/2
)

(m0 −ms) .

In turn, through a further application of the Lagrange Theorem, the latter shows that

∃ξ3 ∈
(

0,

[
g −

[
1
ξ21
− gms

ξ22

]1/2
]
m0 −ms

2

)
such that e

(
g(m0−ms)−kVm0

)
/2 =
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= 1 +

(
g −

[
1

ξ2
1

− gms

ξ2
2

]1/2
)
m0 −ms

2
+

(
g −

[
1

ξ2
1

− gms

ξ2
2

]1/2
)2

eξ3
(m0 −ms)

2

8
. (6.3)

We are now ready to give a sign to Ψ(ms, Vm0); this requires several computations. We have

k2Ψ(ms, Vm0) = (m0 +ms)
[
1 + g

2(m0 −ms)
]
− km0Vm0 − 2

√
m0mse

(
g(m0−ms)−kVm0

)
/2

by (6.2) = (m0 − 2
√
m0ms +ms) +

[
g(m0+ms)

2 −
[

1
ξ21
− gms

ξ22

]1/2
m0

]
(m0 −ms)

+2
√
m0ms

[
1− e

(
g(m0−ms)−kVm0

)
/2
]

by (6.3) = (m0−ms)2

(
√
m0+

√
ms)2

+

[
g(m0+ms)

2 −
[

1
ξ21
− gms

ξ22

]1/2
m0

]
(m0 −ms)

−2
√
m0ms

{[
g −

[
1
ξ21
− gms

ξ22

]1/2
]
m0−ms

2 +

[
g −

[
1
ξ21
− gms

ξ22

]1/2
]2

eξ3 (m0−ms)2

8

}
.

After dividing by (m0 −ms), we then obtain

k2Ψ(ms,Vm0 )
m0−ms

= m0−ms

(
√
m0+

√
ms)2

+
g(m0−2

√
m0ms+ms)
2 + (

√
m0ms −m0)

[
1
ξ21
− gms

ξ22

]1/2

−
√
m0ms

[
g −

[
1
ξ21
− gms

ξ22

]1/2
]2 eξ3

4
(m0 −ms)

= m0−ms

(
√
m0+

√
ms)2

+ g(m0−ms)2

2(
√
m0+

√
ms)2

−
√
m0

m0−ms√
m0+

√
ms

[
1
ξ21
− gms

ξ22

]1/2

−
√
m0ms

[
g −

[
1
ξ21
− gms

ξ22

]1/2
]2 eξ3

4
(m0 −ms).

After a further division and a multiplication, we finally obtain

k2 (
√
m0 +

√
ms)

2

(m0 −ms)2
Ψ(ms, Vm0) = 1 +

g(m0 −ms)

2
−
√
m0

(√
m0 +

√
ms

) [ 1

ξ2
1

− gms

ξ2
2

]1/2

−
√
m0ms

[
g −

[
1
ξ21
− gms

ξ22

]1/2
]2 eξ3

4
(
√
m0 +

√
ms)

2.

As m0 → ms we have ξ1, ξ2 → ms and ξ3 → 0; then,

lim
m0→ms

k2 (
√
m0 +

√
ms)

2

(m0 −ms)2
Ψ(ms, Vm0) = (1− gms)

[
gms − 2

√
1− gms

]
.

If gms < 2(
√

2 − 1) this limit is negative, if gms > 2(
√

2 − 1) it is positive. In the former case

Ψ(ms, Vm0) < 0 = R(m0) − V 2
m0
2g for m0 sufficiently close to ms, in the latter case Ψ(ms, Vm0) >

0 = R(m0)− V 2
m0
2g . We still need to determine the position of vms .

Since Ψ(ms, v) < R(m0)− v2

2g for v in a right neighborhood of v−ms
and since

∂2Ψ(ms, v)

∂2v
= −
√
m0ms

2
e

(
g(m0−ms)−kv

)
/2 > −1

g
=

∂2

∂2v

[
R(m0)− v2

2g

]
,

in the first case we have Ψ(ms, v) < R(m0) − v2

2g for all v ∈ (v−ms
, Vm0 ] and Ψ(ms, vms) = 0 with

vms ∈ (0, Vm0), while in the latter case we have Ψ(ms, v∗) = R(m0)− v2∗
2g for some v∗ ∈ (0, Vm0) and

Ψ(ms, vms) = 0 with vms > Vm0 . This completes the proof.
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The physical interpretation of the assumption gms ≶ 2(
√

2 − 1) is that the empty drone has
small/large mass. In both cases, m0 close to ms means that there is little initial fuel. Under the
assumptions of Lemma 24, both the inequalities vms ≶ Vm0 may occur, see Figure 9. For small ms,

the graph of the function h = Ψ(ms, v) remains below the graph of h = R(m0)− v2

2g and intersects
the h-axis at vms < Vm0 , for large ms the two graphs intersect and cross at some point in (0, Vm0).
These pictures should then be completed as in Figure 2.

Figure 9: For small m0, pictures for gms < 2(
√

2− 1) (left) and for gms > 2(
√

2− 1) (right).

We conclude this paper with two possible future developments of our results. We saw that a full
comprehension of the safe landing strategy in minimal time requires a large amount of computations.
There are many parameters involved and establishing their roles and their hierarchy is mandatory
to have a complete picture of the phenomena involved. Since the precise rules have been established
in this paper, one could seek numerical codes able to guide the pilot in real time.

A further problem is to consider an asymmetric interval for the control α. Recall that α represents
the thrust and it is quite realistic to assume different strengths while accelerating and braking. How
do the results and pictures in the present paper change if α ∈ [−1, 2] or α ∈ [−2, 1]?

Acknowledgement. The authors are grateful to an anonymous referee, whose valuable sugges-
tions helped to improve the paper.

The first author is supported by PRIN project Equazioni alle derivate parziali di tipo ellittico
e parabolico: aspetti geometrici, disuguaglianze collegate, e applicazioni. Both the authors are
members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
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