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Abstract

We study the asymptotic behavior of ground states of quasilinear elliptic problems with two
vanishing parameters. Thanks to an additional (fixed) parameter, we show that two different
critical exponents play a crucial role in the asymptotic analysis, giving an explanation of the
phenomena discovered in Gazzola et al. (Asymptotic behavior of ground states of quasilinear
elliptic problems with two vanishing parameters, Ann. Inst. H. Poincaré Anal. Non Linéaire,
to appear) and Gazzola and Serrin (Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 477).
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1. Introduction

Let A,u = div(|Vu|" ?Vu) denote the degenerate m-Laplace operator and let

. nm
m =
n—m

be the critical Sobolev exponent for the embedding D'(R")< L™ (R"). In this
paper, we study the asymptotic behavior of ground states of the quasilinear elliptic
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equations
—Apu = —0u?' + P~ in R", (L.1)

where 6 >0, n>m>1 and 1 <g<p<m*. Here and in the sequel, by a ground state we
mean a C'(R") nonnegative nontrivial radial distribution solution of (1.1) vanishing
at infinity.

We know from [6,12] that (1.1) admits a unique ground state for all d, p, ¢ in the
given range. On the contrary, if either p = m* and >0 or 6 = 0 and pe (g, m*) then
(1.1) admits no ground states, see [9,10]. Finally, if both 6 = 0 and p = m*, then (1.1)
becomes

—Au=u""" inR" (1.2)

and (1.2) admits the one-parameter family of positive ground states (see [14]) given
by

Ua(x) = d[1 + D(dwm|x|)ym1]"m  (d>0) (1.3)

with D = Dyy = (m — 1)/(n — mynmT and Uy(0) = d.

Our purpose is to study the behavior of ground states of (1.1) in these limiting
situations, namely when p T m* and/or ¢ | 0. Note that the case ¢ = m is also somehow
a limit case since if g<m then the ground state of (1.1) has compact support,
whereas if ¢=>m it remains positive on R”, see [3]. And precisely in the case ¢ = m,
this behavior has been determined in [4,5] where a new phenomenon was highlighted:
an unexpected ‘“discontinuous” dependence of the behavior on the parameters m
and n was found. In order to better understand this phenomenon, we introduce
here the additional free parameter ¢. And indeed, our results shed some light on
this strange behavior and we may attempt some explanations. The new parameter ¢
allows us to interpret the above-mentioned discontinuous dependence in terms
of two critical exponents. We will show that in the description of the asym-
ptotic behavior of ground states of (1.1) a crucial role is played by the two
numbers

" _n(m—1) m _m(n—1)
R —m T on—m

which satisfy
l<mp<m,<m’.
Note that mg = m, — 1 and that mg — m has the same sign as m> — n.
It is well-known that the best Sobolev constant S in the inequality for the
embedding D' (Q)<= L™ (Q) is independent of the domain @ and that it is not

attained if Q#R". In fact, if Q is bounded more can be said, a so-called remainder
term appears. In [1], it is shown that for any bounded domain Q<R" and any
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1 <g<mp there exists an optimal constant C = C(Q, ¢) >0 such that
IV ul[ ) = Sllull 7o @) + Cllull a0

and C(Q,q)—>0 as g—my. For this reason, we call mg the critical remainder
exponent.

The number m, is called Serrin’s exponent, see [11]. It is shown independently in
[8,13] that the inequality —A,,u=>u”"" (where p> 1) admits a nonnegative nontrivial
solution if and only if p>m,.

In Theorem 1, we show that Serrin’s exponent m, is also the borderline between
existence and nonexistence for the “coercive” problem A, W = Wi~!. More
precisely, we prove that this equation admits a (unique) nonnegative radial solution
on R™\{0} which blows up at the origin like the fundamental solution if and only if
g<m,. The nonexistence statement for g>=m, is a consequence of removable
singularities [15].

Then, we start our asymptotic analysis by maintaining 6 >0 fixed and letting
p1m*. In Theorems 2 and 3 we show that the ground state u of (1.1) converges to a
Dirac measure having mass at the origin and that #(0) blows up with different rates
when ¢ >mpg, g = mg and g <mpg. This fact is strictly related to the L summability of
the functions Uy in (1.3) which fails precisely if g<mpg. As already mentioned, if
g<m then the ground state of (1.1) has compact support (a ball); in Theorem 4,
we show that the radius of the ball tends to 0 as ptm* and we give the precise
rate of its extinction. Once more, the critical exponents myg and m, play a major
role. In Theorem 5, we rescale in a suitable fashion the ground state u and we
show that the rescaled function converges to the solution W of the problem A, W =
W1 previously determined in Theorem 1: since W is nontrivial only if ¢<m.,
this gives a further different behavior of the ground state according to the sign of
q — m,.

Our asymptotic analysis is continued by maintaining p fixed and letting 6 | 0. In
Theorem 6, we prove that in such a case u— 0 uniformly in R” and we determine the
precise rate of convergence; moreover, when u is compactly supported (i.e. ¢ <m) we
show that the radius of the ball supporting it diverges to infinity. This means that the
ground state spreads out as 6| 0. Since this behavior is somehow opposite to the
concentration phenomenon obtained when p7Tm* it is natural to inquire what
happens when both 60 and m* — p |0 (this justifies the title of the paper). In
Theorem 7, we show that if this occurs at a suitable “equilibrium behavior” ¢ =
o(m* — p) then the ground state does not concentrate nor spread out, it converges
uniformly in R” to one of the functions Uy in (1.3). The rate of this equilibrium
behavior depends on the sign of ¢ — mp.

Some of our statements are obtained by adapting the proofs in [4,5] while some
others (as Theorem 1, Theorem 4, Theorem 5 and the second part of Theorem 6) are
based on new ideas. Furthermore, we emphasize once more that our study for
general ¢ gives a complete picture of the phenomenon thanks to the critical
exponents mg and m,.
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2. Main results

Throughout the paper, we define r = |x|. Thanks to the rescaling,

1 x
U(X) =0 P4 u<w>
Sm—a)

we have that u is a ground state of (1.1) if and only if v is a ground state of the
equation

A==+ in R (2.1)

Therefore, when 6 >0 is fixed, we may restrict our attention to (2.1).
Consider first the auxiliary problem obtained by deleting the largest power term in
(2.1):

AW =W in R\{0} (2.2)

supplemented with the “boundary” conditions

lim X[ T W (x) = Ay, (2.3)
lim W(x)=0, (2.4)
|x|— o0

where A4, = Df% and D = D,,,, is defined in (1.3). We have
Theorem 1. Let n>m>1.
(1) If ¢=m, then (2.2)—(2.3) has no solution.
(i) If m<q<m, then (2.2)~(2.3) admits a unique nonnegative radial solution W,.

Moreover, Wy(r)>0 in (0, 00) and W,(r) = O(r 4=m) as r— o0.

(iil) If 1<g<m then (2.2)~(2.4) admits a unique nonnegative radial solution W,.
Moreover, if g = m then Wy(r)>0 on (0, c0) and there exists v>0 such that W,(r) =
O(e™) as r— co, while if q<m then W, has compact support.

The nonexistence result for ¢ >m, is essentially due to Vazquez—Veron [15]. On the
other hand, statements (i1) and (iii) in Theorem 1 require a fairly complicated proof,
involving new ideas which may be of some interest also independently of our context.
Clearly, Theorem 1 is true also if A4,,, in (2.3) is replaced by any other positive
constant, see the rescaling (4.33).

Note that when g<mpg, Theorem 1 states that the following constant is well-
defined:

©
Im,mq = / rnil W;(r) dr. (25)
0



A. Ferrero, F. Gazzola | J. Differential Equations 198 (2004) 53-90 57

Also recall that the beta function B(:,-) is defined by

0 Za—l
B(a,b :/ ———dt a,b>0.
(@,6) 0 (1+t)“+b

We then introduce the following constants:

m B, (g — mp)
ﬁn S :7M*_q = " q>mg), 2.6
=" = S L (g 26)
nm> 1
Hmpn = ) (27)
T (= m)m = 1) BEEL )
m* » m n(m—1) Im g
ym,n,q = _(m - q) ——D m ,77_1’ (q<mR)7 (28)
q m—1 B(%, 1y

where D = D,,, is defined in (1.3).
With these constants we describe the asymptotic behavior of the solution u of (2.1)
at the origin when p—m*:

Theorem 2. For all 1<g<p<m®, let u be the unique ground state of (2.1). Then,
writing ¢ = m* — p, we have

lim e[u(0)]" ™ = Bong il g>mg,

e—0
. n .
21_1;1’(1] | In 8\[“(0)]}17’“ = :um,n if q = Mg,
m'—q
lirr(l] elu(0)m—1 =y,,,, if g<mg, (2.9)
e m

where the constants B, ., ty, and V,,,, are defined in (2.6), (2.7) and (2.8),
respectively.
m‘—q __ %

=m* — q = 2. Moreover,
m,—q n—m

Note that at the “turning point” ¢ = mg we have
ﬂmﬁn,q — 00 as leR and Ymp,g = 0 as QTmR'
Theorem 3 asserts that u concentrates at x = 0. We state this fact in more details as

Theorem 3. For all 1 <g<p<m®, let u be the unique ground state of (2.1). Then,
writing € = m* — p, there exist v, ,>0 and C,,,,>0 depending only on m,n such that

lim [ o (x)dx = vy, lim |Vu(x)|™ dx = v,
e—0 R" £—0 R"
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lim [2(0)u™ 1 (x)] < Cpunlx|™™"  Vx#0,

£—0

: m—1 n— my\m-l l—n
lim, (0)| V()| ]<(m_1) Connlx|'™" V0.

These facts imply that
W S vpado and  |Vul" >v,,.00 as e—0
in the sense of distributions; here d is the Dirac measure concentrated at x = 0.

If ¢g<m, then the unique ground state of (2.1) has compact support; in the next
statement, we give an asymptotic estimate of its support as p —»m*: note that m <mpg
if and only if n<m?.

Theorem 4. For all 1 <g<m<p<m®* let u be the unique ground state of (2.1). Then,
writing € = m* — p and supp (u) = B,(0) we have p—0 as 0. To be more precise we
have the following estimates:

q—m q—m

C) < lim iélf p e =0)m.—q)n=m) < lim sup p et —Dm—a)n-m) < 4+ o0 if g>mp,
Cind e—0

n— n—
In e[\ A In &\ aGr-m)
C2<limi51fp<|£> " < fim sup p(l r;'g')"( "< b o if g=ma,
&E— iy

& e—-0
q—m q—m
C;< lim i(?f p e =an=m L lim sup p e -0n-m < + 0 if g<mp,
&= e—0

where Ci, Cy, C3>0 are constants depending only on m,n, q.

Our next result gives the asymptotic behavior of the ground state u of (2.1)
“outside the origin” when p—m*. We introduce the constant

Vg <m, (2.10)

and we state

Theorem 5. For all 1 <qg<p<m* let u be the unique ground state of problem (2.1).
Then, writing o. = u(0) and ¢ = m* — p, we have
(1) If 1 <g<my, then

lim o™ ou(a4=" ) = W,(r) Vr>0, (2.11)

e—0

where W, is the unique nonnegative radial solution of (2.2)~(2.4), see Theorem 1.
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(i) If m. <qg<m®*, then
lim o™ u(a "™ ) =0 Vr>0 VreR. (2.12)

e—0

Now we change notations: we denote by v the unique ground state of (2.1) and set
p = 0(0). (2.13)

By the already mentioned existence and uniqueness results for (2.1), f is a well-
defined function of the four parameters m, n, p and ¢. If ¢g<m then the support of v is
a closed ball centered at the origin (see [3] and Proposition 2 below), so that we can
put

supp (v) = Bgr(0). (2.14)
Then the following result holds

Theorem 6. For all 0>0, let u be the unique ground state of (1.1) with 1 <qg<p<m*,

1
let v be the unique ground state of (2.1) and let § be as in (2.13). Then u(0) = 6r—41f and
for any p fixed and x#0 we have

1
_ p—1 g—1\ m—1 17 1
u(x):u(())—m 1<ﬁ nﬁ ) 5(11 (m— l|x|m 1

m

-1
0(0(p=a)m=T) = D) as §-0. (2.15)

Moreover, if g<m, then

supp (u) = B,(0), (2.16)

p—m

where p = RS mr=4) and R as in (2.14).

Remark 1. In some cases (e.g. if g<m or m* — p is small enough) by arguing as in [,

Theorem 1] we see that if / :%;m), there exists a positive constant o, 4
independent of ¢ such that

/ U (x) dx = tpppy VO>0.

This gives an idea of the way the convergence #— 0 occurs.

In our last statement we determine an equilibrium behavior in such a way that u(0)
remains bounded away from 0 and infinity when both p—»m* and § - 0.
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Theorem 7. Let d>0 and for all 1 <qg<p<m*, let u be the unique ground state of
problem (1.1). Let B, 45 tmn and vy, ,, be as in (2.6), (2.7) and (2.8), respectively.
Then, writing ¢ = m* — p and taking

d”"*_q };}nﬂ & l.f‘ q>mR7
o & .
0= 5(8) =g d" q:um,ln| In 8| lf q = Mg,

m*— —My My — vy
d 1 qu,n,q € K lf q<mg,
we have

u(0)—»d, u-U,; as ¢—0

uniformly on R", where Uy is the function defined in (1.3).

3. Preliminary results

In radial coordinates, Eq. (2.1) becomes

-1
e e
1/(0) =0, (3.1)
lim u(r) =0.
r— o0

We first recall a known result:

Proposition 1. For all 1 <g<p<m®*, problem (3.1) admits a unique solution u. Such a
solution obeys the following PohozZaev-type identity

e N P

Proof. Existence is proved in [6], see also [2]. Uniqueness is proved in [12]. The
Pohozaev-type identity is proved in [9], see also Proposition 3 in [5]. [

We now describe the asymptotic behavior at infinity of the solution of (3.1). In the
following statement we collect a number of known results. Only (iv) seems to be new:
it improves (iii) when g<m, and it plays an important role in what follows.

Proposition 2. Assume that 1 <g<p<m*.
() If g<m, then the unique solution of (3.1) has compact support in [0, o0).
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(i1) If g = m, then the unique solution u of (3.1) satisfies u>0 and

vr vr

u(ry<pe™, | (r)|<pe™, |u'(r)|<pe™  Vr=0 (3:3)

for some constants u,v>0.
(ii1) If ¢>m, then the unique solution u of (3.1) satisfies u>0 and

m(n—1)
ram=Ny(r)>0 as r— co. (3.4)

(iv) If m<gq<my, then the unique solution of (3.1) also satisfies

m

AC,R>0, u(r)<Cr em Vr=R (3.5)
and

Pl ()" 50 as r— 0. (3.6)

Proof. Part (i) is an immediate consequence of Proposition 1.3.1 in [3]. For the proof
of part (ii) see Theorem 8 in [5]. Part (iii) can be obtained using the limits at p. 184 in
[9]. It remains to prove part (iv). To the solution u of (3.1) we associate the energy
function

E(r) = mT—l [/ ()™ — éu"(r) +%u”(r) r>0 (3.7)

which satisfies E(r) >0 for all r>0, see Proposition 2 in [5]. Since u(r) >0 as r— oo,
for any p>0 there exists R>0 such that u(r)<p for any r>R. Choose p so that
£ =>4 for all 0<s<p; then, by positivity of E, we have

mT_l b (1" >$uq(r) vz tue) wer

Hence, recalling that ' <0 in view of [6, Theorem 1], we obtain

:;;1(:) > (s 1)); ek

Integrating this inequality over the interval (R, r), we obtain

1
(2- 1)“ (W m(r) — ulm(R)) > (ﬁ)m(r -R)
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and hence there exist constants C>0 and R> R such that

_ m
1 q—m

u(r) < (%)m(ﬁ DR+ R <Crim wrsR

2g(m — 1 m

which proves (3.5). In order to prove (3.6), recall that by [9, Lemma 5.1] the limit
exists. Suppose for contradiction that

lim i ()] >0.

r— o0

Then, by using de I’'Hopital rule and the fact that ¢ <m,, we infer

_ q
lim “(2 L P L i/ (r)| = +o0
r—»ow ———= m r— oo

roq-m

which contradicts (3.5). O

Note that, taking into account (3.6) and integrating (3.1) (in divergence form) over
[0, 00) yields

0 0
/ Pt () dr = / Pl () dr (3.8)
0 0
In the remaining part of this section, we follow closely the approach in [5]. We just
briefly recall the basic points. From now on we denote
e=m"—p.
Using Proposition 1, we see that if u is the unique solution of (3.1), then
* * L
o= u(0)> ((m —q)lm” = a))p !
&q

since otherwise the left-hand side of (3.2) would be strictly negative. Clearly, the
previous inequality implies that

lim o =+ (3.9)

e—0
and

(m* — q)(m" —¢)

p Vee (0,m™ — q). (3.10)

w=c¢cl 1=

Let u be the unique solution of (3.1) and consider the function y = y(r) defined by

mr) (3.11)
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so that y is the unique solution of the problem

- -1 _ -
(W™ +E 2 =yt T =0 (r>0),
¥(0)=1,5(0) =0

with # = o472, By (3.9), we immediately deduce that —0 as ¢—0.
Consider the function

n—m

1 m
2(r) = (14 (L= nn=TDrm=T) "™ ¥r>0,

where D is the constant defined in (1.3). Then z solves the equation

n

-1 .
(|Z/|mfzzl)/ + ‘Zl|m722l + (l _ H)Zm -1 — O

n—m .
Moreover, if 4,,, = D™ m , then z satisfies

Am,n n—m
z(r)~ ———————r m-1 as r— .

(1— aqu)mv;l)

In the spirit of [7], we establish an important comparison result:

Lemma 1. Let y be the unique solution of (3.12) and let z be as in (3.13), then

y(ry<z(r) Vr>0.

63

(3.12)

(3.13)

(3.14)

Proof. It follows closely the proof of [5, Lemma 1]. One has just to be careful when

dealing with compact support solutions, namely in the case g<m. [

In the sequel, we sometimes consider the functions y = y(r) and z = z(r) to be
defined on R”, that is, y = y(x) and z = z(x). In particular, the function y solves the

partial differential equation
—Apy =y 4y =l

We introduce the two constants (depending on ¢):

3 1

C1:C1(s):( ¢ )’”’, C2:C2(8)=(C1 )1

m* —q

Arguing as in [5] we establish:

Lemma 2. Let u be the solution of (3.1), y as in (3.11), z as in (3.13), then:

() s»7! — st ' < Cyofs™ ! for all >0 and lim,_,o C; = 1

(3.15)

(3.16)
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(i) y(r)> Czacﬁz(r) - (Czocﬁ — 1) for all r>0, lim;_,o C, = | and Czocﬁ> 1.
(i) For all r>0 we have

p=m 1 _1 — n—1
0<z(oc m r) —&u(r)<cs|ln e, hII(l) [ocm71|u’(r)|]<HAm,n rom=I, (3.17)

(iv) There exist ¢;>c; >0 (depending only on m,n, q) such that

clw (x) dx< / Y(x)dx<cow W (x) dx.
R" g R"

(v) There exists C>0 (depending only on m,n) such that

n—m n—m

W(x)dx=(Co®)" m  and |Vy(x)[" dx=(Co®)™ m .
R R

Proof. (i) It follows after some computations of differential calculus.

(i1) It follows by using (i), see [5, Lemma 2].

(ii1) The proof of the first of (3.17) can be obtained by Lemma 1, the rescaling
(3.11) and following the same lines used to obtain (49) and (59) in [5]. The second
estimate in (3.17) can be obtained in the same way as in the proof of Theorem 3
in [5].

(iv) See [5, Lemma 3] and also Proposition 1.

(v) It follows by using (i), see [5, Lemma 4]; here C is the best Sobolev constant for
the inequality of the embedding D' <L . O

We now distinguish two cases according to whether the function z defined in (3.13)

satisfies ze L4(R") or not. Since z(x) ~ |x| """~V a5 |x| > oo, the first case occurs
when g >mg.

3.1. The case ¢>mpg
This case is somehow simpler: we establish
Lemma 3. Let g>mg, then

lim of =1 (3.18)

e—0

and there exists K>0 (depending only on n,m,q) such that o = ea?"1<K for all
sufficiently small ¢.

Proof. As g>mpg (i.e. zel?), by Lemma 1 we get a uniform upper bound
for ||y||q, provided ¢ is sufficiently small. This, together with Lemma 2(iv) and
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(v), yields
1
e TTTm<LC. (3.19)

This inequality proves (3.18), see also [5, Lemma 5] for the details.
In turn, using (3.19) and (3.18) we obtain

n—m

*_ o w_ o JJ
w=2¢ed" T =¢e" T ma"m <K

S

and the proof is complete, see also [5, Lemma 6]. [

3.2. The case g<mpg

In this case, z¢ L? and the situation is more difficult. To compensate the
nonsummability of z, we will consider an exponent / = /(¢) larger than mpg and
convergent to it when ¢— 0. The next statement is the extension of [5, Lemma 7] to
our context:

Lemma 4. Suppose that g<mg, then there exists K, = K| (m,n,q) >0, such that

m‘—q 1

gom—4 < Ky |In g|m-—4.

Proof. Let / = /(&) >mp to be determined later. Then, by (3.13), ze L/ (R"). Hence,
by Lemma 1, there exists d = d (/) >0 such that

/ VY (x) dx<d < oo; (3.20)

moreover, after some calculations one sees that

P 1
d(¢) = 0(/ — mR) as /| mg. (3.21)
By Lemma 2(iv) and (v), we have
/ Y(x) dx= Con (3.22)

On the other hand, y = y(r) solves the ordinary differential equation

YOI = e ) ) (r>0).

If we integrate it over (0, c0), then the left-hand side vanishes: indeed, the boundary
term obviously vanishes at » = 0 while it vanishes at infinity because y has compact
support (if g<m) or because of (3.6) and (3.11) (if g=m). Therefore, returning to
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cartesian coordinates and recalling Lemma 1, we find
/ Y (x) dx = o1 / YW (x)dx< CoaP 79, (3.23)
n R)’l

here we used the fact that ze IP~!(R") if e<m/(n — m).
As g<mp</, we have 9 = (/ —q+ 1)7l €(0, 1); then, using Holder inequality,

we obtain
/” y(x) dx< ( / 371 (x) dx)l_g< / V(%) dx>9_ (3.24)

Now we choose
-1 1
(=" I < L >;
1 —|lng|~ \n—m |In ¢

with this choice, />mpg whenever |In ¢|> 1. Then, after some calculations we have

1

*

9= —-q+1)"'=

1
q+ 0<1n8|> as ¢e—0 (3.25)

and

1 n—m
7—mn = mm =1 el =1 (3.26)

Combining (3.20)—(3.24) and (3.26) yields

(- )9,1-”*’” 9 1
ea P m L ellne]” <cllng|m—4

and therefore, by (3.25), we have

—q

m—q 1

m 1
+O0(F—1 —_—
eom—q <|1n s\) <C|1n 8|m*—q.

Moreover, for ¢ small enough, we have

e
1 m*—q
[In g|m-—q

&

a<C

loc

1
and hence o/ ”T @ is bounded and this completes the proof of the lemma. [

We seek a more precise estimate on the function C3 = Cs(¢). By Lemma 4 and the
fact that a>1, (3.18) follows again, namely

lim,oo* =1 Vge(l,m"); (3.27)



A. Ferrero, F. Gazzola | J. Differential Equations 198 (2004) 53-90 67

hence, (5.1) still holds and C;—1 as ¢—0. After an easy calculation, one finds that
the function C; = C)(¢) defined in (3.16), satisfies C; <1 + ce¢|ln ¢| for some constant
¢>0 depending only on m, n, g. Moreover by (3.10) we have 1 < ce and hence also the
function C; = C,(¢) defined in (3.16) satisfies C, <1 + c¢|ln ¢|. Finally,

1<Cy = Czaﬁg 1 + cellng|. (3.28)

for ¢ small enough. Let R be the unique value of r such that z(r) = ve|ln ¢| where v>0
is a sufficiently large constant, see below. By Lemma 2(ii) and (3.28), we have

9(r) > Cyz(r) — (C5 — 1)%> (1 - f;g;) 2(r) = (1 - g) 2(r) Vrelo,R).

Then, fixing v large enough, we infer
y(r)=1z(r) Vrel0,R]. (3.29)

The next lemma shows a different behavior of the parameter w = ¢x’~¢ when
compared to the case ¢ >mpy where » remains bounded as ¢— 0.

Lemma 5. Assume q<mg. Then there exists Ky = K>(m,n,q) >0 such that for ¢ small
enough

m—q _Mr=q
eam—4 = Ksllng| M4 if g<mpg (3.30)
and
ga#}]{z“nﬂ if q=mg. (3.31)

Proof. By (3.29), one can repeat the proof of [5, Lemma 8] with some minor
modifications. [

4. Proof of Theorem 1

The proof is delicate, covering a number of pages. Here we sketch the main steps
and we refer to the subsection below for the details.

Statement (i) follows from Theorem 1.1 in [15].

When 1 <g<m,, the existence of a nonnegative radial solution W, of (2.2)-(2.4) is
stated in Proposition 3. The uniqueness of the solution W, is established by
Proposition 4; the fact that the boundary condition (2.4) is not needed in the
statement when ¢>m is shown in Lemma 6. The compact support statement for W,
when 1<g<m and the positivity of W, when g=>m are obtained in Lemma 7.
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Finally, the decay conditions at infinity for W, are obtained in Lemma 8 (case ¢ >m)
and in [4] (case ¢ = m).

4.1. Asymptotic behavior of the solutions

If W is a nonnegative radial solution of (2.2), then W = W (r) satisfies
W AW )Y = W) (r>0). (4.1)
Moreover, the boundary conditions (2.3), (2.4) become

lim P W (r) = App,  lim W (r) = 0. (4.2)
r— ’ r— o0

We first show that the second condition in (4.2) is automatically satisfied when g > m:
note that the assumption ¢>m is needed only in the proof of Step 3.

Lemma 6. Let n>m>1 and m<q<m,. Then any nonnegative radial solution W of
(2.2) satisfying (2.3) necessarily satisfies (2.4).

Proof. We argue directly with Eq. (4.1).

Step 1. We show that lim,_, ., W(r) exists.

It suffices to show that W is ultimately monotone. If not, then W has a local
minimum at some R>0 and therefore R"~'|W'(R)|">W'(R) = 0. Eq. (4.1) shows
that the map ri—r""'|W'(r)|" 2 W'(r) is nondecreasing; hence, W'(r)=>0 for all
r= R, giving a contradiction.

Step 2. We show that lim,_, ., W(r)¢ (0, 00).

For contradiction, assume that lim,_, ,, W(r) = Ce (0, o0). Then, by (4.1) we infer

lim #~ W' ()" W () = + 0.

r— o0
Therefore, we may use the de 'Hopital rule and (4.1) to obtain

o O e e e

F— o0 r r— o0 rn r— o0 I/H’nil - n

This implies that lim,_, ., W’(r) = + o0, contradiction.
Step 3. We show that lim,_, ., W (r)# o0.
Consider the “‘standard” energy function

E(r) =——|W'(r)|" - éWq(r). (4.3)
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For contradiction, assume that lim,_, ,, W (r) = co. Then, by the argument in Step 1
we see that there exists a unique critical point R of W which is a global minimum. In
such a point, we obviously have E(R)<0 and by (4.4) we deduce that

m—1 1
—— W< w1 Vr=R.
W< we o

Then, since ¢>m, we infer that

n—

1
— W™ = oW (1) as ro o0

And this, together with (4.1), implies that

(m = DIW' ()" W"(r)

L (eI I (43)
We claim that (4.5) yields
lim W'(r) = +o0. (4.6)

r— o0

Indeed, if m>2, this follows at once from (4.5). If 1 <m <2, (4.5) shows that W" is
ultimately positive so that lim W’ exists; it cannot be 0 because W’(r)>0 for r=R
and therefore (4.5) implies (4.6).

Thanks to (4.6), we may apply de I’'Hopital rule which, combined with (4.5), gives

MW/ m _ / m=2yy,1
o SO = D)W )

r— o0 éW‘](y) r— o0 WQ*I(r)

=1.

This shows that there exists C >0 such that for sufficiently large r, say r> R, we have

!
MZ C Vr=R.
W‘]/m(r)

Integrating this inequality over [R, 7] gives

_q ’_nm[Wlfq/m(r) _ Wlfq/m(R)] > C(r _ R)

and (recall ¢>m) the contradiction follows by letting r—» co. [

Even if the function W is singular at r = 0, the proof of Lemma 7 below follows
the same lines as in [3] with some minor changes; therefore, we just refer to the
corresponding statement in [3].

Lemma 7. Let W be a nonnegative solution of (4.1)—(4.2); then
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(1) For any ry>r >0 the following identity holds

S = R LA
_ W‘I(rz); Wq(rl). )

(ii) We have W'(r)<O0 for any r>0 such that W(r)>0.

(i) If W(r)>0 for all r>0 then W (r)—0 as r— co.

(iv) If g<m, then there exists R>0 such that W(r) =0 for all r=R.
V) If g=m, then W(r)>0 for all r>0.

Proof. (i) See [3, Lemma 1.1.2].

(i) From (i) and arguing as in [3, Lemma 1.2.4] one gets W’ (r) <0 for any r>0;
the strict inequality follows from the form of (4.1).

(iii) See [3, Lemma 1.2.1].

(iv) Argue as in [3, Proposition 1.3.1] by using (i)—(iii).

(v) Argue as in [3, Proposition 1.3.2] by using (i)—(iii). [

Finally, we determine the asymptotic behavior at infinity of the solutions of (4.1):

Lemma 8. Suppose that m<qg<m,. If W is a nonnegative solution of (4.1)—(4.2) then

m

W) =0 em) asr—o and lim P \W ()" =0.
r— o0

Proof. Consider again the energy function E defined in (4.3). By (4.2), (4.4) and
Lemma 7 we infer that E(r)>0 for all r>0. The proof is now similar to that of
Proposition 2(iv). [

4.2. Existence

The results in this section are inspired to [4] but the proofs are tedious and slightly
different from [4] because the exponents involved depend on ¢. For this reason, we
briefly sketch the proofs.

Assume g<m,, let x, be as in (2.10) and let u be the unique solution of (3.1).
Throughout this section we consider the functions

w(r) = oc””"‘lu(oc“’*”’)""fr) (o = u(0)) (4.8)

and

n—m

o(r) = rm=1w(r). (4.9)




A. Ferrero, F. Gazzola | J. Differential Equations 198 (2004) 53-90 71

Then, the function w = w(r) satisfies
W )W) = P W) (1 — w9 (R, (4.10)

Our first purpose is to prove that the family of functions v = v, defined in (4.9)
converges as ¢—0:

Lemma 9. There exists a function V e Lip;,.(0, o) such that 0O<V (r)<2A,,, for all
r>0 and (up to a subsequence)

lim o(r) = V(r)

e—0

pointwise in (0, co) and uniformly on compact sets of (0, o0).

Proof. We first claim that if ¢ is small enough, then

n—ml

0 <o(r) <24mn, [V (r)] < 24mn Vr>0. (4.11)

m—1r
By Lemma 1 and the substitutions (4.8)—(4.9) we have for all r>0,

. n—m » n—m p—m _
v(r) :(xmhqrm_lu(a(q m>K"r)<O(mK”+ll"m—]Z(OC P +(¢q m)chr)

n—m

pm  Ama E ek o

< oMt mirql -

o r n—m (a

(1 — oig=p)mim=1)
Am,n

n—m
( 1 — aq—p)m(mfl)

o 2=
— g m(m=1)

(4.12)

and the first part of (4.11) follows by (3.9) and (3.27). A similar argument, combined
with (3.17), gives for all r>0:

n — m n—2m+l1
rom-1 u(o47"kar)
1

|D/(}")‘< o4 O!<q7m)w"}"%|u/(0{(q7m)}<"}")| +
m J—

<2421
Tm—1r
which completes the proof of (4.11).
The statement follows at once from (4.11) and the Ascoli-Arzeld Theorem. [

Here and in the sequel we put

. -1
p, = o alm=Dm=a)g=0 0 <) <min {(m — Dxy, m—}.
n—m

With this choice of p,, the following lemma holds.
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Lemma 10. We have lim,_o p, = 0 and lim,_,¢ v(p,) = Apmn-

Proof. By (3.10) and Lemma 3, we know that we[m* — ¢, K] for small enough e,
namely
1
axe ™4 as e—0 if g>mpg

whence by Lemmas 4 and 5,

axe ™4 as e—0 if g<mg,

up to a logarithmic term. Hence, by definition of p,, it follows that p, -0 as ¢—0. To
prove the second part of the lemma, we observe that, by (3.27) and (4.12)

lin}) sup v(p,) < Amn- (4.13)
e

By (3.17), (4.8) and (4.9), for all »>0 we have

v(r)> r%ocm””lZ(a]%ﬂqu)’“’r) T P el Inel. (4.14)

Furthermore, it follows from the definition of p, and x,, that

n—m

Pyt e Ing| -0 as e—0 (4.15)
and
p—m .
am T o as £—0. (4.16)

By (3.14) and (4.16), one can easily see that

p—m A p—m
——t+(g—m)xK, mn
2lom T ) v (0

(1 _ aqu)m(m—l)

+(g—m)iy

and hence

n—m

n—m p—m
(xmzcﬁlp;en—lZ(OC?H‘I*’")MPE) —> Ay, as e—0. (4.17)
Thus, inserting (4.15) and (4.17) into (4.14) one has
lirr(l) inf v(p,) = Amn
&E—
and this, with (4.13), completes the proof of the lemma. O

Next, we prove an integral identity:
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Lemma 11. The function v defined in (4.9) solves the following integral identity

_ 1 _
U(}’) :m ! am—1 — erﬂ—'111

1 nem /1 < o s w1 —upq(awm)'ws))ds) .
g

+ am—1lym—1 £
a

1 1
where a = a, = p" W' (p,)|""", b =2=L g1 — v(1) and g({) = (1 — {)m—1 — 1 for all

(<1. B

Proof. After integration of (4.10) over the interval (p,,r) one has
1

n—1 r m—1
W (r) = —r m-I (a - / S () (1 — w9 (a7 ag)) dS) ;
p

&

integrating the latter over (r, 1) and using (4.9), we obtain

1

n—m n—m 1 t m=1 n—1
v(r) = rm=1p(1) 4 rm-1 / <a - / STl (8) (1 — P~ (a4 ag)) ds) tm=1dt

&

—|

and this, by definition of a,b and g, completes the proof of the lemma. [

Next we prove that the functions ¢ = a, and b = b, are uniformly bounded when
e—0.

Lemma 12. There exist Cy, Cy, C3>0 such that, for ¢ small enough,

Ci<a,<(C and |b{;|<C3.

Proof. Recalling (3.6) and (4.8), the integration of (4.10) over (p,, o) yields

a= / SIwI T (5) (1 — P9 (a9 ag)) ds < / w1 (s) ds.

P 0

Therefore, with some changes of variables and by using (4.8), (3.8), (3.11), (3.27) and
Lemma | we obtain that a« = a, is upper bounded for small e.
Then, taking r = 1 in (4.18) and using (4.11), we have

which proves that |b,| is bounded.
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It remains to prove that a is bounded away from 0. To this end, we first claim that

1
/ S (§)ul 9 (a9 g) ds = o(1)  as e—0. (4.19)
P

To show this, we use (4.8), (4.9) and (4.11) to obtain

1 [ _
/ S I () =9 (047 a5 ds = o Pd) / s%”%vp’l (s) ds
p

& & 1
<D (24, / st g
pl;
and (4.19) follows by recalling (3.27) and the definitions of p, and 0.

1
Consider again ¢({) = (1 — {)m-1 — 1 (for {<1) and let

E1) = &,(1) = / I (5)(1 = (o) s,

&

By [4, Lemma 3] and (4.19), one sees that if &(z) <0, then for all te(p,, 1] we have
1

L E(1) 1 o , m-l 1
amlg<7> <Clam-1+ / ST ()~ (047 ) dis < Cam=T + 0o(1)

i

L,
as ¢—0; whence, if &(#)>0, then obviously amg(ﬂ)<0. Therefore, after

a

n—1 . .
multiplication by ¢ m-T and integration over (p,, 1) we get

Lomm ol ()N el 1
am_lpg‘171/ g<_)[m—ld[<Cam—l+0(l) as ¢—0.
a

&

Then, putting r = p, in (4.18), we have

1 1 1 onmorl 0\ _n=1 1
v(pg)é’: mam—l+am—lp5}’*1/ g(%)t_erdtSCaml—i-o(l) as ¢—0.
- ]

&

Therefore, by Lemma 10 and letting ¢ —0, we obtain

1
lim inf an-1>= CA,,,

e—0

which completes the proof of the lemma. O

Thanks to Lemma 12, we may prove an important convergence result.
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Lemma 13. The following limit exists and

] n=m 1 ¢ =1
lim amflpg”_l / g <£()> t m—1dt = 0’
e—0 o, a

where & and g are the functions defined in the proof of Lemma 12.

Proof. First note that, by (4.19), ()= — o(1) as ¢—0. Moreover, for all te(p,, 1]

t nm=2mt1-—g(n—m) X 1
é(t) < / S m=1 qul (S) dS< (2Anl.,n)q7 (m - I)Kq [(mfl);q“
P,

&

where in the last inequality we used (4.11). By Lemma 12 and using again [4, Lemma
3], thanks to the previous lines we infer

_C,mgg(%> <o(1) (C>0). (4.20)

In turn, by (4.20) and letting é— 0 we obtain

1 nmo ol -1
amflpg’*l / g (é([)> tfh dt
a

&

1 n—m 1 1 n—1
<amTpm] / [Czwlm + o(l)] tm=tdt = o(1)
p

&

since p,—0 (by Lemma 10), @ is bounded (by Lemma 12) and g<m,. O

Inserting r = p, into (4.18), by Lemmas 10, 12 and 13 we have

a1 = Ay, (4.21)

Fix r>0 and let ¢—0 through an appropriate subsequence, so that v(r)— V' (r) (see
Lemma 9) and b— B (see Lemma 12). Thus, by (4.18), (4.19), (4.21) and Lebesgue
Theorem, the function V' solves the integral equation

n—m n—m

V(r> = Am,n — Brm=1 + Am,n —1R(V) Vr>0, (422)
m—
where
n=m (U —m lem (1 m=2m+1—q(n-m) n-l
R(r) = rm-1 / g((mAm,n) / s m—1 Vi-l(s) ds) m=1dt Vr>0.
r - 0

Once more, in the application of Lebesgue Theorem, we used the important
restriction g <m,.
Note that the function R(r) defined above satisfies

lim R(r) = 0; (4.23)

r—0
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indeed, by invoking again [4, Lemma 3], we infer

nem (U L a1
RO [ IR = o) s 10,

r

where we used the assumption g <m,.
Hence, by (4.22) and (4.23), it follows that

1ir% V(r) = Apn>0. (4.24)
This allows us to say that ¥ is a nontrivial function, giving sense to the convergence
result of Lemma 9. Put

W(r)=rm1V(r) Vr>0. (4.25)
We finally establish

Proposition 3. Assume that 1 <q<m,; then, there exists at least a nonnegative radial
solution W, of (2.2)—(2.4).

Proof. Reversing the steps used to derive the integral identity (4.18), one has that the
function W defined in (4.25) solves the ordinary differential equation (4.1) and hence
(2.2).

The condition (2.3) follows at once from (4.24) and (4.25).

Finally, V' is bounded by Lemma 9; by (4.25), this implies that W also satisfies
(2.4).

Therefore, the radial function W = W (r) defined in (4.25) solves (2.2)-(2.4) O

4.3. Uniqueness

In this section, we assume that ¢ <m, and we prove that the solution of problem
(4.1)—(4.2) is unique. To this end, we first give a comparison result:

Lemma 14. Assume q<m and let Wy and W, be two different nonnegative solutions of
(4.1)~(4.2) having respective supports Bg, and Bg, with R; < Ry; then, up to switching
Wy and Wy in the case Ry = Ry, we have

Wi(r)<Wa(r),  [Wi(r)]<|W5(r)] Vr<R,. (4.26)

Assume g=m and let W) and W be two different positive solutions of (4.1)—(4.2); then,
up to switching Wy and W,, we have

Wi(r)<Wa(r), |WL(n)|<|Wi(r)| ¥r>0. (4.27)
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Proof. Assume g <m. Suppose first that R; < R;. It is clear that (4.26) is satisfied on
[Ri,Ry). Let Re[0, R;) be the infimum value of r for which (4.26) holds; then, we
have

|Wi(r)|<|W5(r)] Vre(R,R)) and 0= W(R)<Wy(R)). (4.28)

Suppose for contradiction that R>0, then W;(R)< W>(R) and by (4.7) and (4.28),
we have

—1 fwior .  WH(R
mm |Wf(8)‘m:(n_l)/ | 1§)| dl+ 1(—)
R q
R, / m Wfl R
B L LI
R { q
Ry ! m q R _
R t q m
that is,
[WIH(R)|<|W5(R)]. (4.29)

By (4.28), we can easily see that W;(R)<W,(R) and this, together with (4.29),
contradicts the definition of R. Hence, R = 0 and the proof is so complete in the case
Ri<R>.

Suppose now R; = R,. We claim that there exists at most one value Re (0, R;)
such that W;(R) = W>(R); more precisely, up to switching W and W>, we show that

JRe(0,R;), Wi(R) = W>(R) = Wi(r)< Ws(r),
W ()| <|W5(r)] Vr<R. (4.30)

For one such R, by uniqueness for the Cauchy problem, we have | W] (R)|<|Wj(R)|.
Then, there exists a left neighborhood (R, R) of R such that

Wi(r)<Wa(r) and |W](r)|<|Wi(r)|  Vre(R,R); (4.31)

we take R as the infimum value for which (4.31) holds. Suppose for contradiction
that R>0. Then, by (4.7) and (4.31), we have

—1 —1 R w! m Wq R) — Wq R
m m e .
— R 1 m 9(R) 4R
<m—1|W2’(R)|’"+(n_1)/ | W5 (1) dt+W2(‘> W{(R)
m X : p
m—1
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Moreover, (4.31) and the fact that W,(R) = W»(R) yield W;(R)< W>(R) which
contradicts the definition of R. Therefore, R = 0 and (4.30) follows.

Since (4.30) states that there exists at most one value Re (0, R;) such that W;(R) =
W,(R), we can suppose, up to switching W, and W>, that

JRe([0,Ry) such that Wi(r)<Wai(r) Vre(R,Ry).
Let R be the infimum of such values and assume for contradiction that R>0. Then,

for any re[R, R;) integrate the two equations (4.1) for W; and W, over the interval
[r, Ry] to obtain

R
Vn_l|W1,(r)|"171 _ / fn_le]_l(l‘) dt
Ry
< / T ey de = ! (4.32)

and hence |W/{(r)| <|Wj(r)| for any re[R, R;). Moreover, since Wi(R;) = W1(Ry),
then W;(R)< W>(R) which shows that R = 0. This completes the proof in the case
g<m.

Assume now g=m. Arguing as above, we may prove again (4.30) with R| = 0.

Since by Lemma 8§, ;”"1|Wi’(r)|m_1 —0 as r—» oo for i=1,2, then we also obtain
(4.32) which completes the proof as in the case g<m. [

If W solves Eq. (4.1), then another solution of (4.1) is given by

1 m—q
Wir) =~ W wr) VA0, (4.33)

Moreover, by (4.2), the rescaled function W) satisfies

n—m Am,n

rm—1 Wg(r) _)W as l"—>07 (434)
), m(m=1)
and if g<m,
m—q
R, = Ri"m, (4.35)

where R and R; are the radii of the supports of W and W,. We prove the uniqueness
result in the case g <m,:

Proposition 4. Suppose that 1 <q<m,. Let W) and W, be two solutions of problem
(4.1)(4.2). Then W, = W,.

Proof. Assume g<m. Let R|,R, be the radii of the supports of W and W,,
respectively. We first show that

R = R». (4.36)
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Suppose for contradiction that R; <R,. Let W), be the rescaled function of W)

m=gq
according to (4.33); by (4.35), there exists A< 1 such that R; ; = RjA~ m <R;. Then,
by Lemma 14, we obtain

Wi, (r)<Wa(r) Vre(0,Ry). (4.37)

By (4.2), (4.34) and the fact that g<m,, we have

] n—m . n—m
lim rm=TW5(r) = App, lln(l) rm=1 Wy ;(r) =
r—

r—0

Am,n

(n—m)(m.—q)
J, m(m=1)

> Am,n

which contradicts (4.37). Hence, (4.36) holds. Then, by Lemma 14 we obtain

Vi<l W1’;,(V)> Wz(l’) VVE(O,Rz),

(4.38)
Vix>1 W11;~(7)< WQ(V) VVE(O,RQ).

Finally, since W) ,— W) pointwise on (0, c0) as 21— 1, by (4.38) we deduce that
Wl = W2.

Assume now m<g<m, and consider again the rescaled function W ; if A>1,
then by (4.34) and Lemma 14, we obtain

Wi,(r)<Wa(r) Vr>0.

The conclusion is now similar to the case g<m. [

5. Proof of Theorem 2
5.1. The case g>mpg
As a direct consequence of (3.11) and (3.17), we get
0<z(r) —y(r)<cellng| Vr>0. (5.1)

Since #—0 as ¢—0, then z converges pointwise for any r=0 to the function

m n—m

zo(r) = (1 4+ Drm=1)" m  as £—0;

hence, by (5.1), also the function y converges pointwise to z; as ¢ —0. Moreover, by
(3.10) and Lemma 3, w e [m* — ¢, K] (for small enough ¢) so that w = w(&) converges,
up to a subsequence, to some limit w € [m* — ¢, K] (in fact we will show that wy is the
limit of w as e— 0 in the continuum). Recalling Lemma 1, that ze L? and taking into
account that y<1 and ¢g<p, we may then apply Lebesgue Theorem to the Pohozaev
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identity (3.2) relative to Eq. (3.12) and obtain

N 20 PV dr = wp—— L /OO 27 () dr 5.2
| =g | AW (52)

After a change of variables we obtain

0 — m—1 — — — —
/ 2y dr = m—_ 1D_ m "B(n(m 1)7q(n m) — n{m 1)> (5.3)
0 m m m
and
C N e —1 __nm=b) (p(m—1) n
m oyt gy =M T g (M) 5.4
| aorta =" g (54

Inserting (5.3) and (5.4) into (5.2) we obtain

=

S

\

3
=
N—

*
*

m
wy =—(m" —¢q
q

n(m—1) (g —mp
A

which proves (2.9) in the case ¢ >mp.
5.2. The case g<mpg

Let u be the solution of (3.1); after the substitution (4.8) we obtain

0 q—m* 0
/ Nl (r) dr = oame—a / Wi (r) dr.
0 0

By (4.9), Lemma 9 and (4.25) we know that w(r)— W(r) for any r>0; in order to
apply Lebesgue Theorem we need a uniform L' majorization of the last integrand.
We first estimate its behavior in a neighborhood of infinity (we do not consider the
case ¢ = m because it has already been studied in [4,5]).

Lemma 15. Assume g<mg.
If 1<q<m, then there exists R>0 such that supp (w) = Bg(0) for & small enough.

If ¢>m, then there exist C, R>0 (independent of &) such that w(r)< Cr 4™ for all
r=R.

Proof. If 1 <g<m, the statement follows from Lemma 17 below.
So, assume that ¢>m. By (4.8) and (4.10) we know that w satisfies

- -1 _ )
(|W/|m ZWI)/ + n |W/|m 2W/ e + O(fmkq(pfq)wpfl =0.
r
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Consider the corresponding energy function

—1 1 —miy(p—q)
E0) ==L o SAAGR r )

which satisfies E(r) >0 for all r, see Proposition 2 for the details. By (3.9), there exist
C, p>0, independent of ¢, such that

1 o~ Mg (p—4)
s —————— "> Cs? Vs<p, Ve<:i
q p

for £>0 small enough. By (4.9) and (4.11) we know that

n—m

w(r) <24, r m=1 Vr>0, Ve small enough.

y

Therefore, there exists R>0 independent of ¢ such that
w(r)<p Vr=R, Ve small enough.

Hence, by positivity of E we obtain

-1
mT W' (r)|" > Cwi(r) Vr=R, Ve small enough

and the statement follows as in Proposition 2(iv). [
Concerning the behavior at the origin, by (4.11) we have
Iwi(r) = r"ilfq%vq(r) <(24m0)! AL T R} (5.5)
Note that the function on the right-hand side of (5.5) is integrable in a neighborhood

of the origin since g<mg. This, together with Lemma 15, enables us to apply
Lebesgue Theorem and to infer that "~ W4(r)e L'(0, co) and (see (2.5))

/ Wi (r) dr — / I WAr) dr = Ly (5.6)
0 0

On the other hand, by (3.11) and the convergence y— zy, we also have

— n(m—1) —
/ ' lu” dr—> / 1 m 1 D m B(M’£> (5.7)
m m m

Inserting (5.6) and (5.7) into (3.2) proves (2.9) in the case ¢ <mpg.
5.3. The case ¢ = mg

When ¢ = mpg, the limit (5.7) still holds. The problem is the behavior of the first
term in (3.2); indeed, the right-hand side in (5.5) becomes Cr~! and is no longer
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integrable at the origin. Nevertheless, by splitting the integral into two parts, we
obtain

Lemma 16. Let ¢ = mpg and let w be as in (4.8). Then
o0 -1 n(m—1)
/ PIWIR(F) dr = MDf m Ina+ O(lnlna) as a— oo.
0

(n —m)?

Proof. Note first that since ¢ = mg, by Lemmas 4 and 5, we get

Ine n—m

— :— 0. 5.8
In & T as e (58)
We split the integral at the value
2(m—1)
Ry = Ry(e) = |lng|™ n—m (5.9)

the statement of the lemma follows if we show the two estimates

/ PIWR(r) dr = O(Inlna) as a— o0, (5.10)
Ry
Ry _ 1 n(m—l)
/ r”_lwmk(r)dr:n(LZ)Df m Ino+ O(lnlna) as a— co. (5.11)
0 (n—m)

When ¢ = mg = m (i.e. n = m?), these estimates are already known, see [4].
Consider first the case ¢ = mg>m. Let C, R as in Lemma 15, then for small ¢ we
have

0 O n(n—m) |
/ PR () dr < CR / romien T dr<c (5.12)
R R
(recall m?>n). Since Ry—0 as ¢—0, we may suppose that Ry<R; then, (4.9) and
(4.11) yield
R R R
/ PYWIR(F) dr < (2A,,)"" / Vdr = (24,m,)"™ In— = cln [Ing| + O(1).

Ry Ro ’ Ry

This, together with (5.12) and (5.8) proves (5.10) in the case g >m.

Suppose now ¢ = mg<m. Let R be as in Lemma 15. Then, in the same way as in
the case ¢ >m, we obtain

0 R —
/ PIWIR(r) dr = / IR (r) dr < (2A,,)"" Am—1) In[ln el + O(1)
Ry Ry ' n—m

and (5.10) also holds in the case g<m.
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In order to prove (5.11) we put

1
¢(r) = P _m_n=m
[1 + Dogmflrmfl} m

and we show that there exist ¢;, c; >0 such that (recall n = a977)

n*(m=1) m>—n m2—n

WR(F) o (=m)” L "R (olln=m)" 1) ey (alrm) )} (5.13)

and

n’(m=1) m*—n m*—n

WR(F) = 0 (1=m)" L @R (qn=m)"F) — caglln g| ™ ol F)} Wrz=0. (5.14)

Indeed, by (3.17) we have u(r)<o(e(r) + Cn) for all r and for some C>0; then
taking the mgth power and after the substitution (4.8), the upper bound (5.13) is
obtained. On the other hand, by (3.17) we also obtain

u(ry=zoa(e(r) — Cellng|) Vr=0 (5.15)

for some C>0. Take ¢, = C; if the right-hand side of (5.14) is negative, there is
nothing to prove. If it is positive, then taking the mgzth power of (5.15) and after the
substitution (4.8), the lower bound (5.14) is obtained, eventually by choosing a larger
value for ¢;.

Put

Ry
/ PIWR(P) dr = T4 J
0

with the principal part I defined by
n(m—1)

_ Ry m2—n
I = o (=m)° / PR (a=m) ) dr.
0

We first estimate /. After the substitution

nm & nm & m

f— Do((”_m)z m—lrm’j’ T — Do((n_m)Z_m'—lefl (516)
we obtain
n(m—1)
-1 nm=1) ¢n T t m -1
I = m— T om gm / dt;
m 0 n(m—1)
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since T— o0 as a— oo and (3.27) holds, we have

m—1__nm=1)
IZTD m InT+ O(1) as a— o0

so that, by (5.9) and (5.16), we find
-1 n(m—1)
1= n(m—z)D_ m Inoa+ O(lnlna).
(n—m)
It remains to estimate the remainder term

n*(m=1) m*—n

Ry nim=')
J= / PR (r) — o (mm) "R (e n=m) )] dir
0

to this purpose we will use the upper and lower bounds (5.13) and (5.14). Let us
define

M Ry mzfn7
Jo = o (r=m)” / LM (on=m)y) d, (5.17)
0

then, with the change of variables (5.16), we have

n(m—1)
m—1 _”(’"*U &n T { m -1
JO = m D e nm—2n-+m .
O (I+¢) m
Since there exist ¢3, ¢4 >0 such that
n(m—1) ! n(m—1) .
t m cst m 0 if 1<,
T mm=2n4m > n—2m
(141 m cat m if t>1,

then Jy = O(T%) as a— oo. Therefore, by (5.13) and (5.14) we obtain

n—m

—cellng|Tm < — erellneldo<I <cipdo<enT i . (5.18)

Moreover, by (5.9) and (5.16) we have WT% =o(1) and s|lna|T% =0(1) as
o— o0; for the second estimate we also used Lemma 4. Inserting these asymptotics
into (5.18) we have J = O(1) as a— oo, so that (5.11) holds. O

We can now complete the proof of Theorem 2. By (4.8), (5.8) and Lemma 16 we
obtain as ¢—0:

© __n © m—1__nm=D __n_
/ rFUR(r) dr = o nem / W () dr & D™ m g n-m|lngl. (5.19)
0 0

Finally, inserting (5.7) and (5.19) into (3.2) proves (2.9) in the case g = mgp.
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6. Proof of Theorem 3

The proof of this result is essentially given in [5] and hence we omit it. We refer in
particular to Section 5.3 and 6 in [5].

7. Proof of Theorem 4

As g<m, the ground state u of (2.1) is compact supported. Let w = w, be as in
(4.8), let R; be such that Bg (0) = supp (w,) and let W be as in (4.25). By Proposition
3, W solves (2.2)—(2.4); moreover by Lemma 7, W has bounded support since g <m.
We can state the following

Lemma 17. We have

R<limi(§1f R, <limsup R, < + o0, (7.1)

£=0
where R>0 is the radius of the support of the function W defined in (4.25).
Proof. We first show that R<liminf,_( R,. By definition of R we have
W(R—-1)>0 Vie(0,R)
and hence by the pointwise convergence w,— W we deduce that
we(R—2)>0
for all ¢ small enough. Then we have
R.>R—1 VYle(0,R), Ve small enough

and the first inequality in (7.1) follows.
It remains to prove that R; is uniformly bounded from above when ¢— 0.
Suppose that there exists >0 such that

R:>R. (7.2)

If such & does not exist, the last inequality in (7.1) follows readily.
If such & exists, the proof will be complete once we show that there exists g (0, )
such that

R <R; Vee(0,¢). (7.3)
Assume for contradiction that there exists a sequence {&x}, . such that

e—0 ask—o and R, >R;. (7.4)
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Since w;, (R)— W(R) =0 as k— co and w;(R)>0 (recall R;> R) there exists ke N
such that

we, (R)<wz(R) Vk=k. (7.5)
For k>k let
R = R(k) = max {re (R, R;); w;, (r) = wz(r)}; (7.6)

R, is well-defined by (7.4) and (7.5).
Consider the functions

S (s) = =571 4 oc,;m'("(p"_q)s”’c_l Vs=0
and
fils) = =501 g mdPmD) =1 >0,

with oy = u,, (0), & = uz(0), pr = m* — e, p =m* —&.
Then, by (4.8) we see that w,, and w; solve, respectively, the equations

(g, (D" = 77U (e (1),

7.7
(™Y = P (). 7

Integrating the two equations in (7.7) on the interval [Ry, R;, ], using the fact that
w, (R.,) = wi(R;,) = 0, we obtain after subtraction

R,

RT_]\W%(Rl)lmfl—RT_1|W1,C(R1)|’"71=/ P o (0o, (1) = faOws(r))] . (7.8)

Ry

Note that by definition of Ry, [w;(Ry)|>|w, (Ri)| and hence by (7.8) we have

Rﬁk
/R P oy O, (7)) = S50 (r)] dr >0 (7.9)

Since w, (R)—0 as k— oo and w (r)<0 for any re(0,R;,), for any ¢>0 and
sufficiently large k£ we have

wy (R)) <o Vk=k. (7.10)

1 1
We fix 6 < (;!}%})ﬁ—qocm“q since (;%i)ﬁ—qoc’”“q is the unique positive minimum point of
the function f;. With this choice of ¢ fix & as in (7.10); in this way by (7.4), (7.6),
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(7.10) and the fact that w,,_ is decreasing, we have

1
— N\p—q . _
wz (1) Sw, (1) <w, (R1) < (g—1>p o Vre[Ry, Ry, Yk=k.  (7.11)

By elementary calculus, after another suitable restriction on k, we have

£ (s)<fils) Vse o, (Z—1>””am | k= (7.12)

1
in particular, since f; is decreasing on the interval (0, (g%%)ﬁ*qoc’""‘/), by (7.11) and
(7.12), we have

fsk(wek (r)) <fé(wsk (}’)) ng(Wg(V)) Vre (Rl ’ RSA»)
and this contradicts (7.9) after integration over (R, R, ). O

Thanks to Lemma 17 and the rescaling (4.8) we can complete the proof of
Theorem 4; indeed, let p be as in Theorem 4, then we have

p=p,=all"R,
and letting ¢ —0 we obtain

m=0% < Jim sup pa™ % < 4 o0;

R< liminf po
£—0 e—0

the proof of Theorem 4 can be obtained after a calculation which uses the estimates
on o of Theorem 2 in the three cases ¢ >mpg, ¢ = mg and g<mgp.

Remark 2. We believe that all the limits in Lemma 17 exist and are equal to R, the
radius of the support of W in such case, the limits in Theorem 4 also exist. However,

this result would require the continuous dependence of #(0) and R, on ¢, which seems
a hard matter.

8. Proof of Theorem 5
8.1. The case g<m,

It follows at once from (4.8), (4.9), Lemma 9, (4.25) and Proposition 3.
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8.2. The case g = m,

o = b e have

Let x be any real number, then by (3.17) and thanks to the fact that ¢ = m, is
equivalent to -2t = =1t

m

e(n—m) 1
) " . ) n=m_ . ) ain(m— 1) o m—1
lim o4 u(a"r) = lim am—1"u(ar)< lim — =0 Vr>0
50 . 50 n—m n—m n—m
& o A (R ) ) prvr

by the convergence 1 — 0 and since both (3.9) and(3.27) hold. This implies (2.12) with
k(g —m) in place of k (note that ¢ = m, >m).

8.3. The case m,<qg<m*

m’

In this case, with an abuse of notation we still let x, be as in (2.10). Note that
1
Kg< —

Let « be an arbitrary real number; we will treat the two cases k< — L and K>,
separately. If k< — #, then by (3.17), we have

o u(a M) <ol T 50 as £—0 V>0

which proves (2.12). If k>x,, by (3.17) we have

o 1 K—Kq
OCmKZ/l(O((q_m)KV) <

<

N

—m
m—1

n

am=Drs 50 ase—n0 Vr>0
rm—1

Caﬁ [o((‘!*’")’fr]

and (2.12) follows again.

9. Proof of Theorem 6

Let u = u(r) be the unique ground state of (1.1). Let

1
o(r) = (31"1u< p’:m ); (9.1)
S—a)
1

then v is the unique ground state of Eq. (2.1). By (2.13) and (9.1) we have u(0) =

0
or—4f and the first part of Theorem 6 follows. Since v = v(r) solves the ordinary
differential equation

(Y = = ) T ),
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after integration over [0, 7] we obtain

o' (r)"! = /Or (=) + PN 0) de
:r% / N =B+ B+ o(1)) dt
0
:%(_[3‘1*1 + 87 +o(1)) as r—0.

Taking the 1/(m — 1) power and integrating from 0 to r we have

v(r) — ﬁ p- P ym—1 -|-()(rm7|) as r—0.

I’I’l—l(ﬁp1—[8‘11)”7#_1 m m

This, together with (9.1), gives (2.15).
If g<m, the estimate (2.16) on the support of u is a straightforward consequence
of (9.1).

10. Proof of Theorem 7
Let u(x; ) be the unique ground state of (1.1) where 0>0. Then, thanks to the

estimates of Theorem 2 and the rescaling (9.1) we obtain the following estimates for
u(0;9):

1 1
5!’*‘1([3”1‘”7[[8*1)"1**61 if q>mg

I s
u(0;0) ~ 5”“’(/1"7” |1n_8|) if g =mg as ¢—0;
’ &

1 m,—q
i —1ym— ;
P4 (Yynge )1 if g<mp

hence, if 6 = 4(¢) as in the statement of Theorem 7 then
u(0;0(e))>d as e—0. (10.1)

By (3.17) and (9.1), we have

p—m

0<u(0;0(e)) - z(u(0;0(e)) m x) —u(x;0(e)) <cu(0;5(¢)) - ellngl; (10.2)

moreover, by (10.1) and the fact that #—0 as ¢—0, we infer

p—m m n—m

(0: 3(2))=(u(0: 3()) ™ x) —d[1 + D] T] " = Uy(x).

This, together with (10.2), yields u(-; 6(¢)) > U, uniformly on R" as ¢ —0.
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