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Abstract. We extend the symmetry result of Gidas-Ni-Nirenberg [12] to semilinear
polyharmonic Dirichlet problems in the unit ball. In the proof we develop a new variant of
the method of moving planes relying on fine estimates for the Green function of the poly-
harmonic operator. We also consider minimizers for subcritical higher order Sobolev em-
beddings. For embeddings into weighted spaces with a radially symmetric weight function,
we show that the minimizers are at least axially symmetric. This result is sharp since we
exhibit examples of minimizers which do not have full radial symmetry.

1. Introduction and results

In their celebrated paper, Gidas-Ni-Nirenberg [12] proved that every positive smooth
solution of the semilinear elliptic problem

�Du ¼ f ðuÞ in B;

u ¼ 0 on qB

�

is radially symmetric and decreasing in the radial variable. Here B is the unit ball of
Rn ðnf 2Þ and f is a locally Lipschitz function. The proof relies on the so-called moving
plane technique due to Serrin [22], see also previous work by Alexandrov [2]. A variant of
this technique can be used to study higher order problems such as

ð�DÞmu ¼ f ðuÞ in B;

u ¼ Du ¼ � � � ¼ Dm�1u ¼ 0 on qB;

�
ð1:1Þ

where mf 2. Indeed, under these boundary conditions (usually named after Navier), prob-
lem (1.1) can be reduced to a second order semilinear elliptic system. If f is nondecreasing
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in u, then this reduced system is cooperative and Troy’s symmetry result [25] applies, show-
ing that any positive smooth solution of (1.1) is radially symmetric and radially decreasing.

In the present paper we prove radial symmetry of positive solutions to the corre-
sponding polyharmonic problem under Dirichlet boundary conditions

ð�DÞmu ¼ f ðuÞ in B;

u ¼ qu

qr
¼ � � � ¼ qm�1u

qrm�1
¼ 0 on qB:

8><
>:ð1:2Þ

Here r ¼ jxj denotes the radial variable. We point out that (1.2) cannot be reduced to a sec-
ond order problem. We make the following general assumption:

f : ½0;yÞ ! R is a continuous; nondecreasing function with f ð0Þf 0:ð1:3Þ

Before stating our main result, we recall the weak formulation of (1.2) within the Sobolev
space Hm :¼ Hm

0 ðBÞ, which is a Hilbert space with the scalar product

hu; vim ¼

Ð
B

Dm=2uDm=2v dx; m even;

Ð
B

‘Dðm�1Þ=2u‘Dðm�1Þ=2v dx; m odd;

8><
>:

for u; v A Hm. We denote the induced norm by k � km. A nonnegative function
u A HmXLyðBÞ is called a strong solution of (1.2) if

hu; vim ¼
Ð
B

f ðuÞv dx for all v A Hm

(the integral exists since u A LyðBÞ and f is continuous). By elliptic regularity, any such
solution u is contained in C2m�1;aðBÞ, and all partial derivatives of order less than m vanish
on qB. Moreover, if f is Hölder continuous, then u A C2m;aðBÞ is a classical solution. Our
main result is the following.

Theorem 1. If (1.3) holds, then every strong positive solution u A HmðBÞXLyðBÞ of
(1.2) is radially symmetric and strictly decreasing in the radial variable.

Theorem 1 deserves several immediate comments.

Remark 1. (i) The sign assumption on f is necessary in order to have the radial mo-
notonicity of u, see the counterexample by Sweers [24].

(ii) Let l1 be the first Dirichlet eigenvalue of ð�DÞm in B. Combined with [14], The-
orem 1, and [15], Theorem 2, Theorem 1 shows that, for n > 2m, the problem

ð�DÞmu ¼ luþ u
nþ2m
n�2m in B;

u ¼ qu

qr
¼ � � � ¼ qm�1u

qrm�1
¼ 0 on qB

8><
>:
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admits a positive solution for any l A ð0; l1Þ if and only if nf 4m. This brings further
evidence for a conjecture by Pucci-Serrin [19]. We thank Hans-Christoph Grunau for this
remark.

(iii) Combined with [8], Theorem 1, our Theorem 1 shows that if m ¼ 2 and

f ðuÞ ¼ up, with 0 < p <
nþ 4

n� 4
and p3 1, then there exists a unique positive solution to

(1.2).

(iv) The monotonicity assumption on f enters crucially in our arguments. On the
other hand, if instead of (1.3) we assume that f is di¤erentiable and satisfies f 0ðsÞ < l1 for
every sf 0, then it is easy to see that (1.2) admits at most one strong solution which is nec-
essarily radially symmetric. Indeed, assuming by contradiction that u; v A HmðBÞXLyðBÞ
are di¤erent strong solutions of (1.2), we find

hu� v; u� vim ¼
Ð
B

�
f ðuÞ � f ðvÞ

�
ðu� vÞ dx < l1

Ð
B

ðu� vÞ2
dx

contrary to the variational characterization of l1. In fact, symmetry is also ensured if
f 0ðsÞ < l2 (see [9]) and uniqueness is guaranteed for sublinear f (see [10]).

(v) It will be evident from our proof that Theorem 1 is also valid for (1.2) with
f ðuÞ replaced by the nonautonomous radial nonlinearity f ðjxj; uÞ provided that
f : ½0; 1� � ½0;yÞ ! ½0;yÞ is continuous, nonincreasing in the first variable and non-
decreasing in the second one.

(vi) One of the crucial steps in the moving plane technique consists in comparing the
solution u in a segment of the ball with its reflection ur through the hyperplane which
bounds the segment (see e.g. [12], Lemma 2.2). For second order problems the comparison
follows from suitable versions of the maximum principle since ur f u holds a priori on the
boundary of this segment. This information however is not enough for higher order prob-
lems, and therefore the classical moving plane method fails for (1.2). In this paper, we em-
ploy a di¤erent technique to carry out the moving plane mechanism, using the integral rep-
resentation of u in terms of the Green function of the polyharmonic operator ð�DÞm in B

under Dirichlet boundary conditions. This function is explicitly known since the pioneering
work by Boggio [5] and has been widely studied more recently by Grunau-Sweers [17]. In
the recent paper [11], Ferrero-Gazzola-Weth established monotonoticy properties of the bi-
harmonic Green function with respect to reflections at hyperplanes. Here we generalize the
estimates of [11] and add further inequalities which are essential to our approach.

To state our second main result, we recall that, by the Rellich-Sobolev embedding
theorem, Hm is compactly embedded in LpðBÞ for 1e p < 2�. Here 2� ¼ 2�ðmÞ is the

corresponding higher order critical exponent, i.e., 2� ¼ 2n

n� 2m
for n > 2m and 2� ¼ y for

ne 2m. The best constants for these embeddings are

Sm
p ¼ inf

u AHmnf0g

kuk2
m

juj2p
;ð1:4Þ

so these are the largest constants such that Sm
p juj

2
p e kuk2

m for all u A Hm. Here and in

the following, we denote by jujp the usual Lp-norm of a function u A LpðBÞ. Since the
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embeddings Hm ,! LpðBÞ are compact for 1e p < 2�, there exists a minimizer u for the
minimization problem (1.4), namely there exists a nontrivial function u A Hm such that
Sm
p juj

2
p ¼ kuk2

m. Since up to sign and normalization these minimizers are positive solutions
of (1.2) with f ðuÞ ¼ jujp�2

u, Theorem 1 implies that they are radial and monotone in the
radial variable. For m ¼ 2 this has already been proved in [11]. In the present paper we
study the e¤ect of radial weight functions on the symmetry of minimizers, complementing
the results in [18], [20], [21] for the harmonic case m ¼ 1. We assume that

t : B ! ½0;yÞ is a continuous and a:e: positive radially symmetric function;ð1:5Þ

and we study the minimization problem

Sðm; p; tÞ ¼ inf
u AHm;uE0

kuk2
m

jt1=puj2p
¼ inf

u AHm;uE0

kuk2
m�Ð

B

tðxÞjujp dx
�2=p

:ð1:6Þ

By the same compactness argument as above, the infimum is attained for p < 2�. More-
over, the minimizers of (1.6), when normalized such that jt1=pujp ¼ 1, are weak solutions
of the boundary value problem

ð�DÞmu ¼ Sðm; p; tÞtðxÞjujp�2
u in B;

u ¼ qu

qr
¼ � � � ¼ qm�1u

qrm�1
¼ 0 on qB:

8><
>:ð1:7Þ

If t is nonincreasing in the radial variable, then every weak positive solution of (1.7) is ra-
dial by Remark 1(iv). In the general case we have the following partial symmetry result for
minimizers of (1.6).

Theorem 2. If (1.5) holds, then every minimizer u of the minimization problem (1.6) is
foliated Schwarz symmetric with respect to some unit vector e, i.e., it is axially symmetric

with respect to the axis ReHRn and nonincreasing in the polar angle y ¼ arccos
x

jxj � e.

Moreover, u is of one sign, and either u is radial or u is strictly decreasing in y A ½0; p� for
0 < jxj < 1.

In the case m ¼ 1, this has been proved in [18], see also [21]. The proof in [18] relies
on the maximum principle for general second order operators and does not carry over to
the polyharmonic Dirichlet problem. The approach in [21] is based on polarization, a sim-
ple two-point rearrangement for functions which is well defined in first order Sobolev
spaces, spaces of continuous functions or Lp-spaces, see [3], [4], [6], [7], [21] and (4.6) below.
However, for mf 2, the polarization of an Hm-function is not contained in Hm anymore.
To prove Theorem 2, we first establish a duality principle (see Proposition 12) which re-
duces the minimization problem (1.6) to a maximization problem in Lp 0 ðBÞ. We then study
maximizers of the reduced problem with the help of polarization. We note that in [11] po-
larization was already applied in a di¤erent way to biharmonic problems.

By the results in [20], it is known that the symmetry statement of Theorem 2 is opti-
mal in the second order case m ¼ 1. More precisely, considering the weight functions
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ta : B ! Rþ, taðxÞ ¼ jxja for a > 0, it is proved in [20] that some parameter values of a and
p lead to nonradial minimizers. Here we note a similar statement for general m.

Theorem 3. Suppose that n > 2m. Then for every a > 0 there exists pðaÞ A ð2; 2�Þ
such that no minimizer of

Sðm; p; aÞ :¼ Sðm; p; taÞ ¼ inf
u AHmnf0g

kuk2
m�Ð

B

jxjajujp dx
�2=p

ð1:8Þ

is radially symmetric if p A
�
pðaÞ; 2�

�
.

The paper is organized as follows. In Section 2 we establish some inequalities for the
polyharmonic Green function relative to Dirichlet boundary conditions and its derivative.
In Section 3 we carry out the moving plane procedure and complete the proof of Theorem
1. In Section 4 we consider the minimization problem (1.6) and prove Theorem 2. Finally,
in Section 5 we prove Theorem 3.

2. Green function inequalities

In this section we derive some pointwise inequalities for the Green function
G ¼ Gðx; yÞ of Dm on B relative to Dirichlet boundary conditions. For x; y A Rn, it is con-
venient to introduce the quantities

dðx; yÞ ¼ jx� yj2ð2:1Þ

and

yðx; yÞ ¼ ð1 � jxj2Þð1 � jyj2Þ if x; y A B;

0 if x B B or y B B:

�
ð2:2Þ

Then for x; y A B, x3 y we have the following representation due to Boggio, see [5], p. 126:

Gðx; yÞ ¼ km
n jx� yj2m�n Ðyðx; yÞ

jx� yj2
þ1

� �1=2

1

ðz2 � 1Þm�1

zn�1
dzð2:3Þ

¼ km
n

2
jx� yj2m�n Ðyðx; yÞjx� yj2

0

zm�1

ðzþ 1Þn=2
dz ¼ km

n

2
H
�
dðx; yÞ; yðx; yÞ

�
:

Here km
n is a positive constant, and

H : ð0;yÞ � ½0;yÞ ! R; Hðs; tÞ ¼ sm�n

2

Ðts
0

zm�1

ðzþ 1Þn=2
dz:ð2:4Þ

The following lemma is a direct consequence of Boggio’s work [5], elliptic regularity (see
[1]) and the estimates in [17].
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Lemma 1. Let h A LyðBÞ, and let u A Hm satisfy

hu; vim ¼
Ð
B

hv dx for all v A Hm;ð2:5Þ

i.e., u is a weak solution of ð�DÞmu ¼ h in B under Dirichlet boundary conditions. Then

u A C2m�1;aðWÞ, and u satisfies

DkuðxÞ ¼
Ð
B

Dk
xGðx; yÞhðyÞ dy for every x A B;ð2:6Þ

where Dk stands for any partial derivative of order jkj < 2m. In particular, Dku1 0 on qB
for jkjem� 1.

We need the following inequalities for the function H defined in (2.4).

Lemma 2. For all s; t > 0 we have

qsHðs; tÞ < 0; qtHðs; tÞ > 0; qsqtHðs; tÞ < 0:

Proof. We compute

qtHðs; tÞ ¼ tm�1

ðtþ sÞn=2
; qsqtHðs; tÞ ¼ � ntm�1

2ðtþ sÞn=2þ1

and

qsHðs; tÞ ¼ m� n

2

� �
sm�n

2
�1
Ðts
0

zm�1

ðzþ 1Þn=2
dz� tm

sðtþ sÞn=2
:

Hence the last two inequalities follow. Also the first inequality follows in case nf 2m while
in the remaining case n < 2m, we rewrite qsHðs; tÞ as

qsHðs; tÞ ¼ m� n

2

� �Ðt
0

xm�1

sðxþ sÞn=2
dx� tm

sðtþ sÞn=2

¼ m� n

2

� �Ðt
0

xm�n

2
�1

s

x

xþ s

� �n=2

dx� tm

sðtþ sÞn=2

< m� n

2

� �
t

tþ s

� �n=2Ðt
0

xm�n

2
�1

s
dx� tm

sðtþ sÞn=2
¼ 0:

This completes the proof. r

In the following, we will assume that G is extended in a trivial way to
Rn � Rnnfðx; xÞ : x A Rng, i.e., Gðx; yÞ ¼ 0 if jxjf 1 or jyjf 1. Then formula (2.3) is
valid for all x; y A Rn, x3 y. We introduce some more notation. For all l A ½0; 1� we put

Hl :¼ fx ¼ ðx1; . . . ; xnÞ A Rn; x1 < lg; Tl :¼ qHl and Sl :¼ BXHl:ð2:7Þ

Moreover, for any x A Rn we denote by x its reflection through Tl.
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Lemma 3. Let l A ½0; 1Þ. Then for every x A BXTl and y A Sl we have

qx1
Gðx; yÞ < 0ð2:8Þ

and

qx1
Gðx; yÞ þ qx1

Gðx; yÞe 0:ð2:9Þ

Moreover, the second inequality is strict if l > 0.

Proof. For abbreviation, we put d :¼ dðx; yÞ ¼ dðx; yÞ > 0, y ¼ yðx; yÞ > 0 and
y ¼ yðx; yÞf 0. Then

qx1
Gðx; yÞ ¼ km

n

�
qsHðd; yÞðx1 � y1Þ � qtHðd; yÞð1 � jyj2Þx1

�
< 0;

by Lemma 2, since x1 f 0 and x1 > y1. Moreover

qx1
½Gðx; yÞ þ Gðx; yÞ�ð2:10Þ

¼ km
n

�
qsHðd; yÞðx1 � y1Þ þ qsHðd; yÞ

�
x1 � ðyÞ1

�
� ½qtHðd; yÞð1 � jyj2Þ þ qtHðd; yÞð1 � jyj2Þ�x1

�
e km

n ½qsHðd; yÞ � qsHðd; yÞ�ðx1 � y1Þ;

where we used Lemma 2 and the fact that x1 � y1 ¼ y1 � x1. Since moreover ye y and
qtqsH < 0 in ð0;yÞ2 by Lemma 2, we conclude that qsHðd; yÞ � qsHðd; yÞe 0. Hence
(2.9) follows from (2.10). Finally, if l > 0, then we have the strict inequality y < y, so
that we obtain a strict inequality in (2.10). r

We conclude this section with a further consequence of Lemma 2 which was already
obtained in [11] in the case m ¼ 2. Arguing exactly as in the proof of [11], Lemma 3, we
obtain

Lemma 4 (Ferrero-Gazzola-Weth [11]). Let l A ð0; 1Þ. For all x; y A Sl, x3 y, we
have

Gðx; yÞ > maxfGðx; yÞ;Gðx; yÞg;ð2:11Þ

Gðx; yÞ � Gðx; yÞ > jGðx; yÞ � Gðx; yÞj:ð2:12Þ

3. The moving plane argument

In this section we complete the proof of Theorem 1. Throughout this section we con-
sider a fixed strong positive solution u A HmðBÞXLyðBÞ of (1.2), recalling from the intro-
duction that u A C2m�1;aðBÞ. In the following we let Hl, Tl, Sl and x be defined as in the
previous section, see (2.7). We first provide three crucial estimates for directional deriva-
tives which are related to the Hopf boundary lemma for second order problems.
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Lemma 5 (Grunau-Sweers [16]). Let x0 A qB, and let m be a unit vector with

m � x0 < 0. Then
q

qm

� �m
uðx0Þ > 0.

Proof. The statement follows by noticing that the Green function vanishes precisely
of order m on qB, see [16], Theorem 3.2. r

In the following we extend u by zero outside of B so that it is defined on the whole of
Rn and we put

~ff ðsÞ ¼ f ðsÞ if s > 0;

0 if s ¼ 0;

�
ð3:1Þ

so that ~ff : ½0;yÞ ! ½0;yÞ is still nondecreasing while it may lose continuity at s ¼ 0.

For the next estimate we need the following technical result:

Lemma 6. Let 0 < l < 1, and suppose that uðxÞf uðxÞ for all x A Sl. Then,
f
�
uðyÞ

�
f ~ff

�
uðyÞ

�
f 0 for all y A Sl, and there exists a nonempty open set Ol HSl such

that f
�
uðyÞ

�
> ~ff

�
uðyÞ

�
or ~ff

�
uðyÞ

�
> 0 for all y A Ol.

Proof. The inequalities f
�
uðyÞ

�
f ~ff

�
uðyÞ

�
f 0 for all y A Sl follow from assump-

tion (1.3). For the second statement it then su‰ces to show that f
�
uðyÞ

�
E 0 in Sl since

then one of the two above inequalities would become strict in a nonempty open set
OlHSl. For contradiction, if f ðuÞ1 0 in Sl then the above inequalities would imply
f ðuÞ1 0 in B. In turn, this implies ð�DuÞm 1 0 which contradicts the positivity of u. r

Thanks to Lemmas 3 and 6 we prove

Lemma 7. Let 0 < l < 1, and suppose that uðxÞf uðxÞ for all x A Sl. Then
qu

qx1
< 0

on TlXB.

Proof. For all x A Tl XB we have:

qu

qx1
ðxÞ ¼

Ð
B

qx1
Gðx; yÞ f

�
uðyÞ

�
dyð3:2Þ

¼
Ð
Sl

�
qx1

Gðx; yÞ f
�
uðyÞ

�
þ qx1

Gðx; yÞ ~ff
�
uðyÞ

�	
dy:

According to Lemma 6 we have f
�
uðyÞ

�
f ~ff

�
uðyÞ

�
f 0 for all y A Sl and two cases may

occur. In the first case, f
�
uðyÞ

�
> ~ff

�
uðyÞ

�
for all y A Ol; in this case, (3.2) yields

qu

qx1
ðxÞ <

Ð
Sl

½qx1
Gðx; yÞ þ qx1

Gðx; yÞ� ~ff
�
uðyÞ

�
dye 0;

where in the first inequality we used (2.8) and in the second we used (2.9). In the second
case, ~ff

�
uðyÞ

�
> 0 for all y A Ol; in this case,
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qu

qx1
ðxÞe

Ð
Sl

½qx1
Gðx; yÞ þ qx1

Gðx; yÞ� ~ff
�
uðyÞ

�
dy < 0;

where in the first inequality we used (2.9) which is strict for l > 0. In any case,
qu

qx1
ðxÞ < 0,

as claimed. r

The third estimate for directional derivatives reads:

Lemma 8. Let 0 < l < 1, and suppose that
qu

qx1
< 0 on Tl XB. Then, there exists

g A ð0; lÞ such that
qu

qx1
< 0 on TlXB for all l A ðl� g; lÞ.

Proof. For any y A Rn and any a > 0 consider the hypercube centered at y, namely

UaðyÞ :¼ x A Rn; max
1eien

jxi � yij < a

� 

:

In view of Lemma 5, for any x0 A Tl X qB we know that

ð�1Þm q

qx1

� �m�1
qu

qx1
ðx0Þ ¼ ð�1Þm q

qx1

� �m

uðx0Þ > 0:

Since from the boundary conditions we also know that
q

qx1

� �k

uðx0Þ ¼ 0 for all
k ¼ 0; . . . ;m� 1, there exists a ¼ aðx0Þ > 0 such that

qu

qx1
ðxÞ < 0 for all x A Uaðx0ÞXB:ð3:3Þ

Then, by compactness of TlX qB, there exists a > 0 such that

qu

qx1
ðxÞ < 0 for all x A A :¼

S
x0 ATlXqB

�
Uaðx0ÞXB

�
:ð3:4Þ

Consider now the compact set K :¼ ðTlXBÞnA and for d > 0 consider Kd :¼ K � de1,

where e1 ¼ ð1; 0; . . . ; 0Þ. Since by assumption
qu

qx1
< 0 on K , there exists d > 0 such that

qu

qx1
< 0 on Kd for all d A ½0; d�:ð3:5Þ

Let g :¼ minfa; dg > 0. Then, the statement follows from (3.4)–(3.5). r

We are now ready to start the moving plane procedure.

Lemma 9. There exists e > 0 such that for all l A ½1 � e; 1Þ we have

uðxÞ > uðxÞ for x A Sl;
qu

qx1
ðxÞ < 0 for x A Tl XB:ð3:6Þ
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Proof. Note that T1 X qB ¼ fe1g, where e1 ¼ ð1; 0; . . . ; 0Þ. By arguing as for (3.3),

we infer that there exists e > 0 such that
qu

qx1
ðxÞ < 0 for x A BnS1�2e. In turn, from this we

infer that (3.6) holds for all l A ½1 � e; 1Þ. r

We consider

L :¼ l A ð0; 1Þ; uðxÞ > uðxÞ for all x A Sl;
qu

qx1
ðxÞ < 0 for all x A Tl XB

� 

ð3:7Þ

and we prove

Lemma 10. Let L be as in (3.7). Then, L ¼ ð0; 1Þ.

Proof. By Lemma 9, we know that ½1 � e; 1ÞHL. Let l A ½0; 1Þ be the smallest num-
ber such that ðl; 1ÞHL; the proof will be complete once we show that l ¼ 0. By continuity
we have

uðxÞf uðxÞ for all x A S
l
:ð3:8Þ

We argue by contradiction and assume that l > 0. By Lemma 7 and (3.8), we have

qu

qx1
ðxÞ < 0 for all x A T

l
XB:

Hence, by Lemma 8,

bg A ð0; lÞ such that
qu

qx1
< 0 on Tl XB for all l A ðl� g; lÞ:ð3:9Þ

Consider the function ~ff defined in (3.1); for all x A S
l

we compute

uðxÞ � uðxÞ ¼
Ð
B

½Gðx; yÞ � Gðx; yÞ� f
�
uðyÞ

�
dyð3:10Þ

¼
Ð
S
l

½Gðx; yÞ � Gðx; yÞ� f
�
uðyÞ

�
dy

þ
Ð
S
l

½Gðx; yÞ � Gðx; yÞ� ~ff
�
uðyÞ

�
dy:

According to Lemma 6, two cases may occur. If f
�
uðyÞ

�
> ~ff

�
uðyÞ

�
for all y A Ol, then

(2.11) and (3.10) yield

uðxÞ � uðxÞ >
Ð
S
l

½Gðx; yÞ � Gðx; yÞ þ Gðx; yÞ � Gðx; yÞ� ~ff
�
uðyÞ

�
dyf 0;

where the last inequality follows from (2.12). If ~ff
�
uðyÞ

�
> 0 for all y A Ol, then again

(2.11), (2.12) and (3.10) yield
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uðxÞ � uðxÞf
Ð
S
l

½Gðx; yÞ � Gðx; yÞ þ Gðx; yÞ � Gðx; yÞ� ~ff
�
uðyÞ

�
dy > 0:

Hence, in any case we have shown that

uðxÞ > uðxÞ for all x A S
l
:ð3:11Þ

From (3.9) and (3.11) we deduce by a standard compactness argument that there exists
0 < g1 < g such that

uðxÞ > uðxÞ for all x A Sl and l A ðl� g1; l�:ð3:12Þ

This, combined with (3.9), shows that ðl� g1; l�HL, contrary to the characterization of
l. r

Now we complete the proof of Theorem 1. Since 0 A qL by Lemma 10, the continuity
of u implies that

uð�x1; x2; . . . ; xnÞf uðx1; x2; . . . ; xnÞ for x ¼ ðx1; . . . ; xnÞ A B with x1 f 0:ð3:13Þ

Since, for a given rotation A A SOðnÞ, the function uA :¼ u � A is also a strong positive so-
lution of (1.2), the inequality (3.13) also holds for uA in place of u. This readily implies that
u is symmetric with respect to every hyperplane containing the origin. Consequently, u is

radially symmetric. Moreover we have
qu

qr
< 0 in Bnf0g, since

qu

qx1
< 0 in fx A B; x1 > 0g

by definition of L.

4. Partial symmetry of minimizers for the weighted minimization problem

In this section we prove Theorem 2. We fix a continuous and almost everywhere

positive radially symmetric function t : B ! Rþ and p A ð1; 2�Þ, and we let p 0 ¼ p

p� 1
be

the conjugate exponent of p. We first note the following.

Lemma 11. Any minimizer u A Hm for (1.6) belongs to C2m�1;aðBÞ, and up to a re-

flection u 7! �u it is strictly positive in B.

Proof. We may normalize u such that jt1=pujp ¼ 1, so that u is a weak solution of
(1.7). Since the nonlinearity in (1.7) is continuous and has subcritical growth, elliptic regu-
larity implies that u A C2m�1;aðBÞ. The proof of the strict positivity of u is precisely the same
as in [11], Section 2, where the statement was proved in the biharmonic case m ¼ 2 for the
nonlinearity without weight. r

Let G : Lp 0 ðBÞ ! HmðBÞ denote the solution operator for the polyharmonic equa-
tion under Dirichlet boundary conditions defined by

hGw; vim :¼
Ð
B

wv for w A L
p 0
ðBÞ; v A Hm:ð4:1Þ

We note that, if w A LyðBÞ, then Lemma 1 yields the usual integral representation for Gw
in terms of the Green function, namely,
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½Gw�ðxÞ ¼
Ð
B

Gðx; yÞwðyÞ dy for every x A B:ð4:2Þ

Consider the maximization problem corresponding to

Lðm; p; tÞ ¼ sup
w ALp 0 ðBÞ;wE0

Ð
B

�
GðtwÞ

�
ðxÞtðxÞwðxÞ dx

jt1=p 0
wj2p 0

:ð4:3Þ

Note that, if w is a maximizer for (4.3), then (4.2) and the positivity of G imply that jwj is
also a maximizer. We need the following duality principle.

Lemma 12. (i) Lðm; p; tÞ ¼ 1

Sðm; p; tÞ .

(ii) If u A Hm is a positive minimizer for (1.6) with
Ð
B

tðxÞup dx ¼ 1, then

w ¼ up�1 A Lp 0 ðBÞ is a maximizer for (4.3).

(iii) If w A Lp 0 ðBÞ is a nonnegative maximizer for (4.3) with
Ð
B

tðxÞwp 0
dx ¼ 1, then

u ¼ wp 0�1 A Hm is a minimizer for (1.6).

Proof. For abbreviation, we put S :¼ Sðm; p; tÞ and L :¼ Lðm; p; tÞ. Let u A Hm

be a positive minimizer for (1.6) with
Ð
B

tðxÞup dx ¼ 1. Then u is a solution of problem

(1.7). Consequently, u ¼ SGðtup�1Þ, and therefore SGðtwÞ ¼ w
1

p�1 for w ¼ up�1. Multiply-
ing both the sides of this equality by tw and integrating over B, we obtain

S
Ð
B

�
GðtwÞ

�
ðxÞtðxÞwðxÞ dx ¼

Ð
B

tðxÞwp 0
dx ¼

Ð
B

tðxÞup dx ¼ 1;

hence

Lf

Ð
B

�
GðtwÞ

�
ðxÞtðxÞwðxÞ dx

jt1=p 0
wj2p 0

¼ 1

S
:ð4:4Þ

Next let w A Lp 0 ðBÞ be a nonnegative maximizer for (4.3) with
Ð
B

tðxÞwp 0
dx ¼ 1. By the cor-

responding Euler-Lagrange equation in weak form,

Ð
B

�
GðtwÞ

�
ðxÞtðxÞzðxÞ dx ¼ L

Ð
B

tðxÞwp 0�1z dx for every z A L
p 0
ðBÞ;

which implies that GðtwÞ ¼ Lwp 0�1 almost everywhere in B. Therefore, setting

u ¼ wp 0�1 ¼ 1

L
GðtwÞ A Hm, we obtain by (4.1)

Lkuk2
m ¼ Lhu; uim ¼ hGðtwÞ;wp 0�1im ¼

Ð
B

tðxÞwp 0
dx ¼

Ð
B

tðxÞup dx ¼ 1;

so that

Se
kuk2

m

jt1=puj2p
¼ 1

L
:ð4:5Þ
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Now (i) is a consequence of (4.4) and (4.5). But then the first inequality in (4.4) must be an
equality, and (ii) follows. Similarly, the first inequality in (4.5) must be an equality, and (iii)
follows. r

Next, we consider the set H of all closed half-spaces in Rn such that 0 A qH. For
H A H, we let sH : Rn ! Rn denote the reflection at the boundary qH of H. For simplic-
ity, we also put x ¼ sHðxÞ for x A RN when the underlying half space H is understood. For
a measurable function v : Rn ! R, we define the polarization vH of v relative to H by

vHðxÞ ¼
maxfvðxÞ; vðxÞg; x A H;

minfvðxÞ; vðxÞg; x A RnnH:

�
ð4:6Þ

We note the following simple and useful property.

Lemma 13. Let w : Rn ! R be a measurable function and let H A H. Then, for a.e.
x A Rn we have wHðxÞ � wðxÞ ¼ wðxÞ � wHðxÞ.

Proof. By definition we have wHðxÞ þ wHðxÞ ¼ wðxÞ þ wðxÞ for a.e. x A H, which
proves the statement. r

We also need the following property of the Green function G.

Lemma 14. Let H A H, and let x; y A H, x3 y. Then

Gðx; yÞ ¼ Gðx; yÞfGðx; yÞ ¼ Gðx; yÞð4:7Þ

and the inequality is strict if x; y A intðBXHÞ.

Proof. By continuity, it su‰ces to consider x; y A intðBXHÞ. Consider the squared
distance function defined in (2.1), the y function defined in (2.2) and observe that

dðx; yÞ ¼ dðx; yÞ < dðx; yÞ ¼ dðx; yÞ for x; y A intðHÞð4:8Þ

and

yðx; yÞ ¼ yðx; yÞ ¼ yðx; yÞ ¼ yðx; yÞ;ð4:9Þ

so the equalities in (4.7) follow directly from the representation (2.3). Moreover,
Lemma 2, (4.8) and (4.9) imply that H

�
dðx; yÞ; yðx; yÞ

�
> H

�
dðx; yÞ; yðx; yÞ

�
. Hence

Gðx; yÞ > Gðx; yÞ by (2.3), as claimed. r

In the following, for every function w : B ! R we let w also denote the corresponding
trivial extension (w1 0 outside of B) to Rn. Lemmas 13 and 14 enable us to compare
double ‘‘convolutions’’ of functions with the corresponding double ‘‘convolutions’’ of their
polarizations.

Lemma 15. Let w A Lp 0 ðBÞ, and let H A H. Then:
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Ð
B�B

Gðx; yÞtðxÞtðyÞwðxÞwðyÞ dx dyð4:10Þ

e
Ð

B�B

Gðx; yÞtðxÞtðyÞwHðxÞwHðyÞ dx dy;

where equality holds if and only if w ¼ wH or w � sH ¼ wH a.e. in B.

Proof. Setting

Aðg; hÞ :¼
Ð

B�B

Gðx; yÞtðxÞtðyÞgðxÞhðyÞ dx dy for g; h A L
p 0
ðBÞ

and using Lemmas 13 and 14 we find

AðwH ;wHÞ � AðwH ;wÞð4:11Þ

¼
Ð

B�B

Gðx; yÞtðxÞtðyÞwHðxÞ½wHðyÞ � wðyÞ� dx dy

¼
Ð

BXH�BXH

þ
Ð

BXH�ðBnHÞ
þ

Ð
ðBnHÞ�BXH

þ
Ð

ðBnHÞ�ðBnHÞ
. . . dx dy

¼
Ð

BXH�BXH

�
wHðxÞ

�
Gðx; yÞ � Gðx; yÞ

�
þ wHðxÞ

�
Gðx; yÞ � Gðx; yÞ

�	

� tðxÞtðyÞ½wHðyÞ � wðyÞ� dx dy

¼
Ð

BXH�BXH

½Gðx; yÞ � Gðx; yÞ�tðxÞtðyÞ

� ½wHðxÞ � wHðxÞ�½wHðyÞ � wðyÞ� dx dy:

Again by Lemmas 13 and 14 and with the same decomposition of the domain of integra-
tion we find

AðwH ;wÞ � Aðw;wÞ ¼
Ð

BXH�BXH

½Gðx; yÞ � Gðx; yÞ�tðxÞtðyÞ½wHðxÞ � wðxÞ�ð4:12Þ

� ½wðyÞ � wðyÞ� dx dy

¼
Ð

BXH�BXH

½Gðx; yÞ � Gðx; yÞ�tðxÞtðyÞ½wHðyÞ � wðyÞ�

� ½wðxÞ � wðxÞ� dx dy:

Combining (4.11) and (4.12), we obtain

AðwH ;wHÞ � Aðw;wÞ

¼
Ð

BXH�BXH

½Gðx; yÞ � Gðx; yÞ�tðxÞtðyÞ½wHðyÞ � wðyÞ�

� ½wHðxÞ � wHðxÞ þ wðxÞ � wðxÞ� dx dyf 0;

since Gðx; yÞ � Gðx; yÞf 0 by Lemma 14,

wHðyÞ � wðyÞf 0 and wHðxÞ � wHðxÞ þ wðxÞ � wðxÞf 0 for x A H:
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Hence (4.10) follows. Moreover, putting U1 :¼ fx A BXH : wðxÞ > wðxÞg and
U2 :¼ fy A BXH : wHðyÞ > wðyÞg, we find that

AðwH ;wHÞ � Aðw;wÞ

f
Ð

U1�U2

½Gðx; yÞ � Gðx; yÞ�tðxÞtðyÞ½wHðyÞ � wðyÞ�

� ½wHðxÞ � wHðxÞ þ wðxÞ � wðxÞ� dx dy;

and the right-hand side is positive if and only if U1 �U2 has positive Lebesgue measure.
Hence we conclude that equality holds in (4.10) if and only if jU1j ¼ 0 or jU2j ¼ 0, i.e., if
and only if w � sH ¼ wH or w ¼ wH a.e. in B. r

The next step is a comparison statement for minimizers of (1.6):

Lemma 16. Let u be a (positive) minimizer for (1.6). Then for each H A H one of the

following is true:

(i) u > u � sH in BX intðHÞ.

(ii) u < u � sH in BX intðHÞ.

(iii) u1 u � sH in B.

Proof. By Lemma 11 we may assume that u is positive, and we may normalize
u such that

Ð
B

tðxÞup dx ¼ 1. By Proposition 12, w ¼ up�1 is a maximizer for (4.3).

Since t is a radial function, a straightforward computation (see e.g. [21]) shows that
jt1=p 0

wH jp 0 ¼ jt1=p 0
wjp 0 . Hence Lemma 15 implies that w ¼ wH or w � sH ¼ wH a.e. in B.

Since u is continuous, we conclude that

uf u � sH in BXHð4:13Þ

or

ue u � sH in BXH:ð4:14Þ

We first consider (4.13), and we suppose in addition that uðx0Þ > u
�
sHðx0Þ

�
for some

x0 A H. Then, by continuity, u > u � sH in a subset of BXH of positive measure. Using
Lemma 14 we estimate for every x A BX intðHÞ

uðxÞ � uðxÞ ¼
Ð
B

½Gðx; yÞ � Gðx; yÞ�tðyÞup�1ðyÞ dy

¼
Ð

BXH

�
½Gðx; yÞ � Gðx; yÞ�tðyÞup�1ðyÞ � ½Gðx; yÞ � Gðx; yÞ�tðyÞup�1ðyÞ

�
dy

¼
Ð

BXH

½Gðx; yÞ � Gðx; yÞ�tðyÞ½up�1ðyÞ � up�1ðyÞ� dy > 0:
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Hence we obtain (i). Similarly, assuming (4.14) and uðx0Þ < u
�
sHðx0Þ

�
for some

x0 A BXH, we obtain (ii). It follows that one of the cases (i)–(iii) occurs, as claimed. r

For any unit vector e A Rn we now define

HðeÞ :¼ fH A H : e A intðHÞg:

We will prove Theorem 2 with the help of the following characterization.

Lemma 17. Let e A Rn be a unit vector. A continuous function v : Rn ! R with com-

pact support is foliated Schwarz symmetric with respect to e if and only if v ¼ vH for every

H A HðeÞ.

Proof. For nonnegative v this follows immediately from [21], Lemma 2.6. But, as
noted subsequently in [4], Lemma 2.4, there is no need to assume nonnegativity. Alterna-
tively, the characterization also follows from [6], Lemma 4.2. r

We may now complete the proof of Theorem 2. Let u be a positive minimizer for (1.6).

Take x0 A Bnf0g with uðx0Þ ¼ maxfuðxÞx A B; jxj ¼ jx0jg, and put e ¼ x0

jx0j
. Then Lemma

16 implies that

u ¼ uH for every H A HðeÞ:

Hence u is foliated Schwarz symmetric with respect to e by Lemma 17. Therefore we can

write u ¼ uðr; yÞ, where r ¼ jxj and y ¼ arccos
x

jxj � e. It remains to prove that

either u is radial; or uðr; yÞ is strictly decreasing in y A ð0; pÞ for 0 < re 1:ð4:15Þ

We follow the argument in [13], p. 204. We already know that no half-space HHHe

satisfies property (ii) of Lemma 16. Moreover, if property (i) of this lemma holds for
all half-spaces HHHe, then uðr; yÞ is strictly decreasing in y A ð0; pÞ for 0 < re 1. It re-
mains to consider the case where property (iii) of Lemma 16 holds for some H0 HHe. Let
0 < y0 < p=2 be the angle formed by e and the hyperplane qH0. Let e0 ¼ sH0

ðeÞ. Then
arccosðe0 � eÞ ¼ 2y0. Moreover, (iii) implies that uðre0Þ ¼ uðreÞ for 0e re 1. Since u is
nonincreasing in the angle y A ð0; pÞ, we conclude that uðr; yÞ ¼ uðr; 0Þ for all ye 2y0.
From Lemma 16 we then deduce that (iii) holds for all HHHe for which the angle
between e and H is less than 2y0. Then, by the same argument as before, uðr; yÞ ¼ uðr; 0Þ
for all yeminf4y0; pg. Arguing successively, in a finite number of steps we obtain
uðr; yÞ ¼ uðr; 0Þ for all ye p. This shows that u is radial. We therefore conclude (4.15), as
claimed.

5. Nonradial minimizers

In this section we prove Theorem 3. To this end, we introduce the subspace of radial
functions Hm

r :¼ fu A Hm; u radially symmetricg and consider the related minimization
problem:
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Srðm; p; aÞ :¼ inf
u AHm

r nf0g

kuk2
m�Ð

B

jxjajujp dx
�2=p

:ð5:1Þ

Now Theorem 3 can be rephrased in the following way.

Theorem 4. For any a > 0 there exists pðaÞ A ð2; 2�Þ such that Srðm; p; aÞ > Sðm; p; aÞ
for p A ½pðaÞ; 2��. Hence, for p A

�
pðaÞ; 2�

�
, no minimizer of (1.8) is radially symmetric.

For the proof we need two lemmas which deal with the limit case where p ¼ 2�.

Lemma 18. Let S� :¼ Sm
2� be as in (1.4). Then, Sðm; 2�; aÞ ¼ S�, and the infimum in

(1.8) for p ¼ 2� is not attained.

Proof. Since jxja < 1 in B, we have Sðm; 2�; aÞfS�. Let fukgHCy
0 ðBÞ be a mini-

mizing sequence for S�. Fix y A B with jyj > 1=2 and consider

vk A Cy
0 ðBÞ; vkðxÞ :¼

uk
x� y

1 � jyj

� �
if x A B1�jyjðyÞ;

0 if x A BnB1�jyjðyÞ:

8><
>:

We then have kvkk2
m ¼ ð1 � jyjÞn�2mkukk2

m and

Ð
B

jxjajvkðxÞj2
�
dx ¼ ð1 � jyjÞn

Ð
B

��zð1 � jyjÞ þ y
��ajukðzÞj2� dz

f ð1 � jyjÞnð2jyj � 1Þa
Ð
B

jukðzÞj2
�
dz;

hence

Sðm; 2�; aÞe kvkk2
m�Ð

B

jxjajvkj2
�
dx

�2=2�
e ð2jyj � 1Þ�2a=2� kukk2

m

jukj22�
¼ ð2jyj � 1Þ�2a=2��

S� þ oð1Þ
�
:

Consequently, S� eSðm; 2�; aÞe ð2jyj � 1Þ�2a=2�
S� for any jyj > 1=2. Since y can be cho-

sen arbitrarily close to qB, we conclude that Sðm; 2�; aÞ ¼ S�.

Now suppose by contradiction that Sðm; 2�; aÞ is attained at some u A Hm. Then

S� e
kuk2

m

juj22�
<

kuk2
m�Ð

B

jxjajuj2� dx
�2=2�

¼ Sðm; 2�; aÞ;

contrary to the equality we just proved. Hence Sðm; 2�; aÞ is not attained, as claimed. r

Lemma 19. The infimum Srðm; 2�; aÞ in (5.1) is attained.
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Proof. Let fukgHHm
r be a minimizing sequence for (5.1), normalized such that

kukkm ¼ 1 for all k. Up to a subsequence, we may assume that uk ! u a.e. and uk * u

weakly in Hm
r for some u A Hm

r such that kukm e 1. We claim that

Ð
B

jxjajukj2
�
dx !

Ð
B

jxjajuj2
�
dx as k ! y:ð5:2Þ

Indeed, if r A ð0; 1Þ, then by boundedness of kuk � ukm and by [23], Radial Lemma 1, we
know that there exists CðrÞ > 0 such that jukðxÞ � uðxÞjeCðrÞ for all x A BnBrð0Þ. Then,
we may apply Lebesgue Theorem to obtain kuk � ukL2� ðBnBrð0ÞÞ ! 0. Hence,

����Ð
B

jxjaðjukj2
�
� juj2

�
Þ dx

����e Ð
Brð0Þ

jxjaðjukj2
�
þ juj2

�
Þ dxþ

Ð
BnBrð0Þ

jxja
��jukj2� � juj2

��� dx

e ra
Ð

Brð0Þ
ðjukj2

�
þ juj2

�
Þ dxþ oð1Þ

e raS2�=2
� ðkukk2�

m þ kuk2�

m Þ þ oð1Þe 2raS2�=2
� þ oð1Þ:

By arbitrariness of r, we obtain (5.2). Consequently, we have

kuk2
m�Ð

B

jxjajuj2� dx
�2=2�

e lim inf
k!y

kukk2
m�Ð

B

jxjajukj2
�
dx

�2=2�
¼ Srðm; 2�; aÞ;

and hence u is a minimizer for (5.1). r

We may now complete the proof of Theorem 4. Lemmas 18 and 19 immediately
imply that Srðm; 2�; aÞ > Sðm; 2�; aÞ. Since p 7! Srðm; p; aÞ is continuous and
p 7! Sðm; p; aÞ is upper semicontinuous as p ! 2�, there exists pðaÞ A ð2; 2�Þ such that
Srðm; p; aÞ > Sðm; p; aÞ for all p A ½pðaÞ; 2��.

Note added in proof. After the paper was accepted, we learned that the moving
plane method has already been applied to some integral equations in papers of Chang
and Yang (Math. Res. Lett. 4 (1997), 91–102), Y. Y. Li (J. Eur. Math. Soc. 6 (2004),
153–180), Birkner, López-Mimbela and Wakolbinger (Ann. Inst. H. Poincaré Anal. Non
Lin. 22 (2005), 83–97) and Chen, Li and Ou (Comm. Pure Appl. Math. 59 (2006), 330–
343). Our method has common points with some of these papers but also contains new fea-
tures. In particular, it deals with very general nonlinearities and completely reduces the
problem to Green function inequalities.
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