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Radial symmetry of positive solutions to
nonlinear polyharmonic Dirichlet problems

By Elvise Berchio at Torino, Filippo Gazzola at Milano, and Tobias Weth at Giessen

Abstract. We extend the symmetry result of Gidas-Ni-Nirenberg [12] to semilinear
polyharmonic Dirichlet problems in the unit ball. In the proof we develop a new variant of
the method of moving planes relying on fine estimates for the Green function of the poly-
harmonic operator. We also consider minimizers for subcritical higher order Sobolev em-
beddings. For embeddings into weighted spaces with a radially symmetric weight function,
we show that the minimizers are at least axially symmetric. This result is sharp since we
exhibit examples of minimizers which do not have full radial symmetry.

1. Introduction and results

In their celebrated paper, Gidas-Ni-Nirenberg [12] proved that every positive smooth
solution of the semilinear elliptic problem

{—Au = f(u) in B,
u=>0 on ¢B

is radially symmetric and decreasing in the radial variable. Here B is the unit ball of
R" (n = 2) and f is a locally Lipschitz function. The proof relies on the so-called moving
plane technique due to Serrin [22], see also previous work by Alexandrov [2]. A variant of
this technique can be used to study higher order problems such as

(l 1) {(_A)mu = f(u) in B,
' u=Au=---=A""'u=0 on B,

where m = 2. Indeed, under these boundary conditions (usually named after Navier), prob-
lem (1.1) can be reduced to a second order semilinear elliptic system. If f is nondecreasing
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in u, then this reduced system is cooperative and Troy’s symmetry result [25] applies, show-
ing that any positive smooth solution of (1.1) is radially symmetric and radially decreasing.

In the present paper we prove radial symmetry of positive solutions to the corre-
sponding polyharmonic problem under Dirichlet boundary conditions

(—A)"u = £ (u) in B,
(1.2) ou "y
u:E::WZO OH@B.

Here r = |x| denotes the radial variable. We point out that (1.2) cannot be reduced to a sec-
ond order problem. We make the following general assumption:

(1.3) f :]0,00) — R is a continuous, nondecreasing function with f(0) = 0.

Before stating our main result, we recall the weak formulation of (1.2) within the Sobolev
space #" := H{"(B), which is a Hilbert space with the scalar product

| ANy dx, m even,

Cuy vy, =4
jVA(m*l)/quA(mfl)/zv dx, m odd,
B

for u,ve #™. We denote the induced norm by || - ||
ue A" L*(B) is called a strong solution of (1.2) if

»- A nonnegative function

u, vy, = [ f(u)vdx forallve #"
B

(the integral exists since u € L™ (B) and f is continuous). By elliptic regularity, any such
solution u is contained in C?"~!%(B), and all partial derivatives of order less than m vanish
on 0B. Moreover, if f is Holder continuous, then u € C*™*(B) is a classical solution. Our
main result is the following.

Theorem 1. If'(1.3) holds, then every strong positive solution u € #"(B) n L*(B) of
(1.2) is radially symmetric and strictly decreasing in the radial variable.

Theorem 1 deserves several immediate comments.

Remark 1. (i) The sign assumption on f is necessary in order to have the radial mo-
notonicity of u, see the counterexample by Sweers [24].

(ii) Let 4; be the first Dirichlet eigenvalue of (—A)™ in B. Combined with [14], The-
orem 1, and [15], Theorem 2, Theorem 1 shows that, for n > 2m, the problem

n+2m

(—A)"u = du + wrom in B,

ou "y .
_5__W_0 OHOB

u
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admits a positive solution for any 4 € (0,4,) if and only if n = 4m. This brings further
evidence for a conjecture by Pucci-Serrin [19]. We thank Hans-Christoph Grunau for this
remark.

(i) Combined with [8], Theorem 1, our Theorem 1 shows that if m =2 and
. 4 . . ... .
f(u) =u?, with 0 < p < nt ) and p #+ 1, then there exists a unique positive solution to

(1.2). "

(iv) The monotonicity assumption on f enters crucially in our arguments. On the
other hand, if instead of (1.3) we assume that /" is differentiable and satisfies f’(s) < 4; for
every s = 0, then it is easy to see that (1.2) admits at most one strong solution which is nec-
essarily radially symmetric. Indeed, assuming by contradiction that u,v € #"(B) n L™ (B)
are different strong solutions of (1.2), we find

{u—vu—uv)p, :ﬁ[(f(u) —f(v))(u—v)dx</lllj;(u—v)zdx

contrary to the variational characterization of A;. In fact, symmetry is also ensured if
f'(s) < A2 (see [9]) and uniqueness is guaranteed for sublinear f (see [10]).

(v) It will be evident from our proof that Theorem 1 is also valid for (1.2) with
f(u) replaced by the nonautonomous radial nonlinearity f(|x|,u) provided that
f:[0,1] x [0, 00) — [0,00) is continuous, nonincreasing in the first variable and non-
decreasing in the second one.

(vi) One of the crucial steps in the moving plane technique consists in comparing the
solution u in a segment of the ball with its reflection u" through the hyperplane which
bounds the segment (see e.g. [12], Lemma 2.2). For second order problems the comparison
follows from suitable versions of the maximum principle since #” = u holds a priori on the
boundary of this segment. This information however is not enough for higher order prob-
lems, and therefore the classical moving plane method fails for (1.2). In this paper, we em-
ploy a different technique to carry out the moving plane mechanism, using the integral rep-
resentation of u in terms of the Green function of the polyharmonic operator (—A)" in B
under Dirichlet boundary conditions. This function is explicitly known since the pioneering
work by Boggio [5] and has been widely studied more recently by Grunau-Sweers [17]. In
the recent paper [11], Ferrero-Gazzola-Weth established monotonoticy properties of the bi-
harmonic Green function with respect to reflections at hyperplanes. Here we generalize the
estimates of [11] and add further inequalities which are essential to our approach.

To state our second main result, we recall that, by the Rellich-Sobolev embedding
theorem, #" is compactly embedded in L”(B) for 1 < p < 2*. Here 2* = 2*(m) is the

corresponding higher order critical exponent, i.e., 2* = for n > 2m and 2* = oo for

n < 2m. The best constants for these embeddings are

2n
n—2m
(1.4) T
P uenm\(0y |u|; ’

so these are the largest constants such that SI’,”|u|[2, < ||u|l?, for all ue #™. Here and in
the following, we denote by |u|, the usual L”-norm of a function u € L”(B). Since the
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embeddings #" — L”(B) are compact for 1 £ p < 2*, there exists a minimizer u for the
minimization problem (1.4), namely there exists a nontrivial function u € #™ such that
S]’,’7|u|§ = ||u||%,. Since up to sign and normalization these minimizers are positive solutions
of (1.2) with f(u) = |u[’ *u, Theorem 1 implies that they are radial and monotone in the
radial variable. For m = 2 this has already been proved in [11]. In the present paper we
study the effect of radial weight functions on the symmetry of minimizers, complementing
the results in [18], [20], [21] for the harmonic case m = 1. We assume that

(1.5)  7:B —[0,00) is a continuous and a.e. positive radially symmetric function,
and we study the minimization problem

2 2
ol 2],

(16) S(mapar):uey}}}zfu 0|+1/p 2_ue%"\u 0 2p
0 [y '$(I(>’|pd>

T(X) U X

B

By the same compactness argument as above, the infimum is attained for p < 2*. More-
over, the minimizers of (1.6), when normalized such that |¢!/7y] , =1, are weak solutions
of the boundary value problem

(=A)"u = S(m, p,7)r(x)[ul’ *u inB,
(17) ou amfl u
If 7 is nonincreasing in the radial variable, then every weak positive solution of (1.7) is ra-
dial by Remark 1(iv). In the general case we have the following partial symmetry result for
minimizers of (1.6).

Theorem 2. If (1.5) holds, then every minimizer u of the minimization problem (1.6) is
foliated Schwarz symmetric with respect to some unit vector e, i.e., it is axially symmetric

. . . . . X
with respect to the axis Re = R" and nonincreasing in the polar angle 6 = arccosﬂ -e.
X
Moreover, u is of one sign, and either u is radial or u is strictly decreasing in 0 € [0, 7] for
0<|x| <L

In the case m = 1, this has been proved in [18], see also [21]. The proof in [18] relies
on the maximum principle for general second order operators and does not carry over to
the polyharmonic Dirichlet problem. The approach in [21] is based on polarization, a sim-
ple two-point rearrangement for functions which is well defined in first order Sobolev
spaces, spaces of continuous functions or L”-spaces, see [3], [4], [6], [7], [21] and (4.6) below.
However, for m = 2, the polarization of an #"'-function is not contained in #" anymore.
To prove Theorem 2, we first establish a duality principle (see Proposition 12) which re-
duces the minimization problem (1.6) to a maximization problem in L” /(B). We then study
maximizers of the reduced problem with the help of polarization. We note that in [11] po-
larization was already applied in a different way to biharmonic problems.

By the results in [20], it is known that the symmetry statement of Theorem 2 is opti-
mal in the second order case m = 1. More precisely, considering the weight functions
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7, : B— Ry, 1,(x) = |x|” for o > 0, it is proved in [20] that some parameter values of o and
p lead to nonradial minimizers. Here we note a similar statement for general m.

Theorem 3. Suppose that n > 2m. Then for every o> 0 there exists p(x) € (2,2%)
such that no minimizer of

(18) S(m,p,oc) = S(mapvrd) :uel;lfr’l”f\{O} 2/p
(J1atu )

is radially symmetric if p € [p(oc), 2*).

The paper is organized as follows. In Section 2 we establish some inequalities for the
polyharmonic Green function relative to Dirichlet boundary conditions and its derivative.
In Section 3 we carry out the moving plane procedure and complete the proof of Theorem
1. In Section 4 we consider the minimization problem (1.6) and prove Theorem 2. Finally,
in Section 5 we prove Theorem 3.

2. Green function inequalities
In this section we derive some pointwise inequalities for the Green function

G = G(x, y) of A on B relative to Dirichlet boundary conditions. For x, y € R", it is con-
venient to introduce the quantities

(2.1) d(x,y) = |x— I’
and
_Ja=xP)(1 =1y if x,yeB,
22) 600 ) = {0 if x¢Boryé¢B.

Then for x, y € B, x + y we have the following representation due to Boggio, see [5], p. 126:

1)2
0(x,y) ) |
bl 2 yme
23)  Gley) =krx—yprr 0 G
1

dz

Zn—1

0(x,y)
|x—y|2 m—1 m

= e e =S H (), 0, )
2 ) (Z " 1)”/2 2 ) ’ )
Here k] is a positive constant, and
\ f mel
(2.4) H:(0,00) x [0,00) = R, H(s,t) =" ———dz.
0 (z+1)"

The following lemma is a direct consequence of Boggio’s work [5], elliptic regularity (see
[1]) and the estimates in [17].
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Lemma 1. Let he L™ (B), and let ue A" satisfy

(2.5) {u, vy, = [hvdx  forall ve #™,
B

i.e., u is a weak solution of (—A)"u=h in B under Dirichlet boundary conditions. Then
ue C*1%(Q), and u satisfies

(2.6) D*u(x) = [ DEG(x, y)h(p)dy  for every x € B,
B

where D* stands for any partial derivative of order |k| < 2m. In particular, D*u =0 on B
for |k| <=m—1.

We need the following inequalities for the function H defined in (2.4).
Lemma 2. For all s,t > 0 we have
O0sH(s,t) <0, 0,H(s,t) >0, 0,0,H(s,t)<O.

Proof. We compute

m—1 ntmfl
O H(s,t) =—, 0,0,H(s,t) = ————
4 ) (Z+S)n/2 4 2(Z+S)I‘l/2+1
and
N o
OH(s, 1) =m—=)s" 271 dz — .
A1 < 2) J(Z+1)"/2 s(t+5)"?

Hence the last two inequalities follow. Also the first inequality follows in case n = 2m while
in the remaining case n < 2m, we rewrite 0,H (s, t) as

n t xmfl m
OsH(s,t) =|m— = dx —
) ( 2>ojs(x+s)n/2 s(t+5)"?

t - m—4—1 n/2 o
O
2)p s X+s s(t+ s)"?

t n/2 ¢ _m-"1-1 m
e DT e
I+s) o s(t+s)

This completes the proof. []

In the following, we will assume that G is extended in a trivial way to
R" x R"™\{(x,x) : xe R"}, ie., G(x,y) =0 1if |x| =1 or |y| = 1. Then formula (2.3) is
valid for all x, y € R", x # y. We introduce some more notation. For all 4 € [0, 1] we put

(2.7) H) ={x=(x1,...,xy) eR";x; < A}, T,:=0H, and ZX,:=BnH,.

Moreover, for any x € R" we denote by X its reflection through 7.
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Lemma 3. Let A€[0,1). Then for every xe BN T, and y € ¥, we have
(2.8) 0y, G(x,y) <0
and
(2.9) 0y, G(x,¥) 4 0x,G(x,7) £ 0.
Moreover, the second inequality is strict if A > 0.

_ Proof. For abbreviation, we put d :=d(x,y) =d(x,y) >0, 0=0(x,y) >0 and
0 =0(x,y) = 0. Then

00 G(x, y) = k" (3,H(d,0)(x1 — y1) — ,H(d,0)(1 — |y|*)x1) <0,
by Lemma 2, since x; = 0 and x; > y;. Moreover

(2.10) 05 [G(x, y) + G(x, )]
= Ik (0sH (d, 0)(x1 — y1) + &:H(d, 0) (x1 — (7),)
— [0:H(d, 0)(1 = |y*) + 2,H(d,0)(1 — | 7]*)]x1)
< k,'[0sH(d, 0) — O;H(d, 0))(x1 — y1),
where we used Lemma 2 and the fact that x; — y; = y; — x;. Since moreover 0 < 0 and
0,0,H < 0 in (0,00)* by Lemma 2, we conclude that d,H(d,0) — d,H(d,0) < 0. Hence

(2.9) follows from (2.10). Finally, if A > 0, then we have the strict inequality 0 < 0, so
that we obtain a strict inequality in (2.10). [

We conclude this section with a further consequence of Lemma 2 which was already
obtained in [11] in the case m = 2. Arguing exactly as in the proof of [11], Lemma 3, we
obtain

Lemma 4 (Ferrero-Gazzola-Weth [11]). Let A€ (0,1). For all x,yeX;, x &+ y, we
have

(2.11) G(x,y) > max{G(x, ), G(X, »)},
(2.12) G(x,y) — G(x, ) > [G(x, §) — G(X, y)|.

3. The moving plane argument

In this section we complete the proof of Theorem 1. Throughout this section we con-
sider a fixed strong positive solution u € #"(B) n L*(B) of (1.2), recalling from the intro-
duction that u € C*"~1»*(B). In the following we let H,, T;, ¥, and X be defined as in the
previous section, see (2.7). We first provide three crucial estimates for directional deriva-
tives which are related to the Hopf boundary lemma for second order problems.
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Lemma 5 (Grunau-Sweers [16]). Let xo € 0B, and let u be a unit vector with

wu-xo < 0. Then (i) u(xp) > 0.
o

Proof. The statement follows by noticing that the Green function vanishes precisely
of order m on 0B, see [16], Theorem 3.2. []

In the following we extend u by zero outside of B so that it is defined on the whole of
R" and we put

o= {j 4273

so that f : [0,00) — [0, 00) is still nondecreasing while it may lose continuity at s = 0.
For the next estimate we need the following technical result:

Lemma 6. Let 0 <A<, and suppose that u(x) = u(x) for all xeX, Then,
f(u(y)) = f(u(p)) 20 for all y€X,;, and there exists a nonempty open set (; = %, such

thatf(u(y))>f( (7 )) orf( (y ))>0forallye(9

Proof. The inequalities /' (u(y)) = f(u(7)) 2 0 for all y € Z; follow from assump-
tion (1.3). For the second statement it then suffices to show that f ( (y )) £ 0in X, since
then one of the two above inequalities would become strict in a nonempty open set
0, = %,. For contradiction, if f(u#) =0 in X, then the above inequalities would imply
f(u) = 0 in B. In turn, this implies (—Au)" = 0 which contradicts the positivity of u. []

Thanks to Lemmas 3 and 6 we prove

ou
Lemma 7. Let 0 < 4 < 1, and suppose that u(x) = u(x) for all x € X,. Then FI 0
on T, nB. X

Proof. For all x e T; nB we have:

(3.2) j;‘l 1{ Oy
= |
>,

VG (x, ) f (u(y)) dy

[a‘l G(X y ( ( )) + aXlG(xv y)f(u()_}))} dy

z

occur. In the first case, [ (u( y ) (u )7)) r all y € (;; in this case, (3.2) yields

According to Lemma 6 we have f ( (y )) = f ( y)) = 0 for all y € ¥; and two cases may

aa_;l (9 < J10G(x. 3) + 0, Gl DI (u(7) d 20,

where in the first inequality we used (2.8) and in the second we used (2.9). In the second
case, f (u(y)) > 0 for all y € ¢;; in this case,
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Gu
7 () = [100Gx, 9) + 00, Glx, P (u(7)) dy < 0,
X] 3,
where in the first inequality we used (2.9) which is strict for 2 > 0. In any case, % (x) <0,
1

as claimed. [

The third estimate for directional derivatives reads:

Lemma 8. Let 0 < A < 1, and suppose that ;; <0 on T),B. Then, there exists
x

ou
y€ (0,4 )Suchthala—<00n T, B foralll e (L—yp,A).

Proof. For any y € R"” and any a > 0 consider the hypercube centered at y, namely
Ua(y) = {x € R"; max |x; — yi| < a}-

In view of Lemma 5, for any xo € 7; n dB we know that

(—U’”(i)m o L x0) = ()" (i)mu(xo) -0,

0x| 0x

. 0\
Since from the boundary conditions we also know that (6—) u(xg) =0 for all
k=0,...,m— 1, there exists a = a(xo) > 0 such that X1

ou

(3.3) e

(x) <0 forall xe%,(xo) "B.
Then, by compactness of T; n dB, there exists @ > 0 such that
ou
(3.4) —(x)<0 forallxed:= | (%i(x)NB).
axl Xp € T,mﬁB

Consider now the compact set K := (7, nB)\4 and for d > 0 consider K, := K — dey,

. .0 :
where ¢; = (1,0,...,0). Since by assumption % < 0 on K, there exists 0 > 0 such that
1

(3.5) u <0 onK,; foralldel0,9].
8x1

Let y := min{a@,J} > 0. Then, the statement follows from (3.4)—(3.5). [
We are now ready to start the moving plane procedure.

Lemma 9. There exists ¢ > 0 such that for all 1 € [1 —¢,1) we have

ou

(3.6) u(x) > u(x) forxeX,, o

(x) <0 forxeT;nB.
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Proof. Note that T} n 0B = {e;}, where ¢; = (1,0,...,0). By arguing as for (3.3),
) ) 0 )
we infer that there exists ¢ > 0 such that a_u (x) < 0 for x € B\X;_5.. In turn, from this we
X1

infer that (3.6) holds forall A€ [1 —¢,1). [

We consider
(3.7) A= {}, € (0,1);u(x) > u(x) for all x e 2;_,;7“(30 <OforallxeT, mB}
1

and we prove

Lemma 10. Let A be as in (3.7). Then, A = (0,1).

Proof. By Lemma 9, we know that [1 —¢,1) = A. Let A € [0, 1) be the smallest num-
ber such that (4, 1) = A; the proof will be complete once we show that 4 = 0. By continuity
we have

(3.8) u(x) Zu(x) forall xeX;.

We argue by contradiction and assume that A > 0. By Lemma 7 and (3.8), we have

ou

le( x) <0 forallxeT;nB.

Hence, by Lemma 8§,

(3.9) 3y e (0,4) such that ;7” <0 onT,nB forall/e(i—y,i).
1

Consider the function f defined in (3.1); for all x € X~ we compute

(3.10) u(x) —u(x IJ; G(x, »)If (u(y)) dy

+ g”G(x’ ) — G(X, P)f (u(3)) dy.

0

According to Lemma 6, two cases may occur. If f(u(y)) > f(u(¥)) for all y e (;, then
(2.11) and (3.10) yield

u(x) — u(x) > 2{ [G(x, ») = G(x, y) + G(x, 7) = G(%, §)]f (u(7)) dy 2 0,

A

where the last inequality follows from (2.12). If f (u( )7)) > 0 for all y € @), then again
(2.11), (2.12) and (3.10) yield
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u(x) —u(x) = [[G(x, ) = G(X, ) + G(x, 7) — G(x, 7)]f (u(7)) dy > 0.

A

Hence, in any case we have shown that
(3.11) u(x) > u(x) forall xeZs.

From (3.9) and (3.11) we deduce by a standard compactness argument that there exists
0 < y; <y such that

(3.12) u(x) > u(x) forallxeX,and /e (4 —7y,,A.

This, combined with (3.9), shows that (2 —7y,,4] = A, contrary to the characterization of
Ao O

Now we complete the proof of Theorem 1. Since 0 € A by Lemma 10, the continuity
of u implies that

(3.13)  u(—x1,x2,...,%,) = u(xy,x2,...,x,) forx=(xy,...,x,) €Bwithx; =0.

Since, for a given rotation 4 € SO(n), the function u4 := u o A4 is also a strong positive so-
lution of (1.2), the inequality (3.13) also holds for u4 in place of u. This readily implies that
u is symmetric with respect to every hyperplane containing the origin. Consequently, u is

. . 0 . . 0 .
radially symmetric. Moreover we have M < 0in B\{0}, since M 0in {xeB, x; >0}
b L or 0)61
y definition of A.

4. Partial symmetry of minimizers for the weighted minimization problem

In this section we prove Theorem 2. We fix a continuous and almost everywhere

positive radially symmetric function 7 : B — R, and p e (1,2*), and we let p’ = Ll be
the conjugate exponent of p. We first note the following. r=

Lemma 11.  Any minimizer u e #™ for (1.6) belongs to C*"~1*(B), and up to a re-
flection u — —u it is strictly positive in B.

Proof. We may normalize u such that |z!/7y| , =1, so that u is a weak solution of
(1.7). Since the nonlinearity in (1.7) is continuous and has subcritical growth, elliptic regu-
larity implies that u € C*"~1:*(B). The proof of the strict positivity of u is precisely the same
as in [11], Section 2, where the statement was proved in the biharmonic case m = 2 for the
nonlinearity without weight. [

Let 4 : L” (B) — #"(B) denote the solution operator for the polyharmonic equa-
tion under Dirichlet boundary conditions defined by

(4.1) (Gw, v, = [wo forwe L (B), ve #™.
B

We note that, if w e L*(B), then Lemma 1 yields the usual integral representation for ¥w
in terms of the Green function, namely,
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(4.2) [Gw](x) = fG x, y)w(y)dy forevery x € B.

Consider the maximization problem corresponding to

J(@(aw)) (x)z(x)w(x) dx
(4.3) A(m,p,7)= sup 2 —
we L (B), w0 [T/ w,

Note that, if w is a maximizer for (4.3), then (4.2) and the positivity of G imply that |w| is
also a maximizer. We need the following duality principle.

1

Lemma 12. (i) A(m, p,7) = St )

(ii) If we A™ is a positive minimizer for (1.6) with [t(x)u?dx =1, then
w = u?"! e L” (B) is a maximizer for (4.3). B

(iii) If we L? (B) is a nonnegative maximizer for (4.3) with [t(x)w? dx =1, then
u=wl'"Ve #™ is a minimizer for (1.6). B

Proof. For abbreviation, we put S := S(m, p,7) and A := A(m, p,7). Let ue #™
be a positive minimizer for (1.6) with [ z(x)u?”dx = 1. Then u is a solution of problem
B
(1.7). Consequently, u = S%(tu?~"!), and therefore S%(tw) = wiT for w = u”~!. Multiply-
ing both the sides of this equality by 7w and integrating over B, we obtain

Sf( (tw)) (x)7(x)w(x) dx = [z(x)w? dx = [t(x)ul dx =1,

B B
hence
ﬁf(@(‘cw)) (x)T(x)w(x) dx |
(44) Az |z1/p’ w|p, TS

Next let w e L”' (B) be a nonnegative maximizer for (4.3) with [ z(x)w?" dx = 1. By the cor-
responding Euler-Lagrange equation in weak form, B

Bj(g(rw)) (x)t(x)z(x) dx = A]l t(x)w” 'zdx for every z e L” (B),

which implies that %(tw) = Aw?'~! almost everywhere in B. Therefore, setting

, 1 .
u=wh1= Kfﬁ(rw) e #", we obtain by (4.1)

Allully, = Adu,u,, = <G(xw), w1, = [2(x)w? dx = [(x)u? dx =1,

B B
so that
fully, 1
4.5 S S m = —
( ) - |11/17u|2 A
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Now (i) is a consequence of (4.4) and (4.5). But then the first inequality in (4.4) must be an

equality, and (ii) follows. Similarly, the first inequality in (4.5) must be an equality, and (iii)
follows. [

Next, we consider the set # of all closed half-spaces in R” such that 0 € H. For

H e o, we let oy : R" — R" denote the reflection at the boundary dH of H. For simplic-

ity, we also put X = a(x) for x € R when the underlying half space H is understood. For
a measurable function v : R” — R, we define the polarization vy of v relative to H by

 [max{e(.(®). xe I
(4.6) o (¥) = {min{v(x),v(x)}> xeR"\H.

We note the following simple and useful property.

Lemma 13. Let w: R" — R be a measurable function and let H € #. Then, for a.e.
x € R" we have wy (X) — w(X) = w(x) — wy(x).

Proof. By definition we have wy(x) + wy(X) = w(x) + w(X) for a.e. x € H, which
proves the statement. []

We also need the following property of the Green function G.

Lemma 14. Let H € #, and let x, y € H, x = y. Then
(4.7) G(x,y) = G(x,¥) =2 G(x,¥) = G(%, »)

and the inequality is strict if x, y € int(Bn H).

Proof. By continuity, it suffices to consider x, y € int(B n H). Consider the squared
distance function defined in (2.1), the 0 function defined in (2.2) and observe that

(4.8) dx,y)=d(x,y) <d(x,y)=d(x,y) forx,yeint(H)
and
(4.9) 0(x,y) = 0(x, ) = 0(x, y) = 0(%, ),

so the equalities in (4.7) follow directly from the representation (2.3). Moreover,
Lemma 2, (4.8) and (4.9) imply that H(d(x,y),0(x,y)) > H(d(x,7),0(x, y)). Hence
G(x,y) > G(x,y) by (2.3), as claimed. []

In the following, for every function w : B — R we let w also denote the corresponding
trivial extension (w = 0 outside of B) to R”. Lemmas 13 and 14 enable us to compare
double “convolutions” of functions with the corresponding double “‘convolutions” of their
polarizations.

Lemma 15. Let w e L” (B), and let H € #. Then:
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(4.10) | G(x, y)r(x)z(»)w(x)w(y) dxdy

BxB

< | Glo (e w(opwn(y) dedy,

where equality holds if and only if w = wy or wo oy = wy a.e. in B.
Proof. Setting

A(g,h) = [ G(x,y)e(x)(»)g(x)h(p)dxdy for g,he L” (B)

BxB

and using Lemmas 13 and 14 we find
(4.11) Awpg,wg) — A(wg,w)

= | G(x, y)e(x)e(n)wu (x)[wu (y) — w(y)] dxdy
BxB

= | + | + | + i ...dxdy
BAHxBNH  BAHX(B\H) (B\H)xBnH  (B\H)x(B\H)

- j [WH(X)(G(xv y) - G(xv )_})) +WH(X)(G()_C) y) - G()_Ca J_/))]

x 1(x)t(y)[wa(y) — w(y)] dxdy
= .[ [G(xv y) - G(.X, J_;)h-(x)f(y)

X i (x) = wa (X)]wa (y) — w(y)] dxdy.

Again by Lemmas 13 and 14 and with the same decomposition of the domain of integra-
tion we find

(412)  A(wa,w) = A(w,w) = [ [G(x, ) = G(x, p)lt(x)r(y)wa(x) — w(x)]

x [w(y) —w(p)ldxdy
= HfB H[G(% ¥) = Glx, Mtx) () wa(y) —w(v)]
X [w(x) —w(X)] dxdy.
Combining (4.11) and (4.12), we obtain
A(wg,wr) — A(w,w)

= HfB H[G(% ¥) = G, Mt(x) () wr(y) — wy)]
X () — wa (%) -+ w(x) — ()] dxdy 2 0,
since G(x, y) — G(x, ¥) = 0 by Lemma 14,

wr(y) —w(y) 20 and wy(x) —wg(X)+w(x) —w(x) =0 forxeH.
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Hence (4.10) follows. Moreover, putting U;:={xeBnH: w(x)>w(X)} and
U,:={yeBnH: wyg(y) >w(y)}, we find that
A(wg,wr) — A(w,w)

> . J ., (G(x, ) = G(x, P)]e(x)t(») W (y) — w(y)]

X Wi (x) —wg(X) + w(x) — w(x)] dxdy,
and the right-hand side is positive if and only if U; x U, has positive Lebesgue measure.

Hence we conclude that equality holds in (4.10) if and only if |U;| =0 or |U,| =0, i.e., if
and only if wooyg =wy orw=wg a.e.in B. [J

The next step is a comparison statement for minimizers of (1.6):

Lemma 16. Let u be a (positive) minimizer for (1.6). Then for each H € A one of the
following is true:

(i) u>uooy in Bnint(H).
(i) u <uooy in Bnint(H).
(ili) u =uooy in B.

Proof. By Lemma 11 we may assume that u is positive, and we may normalize
u such that [t(x)u”dx=1. By Proposition 12, w=u?"! is a maximizer for (4.3).

B
Since 7 is a radial function, a straightforward computation (see e.g. [21]) shows that
]rl/p'wH\p, = |rl/1’/w|p,. Hence Lemma 15 implies that w = wy or wo oy = wy a.e. in B.
Since u is continuous, we conclude that

(4.13) u=zuooy ImBNH
or

(4.14) uZuoocyg inBnH.

We first consider (4.13), and we suppose in addition that u(xo) > u(oy(xo)) for some
xo € H. Then, by continuity, # > uo gy in a subset of BN H of positive measure. Using
Lemma 14 we estimate for every x € Bnint(H)

u(x) —u(x) = l{[G(x, y) = G(x, p)lt(y)u" (y) dy

= [ ([G(x,») = G »)]t(»u"" (y) = [G(x, §) = G(%, P)]e(y)u"' (7)) dy

BnH

= [ [6(x,») = G(x »)t(»)lu""'(y) —u""' ()] dy > 0.

BnH
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Hence we obtain (i). Similarly, assuming (4.14) and u(x) < u(oy(xo)) for some
xo € BN H, we obtain (ii). It follows that one of the cases (i)—(iii) occurs, as claimed. []

For any unit vector e € R” we now define
H(e)={HeAH :ecint(H)}.
We will prove Theorem 2 with the help of the following characterization.

Lemma 17. Let e € R” be a unit vector. A continuous function v : R" — R with com-
pact support is foliated Schwarz symmetric with respect to e if and only if v = vy for every
H e  (e).

Proof. For nonnegative v this follows immediately from [21], Lemma 2.6. But, as
noted subsequently in [4], Lemma 2.4, there is no need to assume nonnegativity. Alterna-
tively, the characterization also follows from [6], Lemma 4.2. []

We may now complete the proof of Theorem 2. Let u be a positive minimizer for (1.6).

Take xo € B\{0} with u(x9) = max{u(x)x € B, |x| = |x¢|}, and put e = 0 Then Lemma
16 implies that ol

u=uy forevery H e #(e).

Hence u is foliated Schwarz symmetric with respect to ¢ by Lemma 17. Therefore we can

. X .
write u = u(r, 0), where r = |x| and 6 = arccos— - e. It remains to prove that

[ x]
(4.15) either u is radial, or u(r,0) is strictly decreasing in 6 € (0, %) for 0 < r < 1.

We follow the argument in [13], p. 204. We already know that no half-space H < #,
satisfies property (ii) of Lemma 16. Moreover, if property (i) of this lemma holds for
all half-spaces H < #,, then u(r,0) is strictly decreasing in 0 € (0,7) for 0 < r < 1. It re-
mains to consider the case where property (iii) of Lemma 16 holds for some Hy = #,. Let
0 < 0y < m/2 be the angle formed by e and the hyperplane 0Hy. Let ey = op,(e). Then
arccos(eg - ) = 20y. Moreover, (iii) implies that u(rep) = u(re) for 0 < r < 1. Since u is
nonincreasing in the angle 6 € (0,7), we conclude that u(r,0) = u(r,0) for all 0 < 26,.
From Lemma 16 we then deduce that (iii) holds for all H < J#, for which the angle
between e and H is less than 26,y. Then, by the same argument as before, u(r,0) = u(r,0)
for all 0 < min{40y,n}. Arguing successively, in a finite number of steps we obtain
u(r,0) = u(r,0) for all # < n. This shows that u is radial. We therefore conclude (4.15), as
claimed.

5. Nonradial minimizers
In this section we prove Theorem 3. To this end, we introduce the subspace of radial

functions #" := {u € #"™; u radially symmetric} and consider the related minimization
problem:
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5.1 S,(m, p,a) := inf
(51) mp3) = _inf <

Now Theorem 3 can be rephrased in the following way.

Theorem 4. For any o > 0 there exists p(«) € (2,2*) such that S,(m, p,o) > S(m, p, )
for p € [p(a),2*]. Hence, for p € [p(oc), 2*), no minimizer of (1.8) is radially symmetric.

For the proof we need two lemmas which deal with the /imit case where p = 2*.

Lemma 18. Let S, := S}! be as in (1.4). Then, S(m,2*, o) = S., and the infimum in
(1.8) for p = 2* is not attained.

Proof. Since |x|* < 1 in B, we have S(m,2*,0) = S,. Let {ux} = € (B) be a mini-
mizing sequence for S,. Fix y € B with |y| > 1/2 and consider

X—y .
— f By,
w(i ) ree B0

0 if XGB\Bl,M(y).

v €6y (B), vr(x):=

We then have [|ox||2, = (1 — |¥])" " ||ux |, and
IJ;\x!"‘Ivk(x)lz* dx=(1- \y!)”l{!z(l —19) + | e (2) | dz
> (1-|y)"2lyl - 1>“ﬁr|uk<z>|2‘ dz,

hence

2
[0 1

2
R (778 w2t
< @yl — 022 el ) 2 (s, 4 o1y).

S(m, 2% o) < 77 |uk2 =
(J"lx|°‘|vk|2‘ dx)
B

2

Consequently, S, < S(m,2*,a) < (2|y| — 1)"*/* S, for any |y| > 1/2. Since y can be cho-
sen arbitrarily close to 0B, we conclude that S(m, 2*, o) = S..

Now suppose by contradiction that S(m,2*, «) is attained at some u € #". Then

[l ]
S, < < m =8S(m,2",a),

* =70 RNV
(gl a)
B

contrary to the equality we just proved. Hence S(m,2*, «) is not attained, as claimed. []

Lemma 19. The infimum S,(m,2*,a) in (5.1) is attained.
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Proof. Let {ur} < #" be a minimizing sequence for (5.1), normalized such that
|ug|l,, = 1 for all k. Up to a subsequence, we may assume that u; — u a.e. and u — u
weakly in #" for some u € 5" such that |ju||,, < 1. We claim that

(5.2) 1) |ug)* dx — [|x]*|ul* dx  as k — oo.

B B
Indeed, if r € (0, 1), then by boundedness of ||ux — u||,, and by [23], Radial Lemma 1, we
know that there exists C(r) > 0 such that |ux(x) — u(x)| < C(r) for all x € B\B,(0). Then,
we may apply Lebesgue Theorem to obtain ||uy — ul|, - 8\5,0)) — 0. Hence,

[l (el = ) x| < el el + Y+ [ x| =l [ e
’ 50 B\B,(0)

lIA

r* [ (uel® + |u* ) dx + o(1)
B,(0)

lIA

ST (gl + llulln,) + (1) £ 278272 4 o(1).
By arbitrariness of r, we obtain (5.2). Consequently, we have

2
[

pos 2/2 = Si‘(m72*7a)7
(J"|x|°‘|uk|2 dx)
B

and hence u is a minimizer for (5.1). [

We may now complete the proof of Theorem 4. Lemmas 18 and 19 immediately
imply that  S,(m,2* o) > S(m,2*,&). Since p+— S,(m,p,a) 1is continuous and
p— S(m,p,a) is upper semicontinuous as p — 2%, there exists p(a) € (2,2*) such that
Sy(m, p,o) > S(m, p,a) for all p € [p(x),2*].

Note added in proof. After the paper was accepted, we learned that the moving
plane method has already been applied to some integral equations in papers of Chang
and Yang (Math. Res. Lett. 4 (1997), 91-102), Y. Y. Li (J. Eur. Math. Soc. 6 (2004),
153-180), Birkner, Lopez-Mimbela and Wakolbinger (Ann. Inst. H. Poincaré Anal. Non
Lin. 22 (2005), 83-97) and Chen, Li and Ou (Comm. Pure Appl. Math. 59 (2006), 330—
343). Our method has common points with some of these papers but also contains new fea-
tures. In particular, it deals with very general nonlinearities and completely reduces the
problem to Green function inequalities.
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