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Abstract. We consider, in the Euclidean setting, a conformal Yamabe-type equation re-

lated to a potential generalization of the classical constant scalar curvature problem and
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1. introduction

In [4] the first and the third author considered ”potential” generalizations of some canonical

metrics on smooth complete Riemannian manifolds. In this paper we focus our attention

on one of those classes, namely f -Yamabe metrics. We recall that, given a n-dimensional

Riemannian manifold (M, g), where g is the metric, and a smooth function f ∈ C∞(M), we

say that the triple (M, g, f) ∈ Yf if and only if it satisfies the condition

(1.1) ∇R = 2 Ric(∇f, ·) ,

where Ric and R are, respectively, the Ricci and the scalar curvature of g and ∇ denotes the

Levi-Civita connection associated to g. In a local orthonormal frame {ei}, i = 1, . . . , n, (1.1)

becomes

∇eiR = 2Rij∇ejf ,

where Rij = Ric(ei, ej). Note that we are using the Einstein summation convention over

repeated indices. This equation is a meaningful generalization of the one for constant scalar

curvature metrics and naturally arises in the study of Ricci solitons structures (for a general

overview see [3]). Moreover, it is clear that any Ricci flat metric satisfy (1.1), for any function

f and, more in general, any product of a Ricci flat metric with a metric with constant scalar

curvature solves (1.1), for any function f which depends only on the first factor.

In the same spirit of the classical Yamabe problem it is natural to address the following

questions:
1
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(A) having fixed f ∈ C∞(M), does there exist a metric g such that (M, g, f) ∈ Yf?

(B) having fixed f ∈ C∞(M) and a metric g, does there exist a conformal metric g̃ in the

conformal class [g] such that (M, g̃, f) ∈ Yf?

More generally, one could ask the question

(C) does there exist a metric g and a smooth function f ∈ C∞(M) such that (M, g, f) ∈
Yf?

Clearly the answer to (C) is positive, since it is always possible to construct a (complete)

metric with constant (negative) scalar curvature ([1] and [2]). Furthermore, when f is con-

stant, (B) boils down to the well known Yamabe problem, which is completely solved when

M is compact (see e.g. [9]). We will refer to (B) as the conformal f -Yamabe problem. In this

paper we consider problem (B) (when f is not constant) on the Euclidean space Rn endowed

with the standard flat metric gRn . In particular, in dimension four, we prove the following:

Theorem 1.1. Let f ∈ C∞(R4) be a, not constant, radial function satisfying f ′(r) ≤ 0 for

all r > 0. Then there exists a conformal metric g̃ ∈ [gRn ] such that (Rn, g̃, f) ∈ Yf .

2. ODE formulation of the conformal f-Yamabe problem

Let (M, g) be a smooth n-dimensional Riemannian manifold, n ≥ 2, and let f ∈ C∞(M).

It is well known (see for instance [5]) that, if g̃ = e2wg ∈ [g] for some w ∈ C∞(M), then the

following formulas hold:

R̃ic = Ric−(n− 2)∇2w + (n− 2)dw ⊗ dw − (∆w) g − (n− 2)|∇w|2g ,

R̃ = e−2w
(
R− 2(n− 1)∆w − (n− 1)(n− 2)|∇w|2

)
where∇2 is the Hessian and ∆ = gij∇2

ij is the Laplace-Beltrami operator of g. A computation

shows that (M, g̃, f) = (M, e2wg, f) ∈ Yf if and only if the function w solves the system of

PDEs

∇∆w + (n− 2)∇2w(∇w, ·)−
(

2∆w + (n− 2)|∇w|2 − 1

n− 1
R
)
∇w − 1

2(n− 1)
∇R(2.1)

= − 1

n− 1
Ric(∇f, ·) +

n− 2

n− 1
∇2w(∇f, ·) +

1

n− 1

(
∆w + (n− 2)|∇w|2

)
∇f

− n− 2

n− 1
〈∇w,∇f〉∇w.

In particular, since (Rn, gRn) is Ricci flat, then (Rn, g̃, f) = (Rn, e2wgRn , f) ∈ Yf if and only

if w solves the system of PDEs

∇∆w + (n− 2)∇2w(∇w, ·)−
(

2∆w + (n− 2)|∇w|2
)
∇w(2.2)

=
n− 2

n− 1
∇2w(∇f, ·) +

1

n− 1

(
∆w + (n− 2)|∇w|2

)
∇f − n− 2

n− 1
〈∇w,∇f〉∇w.
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To fully exploit the symmetries of the Euclidean space, it is reasonable to start our analysis

by considering radial solutions w = w(r) of (2.2) for a given radial function f = f(r), where

r denotes the distance function from the origin. In this case, in standard polar coordinates,

one has

gRn = dr2 + r2gSn−1 ,

dw = w′(r)dr and df = f ′(r)dr ,

∇dw = ∇2w = w′′(r)dr2 + rw′(r)gSn−1 ,

∆w = w′′(r) +
n− 1

r
w′(r)

and a computation shows that system (2.2) boils down to the following second order nonlinear

ODE for the function u(r) := w′(r)

u′′(r) +
n− 1

r
u′(r)− (n− 2)u(r)3−2(n− 1)

r
u(r)2 − n− 1

r2
u(r) + (n− 4)u(r)u′(r)(2.3)

=

[
u′(r) +

u(r)

r

]
h(r) ,

where h(r) := f ′(r). Note that if n = 2, then the cubic term disappears in (2.3).

We then impose the initial conditions

u(0) = 0 , u′(0) = α 6= 0(2.4)

which require some explanation since (2.3) is singular at r = 0. Assume that u ∈ C2[0,∞)

satisfies (2.4), then u(r) = αr +O(r2) as r → 0 and, in turn,

n− 1

r
u′(r)− n− 1

r2
u(r) = O(1) ,

u(r)

r
= O(1) ,

u(r)2

r
= o(1) as r → 0

which shows that, by combining suitably the terms in (2.3), we obtain finite limits as r → 0.

The existence and uniqueness of a solution of (2.3)-(2.4) can then be proved rigorously by

adapting the arguments of Proposition 1 in [11]: one needs to combine the Ascoli-Arzelà

Theorem with the Schauder fixed point Theorem in order to obtain existence of a solution.

Then the solution is unique as long as it can be continued [6, Proposition 4.2].

Before stating our existence and nonexistence results, let us discuss heuristically the struc-

ture of (2.3).

3. Heuristic preliminaries

We first notice that, if n ≥ 3, then there exist exactly two singular (negative) solutions of

(2.3) of the type cr−1 given by

(3.1) u1(r) = − 1

r
, u2(r) = − 2

r
,
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regardless of the explicit form of h. This fact suggests that the “interesting dynamics” for

(2.3) occurs when u(r) < 0 and global solutions of (2.3) are more likely to be prevalently

negative. If n = 2 then the functions u(r) = cr−1 are singular solutions of (2.3) for any c 6= 0;

in particular, there exist infinitely many positive singular solutions and the dynamics appears

much more chaotic.

It is quite useful to consider the two functions defined for all (r, y) ∈ R+ × R:

P (r, y) =

(
(n− 2)y2 +

2(n− 1)

r
y +

n− 1

r2
+
h(r)

r

)
y , Q(r, y) = h(r)− n− 1

r
+ (4− n)y .

Then (2.3) may be written in normal form as

(3.2) u′′(r) = Q
(
r, u(r)

)
u′(r) + P

(
r, u(r)

)
.

Depending on h ∈ C0[0,∞), we define the two regions

Ih :=
{
r ≥ 0; (n− 2)rh(r) < n− 1

}
, Ih =

{
r ≥ 0; (n− 2)rh(r) > n− 1

}
.

Clearly, Ih contains a right neighborhood of r = 0 and is therefore nonempty for all h, while

Ih is empty if rh(r) ≤ n−1
n−2 for all r, in particular if h(r) ≤ 0. It is also straightforward that:

• if r ∈ Ih, then P (r, y) = 0 if and only if y = 0, moreover P has the same sign as y;

• if r ∈ Ih, then we may write

P (r, y) = (n−2)

[
y +

n− 1 +
√
n− 1− (n− 2)rh(r)

(n− 2)r

][
y +

n− 1−
√
n− 1− (n− 2)rh(r)

(n− 2)r

]
y

and hence P (r, y) vanishes if and only if one of the following facts occurs:

y = 0 , y = ϕ(r) := −
n− 1 +

√
n− 1− (n− 2)rh(r)

(n− 2)r
,

y = ψ(r) :=
1− n+

√
n− 1− (n− 2)rh(r)

(n− 2)r
.

Note that ψ(r) > ϕ(r) for all r ∈ Ih but, while ϕ(r) < 0 for all r ∈ Ih, the sign of ψ(r) may

vary and it is the opposite of the sign of rh(r) + n − 1; in particular, ψ(r) < 0 in a right

neighborhood of r = 0.

One expects a crucial role for the existence results to be played by the signs of Q and P .

However, the overall picture is not completely clear. To see this, consider the trivial case

h ≡ 0 for which the function

(3.3) ua(r) = − 2ar

1 + ar2

solves (2.3)-(2.4) with α = −2a. First notice that if a < 0 (so that u′a(0) > 0), then ua blows

up as r → 1/
√
|a|. Therefore, ua is a global solution of (2.3) if and only if a > 0. Simple

computations then show that

if n = 3, 4, 5 then ∃ρ > 0 , ϕ(r) < u1(r) < ψ(r) ∀r > ρ ,

if n ≥ 6 then ∃ρ > 0 , u1(r) < ϕ(r) ∀r > ρ .
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These facts are illustrated in Figure 1, where the shaded region is

Γ := {(r, y) ∈ R+ × R−; ϕ(r) < y < ψ(r)} .

In the left picture we see that the graph of u1 (thick line) eventually lies inside Γ while in the

right picture it eventually lies outside. Therefore, the function P (r, u1(r)) does not always

have the same sign as r →∞.
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Figure 1. Plot of u1(r) in (3.3) (thick line) and of Γ (shaded region) when

n = 3 (left) and n = 8 (right).

4. Nonexistence results

We can the prove the following (partial) nonexistence results.

Theorem 4.1. If n ≥ 3, h(r) ≥ −n−1
r for all r > 0, α > 0, then the solution of (2.3)-(2.4)

is not global.

The proof of Theorem 4.1 is given in Section 7. As a by-product, the very same proof

enables us to obtain

Theorem 4.2. If n ≥ 3, h(r) ≥ −n−1
r for all r > 0, then any global solution u of (2.3)-(2.4)

is necessarily strictly negative.

Indeed, Theorem 4.1 excludes the existence of positive solutions u satisfying u′(0) > 0. If

u′(0) < 0 then the solution of (2.3) is initially negative and, if it becomes positive, one can

argue as in Section 7 in order to show finite space blow up.

Concerning nonexistence of negative solutions, a weaker result holds. First of all, we put

together the three static terms

(n− 2)u(r)3+
2(n− 1)

r
u(r)2 +

n− 1

r2
u(r)(4.1)

= (n− 2)

(
u(r) +

n− 1 +
√
n− 1

(n− 2)r

)(
u(r) +

n− 1−
√
n− 1

(n− 2)r

)
u(r) .
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This shows that the static term changes sign whenever the graph of u crosses one of the two

hyperbola:

h1(r) = −n− 1 +
√
n− 1

(n− 2)r
, h2(r) = −n− 1−

√
n− 1

(n− 2)r
.

Then rewrite (2.3) as

1

rn−1

(
rn−1u′(r)

)′
= (n− 2)

(
u(r) +

n− 1 +
√
n− 1

(n− 2)r

)(
u(r) +

n− 1−
√
n− 1

(n− 2)r

)
u(r)

− (n− 4)u(r)u′(r) +

[
u′(r) +

u(r)

r

]
h(r) .

If we assume that

(4.2) h(r) ≥ 0 ∀r ≥ 0 , n ≥ 4 ,

and that

(4.3) ∃R > 0 such that u(R) = h1(R) , u′(R) ≤ 0 ,

then the above equation tells us that r 7→ rn−1u′(r) is decreasing for r > R. In particular, we

have that u′(r) < 0 and u(r) < h1(r) for all r > R. Finally, this yields the existence of γ > 0

such that
1

rn−1

(
rn−1u′(r)

)′
≤ γu(r)3 ∀r > R .

By arguing as in the proof of Theorem 4.1 (see Lemma 7.2 below) one obtains that

∃R > R s.t. lim
r→R

u(r) = −∞ .

Summarizing, we have

Proposition 4.3. If (4.2) holds, then there exists no global solution of (2.3)-(2.4) which

satisfies (4.3).

5. Existence results

We start with a simple but interesting example. If

h(r) = −αr
2

(
(n− 2)αr2 + n+ 2

)
then u(r) = αr solves (2.3)-(2.4). We point out that, in any case, the solution u is global

and unbounded. Moreover, if α > 0 then h(r) < 0 for all r and the solution of (2.3)-(2.4) is

positive, while if α < 0 then h changes sign and the solution is negative.

Theorem 4.1 suggests that (2.3) is more likely to have negative solutions whenever h itself

is negative. We prove that this is the case, at least in dimension n = 4.
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Theorem 5.1. In dimension n = 4, if h(r) ≤ 0 for all r > 0, then (2.3) admits infinitely

many negative global solutions. More precisely, for any α < 0 the solution of (2.3)-(2.4) is

global and it satisfies −2
r < u(r) < 0 for all r > 0.

6. Remarks and open problems

We discuss some open problem related to conformal f -Yamabe metrics and to solutions of

equation (2.1).

(1) In Theorem 4.1 we stated a partial nonexistence results for radial solutions in the

Euclidean space, while Theorem 5.1 provides a general existence result. It would be

interesting to prove a sharp condition on the potential function f (or on its derivative)

ensuring existence of global solutions to (2.3).

(2) It is well known [8] that global positive solution the Yamabe equation

−∆u = u
n+2
n−2 on Rn

have to be radial (and thus classified). We could ask the same question for (general)

solutions to (2.2). For a given f ∈ C∞(Rn), are there any nonradial solutions w? If

f is radial, are all solutions to (2.2) radial?

(3) In this paper we studied conformal f -Yamabe metrics for (Rn, gRn). What about other

rotationally symmetric spaces? In particular, what we can say for the hyperbolic space

(Hn, gHn) or the round sphere (Sn, gSn)?

(4) In the existence result (Theorem 5.1) the dimension n = 4 seems to be peculiar, at

least from the analytic point of view. Is there a geometric interpretation of this fact?

7. Proof of Theorem 4.1

Throughout this proof we will need the following particular class of test functions.

Definition 7.1. Let ρ > 0. We say that a nonnegative function φ ∈ C2
c [0,∞) satisfies the

ρ-property if

(7.1) φ(r) = 1 for r ∈ [0, ρ] and φ(r) = 0 for r ≥ 2ρ ,

and if

(7.2)

∫ 2ρ |φ′′(r) + 2(n−1)
r φ′(r)|3/2√
φ(r)

dr <∞ .
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It is clear that such functions exist; to see this, it suffices to replace any φ satisfying (7.1)

with a power φk for k sufficiently large so that (7.2) will be satisfied.

For the proof of Theorem 4.1, we first observe that, since α > 0 the solution of (2.3)-(2.4)

is positive and strictly increasing in a right neighborhood of r = 0, say in some maximal

interval (0, R). Clearly, among u and u′ the first one which can vanish is u′. But if u′(R) = 0

then, using the lower bound for h, we see that (2.3) yields

u′′(R) ≥ (n−2)u(R)3+
2(n− 1)

R
u(R)2+

(n− 1

R2
+
h(R)

R

)
u(R) ≥ (n−2)u(R)3+

2(n− 1)

R
u(R)2 > 0 ,

giving a contradiction. Therefore, u′ cannot vanish and two cases may occur:

(7.3) (i) R =∞ , (ii) R <∞ and lim
r↑R

u(r) = +∞ .

The proof will be complete if we show that (ii) occurs. At this point, we distinguish two

cases.

• Case n ∈ {3, 4}.
In order to prove (ii) in (7.3), we argue for contradiction by assuming that R =∞ so that

u, u′ > 0 for all r > 0. From the assumptions and (2.3), we then infer that (recall n ≤ 4)

(7.4) u′′(r) +
2n− 2

r
u′(r) > (n− 2)u(r)3 > 0 ∀r > 0 .

To reach a contradiction we need the following estimate, inspired to the method developed

by Mitidieri-Pohožaev [10] (see also the proof of [7, Proposition 5]).

Lemma 7.2. Assume that w ∈ C2[0,∞). Then for any ε > 0, for any ρ > 0 and for all φ

satisfying the ρ-property, we have∫ 2ρ

0
r2n−2

∣∣∣∣w′′(r) +
2n− 2

r
w′(r)

∣∣∣∣φ(r) dr ≤ ε

3

∫ 2ρ

0
r2n−2|w(r)|3φ(r) dr

+
2

3
√
ε

∫ 2ρ

ρ
r2n−2

|φ′′(r) + 2n−2
r φ′(r)|3/2√
φ(r)

dr .

Proof. In this proof we will use the Young inequality in the following form:

(7.5) ∀ε > 0 ∀a, b ≥ 0 ab ≤ εa3

3
+

2b3/2

3
√
ε
.

Fix ε > 0 and ρ > 0. We use a PDE approach and introduce the radial C2(R2n−1)-function

v such that v(x) = w(|x|) for all x: note that the space dimension is here 2n − 1 and that

∆v(x) = w′′(|x|) + 2n−2
|x| w

′(|x|). Then, multiply ∆v by some function Φ(x) = φ(|x|), where φ

satisfies the ρ-property. Since Φ ≡ 1 in Bρ, two integration by parts and (7.5) yield∫
B2ρ

∆vΦ =

∫
B2ρ

v∆Φ =

∫
B2ρ\Bρ

v∆Φ . =

∫
B2ρ\Bρ

vΦ1/3 ∆Φ

Φ1/3

≤ ε

3

∫
B2ρ

|v|3Φ +
2

3
√
ε

∫
B2ρ\Bρ

|∆Φ|3/2

Φ1/2
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and back to the radial form of v and Φ this proves the statement. �

Take a function φ1 satisfying the 1-property and observe that the function

φρ(r) := φ1

(
r

ρ

)
∀ρ > 1

satisfies the ρ-property. Therefore, for all ε > 0, from (7.4) and Lemma 7.2 we infer that

(n− 2)

∫ ρ

0
r2n−2u(r)3 dr ≤ (n− 2)

∫ 2ρ

0
r2n−2u(r)3φρ(r) dr

≤
∫ 2ρ

0
r2n−2

(
u′′(r) +

2n− 2

r
u′(r)

)
φρ(r) dr

≤ ε

3

∫ 2ρ

0
r2n−2u(r)3φρ(r) dr +

2

3
√
ε

∫ 2ρ

ρ
r2n−2

|φ′′ρ(r) + 2n−2
r φ′ρ(r)|3/2√
φρ(r)

dr .

Take 0 < ε < 3(n− 2), then the latter inequality yields(
n− 2− ε

3

)∫ ρ

0
r2n−2u(r)3 dr ≤ 2

3
√
ε

∫ 2ρ

ρ
r2n−2

|φ′′ρ(r) + 2n−2
r φ′ρ(r)|3/2√
φρ(r)

dr .

With the change of variable r = ρt this becomes(
n− 2− ε

3

)∫ 1

0
t2n−2u(ρt)3 dt ≤ 2

3
√
ε

1

ρ3

∫ 2

1
t2n−2

|φ′′1(t) + 2n−2
t φ′1(t)|3/2√
φ1(t)

dt ,

Since u is increasing on R+, we have u(ρt) ≥ u(t) for all ρ > 1 so that the left hand side of

this inequality is positive and increasing for ρ ≥ 1. By letting ρ → ∞, the right hand side

tends to 0 and this leads to a contradiction which rules out case (i). Hence, case (ii) occurs

and the solution u of (2.3)-(2.4) with α > 0 cannot be continued to all the interval [0,∞).

This completes the proof of Theorem 4.1 in the case n = 3, 4.

• Case n ≥ 5.

The same arguments leading to (7.4) now yield

(7.6) u′′(r) +
2n− 2

r
u′(r) +

n− 4

2

(
u(r)2

)′
> (n− 2)u(r)3 > 0 ∀r > 0

and we need to estimate one more term. The companion of Lemma 7.2 reads

Lemma 7.3. Assume that w ∈ C2[0,∞). Then for any δ > 0, for any ρ > 0 and for all φ

satisfying the ρ-property, we have∫ 2ρ

0
r2n−2

(
w(r)2

)′
φ(r) dr ≤ 2

√
δ

3

∫ 2ρ

0
r2n−2|w(r)|3φ(r) dr +

1

3δ

∫ 2ρ

ρ
r2n−2

|φ′(r)|3

φ(r)2
dr .

Proof. In this proof we will use the Young inequality in the following form:

(7.7) ∀δ > 0 ∀a, b ≥ 0 ab ≤ 2
√
δ a3/2

3
+
b3

3δ
.
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Fix δ > 0 and ρ > 0; then take φ satisfying the ρ-property. An integration by parts yields∫ 2ρ

0
r2n−2

(
w(r)2

)′
φ(r) dr = −

∫ 2ρ

0
w(r)2

(
2(n− 1)r2n−3φ(r) + r2n−2φ′(r)

)
dr

and, since φ ≥ 0,∫ 2ρ

0
r2n−2

(
w(r)2

)′
φ(r) dr ≤ −

∫ 2ρ

0
r2n−2w(r)2φ′(r) dr

≤
∫ 2ρ

0

(
r4(n−1)/3w(r)2φ(r)2/3

)
·
(
r2(n−1)/3

|φ′(r)|
φ(r)2/3

)
dr

[by (7.7)] ≤ 2
√
δ

3

∫ 2ρ

0
r2n−2|w(r)|3φ(r) dr +

1

3δ

∫ 2ρ

0
r2n−2

|φ′(r)|3

φ(r)2
dr .

Since φ′ ≡ 0 on (0, ρ), this completes the proof. �

Take again a function φ1 satisfying the 1-property and let φρ(r) := φ1(r/ρ) for all ρ > 1 so

that φρ satisfies the ρ-property. Multiply (7.6) by φρ and integrate over (0, 2ρ) to obtain

(n−2)

∫ ρ

0
r2n−2u(r)3 dr ≤ (n−2)

∫ 2ρ

0
r2n−2u(r)3φρ(r) dr

≤
∫ 2ρ

0
r2n−2

(
u′′(r) +

2n− 2

r
u′(r)

)
φρ(r) dr

+
n− 4

2

∫ 2ρ

0
r2n−2

(
u(r)2

)′
φρ(r) dr .

Then, by Lemmas 7.2 and 7.3 we infer that(
n− 2− ε

3
− (n− 4)

√
δ

3

)∫ ρ

0
r2n−2u(r)3 dr

≤ 2

3
√
ε

∫ 2ρ

ρ
r2n−2

|φ′′ρ(r) + 2n−2
r φ′ρ(r)|3/2√
φρ(r)

dr +
n− 4

6δ

∫ 2ρ

ρ
r2n−2

|φ′ρ(r)|3

φρ(r)2
dr .

Take ε > 0 and δ > 0 sufficiently small in such a way that Cε,δ := n − 2 − ε
3 −

(n−4)
√
δ

3 > 0

and perform the change of variable r = ρt to obtain

Cε,δ

∫ 1

0
t2n−2u(ρt)3 dt ≤ 2

3
√
ε

1

ρ3

∫ 2

1
t2n−2

|φ′′1(t) + 2n−2
t φ′1(t)|3/2√
φ1(t)

dt+
n− 4

6δ

1

ρ3

∫ 2

1
t2n−2

|φ′1(t)|3

φ1(1)2
dt .

Since u is increasing on R+, we have u(ρt) ≥ u(t) for all ρ > 1 so that the left hand side of

this inequality is positive and increasing for ρ ≥ 1. By letting ρ → ∞, the right hand side

tends to 0 and this leads to a contradiction which rules out case (i). Hence, case (ii) occurs

and the solution u of (2.3)-(2.4) with α > 0 cannot be continued to all the interval [0,∞).

This completes the proof of Theorem 4.1 also in the case n ≥ 5.
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8. Proof of Theorem 5.1

For our convenience, we introduce the functions

h(y) = (y + 2)(y + 1)y , H(y) =

∫ y

0
h(ξ)dξ =

(y + 2)2y2

4
.

Let v(r) = ru(r), then v satisfies the equation

(8.1) v′′(r) +

[
n− 3

r
+
n− 4

r
v(r)− h(r)

]
v′(r) =

n− 2

r2
h
(
v(r)

)
.

If u satisfies (2.3)-(2.4) with α < 0, then u(r) and u′(r) are strictly negative in a right

neighborhood of r = 0. By definition of v, also v(r) is strictly negative in a right neighborhood

of r = 0. We claim that −2 < v(r) < 0 for all r > 0. If not, let R > 0 be the first time where

(8.2) either v(R) = 0 or v(R) = −2 .

Multiply (8.1) by r2v′(r) and integrate over [0, R] to obtain∫ R

0

(
r2v′′(r)v′(r) +

[
n− 3 + (n− 4)v(r)− rh(r)

]
rv′(r)2

)
dr = 0

since H(0) = H(−2) = 0. An integration by parts then yields∫ R

0

[
n− 4 + (n− 4)v(r)− rh(r)

]
rv′(r)2 dr +

R2v′(R)2

2
= 0 .

If n = 4 and h(r) ≤ 0 we get a contradiction which shows that R does not exist and therefore

−2 < v(r) < 0 for all r > 0. This proves the claim. Hence, by (8.1), also v′ and v′′ remain

bounded and the solutions exists. This concludes the proof of Theorem 5.1.
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