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Abstract

For a Gelfand type semilinear elliptic equation we extend some known results for the Dirichlet
problem to the Steklov problem. This extension requires some new tools, such as non-optimal
Hardy inequalities, and discovers some new phenomena, in particular a different behavior of the
branch of solutions and three kinds of blow-up for large solutions in critical growth equations. We
also show that small values of the boundary parameter play against strong growth of the nonlinear
source.

1 Introduction

In a smooth bounded domain Ω ⊂ Rn (n ≥ 2), we consider the problem
−∆u = λg(u) in Ω
u > 0 in Ω
uν + cu = 0 on ∂Ω,

(1)

where c, λ > 0 and

g ∈ C1[0,+∞) is a strictly positive, increasing and convex function (2)

such that

lim inf
s→+∞

g′(s)s
g(s)

> 1. (3)

Problem (1) has wide applications to physical models. Among others, it describes problems of thermal
self-ignition [19], diffusion phenomena induced by nonlinear sources [22], a ball of isothermal gas in
gravitational equilibrium as proposed by lord Kelvin [10], the problem of temperature distribution in
an object heated by the application of a uniform electric current [23]. We also refer to [21, 26] where
different models and further references may be found.
The equation in (1) has been intensively studied under Dirichlet boundary conditions. With no hope
of being complete, let us mention the works in [4, 7, 11, 18, 21, 25, 26, 27] and references therein. The
main results in these papers will be recalled during the course.
Our purpose is to study problem (1). When c = 0 this reduces to the Neumann problem, whereas
the limit case where c → +∞ may be seen as the Dirichlet problem. Steklov conditions (also called
conditions of the third kind or Robin conditions when c > 0) are considered a more “realistic” de-
scription of the interactions at the boundary of a physical system. For example, the heat flow through
the surface of a body generally depends on the value of the temperature at the surface itself.
We first prove that there exists λ∗ > 0 such that problem (1) admits a solution if and only if 0 < λ ≤ λ∗.
Then, a particular attention deserves the limiting situation where λ = λ∗ since, in some models, λ∗

∗Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32 - 20133 Milano (Italy)

1



corresponds to the maximal current which can be applied to a body Ω. In this case, we show that
the extremal solution u∗ is unique. The main concern is then to establish whether it is bounded or
not. This depends on the space dimension n and on the domain Ω. In general domains, partial results
may be obtained by adapting the analysis in [26]. We have more precise results in the ball where,
as shown in [7], one can take advantage of some Hardy inequalities. For the Steklov problem (1), we
need to use some Hardy inequalities which do not involve the optimal Hardy constant. Moreover,
the analysis of (1) when Ω is the ball shows that the solutions have new features not observable
under Dirichlet boundary conditions. For instance, when g(u) = eu, the solutions branch arising
from λ = 0 (and u = 0) may bend back from λ∗ until an asymptote λ = λ > 0 without oscillating
around it. Therefore, Steklov boundary conditions highlight some “further dimensions” with respect
to the limit case c = +∞, namely under Dirichlet conditions. We also study in some detail power-like
nonlinearities g and show that small values of c play against large values of the power. In particular,
for the critical growth equation, the blow-up of large solutions as λ → 0 strongly depends on the
parameter c. For small values of c blow-up occurs globally and without concentration as for subcritical
problems, whereas for large values of c concentration occurs. Finally, the transition between these two
situations occurs at a single value of c for which concentration is combined with global blow-up.
This paper is organized as follows. In Section 2 we state our main results which can be divided in two
classes. The first kind of results (Theorems 1 and 2) are quite standard and we obtain their proofs by
adapting techniques from [4, 7, 11, 25]. The sketch of these proofs is given in Section 4. The second
kind of results considers some specific nonlinearities which allow to prove more precise statements, in
particular when dealing with radial solutions in the ball, see Theorems 3, 4 and 5. Their proofs are
postponed to Sections 5, 6 and 7. Finally, Hardy inequalities with boundary terms are obtained in
Section 3, see Theorem 8.

2 Main results

2.1 General nonlinearities

Throughout this paper we assume that Ω ⊂ Rn (n ≥ 2) is a C2,α bounded domain such that 0 ∈ Ω.
In some cases, we restrict our attention to Ω = B, the unit ball in Rn. With ‖.‖p we denote the Lp(Ω)
norm (1 ≤ p ≤ +∞). Since problem (1) may be at supercritical growth, we cannot work within a
variational framework and there is no canonical space for weak solutions to (1). Hence we set

Xc(Ω) :=
{
v ∈ C2(Ω); vν + cv = 0 on ∂Ω

}
and we say that u ∈ L1(Ω) is a solution of (1) if g(u) ∈ L1(Ω) and

−
∫

Ω
u∆v dx = λ

∫
Ω
g(u)v dx for all v ∈ Xc(Ω). (4)

Moreover, if u ∈ L∞(Ω) we say that u is regular while if u 6∈ L∞(Ω) we say that u is singular. We say
that a solution uλ of (1) is minimal if uλ ≤ u a.e. in Ω, for any other solution u of (1). By elliptic
regularity, we know that regular solutions are smooth and solve (1) in a classical sense. We have

Theorem 1. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain and assume that g satisfies (2) and
(3). Then there exists λ∗ = λ∗(c) > 0 such that:

(i) For 0 < λ < λ∗ problem (1) admits a minimal regular solution uλ and the map λ 7→ uλ(x)
is strictly increasing for all x ∈ Ω. Moreover, if u and v are two distinct solutions such that
u(x) ≤ v(x) a.e. in Ω, then the inequality is strict and u ≡ uλ.
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(ii) For λ = λ∗ problem (1) admits a unique solution, not necessarily regular, that belongs to the
energy class H1(Ω).

(iii) For λ > λ∗ problem (1) admits no solution.

Furthermore, the map c 7→ λ∗(c) is bounded, strictly increasing and λ∗(c) → 0 as c→ 0.

When λ = λ∗, we call extremal solution the unique solution u∗ of (1) which, under the extra condition
(3), lies in H1(Ω). As far as we are aware, it is not clear whether it is possible to remove assumption
(3) even under Dirichlet boundary conditions. When g satisfies just assumption (2), the best known
results for problem (1) with c = +∞, state that the extremal solution lies in H1

0 (Ω) for any n ≤ 5 (see
[28, Theorem 1]) while, if Ω = B, the result holds for every n ≥ 2 (see [8, Theorem 1.1]). The paper
[12] establishes further regularity for u∗ but under some additional growth condition on g. When
c→ 0, Theorem 1 tells us that the “spectrum” (0, λ∗) reduces to the empty set. This is related to the
fact that, by the divergence Theorem, there exist no positive solutions to the Neumann problem.
By means of their stability, we may characterize singular extremal solutions in the energy class.

Theorem 2. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain and assume that g satisfies (2) and
(3). Let u ∈ H1(Ω) be a singular weak solution of (1). Then, the following facts are equivalent:

(i) g′(u) ∈ L1(Ω) and∫
Ω
|∇v|2 dx+ c

∫
∂Ω
v2 dσ ≥ λ

∫
Ω
g′(u) v2 dx for all v ∈ Xc(Ω); (5)

(ii) λ = λ∗ and u = u∗.

We stress that the assumption u ∈ H1(Ω) in Theorem 2 is crucial, see Remark 15.

2.2 Some model nonlinearities

In order to perform a precise analysis of the regularity of the extremal solution we restrict our attention
to some model nonlinearities. When Ω = B, several computations can be performed explicitly.
We first consider the case where g is the exponential function.

Theorem 3. Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain, assume that g(u) = eu and let λ∗ be
the extremal parameter, then

(i) if n = 2 and λ ∈ (0, λ∗), there exist at least two solutions of problem (1) in the energy class and
any solution in the energy class is regular;

(ii) if n ≤ 9, u∗ is regular.

If n ≥ 10 and Ω = B, let cn := n−2−
√

(n−2)(n−10)

2 , then

(iii) if 0 < c < cn, then λ∗ > 2(n− 2)e−2/c and u∗ is regular;

(iv) if c ≥ cn, then λ∗ = 2(n − 2)e−2/c and u∗(x) = 2(1
c − log |x|), so that the extremal solution of

(1) is singular.
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In Appendix 7 we perform a careful analysis of radial solutions to (1) when Ω = B and g(u) = eu. It
turns out that the branch containing the minimal solution has the following behavior.

Λ

uH0L

Λ

uH0L

Λ

uH0L

Λ

uH0L

case n = 2 case 3 ≤ n ≤ 9 case n ≥ 10, c < cn case n ≥ 10, c ≥ cn

Figure 1. Bifurcation branches in the exponential case.

Since Dirichlet boundary conditions correspond to c = +∞, the third displayed picture highlights a
phenomenon which is not observable under Dirichlet boundary conditions, see [26].

Next, we consider the power case. When either n = 2 or n ≥ 3 and 1 < p < n+2
n−2 , by standard

boot-strap arguments for subcritical elliptic problems, any energy solution is regular. The same can
be proved for p = n+2

n−2 , see [5]. In these cases Theorem 1-(ii) ensures that the extremal solution is
regular. This is the reason why, in what follows, we just focus on the supercritical case. For p > n+2

n−2

and c > 2
p−1 , we put

λs = λs(n, p, c) =
2(n(p− 1)− 2p)

(p− 1)p+1

(
c(p− 1)− 2

c

)p−1

(6)

and, for n ≥ 11, we let

pn :=
n2 − 8n+ 4 + 8

√
n− 1

(n− 2)(n− 10)
>
n+ 2
n− 2

.

The constant pn was originally introduced for the Dirichlet case in [7], see also [26]. Due to the Steklov
boundary conditions, a further number has to be defined. For n ≥ 11 and p ≥ pn, the number

cn,p :=
1
2

(
n− 2−

√
(n− 2)2 +

8p
p− 1

(
2p
p− 1

− n

))
(7)

is well-defined and positive. Furthermore the map p 7→ cn,p is decreasing in [pn,∞), cn,pn = n−2
2 and

cn,p >
2

p−1 for all p ≥ pn. Then, we prove

Theorem 4. Let Ω ⊂ Rn (n ≥ 3) be a smooth bounded domain, assume that g(u) = (1+u)p for some
p > n+2

n−2 and let λ∗ be the extremal parameter, then

(i) if n ≤ 10 or n ≥ 11 and p < pn, u∗ is regular.

If Ω = B, we have that

(ii) if 0 < c ≤ 2
p−1 , then any radial solution is regular;
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(iii) if n ≥ 11 and p ≥ pn, then

– if 0 < c < cn,p, u∗ is regular;

– if c ≥ cn,p, then λ∗ = λs and u∗(x) = c(p−1)
c(p−1)−2 |x|

−2/(p−1) − 1, so that the extremal solution of
(1) is singular.

The first part of the statement of Theorems 3 and 4 tells that in low dimensions the extremal solution
is regular regardless of the domain Ω and of the value of c. The second part of the statement shows
that the result is sharp since in higher dimensions there exists a domain (the ball) and values of c
(≥ cn or cn,p) for which the extremal solution is singular. We emphasize that, again, the results under
Dirichlet boundary conditions can be obtained as limit case for c→ +∞.
When Ω = B and n ≥ 11, the regions in the plane (c, p) describing the regularity of solutions are
summarized in Figure 2, see below. In the grey region, where 1 < p ≤ max{2+c

c , n+2
n−2}, any radial

solution in the energy class is regular. In the striped region, where either c ≥ cn,p or p ≥ pn, u∗

is singular. In the remaining white part, u∗ is regular. In some sense, this shows that the “lack of
regularity” for large exponents p disappears in presence of small values of c. We may say that

small values of c weaken the strength of large values of p. (8)

Figure 2. Regularity of the solutions in the power case for n ≥ 11.

For the branches of radial solutions in B, we expect pictures similar to those displayed in the expo-
nential case. For instance, in the grey region, we expect the first picture in Figure 1.

When n ≥ 3 and p = n+2
n−2 we may determine explicitly the solutions of (1) and highlight a further

interesting phenomenon. For c > 0 and ε > ε0(c) := max{0, n−2
c − 1}, consider the function

ϕ(ε) :=
[n(n− 2)]n−2

c4
[c(1 + ε)− n+ 2]4εn−2

(1 + ε)2n
. (9)

It is readily seen that ϕ(ε0) = 0 = lim
ε→+∞

ϕ(ε), that ϕ attains a global maximum at

ε :=
n+ 2 +

√
(n+ 2)2 − 4c(n− 2− c)

2c
,

that ϕ increases on (ε0, ε) and decreases on (ε,+∞). Hence, for any λ ∈ (0, λn), where λn(c) :=
(ϕ(ε))1/(n−2),

there exist εi = εi(c, λ) (i = 1, 2) such that ϕ(εi) = λn−2. (10)

If λ = λn, then ε1 = ε2 = ε. We prove
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Theorem 5. Let Ω = B ⊂ Rn (n ≥ 3) and assume that g(u) = (1 + u)
n+2
n−2 . Then, if λn > 0 and

ε0 < ε2 ≤ ε ≤ ε1 are defined as in (10), we have

(i) for every λ ∈ (0, λn), there exist two radial solutions of problem (1), the minimal solution u1

and a larger one u2, given by

ui(x) =
(
n(n− 2)εi

λ

)(n−2)/4

(εi + |x|2)−(n−2)/2 − 1, i = 1, 2 ;

(ii) the extremal parameter satisfies λ∗ = λn and the extremal solution u∗ of (1) is given by

u∗(x) =
(
n(n− 2)ε

λn

)(n−2)/4

(ε+ |x|2)−(n−2)/2 − 1.

Furthermore, as λ→ 0, the large solution u2 blows-up as follows:

• global blow-up: if 0 < c < n− 2, then

u2(0) ∼
(

c n(n− 2)
λ(n− 2− c)

)(n−2)/4

and u2(1) ∼
(
c n(n− 2− c)
λ(n− 2)

)(n−2)/4

;

• global blow-up with concentration: if c = n− 2, then

u2(0) ∼
(
n(n− 2)

λ

)n(n−2)/2(n+2)

and u2(1) ∼
(
n(n− 2)

λ

)(n−2)/(n+2)

;

• concentration: if c > n− 2, then

u2(0) ∼ c− n+ 2
c

(
n(n− 2)

λ

)(n−2)/2

and u2(1) → n− 2
c− n+ 2

.

Remark 6. Letting c → +∞ in Theorem 5, one obtains known results under Dirichlet boundary
conditions, see [18, Theorem 7]. In particular, ε(c) → 1 and λ∗(c) → n(n−2)

4 . If we approach the

Neumann case, that is if we let c→ 0, then ε(c) ∼ n+2
c and λ∗(c) ∼ n(n−2) 28/(n−2)

(n+2)(n+2)/(n−2) c.

A straightforward adaptation to our case of [18, Theorem 6] (see also [17, Theorem 2]) gives

Proposition 7. Let Ω ⊂ Rn (n ≥ 3) be a smooth bounded domain and let g(u) = (1 + u)p for some
1 < p < n+2

n−2 . For λ ∈ (0, λ∗), with λ∗ being the extremal parameter, let Uλ be a large (mountain-pass)
solution of problem (1). Then, there exists a mountain-pass solution V to

−∆V = V p in Ω
V > 0 in Ω
Vν + c V = 0 on ∂Ω,

such that
lim
λ→0

λ1/(p−1)Uλ → V in C2,α(Ω).

Combined with this statement, Theorem 5 tells us that for c < n − 2 (problem close to Neumann),
the critical growth equation behaves subcritically. This is a further argument in favor of the rule (8).

6



3 Hardy inequalities with a boundary term

For c > 0 fixed, throughout this section we endow the Sobolev space H1(Ω) with the following scalar
product and corresponding norm

(u, v) :=
∫

Ω
∇u∇v dx+ c

∫
∂Ω
u v dσ, ‖u‖2 :=

∫
Ω
|∇u|2 dx+ c

∫
∂Ω
u2 dσ. (11)

Several versions of Hardy inequality [20] are available in literature. Our starting point is the optimal
inequality in H1(Ω) involving a boundary term. It is shown in [1, 30] that there exists a positive
constant Cn = Cn(Ω) such that∫

Ω
|∇u|2 dx+ Cn

∫
∂Ω

u2 dσ ≥ (n− 2)2

4

∫
Ω

u2

|x|2
dx for all u ∈ H1(Ω). (12)

When Ω = B, the optimal (smallest) value of Cn has been determined, Cn(B) = n−2
2 .

One may then wonder if when Cn is replaced by a smaller constant, a similar inequality remains true
provided (n−2)2

4 is also replaced by a smaller constant. In other words, for any c ∈ [0, Cn] we wish to

determine the largest h(c) ∈ [0, (n−2)2

4 ] such that∫
Ω
|∇u|2 dx+ c

∫
∂Ω

u2 dσ ≥ h(c)
∫

Ω

u2

|x|2
dx for all u ∈ H1(Ω). (13)

Hence, for any c > 0, we define

h(c) := inf
u∈H1(Ω)\{0}

∫
Ω |∇u|

2 dx+ c
∫
∂Ω u2 dσ∫

Ω
u2

|x|2 dx
. (14)

Formally, the Euler equation corresponding to the variational problem (14) is the following eigenvalue
problem under Steklov boundary conditions{

−∆u = h(c)
u

|x|2
in Ω

uν + cu = 0 on ∂Ω.
(15)

By solutions of (15) we mean weak solutions, that is functions u ∈ H1(Ω) such that∫
Ω
∇u∇v dx+ c

∫
∂Ω
u v dσ = h(c)

∫
Ω

uv

|x|2
dx for all v ∈ H1(Ω). (16)

We prove

Theorem 8. Let Ω ⊂ Rn (n ≥ 3) be a smooth bounded domain, let Cn be as in (12), let c ≥ 0 and let
h(c) be as in (14). Then we have:

(i) h(0) = 0 and h(c) is strictly increasing with respect to c ∈ [0, Cn];

(ii) h(c) = (n−2)2

4 for every c ≥ Cn.

Moreover the infimum in (14) is achieved if and only if 0 ≤ c < Cn and, up to a multiplicative constant,
the minimizer u ∈ H1(Ω) is unique, strictly positive in Ω and it solves (15).
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Hence, for any bounded smooth domain Ω ⊂ Rn (n ≥ 3) and for every c > 0, inequality (13) holds
with h(c) defined as in (14) and behaving as explained in Theorem 8. It is worth noting that the lower
bound c = 0, in correspondence of which (13) becomes trivial, is the first Steklov boundary eigenvalue
for −∆ and, clearly, u(x) ≡ 1 is a corresponding eigenfunction (solution to the Neumann problem).

Proof. The properties of h(c) follow directly from its definition combined with inequality (12). In
particular, in view of the optimality of the constants in (12), it must be

h(c) <
(n− 2)2

4
for every c < Cn.

We first show that the infimum in (14) is attained for every c < Cn. Let {um} ⊂ H1(Ω) be a
minimizing sequence for h(c) such that ∫

Ω

u2
m

|x|2
dx = 1. (17)

Then,

‖um‖2 =
∫

Ω
|∇um|2 dx+ c

∫
∂Ω
u2

m dσ = h(c) + o(1) as m→ +∞, (18)

which shows that {um} is bounded in H1(Ω). Exploiting the compactness of the trace map H1(Ω) →
L2(∂Ω), we conclude that there exists u ∈ H1(Ω) such that

um ⇀ u in H1(Ω), um → u inL2(∂Ω),
um

|x|
⇀

u

|x|
in L2(Ω), (19)

up to a subsequence. Assume that um → 0 in L2(∂Ω), then by (12) and (17)-(18)-(19) we infer that

h(c) + o(1) =
∫

Ω
|∇um|2 dx+ Cn

∫
∂Ω
u2

m dσ + o(1) ≥ (n− 2)2

4
+ o(1)

a contradiction. Hence, u 6= 0, if we set vm := um − u, from (19) we obtain

vm ⇀ 0 in H1(Ω), vm → 0 in L2(∂Ω),
vm

|x|
⇀ 0 in L2(Ω). (20)

In view of (19)-(20) we may rewrite (18) as∫
Ω
|∇u|2 dx+

∫
Ω
|∇vm|2 dx+ c

∫
∂Ω
u2 dσ = h(c) + o(1). (21)

Moreover, by (17) and (20), we have

1 =
∫

Ω

u2
m

|x|2
dx =

∫
Ω

u2

|x|2
dx+

∫
Ω

v2
m

|x|2
dx+ o(1) ≤

∫
Ω

u2

|x|2
dx+

4
(n− 2)2

∫
Ω
|∇vm|2 dx+ o(1).

Since h(c) ≥ 0, this last inequality gives

h(c) ≤ h(c)
∫

Ω

u2

|x|2
dx+

4h(c)
(n− 2)2

∫
Ω
|∇vm|2 dx+ o(1).

By combining this with (21), we obtain∫
Ω
|∇u|2 dx+ c

∫
∂Ω
u2 dσ
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≤ h(c)
∫

Ω

u2

|x|2
dx+

(
4h(c)

(n− 2)2
− 1
) ∫

Ω
|∇vm|2 dx+ o(1) ≤ h(c)

∫
Ω

u2

|x|2
dx+ o(1)

which shows that u 6= 0 is a minimizer.
Concerning the positivity of a minimizer u, one may simply replace u with |u| if necessary. Then, by
the Lagrange multiplier method, u is a nonnegative solution of problem (15) with h = h(c), hence
a superharmonic function. By the maximum principle (Lemma 10), this implies u > 0 in Ω and, in
turn, in Ω. Indeed, if u vanishes somewhere on ∂Ω, then the boundary condition (u = −cuν on ∂Ω)
would contradict the Hopf boundary Lemma.
By arguing as in Lemma 12 we see that, up to a multiplicative constant, the minimizer u is unique.
In order to show that the infimum in (14) is not achieved if c = Cn, we may proceed as in [1, (a4)
p.429]. Indeed the argument there is local and does not take into account the boundary conditions. 2

When Ω = B, h(c) can be explicitly determined and we obtain as a consequence a result by Barbatis,
Filippas and Tertikas [2].

Theorem 9. [2] Let n ≥ 3. Then, for every c ≥ 0 there holds∫
B
|∇u|2 dx+ c

∫
∂B

u2 dσ ≥ h(c)
∫

B

u2

|x|2
dx for all u ∈ H1(B), (22)

where h(c) = c(n− 2− c) for every 0 ≤ c < n−2
2 , while h(c) = (n−2)2

4 for every c ≥ n−2
2 . Furthermore,

the constants are optimal and equality in (22) is attained if and only if 0 ≤ c < n−2
2 by real multiples

of the function u(x) = |x|−c.

Theorem 9 will be of crucial importance in the proofs of Theorems 3 and 4.

4 Sketch of the proofs of Theorems 1 and 2

We first need a weak maximum principle and a weak form of the super-sub-solution method.

Lemma 10. For all f ∈ L1(Ω) such that f ≥ 0 a.e. in Ω and f 6≡ 0 there exists a unique u ∈ L1(Ω)
such that

−
∫
Ω

u∆v dx =
∫
Ω

fv dx for all v ∈ Xc(Ω), (23)

and u > 0 a.e. in Ω.
If u ∈ L1(Ω) is such that u ≥ 0 a.e. in Ω, g(u) ∈ L1(Ω) and

−
∫
Ω

u∆v dx ≥ λ

∫
Ω

g(u)v dx for all v ∈ Xc(Ω), v ≥ 0 in Ω,

then there exists a solution u of (1) such that 0 ≤ u ≤ u in Ω.

Proof. The existence of a weak solution u to (23) may be obtained by applying a suitable ap-
proximation by truncation argument, see [4, Lemma 1]. The positivity of u is deduced, arguing
by contradiction, by combining the maximum principle for superharmonic functions with the Hopf
boundary Lemma.
With the just proved results, to get the second part of the proof, one may apply the monotone iteration
argument illustrated in [4, Lemma 3]. 2

Thanks to Lemma 10, we get the regularity of the minimal solution.
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Lemma 11. Assume that for some µ > 0 there exists a (possibly singular) solution w of (1) for λ = µ.
Then, for all 0 < λ < µ there exists a regular solution of (1).

Proof. Our purpose is to construct a regular super-solution of problem (1) and to conclude by
applying Lemma 10. To this aim, exploiting the ideas of [4, Lemmas 2 and 4], we define

h(u) =
∫ u

0

ds

µg(s)
, hη(u) = η−1 h(u) and Φη(u) = h−1

η (h(u)) = h−1(ηh(u)),

for all u ≥ 0 and η ∈ (0, 1). One has that:

(a) 0 ≤ Φη(u) < u, for all u ≥ 0;

(b) Φη is increasing, concave and Φ′
η(u) < 1, for all u ≥ 0;

(c) if h(∞) <∞, then Φη(∞) <∞.

Set now f(x) := µ g(w(x)). Then, f ∈ L1(Ω) and f > 0 a.e. in Ω, so that there exists a sequence
{fn}n≥0 ⊂ C∞

c (Ω), fn ≥ 0 such that fn → f in L1(Ω). To each fn we associate the unique solution
wn ∈ Xc(Ω) (recall ∂Ω ∈ C2,α) of 

−∆wn = fn in Ω
wn > 0 in Ω
(wn)ν + cwn = 0 on ∂Ω.

Lemma 10 implies that wn → w in L1(Ω). On the other hand, some computations give

∆Φη(wn) = Φ′
η(wn)∆wn + Φ′′

η(wn)|∇wn|2 ≤ Φ′
η(wn)∆wn = −Φ′

η(wn)fn

and, in turn,

−
∫

Ω
∆Φη(wn) v dx ≥

∫
Ω

Φ′
η(wn)fnv dx for all v ∈ Xc(Ω), v ≥ 0 in Ω.

Integrating by parts and exploiting the boundary conditions, this gives

−
∫

Ω
Φη(wn)∆v dx+ c

∫
∂Ω

[Φ′
η(wn)wn − Φη(wn)] v dσ ≥

∫
Ω

Φ′
η(wn)fn v dx (24)

for all v ∈ Xc(Ω) such that v ≥ 0 in Ω. Notice that

Φ′
η(wn)wn − Φη(wn) = η

g(Φη(wn))
g(wn)

wn − Φη(wn) ≤ 0 for all 0 < η < 1.

This inequality can be checked by observing that the function

Fη(s) := η
g(Φη(s))
g(s)

s− Φη(s), s ≥ 0

has strictly negative derivative (provided 0 < η < 1) and Fη(0) = 0. Indeed, some computations give

F ′
η(s) =

ηg(Φη(s))s
g2(s)

[ηg′(Φη(s))− g′(s)] ≤ ηg(Φη(s))s
g2(s)

g′(s) (η − 1) ≤ 0 for 0 < η < 1,

where in the last step we combine (a) with the convexity of g.
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By passing to the limit in (24), the above arguments yield

−
∫

Ω
Φη(w)∆v dx ≥

∫
Ω

Φ′
η(w)f v dx = η

∫
Ω

g(Φη(w))
g(w)

f v dx = η µ

∫
Ω
g(Φη(w)) v dx.

Let v := Φη(w). Then, v ≤ w ∈ L1(Ω) and g(v) ≤ g(w) ∈ L1(Ω). Moreover, the latter inequality
implies that, for 0 < η < 1, v is a weak super-solution of (1) with λ = ηµ.
If
∫ +∞
0

ds
g(s) < ∞, by (c) we conclude that v < +∞, which means that v is bounded and the thesis

comes from Lemma 10.
If
∫ +∞
0

ds
g(s) = ∞, we first observe that by the concavity of h we have h(w) ≤ h(v) + w−v

µg(v) , so that
g(v) ≤ w

µh(w) ≤ C(1+w) for some C > 0. On the other hand, by Lemma 10, the existence of the weak
super-solution v implies the existence of a weak solution u1 of (1) with λ = ηµ, such that 0 < u1 ≤ v
and 0 ≤ g(u1) ≤ g(v) ∈ L1(Ω). Hence u1 ∈ Lp1(Ω), for all 1 ≤ p1 <

n
n−2 (see [24, Theorem 5.4]). By

iteration, the same construction allows to show the existence of a sequence of functions uk ∈ L1(Ω)
which solve (1) with λ = ηkµ, such that 0 < uk ≤ uk−1 and g(uk) ≤ C(1 + uk−1) ∈ Lpk−1(Ω), for all
1 ≤ pk−1 <

n
n−2(k−1) . For k > n/2, this procedure gives a bounded super-solution of (1) with λ = ηkµ.

By arbitrariness of η ∈ (0, 1), this concludes the proof. 2

For c > 0 fixed, we set

λ1(c) := inf
v∈H1(Ω)\{0}

∫
Ω |∇v|

2 dx+ c
∫
∂Ω v

2 dσ∫
Ω v

2 dx
(25)

and, if also λ ∈ (0, λ∗) is fixed, we set

µ1(c, λ) = inf
v∈H1(Ω)\{0}

∫
Ω |∇v|

2 dx+ c
∫
∂Ω v

2 dσ − λ
∫
Ω g

′(uλ) v2 dx∫
Ω v

2 dx
, (26)

where uλ is the minimal (regular) solution of problem (1). Notice that λ1 and µ1 are, respectively,
the first eigenvalue of −∆, and of the linearized operator −∆ − λg′(uλ), under Steklov boundary
conditions. We have

Lemma 12. The eigenvalue λ1 in (25) is simple and any corresponding eigenfunction is strictly of
one sign in Ω. Let λ ∈ (0, λ∗) and let uλ be the corresponding minimal regular solution to (1), then
the eigenvalue µ1 in (26) is positive and any corresponding eigenfunction is strictly of one sign in Ω.

Proof. From the compactness of the embedding H1(Ω) ⊂ L2(Ω) we infer that the infimum in (25) is
achieved so a minimizer φ1 exists. If φ1 changes sign in Ω, then |φ1| is a minimizer that vanishes in
Ω, against the maximum principle. Also the proof that λ1 is simple can be obtained by contradiction.
Let φ2 ∈ H1(Ω) be another eigenfunction corresponding to λ1 so that φ2 > 0 in Ω. For every k ∈ R,
define ψk := φ1 + kφ2. Since the problem is linear, also ψk is an eigenfunction. But, unless φ2 is a
multiple of φ1, there exists some k such that ψk changes sign in Ω, a contradiction.
To show that µ1 > 0 one can follow [11, Proposition 2.15]. Taking into account the regularity of uλ,
the rest of the statement follows as for λ1. 2

Proof of Theorem 1. If c > 0, λ = 0 and we drop the requirement that u > 0, then (1) only admits
the trivial solution. So, we put

Λ := {λ ≥ 0 : (1) admits a nonnegative solution} and λ∗ := sup Λ . (27)

As we just remarked, 0 ∈ Λ so that Λ 6= ∅ and λ∗ is well-defined. For any ε > 0, consider the problem
−∆u = ε in Ω
u > 0 in Ω
uν + cu = 0 on ∂Ω,

11



which admits a classical solution u ∈ Xc(Ω). Taking λ = ε/g(‖u‖∞), one has that u is a super-solution
of problem (1) for any λ ∈ (0, λ). By Lemma 10, we deduce that λ∗ > 0. Moreover, we also infer that
for every λ ∈ Λ minimal solutions uλ exist and by Lemma 11 they are regular. Lemma 10 also tells
that (for fixed c > 0) the map λ 7→ uλ(x) is strictly increasing for all x ∈ Ω and, by the Hopf boundary
Lemma, this holds up to the boundary. In particular, Λ is an interval. The second statement in (i)
follows by combining Lemma 10 with the arguments of [15, Theorem 5].
Now we show that λ∗ is finite. To this end, let λ ∈ Λ and let u be the corresponding positive solution
of (1). By (2) there exists α > 0 such that g(s) ≥ αs for every s ∈ [0,+∞) and g(s) 6≡ αs. Then, if
λ1 and φ1 are as in Lemma 12, by (4) we obtain

λ1

∫
Ω

uφ1 dx = −
∫
Ω

u∆φ1 dx = λ

∫
Ω

g(u)φ1 dx > λα

∫
Ω

uφ1 dx.

This yields

λ∗ <
λ1

α
. (28)

In turn, by taking v ≡ 1 in (25), we readily obtain

λ1(c) ≤
c|∂Ω|
|Ω|

(29)

which, combined with (28), shows that λ∗(c) → 0, as c→ 0.
To study the case λ = λ∗ we adapt to the Steklov boundary conditions some arguments of [7, 25]. We
know that the map λ 7→ uλ(x) is strictly increasing for all x ∈ Ω so that we may define

u∗(x) := lim
λ→λ∗

uλ(x) (x ∈ Ω) . (30)

We claim that u∗ ∈ H1(Ω) and that it solves (1). To this end, for λ ∈ (0, λ∗), let uλ be the minimal
regular solution of (1). Then

−
∫
Ω

uλ∆v dx = λ

∫
Ω

g(uλ)v dx for all v ∈ Xc(Ω), (31)

so that by Lemma 12, after an integration by parts, we get

λ

∫
Ω

g′(uλ)u2
λ dx ≤

∫
Ω

|∇uλ|2 dx+ c

∫
∂Ω

u2
λ dσ = −

∫
Ω

uλ∆uλ dx = λ

∫
Ω

g(uλ)uλ dx. (32)

From (3) it follows that there exist ε > 0 and C > 0 such that (1 + ε)g(s)s ≤ g′(s)s2 + C for all
s ∈ [0,+∞). This fact, combined with (32), yields the existence of C1 > 0 such that:∫

Ω

g(uλ)uλ dx < C1 for all λ ∈ (0, λ∗).

Therefore
‖uλ‖2 =

∫
Ω

|∇uλ|2 dx+ c

∫
∂Ω

u2
λ dσ = λ

∫
Ω

g(uλ)uλ dx < λ∗C1.

Hence, up to a subsequence, we have uλ ⇀ u∗ in H1(Ω) as λ → λ∗. This, together with a suitable
variant of the Lebesgue Theorem, allows us to pass to the limit in (31) and to conclude that u∗ ∈ H1(Ω)
solves (1) for λ = λ∗. The claim is so proved.
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We prove the uniqueness of the extremal solution u∗, by showing that (1), with λ = λ∗, admits no weak
super-solution in the sense of Lemma 10. In particular, if u ∈ L1(Ω), u ≥ 0, is a weak super-solution
of (1) with λ = λ∗, then u is the minimal solution. Thanks to Lemmas 10 and 11, the proof can be
obtained simply by replacing Dirichlet with Steklov boundary conditions in [25, Theorem 1.1]. Indeed,
by Lemma 10, we deduce that there exists a minimal weak solution 0 ≤ uλ∗ ≤ u of (1). Then, assuming
by contradiction that u 6= uλ∗ and exploiting the convexity of g, one shows that z := (u + uλ∗)/2 is
a strict weak super-solution of (1) with λ = λ∗. In turn, arguing as in [25, Lemma 2.2], this allows
to construct a weak super-solution of (1) with λ = λ∗ + ε, for some ε > 0, in contradiction with the
definition of λ∗.
We finally show that the map c 7→ λ∗(c) is strictly increasing. The extremal solution u∗1 of problem
(1) with c = c1, is a solution for λ = λ∗(c1). Let c1 > c2, then testing the equation with v ∈ Xc2 ,
v ≥ 0 in Ω, and integrating by parts, we deduce

−
∫

Ω
u∗1∆v dx− λ∗(c1)

∫
Ω
g(u∗1)v dx =

∫
∂Ω

(−u∗1vν + v(u∗1)ν) dσ

=
∫

∂Ω
(c2u∗1 + (u∗1)ν) v dσ >

∫
∂Ω

(c1u∗1 + (u∗1)ν) v dσ = 0.

Therefore, u∗1 is a super-solution of problem (1) with c = c2 and λ = λ∗(c1). By Lemma 10 this
implies that λ∗(c1) ≤ λ∗(c2). The inequality is in fact strict since, as shown above, there exists no
super-solution when λ = λ∗. 2

Proof of Theorem 2. The implication (ii) ⇒ (i) follows by combining the characterization given in
Lemma 12 with (30). For the converse implication, we assume (i) and, for contradiction, that λ < λ∗.
We take v = u−uλ as test function in (5), where uλ is the minimal solution. Exploiting the boundary
conditions, we get

λ

∫
Ω
(u− uλ)(g(u)− g(uλ)) dx = −

∫
Ω
(u− uλ)∆(u− uλ) dx ≥ λ

∫
Ω
g′(u) (u− uλ)2 dx.

Then, by convexity of the function g, we infer that u = uλ. But uλ is regular, a contradiction. Hence,
λ = λ∗ so that Theorem 1-(ii) implies u = u∗ and (ii) follows. 2

5 Proof of Theorem 3

Proof of (i). The existence of a second solution in the energy class follows from the fact that u 7→ eu

is subcritical and hence a compact map from H1(Ω) to L1(Ω) when n = 2. More precisely, for any
λ ∈ (0, λ∗) let uλ be the minimal solution and consider the functional Iλ(w) = Jλ(w + uλ) − Jλ(uλ),
where

Jλ(w) =
1
2

(∫
Ω
|∇w|2 dx+ c

∫
∂Ω
w2

)
− λ

∫
Ω
ew dx for all w ∈ H1(Ω)

and H1(Ω) is endowed with the norm (11). Then, the second solution Uλ can be characterized
variationally as a mountain-pass critical point of Iλ, see [11, Theorem 2.1]. The fact that any energy
solution is a classical solution follows from embedding arguments and elliptic regularity.

Proof of (ii). We follow the idea developed in [26] but taking into account the presence of a boundary
term. For every λ ∈ (0, λ∗), we know that the minimal solution uλ satisfies the equation∫

Ω
∇uλ∇v dx+ c

∫
∂Ω
uλv dσ = λ

∫
Ω
euλ v dx for all v ∈ H1(Ω)

13



and, by Lemma 12, the stability condition∫
Ω
|∇w|2 dx+ c

∫
∂Ω
w2 dσ ≥ λ

∫
Ω
euλ w2 dx for all w ∈ H1(Ω).

We choose as test functions, respectively, v = e(q−1)uλ and w = e
q−1
2

uλ , where q > 1. We get

(q − 1)
∫

Ω
e(q−1)uλ |∇uλ|2 dx+ c

∫
∂Ω
uλ e

(q−1)uλ dσ = λ

∫
Ω
equλ dx

and (
q − 1

2

)2 ∫
Ω
e(q−1)uλ |∇uλ|2 dx+ c

∫
∂Ω
e(q−1)uλ dσ ≥ λ

∫
Ω
equλ dx .

By putting together these inequalities we obtain

4c
q − 1

∫
∂Ω
e(q−1)uλ dσ − c

∫
∂Ω
uλ e

(q−1)uλ dσ ≥ λ

(
4

q − 1
− 1
)∫

Ω
equλ dx.

Assume that 1 < q < 5 so that 4
q−1 > 1. As λ → λ∗, the left hand side cannot blow-up since the

leading term is uλe
(q−1)uλ . Therefore, the right hand side remains bounded, this means that euλ is

uniformly bounded in Lq(Ω). Since uλ solves the equation, by elliptic regularity this means that {uλ}
is uniformly bounded in W 2,q(Ω) for all 1 < q < 5. Since n ≤ 9, by Sobolev embedding this shows
that {uλ} is uniformly bounded in L∞(Ω) so that u∗ ∈ L∞(Ω) in view of (30).

Proof of (iii). For λ ∈ (0, λ∗) the minimal solution uλ may be obtained by an iterative method starting
from u0 = 0. We let um, m positive integer, be the unique solution to{

−∆um = λeu
m−1

in B
um

ν + cum = 0 on ∂B.
(33)

Hence um is radially symmetric and so is uλ and, by (30), also u∗. We restrict our attention to radial
solutions of problem (1). Following an idea of Tartar (see [27]), for r = |x| ∈ (0, 1) we set

s = log r ∈ (−∞, 0), v(s) =
d

ds
u(es), w(s) = −λ e2seu(es), (34)

and we rewrite problem (1) as a dynamical system, namely{
v′ = w − (n− 2)v
w′ = (v + 2)w,

(35)

whereas the Steklov condition reads
w(0) = −λ e−v(0)/c. (36)

By definition, w(s) < 0. For any radial solution u, the equation combined with Lemma 10 gives
u′(r) < 0 in (0, 1), so that also v(s) < 0. Therefore, we may study the trajectory of (35) in the region
of the phase plane where both v and w are negative. System (35) admits the two equilibrium points

O = (0, 0) and P = (−2,−2(n− 2)).

The point O is a saddle point, regardless the dimension n ≥ 3, its stable manifold is the v-axis while
the unstable manifold is tangent to the line w = nv. The point P is a sink if n ≥ 10, a spiral sink if
n < 10. Moreover, independently of the boundary conditions, from [27] (see also [16]) we know that
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Lemma 13. [27] Let Ω = B, g(u) = eu and let u be a radial solution of the equation in (1). Let
Φ(s) = (v(s), w(s)) be the corresponding trajectory of (35), then
• u is regular if and only if lim

s→−∞
Φ(s) = O;

• u is singular if and only if Φ(s) = P for every s ∈ (−∞, 0).

Here and below, Γ will denote the graph relative to the unstable manifold of O. Hence, Γ is the
heteroclinic joining O (as s → −∞) with P (as s → +∞). Since system (35) is autonomous, if
s1 ∈ (−∞, 0) is such that the corresponding trajectory satisfies w(s1) = −λ e−v(s1)/c, with no loss
of generality, we can assume that s1 = 0. Then, the problem of studying (35) under condition (36)
corresponds to looking for the intersections of Γ with the graph of the function

γc : v 7→ w = −λ e−v/c, v ∈ (−∞, 0).

In view of Lemma 13, if u is a singular radial solution of problem (1) for some c > 0 and for λ ∈ (0, λ∗],
then the graph of the corresponding function γc contains P . This condition readily implies that,
for every c > 0, there exists a unique value of λ giving rise to a singular radial solution of (1),
λ = λs := 2(n− 2)e−2/c. Furthermore, since the corresponding trajectory is P , we also conclude that
the unique singular radial solution is us(x) := 2(1

c − log |x|).
Let us go back to the proof of (iii), recalling that n ≥ 10 and c < cn. With the above choice of us

and λs, if h = h(c) denotes the function defined in Theorem 9, we have

h(c)
|x|2

<
2(n− 2)
|x|2

= λse
us for all x ∈ B \ {0} . (37)

Since c < cn <
n−2

2 , the function u in Theorem 9 achieves equality in (22), namely∫
B
|∇u|2 dx+ c

∫
∂B

u2 dσ = h(c)
∫

B

u2

|x|2
dx .

Hence, using (37), we get ∫
B
|∇u|2 dx+ c

∫
∂B

u2 dσ < λs

∫
B
eusu2 dx .

By Theorem 2, this tells us that λ∗ > λs and u∗ 6= us, thereby completing the proof of statement (iii).

Proof of (iv). Since c ≥ cn, we have now that

h(c)
|x|2

≥ 2(n− 2)
|x|2

= λse
us for all x ∈ B \ {0} .

Using this inequality in (22) yields∫
B
|∇u|2 dx+ c

∫
∂B

u2 dσ ≥ h(c)
∫

B

u2

|x|2
dx ≥ λs

∫
B
eusu2 dx for all u ∈ H1(B) .

Statement (iv) then follows from Theorem 2.
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6 Proof of Theorem 4

Proof of (i). We follow again [26]. For every λ ∈ (0, λ∗), the minimal solution uλ of problem (1) with
g(u) = (1 + u)p satisfies∫

Ω
∇uλ∇v dx+ c

∫
∂Ω
uλv dσ = λ

∫
Ω
(1 + uλ)p v dx for all v ∈ H1(Ω)

and ∫
Ω
|∇w|2 dx+ c

∫
∂Ω
w2 dσ ≥ λ p

∫
Ω
(1 + uλ)p−1w2 dx for all w ∈ H1(Ω).

We choose as test functions, respectively, v = (1 + uλ)(q−1)p and w = (1 + uλ)
(q−1)p+1

2 , where q > 1.
Then we get

(q − 1)p
∫

Ω
(1 + uλ)(q−1)p−1|∇uλ|2 dx+ c

∫
∂Ω
uλ (1 + uλ)(q−1)p dσ = λ

∫
Ω
(1 + uλ)qp dx,

and(
(q − 1)p+ 1

2

)2 ∫
Ω
(1 + uλ)(q−1)p−1|∇uλ|2 dx+ c

∫
∂Ω

(1 + uλ)(q−1)p+1 dσ ≥ λ p

∫
Ω
(1 + uλ)qp dx .

By comparing the two expressions found, we conclude that

4(q − 1)p c
((q − 1)p+ 1)2

∫
∂Ω

(1 + uλ)(q−1)p+1 dσ − c

∫
∂Ω
uλ (1 + uλ)(q−1)p dσ ≥

λ

(
4(q − 1)p2

((q − 1)p+ 1)2
− 1
)∫

Ω
(1 + uλ)qp dx.

If we assume that (1 + uλ)p 6∈ Lq(Ω) for some q > 1 such that

4(q − 1)p2

((q − 1)p+ 1)2
> 1 ⇐⇒ q <

3p− 1 + 2
√
p(p− 1)

p
,

then we get a contradiction. We now apply the same bootstrap argument of [26, Theorem 4] and we
infer that u∗ ∈ L∞(Ω) for n < np := 6 + 4

(
1

p−1 +
√

1 + 1
p−1

)
. Notice that the map p 7→ np is a

decreasing function of p and tends to 10 as p→ +∞, thus np > 10 for all p > 1 and, in particular, for
all p > n+2

n−2 . On the other hand, when n ≥ 11 one may check that the condition n < np is equivalent
to p < pn, with pn defined as in the statement, and (ii) follows.

Proof of (ii). Let Ω = B, g(u) = (1 + u)p. For r = |x| ∈ (0, 1) we set

s = log r ∈ (−∞, 0), v(s) =
d

ds
z(s) and w(s) = −λ (p− 1)e2sez(s),

where z is such that 1 + u(r) = e
z(log r)

p−1 = e
z(s)
p−1 , and we rewrite problem (1) as the dynamical system{

v′ = w − (n− 2)v − 1
p−1 v

2

w′ = (v + 2)w,
(38)

with the Steklov condition

w(0) = −λ(p− 1)
(

1 +
v(0)

c(p− 1)

)1−p

. (39)
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By definition, w(s) < 0. Furthermore, since the equation combined with Lemma 10 gives u′(r) < 0 in
(0, 1), we also deduce that v(s) < 0. Hence we study the trajectory of (38) in the region of the phase
plane where both v and w are negative.
System (38) admits three stationary points: O = (0, 0), P = (−2,−2(n− 2− 2

p−1)) and Q = (−(p−
1)(n− 2), 0). Since p > n+2

n−2 , the point P belongs to the region of the phase plane where both v and
w are negative. The point O is a saddle point, independently of the dimension, its stable manifold is
the v-axis while the unstable manifold is tangent to the line w = nv. The point Q, since p > n+2

n−2 ,
is a saddle point, its stable manifold is the v-axis while the unstable manifold is tangent to the line
w = −v(p(n − 2) − 2) − (p − 1)(n − 2)(p(n − 2) − 2). For n ≥ 11, the point P is a spiral sink if
p ∈ (n+2

n−2 , pn) and a sink if p ≥ pn. If n ≤ 10, P is always a stable spiral point.
Since the system (38) differs from (35) only for the negative term − 1

p−1 v
2 in the first equation, some

minor changes allow us to argue as in [27, Lemmas 2 and 3] and prove

Lemma 14. Let Ω = B, g(u) = (1 + u)p, with p > n+2
n−2 , and let u be a radial solution of the equation

in (1). Let Φp(s) = (v(s), w(s)) be the corresponding trajectory of (38), then
• u is regular if and only if lim

s→−∞
Φp(s) = O;

• u is singular if and only if Φp(s) = P for every s ∈ (−∞, 0).

We denote with Γp the graph relative to the unstable manifold of O. Solutions of (38) under condition
(39) correspond to intersections of Γp with the curve

γc,p(v) := −λ(p− 1)
(

1 +
v

c(p− 1)

)1−p

, v ∈ (−∞, 0).

In view of Lemma 14, if u = vs is a singular radial solution of problem (1) for some c > 0 and for
λ = λs, then P belongs to the support of γc,p, that is λs must be as in (6). On the other hand, being
λs well-defined only for c > 2/(p − 1), one has no singular radial solutions for 0 < c ≤ 2/(p − 1) so
that, in particular, the extremal solution is regular.
Furthermore, by invoking again Lemma 14, we conclude that the unique singular radial solution is

vs(x) :=
c(p− 1)

c(p− 1)− 2
|x|−2/(p−1) − 1. (40)

We conclude by noting that vs ∈ L1(B), and hence it weakly solves problem (1) if and only if p > n
n−2 ,

furthermore vs ∈ H1(B) if and only if p > n+2
n−2 .

Proof of (iii). Let n ≥ 11 and p ≥ pn, this range is not covered by statement (i), hence the regularity
of u∗ is unknown. For 0 < c ≤ 2/(p− 1), by (ii), we know that there exists no singular solution. Let
c ∈ ( 2

p−1 , cn,p), with cn,p as in (7) so that cn,p <
n−2

2 . If h = h(c) denotes the function defined in
Theorem 9, we have

h(c)
|x|2

<
pλs

|x|2

(
c(p− 1)

c(p− 1)− 2

)p−1

= p λs(1 + vs)p−1 for all x ∈ B \ {0} .

Repeating the same argument that follows (37), we deduce that λ∗ > λs and u∗ 6= vs.
If c ≥ cn,p, we have

h(c)
|x|2

≥ p λs

|x|2

(
c(p− 1)

c(p− 1)− 2

)p−1

= p λs(1 + vs)p−1 for all x ∈ B \ {0} .
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Inserting this inequality in (22) yields∫
B
|∇u|2 dx+ c

∫
∂B

u2 dσ ≥ h(c)
∫

B

u2

|x|2
dx ≥ p λs

∫
B

(1 + vs)p−1 u2 dx

for all u ∈ H1(B). The second part of statement (iii) then follows from Theorem 2.

Remark 15. By arguing as in the proof of Theorem 4-(iii), one may check that, when c ≥ n−2
2 , the

singular solution vs in (40) satisfies the stability condition (5) for any n
n−2 < p < n+2

√
n−1

n−4+2
√

n−1
< n+2

n−2 but,
since it does not lie in the energy class, it cannot be the extremal solution. This strange phenomenon,
that is the existence of solutions that cannot be approached by the branch of classical solutions, was
already noticed under Dirichlet boundary conditions, see [7, Theorem 6.2].

7 Proof of Theorem 5

For λ > 0, let u be a radial solution to problem (1) with g(u) = (1 + u)
n+2
n−2 and Ω = B. Then

w := λ
n−2

4 (u+ 1) solves 
−∆w = w

n+2
n−2 in B

w > λ
n−2

4 in B
wν + cw = c λ(n−2)/4 on ∂B.

(41)

Arguing as in [18, Theorem 7], one sees that u may be extended as a positive entire solution of the
same equation in Rn. But positive radial solutions of the equation

−∆w = w(n+2)/(n−2) in Rn

are explicitly given by

wε(x) := (n(n− 2)ε)(n−2)/4 (ε+ |x|2)−(n−2)/2, ε > 0,

see [9] and references therein. The restriction to B of the functions wε solves problem (41) provided

w′ε(1) + cwε(1) = c λ(n−2)/4 ⇐⇒ ϕ(ε) = λn−2, (42)

with ϕ(ε) as in (9). Equality (42) gives the bound ε > ε0(c) := max{0, n−2
c − 1}. The first part of the

statement is then a consequence of (10).
By (42) we get

λ(ε) =
n(n− 2)ε [c(1 + ε)− n+ 2]4/(n−2)

c4/(n−2) (1 + ε)2n/(n−2)
→ 0 ⇐⇒ ε↘ ε0 or ε↗ +∞.

Furthermore, since u2(x) = (λ(ε2))−(n−2)/4wε2(x)− 1, we have

u2(0) ∼
(
n(n− 2)
λ(ε2) ε2

)(n−2)/4

and u2(1) ∼
(

n(n− 2)ε2
λ(ε2)(1 + ε2)2

)(n−2)/4

as ε2 ↘ ε0.

If 0 < c < n − 2, the second part of the statement follows from the fact that ε0(c) = n−2−c
c , while if

c ≥ n− 2, since ε0(c) = 0, one has to take in account the fact that

λn−2(ε2) ∼

{
(n(n− 2))n−2 εn+2

2 if c = n− 2
(n(n− 2 )ε2)n−2

(
c−n+2

c

)4 if c > n− 2
as ε2 ↘ 0.
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Appendix: description of the solutions branch when g(u) = eu

Assume that Ω = B and g(u) = eu. In this section we describe analytically the (radial) solutions
branch, thereby justifying the four pictures displayed in Figure 1. For any c > 0, let

λs := 2(n− 2)e−2/c , us(x) := 2
(

1
c
− log |x|

)
and γc(v) := −λ e−v/c , λ ∈ (0, λ∗].

We denote by γ∗c the curve corresponding to λ = λ∗(c) and by γs
c the one corresponding to λ = λs(c).

We also denote by Γ the unstable manifold of O, that is the heteroclinic joining O and P . Note that
λ∗ < nc

e in view of (28)-(29) since α = e.
A radial solution u of problem (1) is strictly radially decreasing, hence we have ‖u‖∞ = u(0). Thus,
to plot the diagram, one has to study the dependence of u(0) on λ. The continuity of the branch is
a consequence of the implicit function Theorem together with the convexity of u 7→ eu, see [11]. We
first prove a result which is well-known for the Dirichlet problem but which appears less obvious for
the Steklov problem

Proposition 16. Let n ≥ 2, c > 0 and 0 < λ1 < λ2 < λ∗. Assume that u1 and u2 are two regular
radial solutions of problem (1) corresponding, respectively, to λ = λ1 and λ = λ2, then u1(0) 6= u2(0).

Proof. Any regular radial solution u = u(r) of problem (1) for some λ > 0 corresponds to the part of
Γ between O and its intersection (v, w) with γc. In the Dirichlet case, γc is the straight line w = −λ.
Since by (34) any dilation with respect to r becomes a translation in the s-variable, there exists β > 0
such that u(βr) solves the Dirichlet problem for λ = −w.
By contradiction, assume that u1(0) = u2(0) = δ > 0 and let (vi, wi), i = 1, 2, be the corresponding
points in the phase plane. Then there exist β1, β2 > 0 such that u1(r) := u1(β1r) and u2(r) := u2(β2r)
vanish at r = 1 and solve the following Cauchy problem

−u′′(r)− n−1
r u′(r) = λ eu(r) r ∈ (0, 1)

u(0) = δ > 0
u′(0) = 0

(43)

with λ = λ1 = −w1 and λ = λ2 = −w2, respectively. Moreover, λ1 6= λ2, in view of the monotonicity
of γc. Then, by uniqueness of the solution to the Cauchy problem,

u2(r) = u1

r
√
λ2

λ1


which contradicts the fact that u1(1) = u2(1) = 0. 2

The next result justifies the first picture in Figure 1.

Proposition 17. Let n = 2, then

• λ∗(c) = c
(√

c2 + 4− c
)
e−1− 2

c
+

√
c2+4
c ;

• for every λ ∈ (0, λ∗), there exist two regular radial solutions, the minimal one uλ and a larger one
Uλ. The maps λ 7→ uλ(0) and λ 7→ Uλ(0) are, respectively, increasing and decreasing with respect to
λ and uλ(0) ↘ 0 whereas Uλ(0) ↗ +∞ as λ↘ 0;
• for λ = λ∗ the extremal solution u∗ is regular and the solutions branch has a turning point.
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Proof. When n = 2 the equilibrium points of system (35) are not isolated and lie on the v-axis while
the trajectories in the phase plane are the parabolas w = v2/2 + 2v +C, with C < 2. Hence, Γ is the
parabola having equation w(v) = v2/2 + 2v. Indeed, a slight modification of Lemma 13 shows that
the trajectory corresponding to a regular solution of (1) starts in O and ends in (−4, 0) moving on Γ.
On the other hand, there exist no singular radial solutions (the only candidate is (−4, 0)) so that u∗

is regular.
The statement on the number of solutions follows from the fact that we must intersect the (convex)
parabola Γ with the concave graph of the function w = γc(v). The minimal solution uλ corresponds
to the intersection which is closer to O, the large solution Uλ to the other intersection. The value of
λ∗(c) is explicitly determined by imposing to γc to be tangent to Γ.
By Lemma 10, we known that the branch of minimal solutions is strictly increasing with respect to λ,
the behavior of the second branch arising from λ∗ comes from Proposition 16. If λ = 0, then γc(v) ≡ 0,
hence the two intersection points with Γ are O and (−4, 0). To O corresponds the solution u0 ≡ 0.
To (−4, 0) corresponds the solution U0(x) = −2 log |x|. Hence, as λ→ 0, we get that Uλ(0) → +∞.2

Concerning the second picture in Figure 1, we have

Proposition 18. Let 3 ≤ n ≤ 9, then
• λ∗ > λs and the solutions branch has infinitely many turning points clustering on both sides of λs;
• for λ = λ∗ the extremal solution u∗ is regular and the solutions branch has a turning point;
• if λ = λs there exist infinitely many solutions.

Proof. By Lemma 13, combined with the stability properties of the stationary points O and P , we
know that the trajectory Φ tends to O as s→ −∞ and spirals around P as s→ +∞.
Therefore, for some s, Φ(s) lies in the strip −2 < v(s) < 0 (on the right of P ) in the phase plane.
Hence, there exists a limit value λ∗ > λs, such that the corresponding curve γ∗c (not containing P )
becomes tangent to Γ while γs

c contains P . For λ > λ∗ no intersections can be found and no solution
exists. When λ < λ∗, the curve γc intersects at least twice Γ. The intersection point nearest to O
corresponds to the minimal solution uλ. Since we already know that the branch of minimal solutions
is strictly increasing with respect to λ, Proposition 16 justifies the second part of the solutions branch
displayed in Figure 1. 2

We now turn to high dimensions n ≥ 10. In this case, the number

cn :=
n− 2−

√
(n− 2)(n− 10)

2

is well-defined. The next statement justifies the third picture in Figure 1.

Proposition 19. Let n ≥ 10 and 0 < c < cn, then
• λ∗ > λs and for every λ ∈ (0, λs) there exists a unique regular radial solution;
• for every λ ∈ (λs, λ

∗) there exist two regular radial solutions, the minimal one uλ and a large one
Uλ. Furthermore λ 7→ uλ(0) and λ 7→ Uλ(0) are, respectively, increasing and decreasing with respect
to λ and Uλ(0) ↗ +∞ as λ↘ λs;
• if λ = λ∗ the extremal solution u∗ is regular and the solutions branch has a turning point.

Proof. By Lemma 13, we know that the trajectory Φ starts in O and ends in P . We show that, when
n ≥ 10, Γ lies in the region T , where

T :=

{
(v, w) : −2 ≤ v ≤ 0,−2(n− 2) + (v + 2)

n− 2 +
√

(n− 2)(n− 10)
2

≤ w ≤ (n− 2)v

}
,
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and, furthermore, Γ is tangent in O to the line w = nv and in P to the line

w = −2(n− 2) + (v + 2)
n− 2 +

√
(n− 2)(n− 10)

2
. (44)

The tangent lines at the two stationary points are determined by the eigenvectors of the corresponding
linearized system. More precisely, w = nv is the tangent line to the unstable manifold of O, while (44)
is the tangent line to the stable manifold of P corresponding to the eigenvalue having the smallest
absolute value. Then, starting from O, a close look at (35) shows that v must lie in the interval (−2, 0)
and furthermore w ≤ (n−2)v. Assume by contradiction that Γ intersects the line (44) for some s = s,
with v(s) ∈ (−2, 0). Some computations then give

dw(s)
ds

−
n− 2 +

√
(n− 2)(n− 10)

2
dv(s)
ds

=
n− 2 +

√
(n− 2)(n− 10)

2
(v(s) + 2)2 > 0.

Hence, recalling that dv(s)
ds < 0, we conclude that dw

dv <
n−2+

√
(n−2)(n−10)

2 , a contradiction.
When λ = λs, γs

c is tangent to Γ for c = cn. When c ∈ (0, cn), we show that γs
c intersects Γ twice, in

P and for some v ∈ (−2, 0). Since, for −2 ≤ v ≤ 0, Γ is the graph of a function w(v) = w(s(v)), we
study the sign of

F (v) := γs
c (v)− w(v) = −2(n− 2)e−(v+2)/c − w(v), −2 ≤ v ≤ 0.

We have that
F ′(v) = γ′c(v)−

dw(v)
dv

=
2(n− 2)

c
e−(v+2)/c − (v + 2)w(v)

w(v)− (n− 2)v

and we observe that F (−2) = 0, F (0) < 0 and F ′(−2) > 0. Hence F admits at least one zero in the
interval (−2, 0). Moreover, if v ∈ (0, 2) is such that F (v) = 0, we deduce

F ′(v) = 2e−(v+2)/c

(
n− 2
c

− v + 2
v + 2e−(v+2)/c

)
:= 2e−(v+2)/cH(v).

The sign of the function H tells us which is the position of the tangent vectors to γc and Γ when they
intersect. Some computations give

H ′(v) =
2
(
c− (c+ v + 2)e−(v+2)

)
c(v + 2e−(v+2))2

=:
2h(v)

c(v + 2e−(v+2))2
,

but h(−2) = 0 and h′(v) = 2(v + 2)e−(v+2)c−2 > 0, so H ′(v) > 0 for every v ∈ (−2, 0). In terms of
F this means that F ′(v) changes sign at most once in (−2, 0). If we assume by contradiction that
there exist −2 < v1 < v2 < 0 such that F (v1) = 0 = F (v2), the observations so far collected allow
to conclude that F ′(v1) < 0, F ′(v2) = 0 and there exists δ > 0 such that F (v) < 0, or equivalently
w(v) > γc(v), for v ∈ (v2 + δ, v2 + 2δ). Inserting this into F ′(v) we finally conclude that F ′(v) > 0 for
v ∈ (v2 + δ, v2 + 2δ), a contradiction.
As a consequence of the above discussion, we get that γc intersects Γ once, for every λ ∈ (0, λs), and
twice, for every λ ∈ [λs, λ

∗), where λ∗ > λs turns to be the value of λ in correspondence of which γc

is tangent to Γ. To get the second statement, we repeat the arguments of Proposition 17 with minor
changes. 2

We conclude with the last picture in Figure 1.

Proposition 20. Let n ≥ 10 and c ≥ cn, then
• for every λ ∈ (0, λ∗) there exists a unique regular solution;
• for λ∗ = λs the extremal solution u∗ is singular and u∗ = us.
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Proof. The behavior of the trajectory Γ is the same as described in Proposition 19. Furthermore
γs

c is tangent to Γ at c = cn and lies below the line (44) if c > cn. By this we conclude that, for any
λ ∈ (0, λs], γc intersects Γ just once and does not intersect Γ for λ > λs, hence λ∗ = λs. 2
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