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Abstract. We consider an optimal shape problem aiming to reduce the torsional displacements of a
partially hinged rectangular plate. The cost functional is the gap function, namely the maximum differ-
ence of displacements between the two free edges of the plate. We seek optimal shapes for reinforcements
in order to minimize the gap function. This leads to a minimaxmax problem that we address both theo-
retically and numerically in some particular situations. Our results are in line with the expected behavior
of bridges and they also give some hints for designs of future bridges.
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1. Introduction

The deck of a suspension bridge may exhibit torsional oscillations which appear when the deck rotates
around its main axis. These oscillations are extremely dangerous and may lead to collapses, see [9,
§1.3,1.4] for a survey of some historical accidents. Following [8] we view the deck of a bridge as a long
narrow rectangular thin plate Ω, hinged at two opposite edges and free on the remaining two edges:
this plate well describes decks of suspension bridges which, at the short edges, are supported by the
ground. Up to scaling, we may assume that the plate has length π and width 2` with 2`� π so that

Ω = (0, π)× (−`, `) ⊂ R2 .

In [5, 8] the action of an external force f on this plate was modeled through the Kirchhoff-Love theory
(see e.g. [23]): the energy E of the vertical displacement u of a plate Ω subject to a load f may be
computed through the functional

E(u) = EI

∫
Ω

(
(∆u)2

2
+ (1− σ)(u2

xy − uxxuyy)
)
dxdy −

∫
Ω
fu dxdy ,

where E is the Young modulus, I is the moment of inertia (so that EI is the flexural rigidity), σ is the
Poisson ratio. Both the Young modulus and the Poisson ratio depend on the Lamé constants (see [23,
(3.40)-(3.41)]) and, in particular,

(1) 0 < σ <
1

2
.

By (1) the energy functional E is convex. After dividing by EI and replacing f/EI with f , we may
focus our attention on the scaled functional (still denoted by E) defined by

(2) E(u) =

∫
Ω

(
(∆u)2

2
+ (1− σ)(u2

xy − uxxuyy)− fu
)
dxdy .

The minimizer of E should then be multiplied by EI in order to recover the original meaning.
For the partially hinged plate under consideration, the functional E has to be minimized on the space

(3) H2
∗ (Ω) :=

{
v ∈ H2(Ω) : v = 0 on {0, π} × (−`, `)

}
.

Since Ω ⊂ R2, we have H2(Ω) ⊂ C0(Ω) so that the condition on {0, π} × (−`, `) is satisfied pointwise.
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The continuity of the minimizer u enables us to use the gap function

(4) G(x) := u(x, `)− u(x,−`) x ∈ (0, π)

introduced in [3]. The gap function measures the difference of the vertical displacements on the two
free edges of the plate Ω and is therefore a measure of its torsional response, also in terms of its angle
of torsion: by “free edge” we intend both (0, π) × {`} and (0, π) × {−`}. The maximal gap is then
computed by determining the maximum of the gap function:

(5) G∞ := max
x∈[0,π]

∣∣u(x, `)− u(x,−`)
∣∣ .

This measures the torsional performance of the plate since the corresponding angle of rotation is

(6) θ = arctan
G∞

2`
.

Clearly, G∞ and θ depend on f through the energy (2) and one is led to seek the function f (belonging to
a suitable class F) which yields the largest torsional displacement. Then, aiming to lower the torsional
risk, one may strengthen the plate. Imagine that one has a certain amount of stiff material (mixture
of steel and concrete) and has to decide where to place it within the deck of a bridge in order to lower
the maximal gap G∞ and, in turn, the torsional displacements. For economical reasons, this material
should occupy only a proper open subset D of Ω, so that its measure satisfies |D| ∈ (0, 2`π) and,
possibly, further geometric constraints. The stiffening structure D reinforces only a part of the plate by
a factor (1 + d), where d > 0 is a constant measuring the additional strength of the stiffening material:
this means that the stiff material is placed in some parts of the plate in order to increase the flexural
rigidity and, therefore, the energy necessary to bend it. This kind of minimization problem naturally
leads to homogenization [17], see also [14] for a stiffening problem for the torsion of a bar.

Our purpose is to minimize the maximal gap G∞ which depends both on f and D: G∞ = G∞f,D. We
introduce some classes F and D and we tackle the minimaxmax problem:

(7) min
D∈D

max
f∈F

max
x∈[0,π]

∣∣u(x, `)− u(x,−`)
∣∣ ,

where u is the minimizer of the energy functional. The existence of an optimal couple (f,D) ∈ F ×D
achieving the maximum and the minimum in (7) depend on how wide are the classes F and D. Several
different classes are considered in the present paper, see (24), (31), (32), (35), (42), (43) for F and (19),
(34), (38), (40) for D. We mostly restricted our attention to simple designs D that are appropriate for
engineering applications.

The minimaxmax problem (7) can be also seen as a worst-case optimization problem [1, 7], since one
is interested in minimizing the worst value of a functional among all possible designs. Some results
about (7) were obtained in [4] but, since the problem is quite involved, several questions were left open.
In this paper we give answers to some of these questions and we tackle further related problems with
applications to suspension bridges. We restrict our attention to some particular problems of practical
interest. We study the torsional stability of bridges as the Poisson ratio and the width vary and we give
some suggestions for future designs of bridges. We also consider nonlinear problems aiming to model
the stretching action of the sustaining cables and we analyze a model of cars going across the bridge.

This paper is organized as follows. In Section 2 we define in detail the minimaxmax problem, for both
the linear and nonlinear models. In Section 3 we explain the procedure that we use for the numerical
experiments. In Section 4 we focus on some problems left open in [4] for the free plate (D = ∅),
in particular we numerically study in detail the worst case in Lp spaces and we formulate some new
conjectures and open problems. In Sections 5 and 6 we address the minimaxmax problem (7) when the
set D of admissible designs is formed by rectangles, as in suspension bridges: we study the dependence
of the torsional response of the plate with respect to both its width 2` and to the Poisson ratio σ. In
Section 7 we consider the nonlinear minimaxmax problem in the case of a bridge crossed by a fixed
number of cars.
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2. Variational setting and energy of the reinforced plate

By [8, Lemma 4.1] we know that the space H2
∗ (Ω) introduced in (3) is a Hilbert space when endowed

with the scalar product

(u, v)H2
∗

:=

∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy

and associated norm ‖u‖2H2
∗

= (u, u)H2
∗
, which is equivalent to the usual norm in H2(Ω), that is,

‖u‖2H2 = ‖u‖2L2 + ‖D2u‖2L2 where D2u is the Hessian matrix of u. We also define

H−2
∗ (Ω) := the dual space of H2

∗ (Ω)

and we denote by 〈·, ·〉 the corresponding duality. If f ∈ L1(Ω) then the functional E is well-defined in
H2
∗ (Ω), while if f ∈ H−2

∗ (Ω) we need to replace
∫

Ω fu with 〈f, u〉.
Assume that the plate Ω is reinforced with a stiff material which occupies an open region D ⊂ Ω and

that D belongs to a certain class D, while f belongs to some set F of admissible forcing terms. We
stiffen the plate by increasing the cost of the bending energy, which modifies the original energy (2)
into

(8) ER(u) =

∫
Ω

[
(1 + dχD)

(
(∆u)2

2
+ (1− σ)(u2

xy − uxxuyy)
)
− fu

]
dxdy ,

where χD is the characteristic function of D and d > 0 is the additional strength of the stiffening
material. Compared with the scaled energy (2), this amounts to increasing the flexural rigidity EI by
maintaining fixed the Poisson ratio σ. As for (2), the functional ER in (8) is convex and should be
minimized on the space H2

∗ (Ω). For all f ∈ H−2
∗ (Ω) the unique minimizer of ER satisfies the weak

Euler-Lagrange equation

(9)

∫
Ω

(1 + dχD)
[
∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)

]
dxdy = 〈f, v〉 ∀v ∈ H2

∗ (Ω) ,

which has no strong counterpart due to the lack of regularity of the term (1 + dχD) forbids to write
the Euler-Lagrange equation in a strong form. Therefore, the minimizer uf,D ∈ H2

∗ (Ω) satisfies a weak
Euler-Lagrange equation but not a strong one.

Assume that the two classes F and D of admissible f and D are fixed. Some examples of sets F and
D will be given in Sections 4 and 5. Take f ∈ F and D ∈ D and the minimizer uf,D ∈ H2

∗ (Ω) ⊂ C0(Ω)
of ER. Then compute its gap function and its maximal gap:

(10) Gf,D(x) = uf,D(x, `)− uf,D(x,−`) , G∞f,D = max
x∈[0,π]

|Gf,D(x)| .

This defines the map

G∞f,D : F ×D → [0,∞) , (f,D) 7→ G∞f,D .
At this point, we first determine the worst f ∈ F :

(11) G∞D = max
f∈F

G∞f,D = max
f∈F

max
x∈[0,π]

|Gf,D(x)| ,

and then the best D ∈ D:

(12) G∞ = min
D∈D

G∞D = min
D∈D

max
f∈F

max
x∈[0,π]

|Gf,D(x)| .

This is the minimaxmax problem considered in the present paper. In the next sections we analyze some
classes F and D where (12) admits a solution. Note that G∞ = G∞(F ,D) is monotone with respect to
both the classes F and D but with opposite monotonicity, see [4].

So far we merely considered linear problems, leading to a linear PDE, see (9). However, if one aims
to use a plate model for a suspension bridge, then a linear theory is not sufficiently accurate. As
pointed out in the engineering literature (see, e.g., [2, 16]), the most relevant source of nonlinearity
in suspension bridges is due to the sustaining cables: in fact, “nonlinearity” is here synonymous of
contribution to torsion and instability. Therefore, as in [16] we assume that the hangers connecting the
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sustaining cables and the deck are inextensible. The effect of the cable action is concentrated on two
small strips of Ω parallel to the free edges, that is,

(13) ω := (0, π)×
[(
− π

150
,− π

150
+

π

1500

)
∪
( π

150
− π

1500
,
π

150

)]
.

This choice is motivated by the size of real bridges which have lengths of approximately 1km, width
of approximately 13m, whereas the hangers are confined in strips of amplitude 1.3m close to the long
edges of the plate, see a sketch in Figure 1.

Figure 1. The plate Ω and its subset (dark grey) where the cables+hangers act.

This means that the deformation of each of the two strips in (13) is rigidly transmitted to the
above sustaining cable whose stretching increases nonlinearly its tension and has a nonlocal effect
distributed throughout the whole cable. In order to model this effect, we use the Woinowsky-Krieger
[25] modification of the classical models by Bernoulli and Euler assuming a nonlinear dependence of
the axial strain on the deformation gradient. Then the energy to be minimized is

(14) N(u) =

∫
Ω

[
(1 + dχD)

(
(∆u)2

2
+ (1− σ)(u2

xy − uxxuyy)
)
− fu

]
dxdy +

1

4

(∫
ω
u2
x dxdy

)2

,

which should be compared with (2). Note that only stretching in the x-direction is considered since the
two (vertical) short edges are hinged. It is straightforward that the convex energy N admits a unique
minimizer u for all f ∈ H−2

∗ (Ω) and that u satisfies the weak Euler-Lagrange equation

(15)

∫
Ω

(1+dχD)
[
∆u∆v+(1−σ)(2uxyvxy−uxxvyy−uyyvxx)

]
dxdy+

∫
ω
u2
x dxdy ·

∫
ω
uxvx dxdy = 〈f, v〉

for all v ∈ H2
∗ (Ω) which, again, has no strong counterpart. After the solution of (15) is found, we follow

the same procedure as for (10)-(11) and we reach again the minimaxmax problem (12).
For both the linear and nonlinear minimaxmax problems we obtain theoretical and numerical results,

complemented with some conjectures and open problems. In the next section we illustrate the numerical
procedure.

3. Numerical methods

In this section we give a brief description of the numerical algorithm for solving the minimaxmax
problem (7). We consider the following sets of basis functions

φi,j(x, y) = sin (ix) sin

(
jπ(y − `)

2`

)
, ϕi,j(x, y) = sin (ix) cos

(
(j − 1)π(y − `)

2`

)
,

ψi,j(x, y) = cos ((i− 1)x) sin

(
jπ(y − `)

2`

)
, ηi,j(x, y) = cos ((i− 1)x) cos

(
(j − 1)π(y − `)

2`

)
,

defined for i, j = 1, 2, ... and the expansions

(16) u(x, y) =
M∑
i=1

N∑
j=1

aui,jφi,j(x, y) +
M∑
i=1

N∑
j=1

bui,jϕi,j(x, y),

(17) f(x, y) =

M∑
i=1

N∑
j=1

afi,jφi,j(x, y) +

M∑
i=1

N∑
j=1

bfi,jϕi,j(x, y) +

M∑
i=1

N∑
j=1

cfi,jψi,j(x, y) +

M∑
i=1

N∑
j=1

dfi,jηi,j(x, y),
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for some M,N ∈ N. Note that, by construction, the approximation of u in (16) satisfies the homogenous
boundary conditions on the small edges of the plate.

Remark 1. Note that for some particular coefficients aui,j and bui,j, the gap function is given by

G(x) = u(x, `)− u(x,−`)

=

M∑
i=1

N∑
j=1

aui,j (φi,j(x, `)− φi,j(x,−`)) +

M∑
i=1

N∑
j=1

bui,j (ϕi,j(x, `)− ϕi,j(x,−`))

=
M∑
i=1

N∑
j=1

bui,j sin(ix)
(
1 + (−1)j

)
because φi,j(x, `)− φi,j(x,−`) = 0 and ϕi,j(x, `)− ϕi,j(x,−`) = 1 + (−1)j.

Let us introduce the scalar product

(u, v)D :=

∫
Ω

(1 + dχD)
[
∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)

]
dxdy .

For a given function f , the numerical solution of (9) leads to a linear system of Galerkin equations,
∑M

i=1

∑N
j=1

[
aui,j(φi,j , φk,m)D + bui,j(ϕi,j , φk,m)D

]
= 〈f, φk,m〉∑M

i=1

∑N
j=1

[
aui,j(φi,j , ϕk,m)D + bui,j(ϕi,j , ϕk,m)D

]
= 〈f, ϕk,m〉

for k = 1, 2, ...M, m = 1, 2, ..., N , which can be written as

(18)

 (φi,j , φk,m)D (ϕi,j , φk,m)D

(φi,j , ϕk,m)D (ϕi,j , ϕk,m)D


︸ ︷︷ ︸

M

.

 aui,j

bui,j

 =

 〈f, φk,m〉
〈f, ϕk,m〉

 .
In all the integrals involved in the previous linear system, the integrand is a product of trigonometric

functions and can be calculated exactly, i.e., avoiding quadrature errors. For example we have,∫ π

0

∫ `

−`
φi,j(x, y)φk,m(x, y)dydx =


`π
2 if i = k, j = m

0 otherwise

and all the remaining integrals can be calculated in a similar fashion.
Once we have solved the linear system (18), we obtain the coefficients bui,j and the gap function is calcu-

lated taking into account Remark 1 and we need to solve the optimization problem maxx∈[0,π] |Gf,D(x)|,
for example using a direct search method. We will denote by X a point in [0, π], for which

max
x∈[0,π]

|Gf,D(x)| = |G(X)|.

Again, taking into account Remark 1, we observe that

∂ (G(X))

∂
(
aui,j

) = 0,
∂ (G(X))

∂
(
bui,j

) = sin(iX)(1 + (−1)j).

Next step is the calculation of G∞D , that is, we seek the optimal f ∈ F that allows to obtain the
maximal gap function: we consider different classes F specified in the applications, see (24), (31), (32),

(35), (42), (43). We assume that f is given by (17) and we determine optimal coefficients afi,j , b
f
i,j ,

cfi,j and dfi,j by a gradient type method. In particular, it is convenient to know how does the gap

function changes, once we perturb each of those coefficients. Taking into account (18), we have that



6 PEDRO R.S. ANTUNES – FILIPPO GAZZOLA

the derivative of the coefficients aui,j , b
u
i,j with respect to a perturbation of each coefficient defining f

can be obtained through the solution of a linear system,

M.


∂(aui,j)
∂afi,j
∂(bui,j)
∂afi,j

 =

 〈φi,j , φk,m〉
〈φi,j , ϕk,m〉

 , M.


∂(aui,j)
∂bfi,j
∂(bui,j)
∂bfi,j

 =

 〈ϕi,j , φk,m〉
〈ϕi,j , ϕk,m〉



M.


∂(aui,j)
∂cfi,j
∂(bui,j)
∂cfi,j

 =

 〈ψi,j , φk,m〉
〈ψi,j , ϕk,m〉

 , M.


∂(aui,j)
∂dfi,j
∂(bui,j)
∂dfi,j

 =

 〈ηi,j , φk,m〉
〈ηi,j , ϕk,m〉

 .
Finally, we have

∂ (G(X))

∂
(
afi,j

) =
∂ (G(X))

∂
(
bui,j

) ∂
(
bui,j

)
∂
(
afi,j

) , ∂ (G(X))

∂
(
bfi,j

) =
∂ (G(X))

∂
(
bui,j

) ∂
(
bui,j

)
∂
(
bfi,j

)
∂ (G(X))

∂
(
cfi,j

) =
∂ (G(X))

∂
(
bui,j

) ∂
(
bui,j

)
∂
(
cfi,j

) , ∂ (G(X))

∂
(
dfi,j

) =
∂ (G(X))

∂
(
bui,j

) ∂
(
bui,j

)
∂
(
dfi,j

) .
The last step of the numerical procedure is to solve the optimization problem (12). For this purpose,

we consider D to be the union of P disjoint rectangles of a fixed size (as for real bridges, see Section 5),

(19) D =

P⋃
j=1

([
xj −

∆x

2
, xj +

∆x

2

]
×
[
yj −

∆y

2
, yj +

∆y

2

])
,

for xj ∈
[

∆x
2 , π −

∆x
2

]
and yj ∈

[
−`+ ∆y

2 , `−
∆y
2

]
. Then, we define a vector V = (x1, ..., xP , y1, ..., yP )

and the optimization (12) is solved by searching for optimal vectors V. This optimization was performed
by a pattern search numerical method using Matlab Routine patternsearch. This is a numerical
method to minimize functions without the use of derivatives or approximations of derivatives of the
objective function (see for example [22]). In next sections we will present some numerical results
obtained with the previous algorithm for solving the minimaxmax problem. In most cases, in the
numerical simulations we took the discretization parameters M = 35, N = 20.

4. Worst case for the free plate

In the case of a free plate (D = ∅) the energy ER in (8) coincides with E in (2). Up to a multiplicative
constant, the Euler-Lagrange equation satisfied by the minimizer of the energy (2) reads

(20) ∆2u = f in Ω ,

complemented with the boundary conditions

(21) u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−`, `)

on the short edges where the plate is hinged and

(22) uyy(x,±`) + σuxx(x,±`) = 0 , uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 ∀x ∈ (0, π)

on the large edges where the plate is free. We refer to [24, (2.40)] for the justification of these boundary
conditions, see also [8] for full details on how to derive them for the rectangular plate Ω under study. The
behavior of rectangular plates subject to a variety of boundary conditions is studied in [6, 10, 11, 18].
The solution u of (20)-(21)-(22) represents the vertical displacement of the plate under the action of
f and, since the boundary conditions (21)-(22) satisfy the complementing condition [8, Lemma 4.2] so
that elliptic regularity applies, u is a strong solution of (20) whenever f belongs to suitable spaces.
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One is then interested in solving the maxmax problem

(23) max
f∈F

G∞f = max
f∈F

max
x∈[0,π]

∣∣u(x, `)− u(x,−`)
∣∣ ,

where u ∈ H2
∗ (Ω) is the minimizer of E and depends on f through (20).

In this section we seek the optimal (worst) force f within the class

(24) F = {f ∈ Lp(Ω); ‖f‖p = 1} , 1 6 p 6∞ .

This problem was left open in [4], although partial results were obtained and several conjectures were
made. From [4, Section 4] we recall that the worst f exists and is necessarily odd with respect to y
whenever 1 < p <∞; for p =∞ existence is known and symmetry is expected (but not fully proved),
while nonexistence of a worst f is expected when p = 1.

4.1. Large values of p. In Figure 2 we represent the numerically obtained level sets of the worst
normalized f when p = 10, p = 50 and p =∞.

Figure 2. Worst normalized f ∈ Lp(Ω) when D = ∅, for p = 10 (left plot), p = 50
(middle plot) and p =∞ (right plot). The x-axis is vertical, the y-axis is horizontal.

Overall, Figure 2 suggests the following conjecture.

Conjecture 2. If F = {f ∈ L∞(Ω); ‖f‖∞ = 1}, then the solution f of the maxmax problem (23) is
given by both the odd functions ±f , where

(25) f(x, y) =

 1 if y > 0

−1 if y < 0 .

If Conjecture 2 were true, then one would be able to find the value in (23).

Proposition 3. Let f be as in (25). Then, for all x ∈ (0, π), we have the explicit form of the gap
function (4)

G(x) =
8

(1− σ)π

∞∑
k=0

(
cosh

[
(2k + 1)`

]
− 1
)(

(3− σ) sinh
[
(2k + 1)`

]
− (1− σ)(2k + 1)`

)
[
(3 + σ) sinh

[
(2k + 1)`

]
cosh

[
(2k + 1)`

]
+ (1− σ)(2k + 1)`

]
(2k + 1)5

sin[(2k + 1)x] .

Proof. For f as in (25), we seek the strong solution u of the problem
∆2u = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−`, `)
uyy(x,±`) + σuxx(x,±`) = uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0 for x ∈ (0, π) .
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By uniqueness of the solution, u is odd with respect to y and it suffices to solve the Euler-Lagrange
equation associated to the energy (2), that is,

(26)


∆2u = 1 in (0, π)× (0, `)

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (0, `)

u(x, 0) = uyy(x, 0) = 0 for x ∈ (0, π)

uyy(x, `) + σuxx(x, `) = uyyy(x, `) + (2− σ)uxxy(x, `) = 0 for x ∈ (0, π) .

By separating variables, we seek the solution of (26) in the form

u(x, y) =
∞∑
n=1

αn(y) sin(nx) .

By recalling that

1 =
4

π

∞∑
k=0

sin[(2k + 1)x]

2k + 1
in L2(0, π) ,

this leads to
∞∑
n=1

[
α′′′′n (y)− 2n2α′′n(y) + n4αn(y)

]
sin(nx) =

4

π

∞∑
k=0

sin[(2k + 1)x]

2k + 1

which immediately shows that α2k(y) ≡ 0 and that the odd Fourier coefficients α2k+1 solve the equation

(27) α′′′′2k+1(y)− 2(2k + 1)2α′′2k+1(y) + (2k + 1)4α2k+1(y) =
4

(2k + 1)π
.

Moreover, from the boundary conditions in (26) in y = 0 and y = `, we infer that α2k+1 satisfies

(28) α2k+1(0) = α′′2k+1(0) = α′′2k+1(`)−σ(2k+ 1)2α2k+1(`) = α′′′2k+1(`)− (2−σ)(2k+ 1)2α′2k+1(`) = 0 .

The solution of (27)-(28) is given by

α2k+1(y) = 4(3+σ)(1−σ) cosh2[(2k+1) ]̀+4σ(1+σ) cosh[(2k+1) ]̀−4σ(1−σ)(2k+1)` sinh[(2k+1) ]̀−2(1−σ)2(2k+1)2`2−4(3−σ)
(1−σ)π[(3+σ) sinh[(2k+1) ]̀ cosh[(2k+1) ]̀+(1−σ)(2k+1)`](2k+1)5 sinh[(2k+1)y]

+ 2(3−σ)+4σ cosh[(2k+1) ]̀−2(3+σ) cosh2[(2k+1) ]̀

π[(3+σ) sinh[(2k+1) ]̀ cosh[(2k+1) ]̀+(1−σ)(2k+1)`](2k+1)4 y cosh[(2k+1)y]

+ 2
(2k+1)4π

y sinh[(2k+1)y] − 4
(2k+1)5π

cosh[(2k+1)y] + 4
(2k+1)5π

so that

α2k+1(`) =
4

(1− σ)π

(
cosh

[
(2k + 1)`

]
− 1
)(

(3− σ) sinh
[
(2k + 1)`

]
− (1− σ)(2k + 1)`

)
[
(3 + σ) sinh

[
(2k + 1)`

]
cosh

[
(2k + 1)`

]
+ (1− σ)(2k + 1)`

]
(2k + 1)5

and then

u(x, `) =
4

(1− σ)π

∞∑
k=0

(
cosh

[
(2k + 1)`

]
− 1
)(

(3− σ) sinh
[
(2k + 1)`

]
− (1− σ)(2k + 1)`

)
[
(3 + σ) sinh

[
(2k + 1)`

]
cosh

[
(2k + 1)`

]
+ (1− σ)(2k + 1)`

]
(2k + 1)5

sin[(2k + 1)x]

for all x ∈ (0, π). In turn, since y 7→ u(x, y) is odd, we obtain the stated form for Gf (x). �

In order to compute the maximal gap G∞f we make a couple of remarks and then proceed numerically.

For f as in (25), it is straightforward that

Gf
(π

2
− x
)

= Gf
(π

2
+ x
)
∀x ∈

(
0,
π

2

)
, G′f

(π
2

)
= 0 ;

all this plays in favor of the natural conjecture that G∞f = Gf (π/2), which appears difficult to prove
in full detail. There is also numerical evidence in favor of this conjecture: by plotting numerically the
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graph of x 7→ Gf (x), one sees that it is strictly concave with a unique maximum at x = π/2. Assuming
this conjecture to be true, from Proposition 3 we would infer that

G∞f =
8

(1− σ)π

∞∑
k=0

(−1)k

(
cosh

[
(2k + 1)`

]
− 1
)(

(3− σ) sinh
[
(2k + 1)`

]
− (1− σ)(2k + 1)`

)
[
(3 + σ) sinh

[
(2k + 1)`

]
cosh

[
(2k + 1)`

]
+ (1− σ)(2k + 1)`

]
(2k + 1)5

.

Clearly, G∞f depends on ` and σ. In Figure 3 we plot the map σ 7→ G∞f when the Poisson ratio σ

varies in the “physical range” (1) and the map ` 7→ G∞f /` when ` varies the shape of the plate from a
beam to a square. Both plots are obtained by maintaining fixed the other variable.

0.1 0.2 0.3 0.4 0.5

0.00030

0.00035

0.00040

0.00045

0.00050

0.00055

0.5 1.0 1.5

0.2

0.4

0.6

0.8

Figure 3. The map σ 7→ G∞f for f as in (25), ` = π
150 and σ ∈ [0, 1/2] (left) and the

map ` 7→ G∞f /` for f as in (25), σ = 0.2 and ` ∈ (0, π2 ] (right).

The Poisson ratio is the negative ratio of transverse to axial strain: when a material is compressed in
one direction, it tends to expand in the other two directions, see [23]. The Poisson ratio σ is a measure
of this effect, it is the fraction of expansion divided by the fraction of compression for small values of
these changes. For metals the value of σ lies around 0.3 while for concrete 0.1 < σ < 0.2: the deck of
a bridge is a mixture of iron and concrete. The left plot in Figure 3 shows that σ 7→ G∞f is increasing,
which means that

(29)
in order to lower the torsional effects,

one should put more concrete than metal in the deck of a bridge.

The right plot in Figure 3 shows that not only ` 7→ G∞f is increasing (which had to be expected) but
also that

(30) the maximal gap increases superlinearly with respect to the width of the plate

and this result well describes the fact that if `→ 0 then Ω behaves like a beam while if ` is comparable
to π then Ω behaves like a plate. Indeed, the map ` 7→ G∞f has initially a quadratic behavior and then
it tends to behave linearly.

4.2. Small values of p. In Figure 4 we represent the numerically obtained level sets of the worst
normalized f when p = 1.1, p = 2, and p = 3.

The maximization procedure did not converge to an optimal f when p = 1 and therefore we expect
further that there is no worst case among normalized f ∈ L1(Ω). The maximizing sequence exhibited
spikes with opposite signs in the boundary points (π2 ,±

π
150) suggesting a weak*-convergence to deltas

concentrated in these points.
In fact, from a physical point of view, it is more natural to consider the class

(31) F = {f ∈ L∞(Ω); ‖f‖1 = 1, ‖f‖∞ 6M}

for some M > 0. The constraint ‖f‖1 = 1 measures the total mass present on the plate whereas M
measures the maximum mass density on the plate. The following statement is straightforward.
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Figure 4. Worst normalized f ∈ Lp(Ω) when D = ∅, when p = 1.1 (left), p = 2
(middle), and p = 3 (right). The x-axis is vertical, the y-axis is horizontal.

Proposition 4. Let F be as in (31) for some M > 0. Then the maxmax problem (23) admits a solution
f ∈ F .

Proof. The class F is a bounded equi-integrable subset of L1(Ω). Therefore, a maximizing sequence
{fn} ⊂ F converges weakly in L1(Ω) to some f ∈ L1(Ω), up to a subsequence. By L∞-boundedness,
it also converges weakly* in L∞(Ω). By lower semicontinuity of the L1-norm with respect to weak
convergence we have ‖f‖1 6 1 and by lower semicontinuity of the L∞-norm with respect to weak*
convergence we have ‖f‖∞ 6M .

The weak convergence fn ⇀ f in the Lp spaces implies the uniform convergence of the solutions of
(20) and, in turn, of the gap functions. �

In Figure 5 we show two profiles of the solution of the maxmax problem (23), for F as in (31) with
M = 100.

Figure 5. Two profiles of the solution of the maxmax problem (23), for F as in (31)
with M = 100.

Therefore, with a physical constraint such as given maximum mass density, also the maximization
problem in L1(Ω) admits a solution. Without this constraint, we now give further numerical argu-
ments in favor of the conjecture that maximizing sequences in L1(Ω) weakly*-converge to the deltas
concentrated in the boundary points (π2 ,±

π
150). For any (z, w) ∈ Ω we consider the odd distribution

Tz,w :=
δ(z,w) − δ(z,−w)

2
,
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where δP is the Dirac delta with mass concentrated at P ∈ Ω. Then we introduce the class of all such
distributions:

(32) F = {Tz,w; (z, w) ∈ Ω} .
We numerically computed the gap function for all T ∈ F with F as in (32) and the results showed

that the maxmax problem (23) has the following solution:

max
T∈F

G∞T = G∞Tπ
2 ,`
≈ 0.1423.

In Figure 6 we represent the level lines of the map (z, w) 7→ G∞Tz,w when (z, w) ∈ [0, π2 ]× [0, π
150 ]; these

lines, usually called influence lines [15], should then be extended by symmetry in the remaining parts
of Ω. This figure was generated by evaluating the map at nodes of a grid built with 50 and 20 divisions,
respectively, in the z and w directions.

Figure 6. Level lines of G∞T for T ∈ F defined by (32), with (z, w) ∈ [0, π2 ]× [0, π
150 ].

Therefore, we are led to another conjecture.

Conjecture 5. Let F be as in (32). Then the solution f of the maxmax problem (23) is given by both
the odd distributions Tπ

2
,±`.

If Conjecture 5 was true, then from [4, Section 4] one finds the value in (23):

max
(z,w)∈Ω

G∞Tz,w = G∞Tπ
2 ,`

= 2
√

2√
π(1−σ)

[ ∞∑
k=0

sinh2[(2k+1)`]

(2k+1)3
[
(3+σ) sinh[(2k+1)`] cosh[(2k+1)`]+(1−σ)(2k+1)`

]]1/2

.

In Figure 7, we plot the maps σ 7→ G∞Tπ
2 ,`

and ` 7→ G∞Tπ
2 ,`

.

0.1 0.2 0.3 0.4 0.5

0.13

0.14

0.15

0.16

0.17

0.18

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure 7. The map σ 7→ G∞Tπ
2 ,`

, when ` = π
150 and σ ∈ [0, 1/2] (left) and the map

` 7→ G∞Tπ
2 ,`

, when σ = 0.2 and ` ∈ (0, π2 ] (right).
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Also the left plot in Figure 7 shows that the maximal gap is an increasing function of σ, which
confirms principle (29): we obtained the same picture for other values of `. The right picture in Figure
7 shows that the growth with respect to ` is sublinear; from (6) we then deduce that the angle of
rotation of the plate tends to π/2 as ` → 0 and to 0 as ` → ∞, as had to be expected: we obtained
the same picture for other values of σ. This confirms that G∞ is a reliable measure of the torsional
performances of a partially hinged rectangular plate.

Finally, we illustrate the results that are obtained for different choices of M and N . We denote by

G∞,M,N
Tπ

2 ,`
the numerical approximation for G∞Tπ

2 ,`
, obtained with the algorithm described in Section 3,

taking a particular choice of M and N . In Figure 8 we plot the relative error,

EM,N :=

∣∣∣∣G∞,M,N
Tπ

2 ,`
− G∞Tπ

2 ,`

∣∣∣∣
G∞Tπ

2 ,`

,

for M = 10, 11, ..., 300 and N = 10, 11, ..., 20. We observe that the algorithm is highly accurate. For
example, taking M = 300 and N = 20 we obtain an error of 0.00675%.

Figure 8. Convergence results for EM,N , for M = 10, 11, ..., 300 and N = 10, 11, ..., 20.

5. Optimal reinforcements made of large rectangles

In order to justify reinforcements made of large rectangles, let us recall the main components of a
suspension bridge and the technique of erection. We are here concerned with the main span, namely
the part of the deck between the four towers. It has a rectangular shape with two long free edges (of
the order of 1km) and two shorter edges (of the order of 15m) fixed and hinged between the towers.
This is modeled by our plate Ω, where a reasonable choice of ` is ` = π/150.

A suspension bridge is usually erected starting from the anchorages and the towers. Then the sus-
taining cables are installed between the two couples of towers and the hangers are hooked to the cables.
Once all these components are in position, they furnish a stable working base from which the deck can
be raised from floating barges, see Figure 9.

We refer to [20, Section 15.23] for full details. The deck segments are put in position one aside the
other and have the shape of (large) rectangles. Our purpose is here to decide which of these segments
(rectangles) should be made of a more stiff material. We will consider the optimizations of the rectangles
to be stiffened, for two cases of forces f .

5.1. Optimal reinforcements with forces with unitary L2 norm. We divide the deck Ω into 20
rectangles (the deck segments), see Figure 10.

If Ω = (0, π)× (− π
150 ,

π
150), then the k-th deck segment (k = 1, ..., 20) is the rectangle

(33) Rk =

(
(k − 1)π

20
,
k π

20

)
×
(
− π

150
,
π

150

)
.
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Figure 9. Placement of the deck segments during the construction of suspension bridge.

Figure 10. Deck segments in the plate: 20 identical rectangles partitioning Ω.

We seek the optimal position of 4 stiffened segments Rk among the 20 so that

(34) D = the set of reunions of 4 rectangles Rk as in (33)

and |D| = π2/225 for all D ∈ D. Then we take

(35) F = {f ∈ L2(Ω); ‖f‖2 = 1}
and we compute numerically the gap function for all the possible 4,845 configurations (the binomial of
20 and 4). Due to possible symmetries, some of them are equivalent. We found that the optimal shape
is R1 ∪R3 ∪R18 ∪R20, see the picture in Figure 11 where gray rectangles are the stiffened segments of
deck.

Figure 11. Solution of the minimaxmax problem (7) for D and F as in (34)-(35).

For any D ∈ D, we computed the value defined in (11) and the corresponding angle of rotation
defined in (6). The extremal values were obtained for

D = R1 ∪R3 ∪R18 ∪R20 =⇒ G∞D ≈ 1.054 · 10−3 (θ ≈ 2.515 · 10−2)

D = R9 ∪R10 ∪R11 ∪R12 =⇒ G∞D ≈ 1.154 · 10−3 (θ ≈ 2.882 · 10−2) .

In between were the values of all the other configurations D ∈ D, with D as in (34): in particular, we
mention that the second best set of segments was

D = R2 ∪R4 ∪R18 ∪R20 =⇒ G∞D ≈ 1.056 · 10−3 (θ ≈ 2.519 · 10−2).

The results clearly emphasized that

(36)
in order to lower the torsional effects, it is better to place (symmetric)
reinforcements close to the hinged edges rather than close to midspan.
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With this criterion at hand, we refined the experiment by taking smaller deck segments, with half
length of the edge in the x-direction of Rk in (33). We considered the symmetric sets

(37) Qk =

(
(k − 1)π

40
,
k π

40

)
×
(
− π

150
,
π

150

)⋃(
(40− k)π

40
,
(41− k)π

40

)
×
(
− π

150
,
π

150

)
.

In order to maintain the area constraint |D| = π2/225, we sought the optimal position of 8 stiffened
symmetric segments Qk, but only close to the edges, that is,

(38) D = the set of reunions of 4 symmetric segments Qk as in (37), for k = 1, ..., 8 .

We took again F as in (35) and we computed numerically the gap function for all the possible 70
configurations (the binomial of 8 and 4). We found that the optimal shape is Q2∪Q4∪Q6∪Q8, see the
picture in Figure 12 where gray rectangles are the stiffened segments of deck. For this configuration we
have G∞D ≈ 1.016 · 10−3, (θ ≈ 2.425 · 10−2).

Figure 12. Solution of the minimaxmax problem (7) for D and F as in (38)-(35).

We refined further this procedure by taking smaller deck segments. We considered the symmetric
sets

(39) Sk =

(
(k − 1)π

80
,
k π

80

)
×
(
− π

150
,
π

150

)⋃(
(80− k)π

80
,
(81− k)π

80

)
×
(
− π

150
,
π

150

)
.

In order to maintain the area constraint |D| = π2/225, we sought the optimal position of 16 stiffened
symmetric segments Sk close to the edges, that is,

(40) D = the set of reunions of 8 symmetric segments Sk as in (39), for k = 1, ..., 16 .

We took again F as in (35) and we computed numerically the gap function for all the possible 12,870
configurations (the binomial of 16 and 8). We found that the optimal shape is S1 ∪ S3 ∪ S5 ∪ S7 ∪ S9 ∪
S12 ∪ S13 ∪ S16 and, for this configuration, we have G∞D ≈ 1.011 · 10−3, (θ ≈ 2.413 · 10−2).

Overall, these results enable us to conjecture that

(41)
with no lower bound on the minimum size of the deck segments,

the optimal shape does not exist
and a minimizing sequence leads to homogenization.

Our results suggest that a minimizing sequence should be symmetric, having more stiff material close
to the hinged edges.

5.2. Optimal reinforcements with f defined by (25). Next, we repeat the optimizations performed
in the previous section, but now assuming that

(42) F = {f} where f is given by (25)

since such f is conjectured (Conjecture 2) to be the optimal (worst) force for the free plate in the class
{f ∈ L∞(Ω); ‖f‖∞ = 1}.

Also in this case, the extremal values for the case of 4 stiffened rectangles Rk among the configurations
in (34) were obtained for

D = R1 ∪R2 ∪R19 ∪R20 =⇒ G∞D ≈ 2.7685 · 10−4 (θ ≈ 6.609 · 10−3)

D = R9 ∪R10 ∪R11 ∪R12 =⇒ G∞D ≈ 3.276 · 10−4 (θ ≈ 7.821 · 10−3)

and the principle (36) holds also when f is defined by (25).
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Finally, we considered the optimization among configurations in (40) and the optimal solution was

D = S1 ∪ S3 ∪ S5 ∪ S7 ∪ S9 ∪ S11 ∪ S13 ∪ S15 =⇒ G∞D ≈ 2.668 · 10−4 (θ ≈ 6.369 · 10−3).

and this emphasized that the principle (41) should hold also in this case.
The classes D considered in the present section are all formed by a finite number of possible config-

urations and, therefore, problem (12) admits a solution. In fact, from Theorem 2 in [4] we know that
the minimaxmax problem (12) admits an optimal shape D also if D consists of an infinite family of
rectangles with inradius bounded away from 0 and free to move everywhere in Ω.

6. Optimal reinforcements made of small rectangles

In order to emphasize the possible appearance of homogenization [17], in this section we increase the
number of rectangles and diminish their size, and we leave them free to move in Ω. We consider D
defined by (19) for P = 64 and ∆x = ∆y = π

120 , so that D contains 64 identical squares free to move

in Ω. Note that with this choice of parameters we still have |D| = π2/225, as in the previous section.
Theorem 2 in [4] ensures again the existence of an optimal disposition of these squares reaching (12).
However, the maximal gap varies very slowly while the squares move inside Ω and, numerically, it is
quite difficult to find significant differences. In particular, our numerical procedure turned out to be
very sensitive with respect to the initial choice of the initial vector V.

The considered class F is again (35). We run the numerical algorithm for solving the optimization
(12), starting from different initial vectors V randomly chosen. In Figure 13, we plot the optimal points
(xj , yj), obtained in three numerical experiments. The algorithm was stationary for these configurations
since, when we tried to restart the optimization procedure from those configurations, the cost functional
did not decrease. The corresponding maximal gap is marked in each of the pictures.

Figure 13. The points (xj , yj), j = 1, ..., 64 that we obtained in three numerical experiments.

In order to confirm the principle (36), we then started the optimization procedure with a vector V
chosen in such a way that the initial squares were all concentrated close to the hinged edges, 32 of them
close to each edge. The maximal gap obtained for this initial configuration was 9.5245× 10−4. In Fig-
ure 14, we plot the optimal points (xj , yj), obtained for this numerical experiment. The corresponding
maximal gap, which was equal to 8.9071 × 10−4, is marked in the picture and is approximately equal
to those values obtained in the previous experiments.
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Figure 14. The points (xj , yj), j = 1, ..., 64 obtained in an experiment with a vector V
chosen in such a way that the initial squares were all concentrated close to the hinged
edges, 32 of them close to each edge.

The results in this section confirm the conjecture (41). Homogenization would lead to designs with
reinforcements scattered throughout the structure, namely designs difficult to manufacture. At this
point one has to make a choice. Either restrict the analysis to “macro” reinforcements (see e.g. [4, 19])
and ensure the existence of an optimal design D, or allow any kind of reinforcement at the price of
losing existence of explicit and simple designs. In this paper we have mainly chosen small classes D
of admissible geometries for D, but in future research it would be of some interest also to study the
homogenization procedure.

7. Numerical results for a nonlinear problem

In this section we show some numerical results obtained for the minimaxmax problem related to the
nonlinear equation (15). There are several suspension bridges in the world which are loaded by traffic
in a fairly asymmetric way. This is the case of a bridge connecting a big city with some suburbs: in the
morning the traffic flow goes towards the city, while in the evening it goes towards the suburbs. A typical
example is the Ponte 25 de Abril in Lisbon [21]. Let us also recall the catastrophic failure of a bridge in
Minneapolis, occurred during the evening rush hour on August 1, 2007, killing 13 people and injuring
145. According to the National Transportation Safety Boards investigation, roadway construction was
underway on the deck-truss portion of the bridge, while four of its eight lanes were closed because of
parked machineries and stock-piled paving materials on the bridge at the time of the collapse, see [12].
These facts show that it is of great interest also to consider the static torsional equilibrium of bridges
crossed by cars.

In order to study the traffic loads in such cases, we view the plate Ω as a bridge with a roadway with
four lanes, two for each direction of travel. We take π to measure 1km for the length of the main span.
The bridge is crossed by cars which measure 4m×2m, that is, π

250 ×
π

500 . Between two consecutive cars
moving in the same direction, there is a security distance of at least 4m. Since there are 250 positions
for the cars, this means that there are at most 125 cars in each lane. Between two parallel cars moving
in the same direction but on different lanes there is a distance of π

1500 ≈0.67m, while between the two
directions of travel there is a separation barrier of width π

375 ≈2.6m. All this is represented in Figure
15 where the two black regions are the components of ω in (13), the white lines are the separation of
lanes whose amplitude is π

1500 , the dark gray region is the separation barrier, the light gray rectangles
are the possible positions of cars and they can be either empty or containing a car with the constraint
that two consecutive rectangles in the direction of the traffic flow cannot both contain cars.

Figure 15. The roadway and the possible positions of the cars.
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In order to identify the 250× 4 = 1, 000 rectangles (possible placements of the cars), we number the
lanes from 1 to 4 starting from the upper lane in Figure 15 and we number the positions from 1 to 250
starting from the left in Figure 15. The rectangles T are then identified by two indices, T = Ti,j , with
i = 1, 2, 3, 4 and j = 1, ..., 250.

Let us describe our results. In the first experiment we assumed that D = ∅ and we tested two
cases that, in our opinion, are good candidates to be worst cases of the load. As for asymmetric (one-
way) traffic flows, we considered 125 cars in each lane of same direction either “side to side” or in a
“chessboard disposition”, that is, we considered

(43) F = {f1, f2} where f1 = β

125∑
j=1

(
χ1,2j−1 + χ2,2j−1

)
, f2 = β

125∑
j=1

(
χ1,2j−1 + χ2,2j

)
.

Here, β > 0 denotes the density of mass of each car while χi,j denotes the characteristic function of the
rectangle Ti,j . In Figure 16 we plot the maximal gap, as a function of the parameter β, just in the case
of f1: indeed, it turned out that the difference between G∞f1 and G∞f2 was very small, of order 10−13.

0 20 40 60 80 100
0

1

2

3

4

5

6 x 10−3

β

Figure 16. The maximal gap G∞f1 , as a function of the parameter β.

In the second experiment we restricted ourselves to F = {f1}, for four different choices of the mass
β, and we sought the optimal position of 4 stiffened segments Rk among the 20 defined in (33), so that
D was as in (34). In the three numerical experiments the optimal solution was always obtained for
D = R1∪R3∪R18∪R20, and the corresponding maximal gap was 4.5278282× 10−5, 4.5278258× 10−4,
4.5276550×10−3 and 4.5256308×10−2, respectively for β = 1, 10, 100, 1000. Therefore, also for a simple
nonlinear experiment, the principle (36) seems to hold.

8. Conclusions

Engineers are nowadays aware that many expensive optimization experiments in wind tunnels may be
replaced by numerics, see e.g. the monograph [13], in particular its preface. From [13, p.13] we also also
report the motivation of their work: we are not trying to substitute a designer with these optimization
techniques, which would be impossible because of the complexity of real problems, but rather intending to
help a designer not to fall into false steps that can be very probable for a design with great complexity.
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This paper follows this motivation and tries to give hints on how to improve the torsional performance
of rectangular plates modeling suspension bridges.

This target is pursued through the minimaxmax problem (7). After giving the correct variational
formulation and explaining the numerical procedure sued throughout the paper, in Section 4 we studied
the behavior of plates without a stiffening structure. We explained the differences between constraints
on the loads in Lp spaces with large/small p, in particular for the extremal and “physical” cases p = 1
and p =∞. The main results are summarized in Figures 3 and 7, leading to the conclusions (29) and
(30).

Sections 5 and 6 consider stiffening structures made by rectangles, mainly motivated by the way of
erecting bridges, see Figure 9. The main conclusions are (36) and (41). In particular, the possibility of
having to deal with homogenization has to be taken seriously into account. This means that it could be
preferable to consider stiffening structure made of mixture between materials rather than just of two
distinct materials.

In Section 7 we made a first attempt to consider nonlinear problems, motivated by the nonlinear and
nonlocal behavior of the sustaining cables. Even in this nonlinear setting, we reached the conclusion
(36).

Acknowledgement. The Authors are grateful to the Editor and to two anonymous Referees for their
suggestions and remarks that led to a substantial improvement of the present paper.
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