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Abstract

A rectangular plate modeling the deck of a suspension bridge is considered. The plate may widely
oscillate, which suggests to consider models from nonlinear elasticity. The von Kármán plate model is
studied, complemented with the action of the hangers and with suitable boundary conditions describing the
behavior of the deck. The oscillating modes are determined in full detail. Existence and multiplicity of static
equilibria are then obtained under different assumptions on the strength of the buckling load.
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1 Introduction and motivations: nonlinear behavior of suspension bridges

The purposes of the present paper are to set up a nonlinear model to describe the static behavior of a suspension
bridge and to study possible multiplicity of the equilibrium positions. We view the deck of the bridge as a long
narrow rectangular thin plate, hinged on its short edges where the bridge is supported by the ground, and free
on its long edges. Let L denote its length and 2` denote its width; a realistic assumption is that 2` ∼= L

100 .
The rectangular plate resists to transverse loads exclusively by means of bending. The flexural properties of

a plate strongly depend on its thickness, which we denote by d, compared with its width 2` and its length L.
We assume here that 2` < L so that d is to be compared with 2`. From Ventsel-Krauthammer [41, § 1.1] we
learn that plates may be classified according to the ratio 2`/d:
• if 2` ≤ 8d we have a thick plate and the analysis of these plates includes all the components of stresses,

strains and displacements as for solid three-dimensional bodies;
• if 8d ≤ 2` ≤ 80d we have a thin plate which may behave in both linear and nonlinear regime according to

how large is the ratio between its deflection and its thickness d;
• if 2` ≥ 80d the plate behaves like a membrane and lacks of flexural rigidity.
Let us now turn to a particular suspension bridge. The main span of the collapsed Tacoma Narrows Bridge

[2, 39] had the measures
L = 2800 ft. , 2` = 39 ft. , d = 4 ft. , (1)

see p.11 and Drawings 2 and 3 in [2]. Therefore, 2`/d = 9.75 and

the deck of the Tacoma Narrows Bridge may be considered as a thin plate.

It is clear that modern suspension bridges with their stiffening trusses are more similar to thick plates.
Which theory (linear or nonlinear) models a thin plate depends on the magnitudeW of its maximal deflection.

If we denote again by d its thickness, two cases may occur, according to Ventsel-Krauthammer [41, § 1.1]:
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• if W/d ≤ 0.2 the plate is classified as stiff: these plates carry loads two dimensionally, mostly by internal
bending, twisting moments and by transverse shear forces;
• if W/d ≥ 0.3 the plate is classified as flexible: in this case, the deflections will be accompanied by

stretching of the surface.

A fundamental feature of stiff plates is that the equation of static equilibrium for a plate element may be set
up for an original (undeformed) configuration of the plate: in this case a linear theory describes with sufficient
accuracy the behavior of the plate. Flexible plates behave somehow in between membranes and stiff plates:
when W � d the membrane action is dominant and the flexural stress can be neglected compared with the
membrane stress: in this case, a linear theory is not enough to describe accurately the behavior of the plate and
one has to stick to nonlinear theories.

According to Scott [38, pp.49-51] (see also [2, p.60] and the video [39]), the Board of Engineers stated that
under pure longitudinal oscillations ...the lateral deflection of the center bridge was not measured but did not
appear excessive, perhaps four times the width of the yellow center line (about 2 ft.) while, after the appearance
of the torsional oscillation, ...the roadway was twisting almost 45◦ from the horizontal, with one side lurching
8.5 m. above the other. This means that it was W =2 ft. during the vertical oscillations without torsion and
W =14 ft. when the torsional oscillation appeared at the Tacoma Narrows Bridge. In view of (1), we then
have W/d = 0.5 under pure longitudinal oscillations and W/d = 3.5 in presence of torsional oscillations. The
conclusion is that

the Tacoma Narrows Bridge oscillated in a nonlinear regime.

This was already known to civil engineers about half a century ago (see e.g. [35]) although the difficulties in
tackling nonlinear models prevented a systematic study of the nonlinear regimes. In recent years, the necessity
of nonlinear models became even more evident [13, 20, 26, 33] and the progress of tools in nonlinear analysis
and in numerics gives the chance to obtain responses from nonlinear models. Which nonlinear model should
be used is questionable. For two different models of “nonlinear degenerate bridges” a structural instability has
been recently highlighted in [3, 7], both numerically and theoretically: it is shown that the torsional instability
has a structural origin and not a mere aerodynamic justification as usually assumed in engineering literature,
see [34, Section 12] and [36, 37]. By “degenerate” bridge we mean that the deck is not modeled through a full
plate as in actual bridges.

A first interesting linear plat theory is due to Kirchhoff [22] in 1850, but it was only 60 years later (in 1910)
that von Kármán [43] suggested a two-dimensional system in order to describe large deformations of a thin
plate. This theory was considered a breakthrough in several scientific communities, including in the National
Advisory Committee for Aeronautics, an American federal agency during the 19th century: the purpose of this
agency was to undertake, to promote, and to institutionalize aeronautical research and the von Kármán equations
were studied for a comparison between theoretical and experimental results, see [29, 30]. In his report, Levy
[29] writes that In the design of thin plates that bend under lateral and edge loading, formulas based on the
Kirchhoff theory which neglects stretching and shearing in the middle surface are quite satisfactory provided
that the deflections are small compared with the thickness. If deflections are of the same order as the thickness,
the Kirchhoff theory may yield results that are considerably in error and a more rigorous theory that takes
account of deformations in the middle surface should therefore be applied. The fundamental equations for the
more exact theory have been derived by von Kármán.

In order to describe its structural behavior, in this paper we view the bridge deck as a plate subject to the
restoring force due to the hangers and behaving nonlinearly: we adapt the quasilinear von Kármán [43] model
to a suspension bridge. In spite of the fact that this model received severe criticisms about its physical soundness
(see [40, pp.601-602]), many authors have studied the von Kármán system, see our incomplete bibliography. In
particular, Ciarlet [15] provides an important justification of the von Kármán equations. He makes an asymp-
totic expansion with respect to the thickness of a three-dimensional class of elastic plates under suitable loads.
He then shows that the leading term of the expansion solves a system of equations equivalent to those of von
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Kármán. Davet [17] pursues further and proves that the von Kármán equations may be justified by asymptotic
expansion methods starting from very general 3-dimensional constitutive laws.

Following the setting in [19] (see also [1, 44, 45]), we consider a thin and narrow rectangular plate Ω where
the two short edges are assumed to be hinged whereas the two long edges are assumed to be free. The plate is
subject to three actions:
• normal dead and live loads acting orthogonally on the plate;
• edge loading, also called buckling loads, namely compressive forces along its edges;
• the restoring force due to the hangers, which acts in a neighborhood of the long edges.

The simplest action is the first one: the dead load is the structural weight whereas the live load may be a wind
gust or some vehicle going through the bridge. As already pointed out by von Kármán [43], large edge loading
may yield buckling, that is, the plate may deflect out of its plane when these forces reach a certain magnitude.
The edge loading is called prestressing in engineering literature, see [32]. This was mathematically modeled
by Berger [8] with a suitable nonlocal term and tackled with variational methods in a recent paper [1] which
shows that large prestressing leads to buckling, that is, multiplicity of solutions of the corresponding equation.
The critical buckling load may be computed by finding the smallest eigenvalue of an associated linear problem.

An important contribution of Berger-Fife [10] reduces the von Kármán system to a variational problem and
tackles it with critical point and bifurcation theories (we point out that there are two different authors named
Berger in our references). Subsequently, Berger [9] made a full analysis of the unloaded clamped plate problem
(Dirichlet boundary conditions) which is somehow the simplest one but does not model the physical situation
of a bridge. The loaded clamped plate was analyzed in [23, 24] where existence and possible nonuniqueness
results were obtained. Different boundary conditions for the hinged plate (named after Navier) and for free
boundaries were then analyzed with the same tools by Berger-Fife [11]. Since free edges of the plate are
considered, this last paper is of particular interest for our purposes. As clearly stated by Ciarlet [15, p.353] the
boundary conditions for the Airy function are often left fairly vague in the literature; we take them in a “dual
form”, that is, more restrictions for the edges yield less restrictions for the Airy function and viceversa.

We adapt here these plate models to a suspension bridge. The main novelties are that the function representing
the vertical displacement of the rectangular plate Ω satisfies a mixed hinged and free boundary conditions
and that the restoring force due to the hangers is taken into account. It is well-known [18] that nonlinear
elliptic systems are fairly delicate to tackle with variational methods. The model describing a suspension
bridge involves a fourth order quasilinear elliptic system and this brings further difficulties, in particular in
the definition of the action functional. We start by setting in full detail the linear theory which enables us to
determine the critical prestressing values leading to buckling and to the multiplicity of solutions. Then we
analyze the problem with normal dead loads but no restoring force and we obtain results in the spirit of [9, 10].
Finally, we introduce the restoring force due to the hangers and we prove existence and multiplicity of the
equilibrium positions.

2 Functional framework and the quasilinear equations

2.1 Elastic energies of a plate

The bending energy of the plate Ω involves curvatures of the surface. Let κ1 and κ2 denote the principal
curvatures of the graph of the (smooth) function u representing the vertical displacement of the plate in the
downwards direction, then the Kirchhoff model [22] for the bending energy of a deformed plate Ω of thickness
d > 0 is

EB(u) =
E d3

12(1− σ2)

∫
Ω

(
κ2

1

2
+
κ2

2

2
+ σκ1κ2

)
dxdy (2)

where σ is the Poisson ratio defined by σ = λ
2(λ+µ) and E is the Young modulus defined by E = 2µ(1 + σ),

with the so-called Lamé constants λ, µ that depend on the material. For physical reasons it holds that µ > 0
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and usually λ > 0 so that

0 < σ <
1

2
. (3)

For small deformations the terms in (2) are taken as approximations being purely quadratic with respect to
the second order derivatives of u. More precisely, for small deformations u, one has

(κ1 + κ2)2 ≈ (∆u)2 , κ1κ2 ≈ det(D2u) = uxxuyy − u2
xy , (4)

and therefore
κ2

1

2
+
κ2

2

2
+ σκ1κ2 ≈

1

2
(∆u)2 + (σ − 1) det(D2u).

Then, if f denotes the external vertical load (including both dead and live loads) acting on the plate Ω and if u
is the corresponding (small) vertical displacement of the plate, by (2) we have that the total energy ET of the
plate becomes

ET (u) = EB(u)−
∫

Ω
fu dxdy (5)

=
E d3

12(1− σ2)

∫
Ω

(
1

2
(∆u)2 − (1− σ) det(D2u)

)
dxdy −

∫
Ω
fu dxdy.

Note that the “quadratic” functional EB(u) is positive whenever |σ| < 1, a condition which is ensured by (3).
If large deformations are involved, one does not have a linear strain-displacement relation resulting in (4).

For a plate of uniform thickness d > 0, one assumes that the plate has a middle surface midway between its
parallel faces that, in equilibrium, occupies the region Ω in the plane z = 0. Let w = w(x, y), v = v(x, y),
u = u(x, y) denote the components (respectively in the x, y, z directions) of the displacement vector of the
particle of the middle surface which, when the plate is in equilibrium, occupies the position (x, y) ∈ Ω: u is
the component in the vertical z-direction which is related to bending while w and v are the in-plane stretching
components. For large deformations of Ω there is a coupling between u and (w, v). In order to describe it, we
compute the stretching in the x and y directions (see e.g. [41, (7.80)]):

εx =
√

1 + 2wx + u2
x − 1 ≈ wx +

u2
x

2
, εy =

√
1 + 2vy + u2

y − 1 ≈ vy +
u2
y

2
(6)

where the approximation is due to the fact that, compared to unity, all the components are small in the horizontal
directions x and y. One can also compute the shear strain (see e.g. [41, (7.81)]):

γxy ≈ wy + vx + uxuy . (7)

Finally, it is convenient to introduce the so-called stress resultants which are the integrals of suitable components
of the strain tensor (see e.g. [27, (1.22)]), namely,

Nx =
Ed

1− σ2

(
wx + σvy +

1

2
u2
x +

σ

2
u2
y

)
, Ny =

Ed

1− σ2

(
vy + σwx +

1

2
u2
y +

σ

2
u2
x

)
,

Nxy =
Ed

2(1 + σ)
(wy + vx + uxuy) , (8)

so that

εx =
Nx − σNy

Ed
, εy =

Ny − σNx

Ed
, γxy =

2(1 + σ)

Ed
Nxy .

We are now in a position to define the energy functional. The first term ET (u) of the energy is due to pure
bending and to external loads and was already computed in (5). For large deformations, one needs to consider
also the interaction with the stretching components v and w and the total energy reads (see [28, (1.7)])

J(u, v, w) = ET (u) +
E d

2(1− σ2)

∫
Ω

(
ε2
x + ε2

y + 2σ εxεy +
1− σ

2
γ2
xy

)
dxdy (9)
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which has to be compared with (5). In view of (6)-(7) the additional term I := J − ET may also be written as

I(u, v, w) =
E d

2(1−σ2)

∫
Ω


(
wx+

u2
x

2

)2

+

(
vy+

u2
y

2

)2

+2σ

(
wx+

u2
x

2

)(
vy+

u2
y

2

) dxdy

+
E d

4(1+σ)

∫
Ω
(wy+vx+uxuy)

2dxdy .

The next step is to derive the equations and boundary conditions which characterise the critical points of J ;
this will be done in the two following subsections.

2.2 The Euler-Lagrange equation

Let L denote the length of the plate Ω and 2` denote its width with 2` ∼= L
100 . In order to simplify the Fourier

series expansions we take L = π so that, in the sequel,

Ω = (0, π)× (−`, `) ⊂ R2 (with `� π).

The natural functional space where to set up the problem is

H2
∗ (Ω) :=

{
w ∈ H2(Ω); w = 0 on {0, π} × (−`, `)

}
.

We also define
H∗(Ω) := the dual space of H2

∗ (Ω)

and we denote by 〈·, ·〉 the corresponding duality. Since we are in the plane, H2(Ω) ⊂ C0(Ω) so that the
condition on {0, π} × (−`, `) introduced in the definition of H2

∗ (Ω) makes sense. On the space H2(Ω) we
define the Monge-Ampère operator

[φ, ψ] := φxxψyy + φyyψxx − 2φxyψxy ∀φ, ψ ∈ H2(Ω) (10)

so that, in particular, [φ, φ] = 2det(D2φ) where D2φ is the Hessian matrix of φ.
As pointed out in [19, Lemma 4.1], H2

∗ (Ω) is a Hilbert space when endowed with the scalar product

(u, v)H2
∗(Ω) :=

∫
Ω

(
∆u∆v − (1− σ)[u, v]

)
dxdy .

The corresponding norm then reads

‖u‖H2
∗(Ω) :=

(∫
Ω

(
|∆u|2 − (1− σ)[u, u]

)
dxdy

)1/2

.

The unique minimiser u of the convex functional ET in (5) over the space H2
∗ (Ω) satisfies the Euler-Lagrange

equation
E d3

12(1− σ2)
∆2u = f(x, y) in Ω . (11)

On the other hand, the Euler-Lagrange equation for the energy J in (9) characterises the critical points of J :
we need to compute the variation δJ of J and to find triples (u, v, w) such that

〈δJ(u, v, w), (φ, ψ, ξ)〉 = lim
t→0

J(u+ tφ, v + tψ,w + tξ)− J(u, v, w)

t
= 0 ∀φ, ψ, ξ ∈ C∞c (Ω) .
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After replacing Nx, Ny, Nxy, see (8), this yields

E d3

12(1− σ2)

∫
Ω

(
∆u∆φ+ (σ − 1)[u, φ]

)
dxdy

+

∫
Ω

(
(Nxux +Nxyuy)φx + (Nyuy +Nxyux)φy

)
dxdy =

∫
Ω
fφ dxdy ∀φ ∈ C∞c (Ω)∫

Ω

(
Nyψy +Nxyψx

)
dxdy = 0 ∀ψ ∈ C∞c (Ω)∫

Ω

(
Nxξx +Nxyξy

)
dxdy = 0 ∀ξ ∈ C∞c (Ω).

Thanks to some integration by parts and by arbitrariness of the test functions, we may rewrite the above identi-
ties in strong form

E d3

12(1−σ2)
∆2u− (Nxux +Nxyuy)x − (Nyuy +Nxyux)y = f in Ω ,

Ny
y +Nxy

x = 0 , Nx
x +Nxy

y = 0 in Ω .
(12)

The last two equations in (12) show that there exists a function Φ (called Airy stress function), unique up to an
affine function, such that

Φyy = Nx, Φxx = Ny, Φxy = −Nxy . (13)

Then, after some tedious computations, by using the Monge-Ampère operator (10) and by normalising the
coefficients, the system (12) may be written as ∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f in Ω .
(14)

In a plate subjected to compressive forces along its edges, one should consider a prestressing constraint which
may lead to buckling. Then the system (14) becomes ∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f + λ[F, u] in Ω .
(15)

The term λ[F, u] in the right hand side of (15) represents the boundary stress. The parameter λ ≥ 0 measures
the magnitude of the compressive forces acting on ∂Ω while the smooth function F satisfies

F ∈ C4(Ω) , ∆2F = 0 in Ω , Fxx = Fxy = 0 on (0, π)× {±`} , (16)

see [11, pp.228-229]: the term λF represents the stress function in the plate resulting from the applied force if
the plate were artificially prevented from deflecting and the boundary constraints in (16) physically mean that
no external stresses are applied on the free edges of the plate. Following Knightly-Sather [25], we take

F (x, y) =
`2 − y2

2
so that [F, u] = −uxx . (17)

Therefore, (15) becomes  ∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f − λuxx in Ω .
(18)
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2.3 Boundary conditions

We now determine the boundary conditions to be associated to (18). In literature these equations are usually
considered under Dirichlet boundary conditions, see [16, § 1.5] and [42, p.514]. But since we aim to model a
suspension bridge, these conditions are not the correct ones. Following [19] (see also [1, 44]) we view the deck
of a suspension bridge as a long narrow rectangular thin plate hinged at its two opposite short edges and free
on the remaining two long edges.

Let us first consider the two short edges {0} × (−`, `) and {π} × (−`, `). Due to the connection with the
ground, u is assumed to be hinged there and hence it satisfies the Navier boundary conditions:

u = uxx = 0 on {0, π} × (−`, `) . (19)

In this case, Ventsel-Krauthammer [41, Example 7.4] suggest that Nx = v = 0 on {0, π}× (−`, `). In view of
(8) this yields

0 = wx + σvy +
1

2
u2
x +

σ

2
u2
y = wx +

1

2
u2
x =

Ed

(1− σ2)σ
Ny

where the condition uy = 0 comes from the first of (19). In turn, by (13) this implies that Φxx = 0 on
{0, π} × (−`, `). For the second boundary condition we recall that Nx = 0 so that, by (13), also Φyy = 0:
since the Airy function Φ is defined up to the addition of an affine function, we may take Φ = 0. Summarising,
we also have

Φ = Φxx = 0 on {0, π} × (−`, `) . (20)

On the long edges (0, π)× {±`} the plate is free, which results in

uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`} , (21)

see e.g. [41, (2.40)] or [19]. Note that here the boundary conditions do not depend on λ. For the Airy stress
function Φ, we follow the usual Dirichlet boundary condition on (0, π)× {±`}, see [10, 11]. Then

Φ = Φy = 0 on (0, π)× {±`} . (22)

These boundary conditions suggest to introduce the following subspace of H2
∗ (Ω)

H2
∗∗(Ω) := {u ∈ H2

∗ (Ω) : u = uy = 0 on (0, π)× {±`}},

which is a Hilbert space when endowed with the scalar product and norm

(u, v)H2
∗∗(Ω) :=

∫
Ω

∆u∆v , ‖u‖H2
∗∗(Ω) :=

(∫
Ω
|∆u|2

)1/2

.

We denote the dual space of H2
∗∗(Ω) byH∗∗(Ω).

2.4 The quasilinear von Kármán equations modeling suspension bridges

By putting together the Euler-Lagrange equation (18) and the boundary conditions (19)-(22) we obtain the
system 

∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f − λuxx in Ω

u = Φ = uxx = Φxx = 0 on {0, π} × (−`, `)

uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`}

Φ = Φy = 0 on (0, π)× {±`} .

(23)
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In a plate modeling a suspension bridge, one should also add the nonlinear restoring action due to the hangers.
Then the second equation in (23) becomes

∆2u+ Υ(y)g(u) = [Φ, u] + f − λuxx in Ω . (24)

Here Υ is the characteristic function of (−`,−` + ε) ∪ (` − ε, `) for some small ε. This means that the
restoring force due to the hangers is concentrated in two tiny parallel strips adjacent to the long edges (the
free part of the boundary). The Official Report [2, p.11] states that the region of interaction of the hangers
with the plate was of approximately 2 ft on each side: this means that ε ≈ π

1500 . Augusti-Sepe [5] (see also
[4]) view the restoring force at the endpoints of a cross-section of the deck as composed by two connected
springs, the top one representing the action of the sustaining cable and the bottom one (connected with the
deck) representing the hangers. And the action of the cables is considered by Bartoli-Spinelli [6, p.180] the
main cause of the nonlinearity of the restoring force: they suggest quadratic and cubic perturbations of a linear
behavior. Assuming that the vertical axis is oriented downwards, the restoring force acts in those parts of the
deck which are below the equilibrium position (where u > 0) while it exerts no action where the deck is above
the equilibrium position (u < 0). Taking into account all these facts, for the explicit action of the restoring
force, we take

g(u) = (ku+ δu3)+ (25)

which is a compromise between the nonlinearities suggested by McKenna-Walter [31] and Plaut-Davis [33]
and follows the idea of Ferrero-Gazzola [19]. Here k > 0 denotes the Hooke constant of elasticity of steel
(hangers) while δ > 0 is a small parameter reflecting the nonlinear behavior of the sustaining cables. Only the
positive part is taken into account due to possible slackening, see [2, V-12]: the hangers behave as a restoring
force if extended (when u > 0) and give no contribution when they lose tension (when u ≤ 0).

By assuming (25), and inserting (24) into (23) leads to the problem

∆2Φ = −[u, u] in Ω

∆2u+ Υ(y)(ku+ δu3)+ = [Φ, u] + f − λuxx in Ω

u = Φ = uxx = Φxx = 0 on {0, π} × (−`, `)

uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`}

Φ = Φy = 0 on (0, π)× {±`} .

(26)

Finally, we go back to the original unknowns u, v, w. After that a solution (u,Φ) of (23) or (26) is found,
(8)-(13) yield

wx + σvy =
1− σ2

E d
Φyy −

1

2
u2
x −

σ

2
u2
y , σwx + vy =

1− σ2

E d
Φxx −

1

2
u2
y −

σ

2
u2
x

which immediately gives wx and vy. Upon integration, this gives w = w(x, y) up to the addition of a function
only depending on y and v = v(x, y) up to the addition of a function depending only on x. These two additive
functions are determined by solving the last constraint given by (8)-(13), that is,

wy + vx = −2(1 + σ)

E d
Φxy − ux − uy .
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3 Main results

With no further mention, we assume (3). The first step to study (23) and (26) is to analyze the spectrum of the
linear problem obtained by taking Φ = f = k = δ = 0:

∆2u+ λuxx = 0 in Ω

u = uxx = 0 on {0, π} × (−`, `)

uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`} .

(27)

In Section 5 we prove the following result

Theorem 1. The problem (27) admits a sequence of divergent eigenvalues

λ1 < λ2 ≤ ... ≤ λk ≤ ...

whose corresponding eigenfunctions {ek} form a complete orthonormal system in H2
∗ (Ω).

Moreover, the least eigenvalue λ1 is simple and is the unique value of λ ∈ ((1− σ)2, 1) such that√
1− λ1/2

(
λ1/2 + 1− σ

)2
tanh(`

√
1− λ1/2 ) =

√
1 + λ1/2

(
λ1/2 − 1 + σ

)2
tanh(`

√
1 + λ1/2 ) ;

the corresponding eigenspace is generated by the positive eigenfunction

e1(x, y) =

(λ1/2 + 1− σ)
cosh

(
y
√

1− λ1/2
)

cosh
(
`
√

1− λ1/2
) + (λ1/2 − 1 + σ)

cosh
(
y
√

1 + λ1/2
)

cosh
(
`
√

1 + λ1/2
)
 sinx .

The simplicity of the least eigenvalue was not to be expected. It is shown in [25, §3] that the eigenvalue
problem (27) for a fully hinged (simply supported) rectangular plate, that is with u = ∆u = 0 on the four
edges, may admit a least eigenvalue of multiplicity 2.

The least eigenvalue λ1 represents the critical buckling load and may be characterised variationally by

λ1 := min
v∈H2

∗(Ω)

‖v‖2H2
∗(Ω)

‖vx‖2L2(Ω)

.

Ferrero-Gazzola [19] studied the eigenvalue problem ∆2u = λu under the boundary conditions in (27): by
comparing [19, Theorem 3.4] with the above Theorem 1 we observe that the least eigenvalues (and eigenfunc-
tions) of the two problems coincide, that is,

λ1 = min
v∈H2

∗(Ω)

‖v‖2H2
∗(Ω)

‖vx‖2L2(Ω)

= min
v∈H2

∗(Ω)

‖v‖2H2
∗(Ω)

‖v‖2
L2(Ω)

. (28)

Therefore, the critical buckling load for a rectangular plate equals the eigenvalue relative to the first eigenmode
of the plate. In turn, the first eigenmode is also the first buckling deformation of the plate. From (28) we readily
infer the Poincaré-type inequalities

λ1‖vx‖2L2(Ω) ≤ ‖v‖
2
H2

∗(Ω) , λ1‖v‖2L2(Ω) ≤ ‖v‖
2
H2

∗(Ω) ∀v ∈ H2
∗ (Ω) (29)

with strict inequality unless v minimises the ratio in (28), that is, v is a real multiple of e1. Note also that by
taking v(x, y) = sinx one finds that λ1 < 1.

Finally, let us mention that Theorem 1 may be complemented with the explicit form of all the eigenfunctions:
they are sin(mx) (m ∈ N) multiplied by trigonometric or hyperbolic functions with respect to y: we refer again
to Section 5.

Then we insert an external load f and we study the existence and multiplicity of solutions of (23).
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Theorem 2. For all f ∈ L2(Ω) and λ ≥ 0 (23) admits a solution (u,Φ) ∈ H2
∗ (Ω)×H2

∗∗(Ω). Moreover:
(i) if λ ≤ λ1 and f = 0, then (23) only admits the trivial solution (u,Φ) = (0, 0);
(ii) if λ ∈ (λk, λk+1] for some k ≥ 1 and f = 0, then (23) admits at least k pairs of nontrivial solutions;
(iii) if λ < λ1 there exists K > 0 such that if ‖f‖L2(Ω) < K then (23) admits a unique solution (u,Φ) ∈
H2
∗ (Ω)×H2

∗∗(Ω);
(iv) if λ > λ1 there exists K > 0 such that if ‖f‖L2(Ω) < K then (23) admits at least three solutions.

Theorem 2 gives both uniqueness and multiplicity results. Since the solutions are obtained as critical points
of an action functional, they describe the stable and unstable equilibria positions of the plate. When both the
buckling load λ and the external load f are small there is just one possible equilibrium position. If one of them is
large then multiple equilibrium positions may exist. The uniqueness statement (iii) has a fairly delicate proof:
we will show that the corresponding action functional is “locally convex” in the region where the equilibria
positions are confined.

The last step is to study the nonlinear plate modeling the suspension bridge, that is, with the action of the
hangers. We first define the constants

α :=

∫
Ω

Υ(y)e2
1 , λ := (αk + 1)λ1 > λ1 , (30)

where λ1 denotes the least eigenvalue and e1 denotes here the positive least eigenfunction normalised inH2
∗ (Ω),

see Theorem 1. Then we have

Theorem 3. For all f ∈ L2(Ω), λ ≥ 0 and k, δ > 0 problem (26) admits a solution (u,Φ) ∈ H2
∗ (Ω)×H2

∗∗(Ω).
Moreover:
(i) if λ < λ1 there exists K > 0 such that if ‖f‖L2(Ω) < K then (26) admits a unique solution (u,Φ) ∈
H2
∗ (Ω)×H2

∗∗(Ω);
(ii) if λ > λ1 and f = 0 then (26) admits at least two solutions (u,Φ) ∈ H2

∗ (Ω)×H2
∗∗(Ω) and one of them is

trivial and unstable;
(iii) if λ < λ2 and λ < λ < λ2, there exists K > 0 such that if ‖f‖L2(Ω) < K then (26) admits at least three
solutions (u,Φ) ∈ H2

∗ (Ω)×H2
∗∗(Ω), two being stable and one being unstable.

Also Theorem 3 gives both uniqueness and multiplicity results. Item (ii) states that even in absence of an
external load (f = 0), if the buckling load λ is sufficiently large then there exists at least two equilibrium
positions; we conjecture that if we further assume that λ < λ then there exist no other solutions and that the
equilibrium positions look like in Figure 1. In the left picture we see the trivial equilibrium u = 0 which is

Figure 1: Equilibrium positions of the buckled bridge.

unstable due to the buckling load. In the right picture we see the stable equilibrium for some u < 0 (above
the horizontal position). We conjecture that it is a negative multiple of the first eigenfunction e1, see Theorem
1; since ` is very small, a rough approximation shows that this negative multiple looks like ≈ C sin(x) for
some C < 0, which is the shape represented in the right picture. The reason of this conjecture will become
clear in the proof, see in particular the plots in Figure 3 in Section 7: in this pattern, a crucial role is played by
the positivity of e1. Our feeling is that the action functional corresponding to this case has a qualitative shape
as described in Figure 2, where O is the trivial unstable equilibrium and M is the stable equilibrium. If there
were no hangers also the opposite position would be a stable equilibrium. But the presence of the restoring

10



Figure 2: Qualitative shape of the action functional for Theorem 3 (ii) when λ < λ.

force requires a larger buckling term in order to generate a positive (downwards) displacement. Indeed, item
(iii) states, in particular, that if f = 0 and the buckling load is large then there exist three equilibria: one is
trivial and unstable, the second is the enlarged negative one already found in item (ii), the third should precisely
be the positive one which appears because the buckling load λ is stronger than the restoring force due to the
hangers. All these conjectures and qualitative explanations are supported by similar results for a simplified (one
dimensional) beam equation, see [12, Theorem 3.2].

Remark 4. (Open problem) Can the assumption λ < λ2 in Theorem 3 (iii) be weakened or removed? In
our proof this assumption is needed to disconnect two open regions of negativity of the action functional. But,
perhaps, other critical point theorems may be applied.

Remark 5. (Regularity) A weak solution satisfies (u,Φ) ∈ H2
∗ (Ω)×H2

∗∗(Ω): then the assumption f ∈ L2(Ω)
implies that ∆2u ∈ L1(Ω). By an embedding and elliptic regularity we infer that u ∈ H2

∗ (Ω) ∩H3−ε(Ω) for
all ε > 0 and then D2u ∈ H1−ε(Ω). Therefore, [u, u] ∈ Lq(Ω) for all 1 ≤ q <∞. Hence, Φ ∈ W 4,q(Ω) and,
in turn, [u,Φ] ∈ Lq(Ω) for all 1 ≤ q <∞. Moreover, f ∈ L2(Ω) implies ∆2u ∈ L2(Ω) and then u ∈ H4(Ω).
This means that the generalized solution (u,Φ) is also a strong solution. For smoother f , the regularity of
(u,Φ) can be increased.

4 Preliminaries: some useful operators and functionals

For all v, w ∈ H2
∗ (Ω), consider the problem

∆2Φ = −[v, w] in Ω

Φ = Φxx = 0 on {0, π} × (−`, `)

Φ = Φy = 0 on (0, π)× {±`} .

(31)

We claim that (31) has a unique solution Φ = Φ(v, w) and Φ ∈ H2
∗∗(Ω).

Since Ω ⊂ R2, we have H1+ε(Ω) b L∞(Ω) = (L1(Ω))′, for all ε > 0. On the other hand, L1(Ω) ⊂
(L∞(Ω))′ b H−(1+ε)(Ω). If v, w ∈ H2

∗ (Ω) ⊂ H2(Ω), then [v, w] ∈ L1(Ω). Therefore,

[v, w] ∈ H−(1+ε)(Ω) ∀ε > 0 .

Then by the Lax-Milgram Theorem and the regularity theory of elliptic equations, there exists a unique solution
of (31) and Φ ∈ H3−ε(Ω) for all ε > 0. An embedding and the boundary conditions show that Φ ∈ H2

∗∗(Ω),
which completes the proof of the claim.
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This result enables us to define a bilinear form B = B(v, w) = −Φ, where Φ is the unique solution of (31);
this form is implicitly characterised by

B : (H2
∗ (Ω))2 → H2

∗∗(Ω) , (B(v, w), ϕ)H2
∗∗(Ω) =

∫
Ω

[v, w]ϕ ∀v, w ∈ H2
∗ (Ω) , ϕ ∈ H2

∗∗(Ω) .

Similarly, one can prove that for all v ∈ H2
∗ (Ω) and ϕ ∈ H2

∗∗(Ω) there exists a unique solution Ψ ∈ H2
∗ (Ω)

of the problem 
∆2Ψ = −[v, ϕ] in Ω

Ψ = Ψxx = 0 on {0, π} × (−`, `)

Ψyy + σΨxx = Ψyyy + (2− σ)Ψxxy = 0 on (0, π)× {±`} .

This defines another bilinear form C = C(v, ϕ) = −Ψ which is implicitly characterised by

C : H2
∗ (Ω)×H2

∗∗(Ω)→ H2
∗ (Ω) , (C(v, ϕ), w)H2

∗(Ω) =

∫
Ω

[v, ϕ]w ∀v, w ∈ H2
∗ (Ω) , ϕ ∈ H2

∗∗(Ω) .

Then we prove

Lemma 6. The trilinear form

(H2
∗ (Ω))3 3 (v, w, ϕ) 7→

∫
Ω

[v, w]ϕ (32)

is independent of the order of v, w, ϕ if at least one of them is in H2
∗∗(Ω). Moreover, if ϕ ∈ H2

∗∗(Ω), v, w ∈
(H2
∗ (Ω))2, then

(B(v, w), ϕ)H2
∗∗(Ω) = (B(w, v), ϕ)H2

∗∗(Ω) = (C(v, ϕ), w)H2
∗(Ω) = (C(w,ϕ), v)H2

∗(Ω). (33)

Finally, the operators B and C are compact.

Proof. By a density argument and by continuity it suffices to prove all the identities for smooth functions
v, w, ϕ, in such a way that third interior derivatives and second boundary derivatives are well defined and
integration by parts is allowed. In the trilinear form (32) one can exchange the order of v and w by exploiting
the symmetry of the Monge-Ampère operator, that is, [v, w] = [w, v] for all v and w. So, we may assume that
one among w,ϕ is in H2

∗∗(Ω): note that this function also has vanishing x-derivative on (0, π) × {±`}. Then
some integration by parts enable to switch the position of w and ϕ.

From the just proved symmetry of the trilinear form (32) we immediately infer (33).
If ϕ ∈ H2

∗∗(Ω), then ϕxx = ϕxy = 0 on (0, π)× {±`} and an integration by parts yields

(B(v, w), ϕ)H2
∗∗(Ω) =

∫
Ω

[v, w]ϕ =

∫
Ω

[ϕ,w]v =

∫
Ω
ϕxy(wxvy + wyvx)−

∫
Ω

(ϕxxwyvy + ϕyywxvx).

In turn, this shows that

|(B(v, w), ϕ)H2
∗∗(Ω)| ≤ c‖ϕ‖H2

∗∗(Ω)‖v‖W 1,4(Ω)‖w‖W 1,4(Ω), ∀v, w ∈ H2
∗ (Ω),∀ϕ ∈ H2

∗∗(Ω).

Therefore,

‖B(v, w)‖H2
∗∗(Ω) = sup

06=ϕ∈H2
∗∗(Ω)

(B(v, w), ϕ)H2
∗∗(Ω)

‖ϕ‖H2
∗∗(Ω)

≤ c‖v‖W 1,4(Ω)‖w‖W 1,4(Ω). (34)
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Assume that the sequence {(vn, wn)} ⊂ H2
∗ (Ω) weakly converges to (v, w) ∈ H2

∗ (Ω). Then the triangle
inequality and the just proved estimate yield

‖B(vn, wn)−B(v, w)‖H2
∗∗(Ω) ≤ ‖B(vn − v, wn)‖H2

∗∗(Ω) + ‖B(v, wn − w)‖H2
∗∗(Ω)

≤ c‖vn − v‖W 1,4(Ω)‖wn‖W 1,4(Ω) + c‖v‖W 1,4(Ω)‖wn − w‖W 1,4(Ω) .

The compact embedding H2
∗ (Ω) bW 1,4(Ω) then shows that

‖B(vn, wn)−B(v, w)‖H2
∗∗(Ω) → 0

and hence that B is a compact operator. The proof for C is similar. 2

We now define another operator D : H2
∗ (Ω)→ H2

∗ (Ω) by

D(v) = C(v,B(v, v)) ∀v ∈ H2
∗ (Ω)

and we prove

Lemma 7. The operator D is compact.

Proof. Assume that the sequence {vn} ⊂ H2
∗ (Ω) weakly converges to v ∈ H2

∗ (Ω). Then, by Lemma 6,

B(vn, vn)→ B(v, v) in H2
∗∗(Ω), C(vn, B(vn, vn))→ C(v,B(v, v)) in H2

∗ (Ω).

This proves that D(vn)→ D(v) in H2
∗ (Ω) and that D is a compact operator. 2

In turn, the operator D enables us to define a functional d : H2
∗ (Ω)→ R by

d(v) =
1

4
(D(v), v)H2

∗(Ω) ∀v ∈ H2
∗ (Ω) .

In the next statement we prove some of its properties.

Lemma 8. The functional d : H2
∗ (Ω)→ R has the following properties:

(i) d is nonnegative and d(v) = 0 if and only if v = 0 in Ω. Moreover,

d(v) =
1

4
‖B(v, v)‖2H2

∗∗(Ω);

(ii) d is quartic, i.e.,
d(rv) = r4d(v), ∀r ∈ R,∀v ∈ H2

∗ (Ω);

(iii) d is differentiable in H2
∗ (Ω) and

〈d′(v), w〉 = (D(v), w)H2
∗(Ω), v, w ∈ H2

∗ (Ω);

(iv) d is weakly continuous on H2
∗ (Ω).

Proof. (i) By (33) we know that for any v ∈ H2
∗ (Ω),

(D(v), v)H2
∗(Ω) = (C(v,B(v, v)), v)H2

∗(Ω) = (B(v, v), B(v, v))H2
∗∗(Ω) = ‖B(v, v)‖2H2

∗∗(Ω).

Whence, if d(v) = 0, then B(v, v) = 0 and [v, v] = 0, see (31). But [v, v] is proportional to the Gaussian
curvature and since it vanishes identically this implies that the surface v = v(x, y) is covered by straight lines.
By using the boundary condition (19) we finally infer that v ≡ 0. This idea of the last part of this proof is taken
from [11, Lemma 3.2’].
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(ii) The functional d is quartic as a trivial consequence of its definition.
(iii) From (33) we infer that

(C(v,B(v, w)), v)H2
∗(Ω) = (B(v, v), B(v, w))H2

∗∗(Ω) = (C(v,B(v, v)), w)H2
∗(Ω) ∀v, w ∈ H2

∗ (Ω). (35)

Then we compute

〈d′(v), w〉 = lim
ε→0

1

4ε
{(D(v + εw), v + εw)H2

∗(Ω) − (D(v), v)H2
∗(Ω)}

= lim
ε→0

1

4ε
{(C(v + εw,B(v + εw, v + εw)), v + εw)H2

∗(Ω) − (C(v,B(v, v)), v)H2
∗(Ω)}

=
1

4
{(C(w,B(v, v)), v)H2

∗(Ω) + (C(v,B(v, v)), w)H2
∗(Ω) + 2(C(v,B(v, w)), v)H2

∗(Ω)}

by (33) =
1

2
{(C(v,B(v, v)), w)H2

∗(Ω) + (C(v,B(v, w)), v)H2
∗(Ω)}

by (35) = (D(v), w)H2
∗(Ω),

which proves (iii).
(iv) Assume that the sequence {vn} ⊂ H2

∗ (Ω) weakly converges to v ∈ H2
∗ (Ω). Then by Lemma 7 we know

that
lim
n→∞

‖D(vn)−D(v)‖H2
∗(Ω) = 0.

This shows that
lim
n→∞

(D(vn)−D(v), vn)H2
∗(Ω) = 0.

Finally, this yields

d(vn)− d(v) =
1

4
(D(vn)−D(v), vn)H2

∗(Ω) +
1

4
(D(v), vn − v)H2

∗(Ω) → 0

which proves (iv). 2

5 Proof of Theorem 1

In this section we prove Theorem 1 and we give some more details about the eigenvalues and eigenfunctions of
(27). We proceed as in [19, Theorem 3.4], see also [1, Theorem 4], with some changes due to the presence of
the buckling term. We write the eigenvalue problem (27) as

(ux, vx)L2(Ω) =
1

λ
(u, v)H2

∗(Ω) ∀v ∈ H2
∗ (Ω).

Define the linear operator T : H2
∗ (Ω)→ H2

∗ (Ω) such that

(Tu, v)H2
∗(Ω) = (ux, vx)L2(Ω) ∀v ∈ H2

∗ (Ω).

The operator T is self-adjoint since

(Tu, v)H2
∗(Ω) = (ux, vx)L2(Ω) = (vx, ux)L2(Ω) = (u, Tv)H2

∗(Ω) ∀u, v ∈ H2
∗ (Ω) .

Moreover, by the compact embedding H2
∗ (Ω) b H1(Ω) and the definition of T , the following implications

hold:

un ⇀ u in H2
∗ (Ω) =⇒ (un)x → ux in L2(Ω) =⇒ sup

‖v‖
H2∗(Ω)

=1
((un − u)x, vx)L2(Ω) → 0

=⇒ sup
‖v‖

H2∗(Ω)
=1

(T (un − u), v)H2
∗(Ω) → 0 =⇒ Tun → Tu in H2

∗ (Ω)
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which shows that T is also compact. Then the spectral theory of linear compact self-adjoint operator yields
that (27) admits an ordered increasing sequence of eigenvalues and the corresponding eigenfunctions form an
Hilbertian basis of H2

∗ (Ω). This proves the first part of Theorem 1.
According to the boundary conditions on x = 0, π, we seek eigenfunctions in the form:

u(x, y) =
+∞∑
m=1

hm(y) sin(mx) for (x, y) ∈ (0, π)× (−`, `) . (36)

Then we are led to find nontrivial solutions of the ordinary differential equation

h′′′′m (y)− 2m2h′′m(y) + (m4 −m2λ)hm(y) = 0 , (λ > 0) (37)

with the boundary conditions

h′′m(±`)− σm2hm(±`) = 0 , h′′′m(±`) + (σ − 2)m2h′m(±`) = 0 . (38)

The characteristic equation related to (37) is α4 − 2m2α2 +m4 −m2λ = 0 and then

α2 = m2 ±m
√
λ . (39)

For a given λ > 0 three cases have to be distinguished.
• The case m2 > λ. By (39) we infer

α = ±β or α = ±γ with
√
m2 −m

√
λ =: γ < β :=

√
m2 +m

√
λ . (40)

Nontrivial solutions of (37) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cosh(γy) + d sinh(γy) (a, b, c, d ∈ R) . (41)

By imposing the boundary conditions (38) and arguing as in [19] we see that a nontrivial solution of (37) exists
if and only if one of the two following equalities holds:

γ

(γ2 −m2σ)2
tanh(`γ) =

β

(β2 −m2σ)2
tanh(`β) , (42)

β

(β2 −m2σ)2
coth(`β) =

γ

(γ2 −m2σ)2
coth(`γ) . (43)

For any integer m >
√
λ such that (42) holds, the function hm in (41) with b = d = 0 and suitable

a = am 6= 0 and c = cm 6= 0 yields the eigenfunction hm(y) sin(mx) associated to the eigenvalue λ.
Similarly, for any integer m >

√
λ such that (43) holds, the function hm in (41) with a = c = 0 and suitable

b = bm 6= 0 and d = dm 6= 0 yields the eigenfunction hm(y) sin(mx) associated to the eigenvalue λ. Clearly,
the number of both such integers is finite. In particular, whenm = 1 the equation (37) coincides with [19, (57)].
Therefore, the statement about the least eigenvalue and the explicit form of the corresponding eigenfunction
hold.
• The casem2 = λ. This case is completely similar to the second case in [19]. By (39) we infer that possible

nontrivial solutions of (37)-(38) have the form

hm(y) = a cosh(
√

2my) + b sinh(
√

2my) + c+ dy (a, b, c, d ∈ R) .

Then one sees that a = c = 0 if (3) holds. Moreover, let s > 0 the unique solution of tanh(s) =
(

σ
2−σ

)2
s.

If m∗ := s/`
√

2 is an integer, and only in this case, then λ = m2
∗ is an eigenvalue and the corresponding

eigenfunction is [
σ` sinh(

√
2m∗y) + (2− σ) sinh(

√
2m∗`) y

]
sin(m∗x) .
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• The case m2 < λ. By (39) we infer that

α = ±β or α = ±iγ with
√
m
√
λ−m2 = γ < β =

√
m
√
λ+m2 .

Therefore, possible nontrivial solutions of (37) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cos(γy) + d sin(γy) (a, b, c, d ∈ R) .

Differentiating hm and imposing the boundary conditions (38) yields the two systems: (β2 −m2σ) cosh(β`)a− (γ2 +m2σ) cos(γ`)c = 0

(β3 −m2(2− σ)β) sinh(β`)a+ (γ3 +m2(2− σ)γ) sin(γ`)c = 0 , (β2 −m2σ) sinh(β`)b− (γ2 +m2σ) sin(γ`)d = 0

(β3 −m2(2− σ)β) cosh(β`)b− (γ3 +m2(2− σ)γ) cos(γ`)d = 0 .

Due to the presence of trigonometric sine and cosine, for any integer m there exists a sequence ζmk ↑ +∞
such that ζmk > m2 for all k ∈ N and such that if λ = ζmk for some k then one of the above systems admits
a nontrivial solution. On the other hand, for any eigenvalue λ there exists at most a finite number of integers
m such that m2 < λ; if these integers yield nontrivial solutions hm, then the function hm(y) sin(mx) is an
eigenfunction corresponding to λ.

6 Proof of Theorem 2

By Lemma 8 we know that a functional whose critical points are solutions of the problem (23) reads

J(u) =
1

2
‖u‖2H2

∗(Ω) + d(u)− λ

2
‖ux‖2L2(Ω) −

∫
Ω
fu ∀u ∈ H2

∗ (Ω).

By combining Lemmas 6-7-8, we obtain a one-to-one correspondence between solutions of (23) and critical
points of the functional J :

Lemma 9. Let f ∈ L2(Ω). The couple (u,Φ) ∈ H2
∗ (Ω) × H2

∗∗(Ω) is a weak solution of (23) if and only if
u ∈ H2

∗ (Ω) is a critical point of J and if Φ ∈ H2
∗∗(Ω) weakly solves ∆2Φ = −[u, u] in Ω.

The first step is then to prove geometrical properties (coercivity) and compactness properties (Palais-Smale
condition) of J . Although the former may appear straightforward, it requires delicate arguments. The reason is
that no useful lower bound for d(u) is available. We prove

Lemma 10. For any f ∈ L2(Ω) and any λ ≥ 0, the functional J is coercive in H2
∗ (Ω) and it is bounded from

below. Moreover, it satisfies the Palais-Smale (PS) condition.

Proof. Assume for contradiction that there exists a sequence {vn} ⊂ H2
∗ (Ω) and M > 0 such that

lim
n→∞

‖vn‖H2
∗(Ω) →∞, J(vn) ≤M.

Put wn = vn
‖vn‖H2∗(Ω)

so that vn = ‖vn‖H2
∗(Ω)wn and

‖wn‖H2
∗(Ω) = 1 ∀n . (44)
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By combining the Hölder inequality with (29), we infer that

M ≥ J(vn) ≥ 1

2
‖vn‖2H2

∗(Ω) + ‖vn‖4H2
∗(Ω)d(wn)− λ

2
‖vn‖2H2

∗(Ω)‖(wn)x‖2L2(Ω) −
‖f‖L2(Ω)√

λ1
‖vn‖H2

∗(Ω), (45)

where we also used Lemma 8 (ii). By letting n → ∞, this shows that d(wn) → 0 which, combined with
Lemma 8 and (44), shows that wn ⇀ 0 in H2

∗ (Ω); then, (wn)x → 0 in L2(Ω) by compact embedding. Hence,
since d(wn) ≥ 0, (45) yields

o(1) =
M

‖vn‖2H2
∗(Ω)

≥ 1

2
+ ‖vn‖2H2

∗(Ω)d(wn)− λ

2
‖(wn)x‖2L2(Ω) −

‖f‖L2(Ω)

‖vn‖H2
∗(Ω)

√
λ1
≥ 1

2
+ o(1)

which leads to a contradiction by letting n→∞. Therefore J is coercive. Since the lower bound for J(vn) in
(45) only depends on ‖vn‖H2

∗(Ω), we also know that J is bounded from below.
In order to prove that J satisfies the (PS) condition we consider a sequence {un} ⊂ H2

∗ (Ω) such that J(un)
is bounded and J ′(un) → 0 in H∗(Ω). By what we just proved, we know that {un} is bounded and therefore,
there exists u ∈ H2

∗ (Ω) such that un ⇀ u and, by weak continuity, J ′(u) = 0. Moreover, by Lemma 8,

〈J ′(un), un〉 = ‖un‖2H2
∗(Ω) + (D(un), un)H2

∗(Ω) − λ‖(un)x‖2L2(Ω) −
∫

Ω
fun →

→ 0 = 〈J ′(u), u〉 = ‖u‖2H2
∗(Ω) + (D(u), u)H2

∗(Ω) − λ‖ux‖2L2(Ω) −
∫

Ω
fu .

Since (D(un), un)H2
∗(Ω) → (D(u), u)H2

∗(Ω) by Lemma 7, ‖(un)x‖2L2(Ω) → ‖ux‖
2
L2(Ω) and

∫
Ω fun →

∫
Ω fu

by compact embedding, this proves that ‖un‖H2
∗(Ω) → ‖u‖H2

∗(Ω). This fact, together with the weak conver-
gence un ⇀ u proves that, in fact, un → u strongly; this proves (PS). 2

Lemma 10 shows that the (smooth) functional J admits a global minimum in H2
∗ (Ω) for any f and λ. This

minimum is a critical point for J and hence, by Lemma 9, it gives a weak solution of (23). This proves the first
part of Theorem 2. Let us now prove the items.

(i) If λ ≤ λ1 and f = 0, we see that any critical point u of J satisfies

0 = 〈J ′(u), u〉 = ‖u‖2H2
∗(Ω) + 4d(u)− λ‖ux‖2L2(Ω)

where we also used Lemma 8 (iii). By Lemma 8 i) and (29), this proves that u = 0. Then we apply again
Lemma 9 and find (u,Φ) = (0, 0).

(ii) If f = 0 and λ ∈ (λk, λk+1], then the twice differentiable functional J is even and its second derivative
J ′′(0) at 0 has Morse index k. By Lemma 10 we may then apply [1, Theorem 11] (which is a variant of
Theorem 5.2.23 p.369 in [14]), to infer that J has at least k pairs of district nonzero critical points. Then by
Lemma 9 there exist at least k pairs of nontrivial solutions of (23).

(iii) For any f ∈ L2(Ω), if u is a critical point of the functional J it satisfies 〈J ′(u), u〉 = 0 and therefore, by
the Hölder inequality,

‖u‖2H2
∗(Ω) + 4d(u)− λ‖ux‖2L2(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω) .

In turn, by using Lemma 8 i) and twice (29), we obtain(
1− λ

λ1

)
‖u‖2H2

∗(Ω) ≤
‖f‖L2(Ω)√

λ1
‖u‖H2

∗(Ω) .

This gives the a priori bound

‖u‖H2
∗(Ω) ≤

√
λ1

λ1 − λ
‖f‖L2(Ω) . (46)
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Next, we prove a local convexity property of the functional J . Let

Q(u) := ‖u‖2H2
∗(Ω) − λ‖ux‖

2
L2(Ω) ∀u ∈ H2

∗ (Ω) .

Then, for all u, v ∈ H2
∗ (Ω) and all t ∈ [0, 1], we have

Q
(
tu+ (1− t)v

)
− tQ(u)− (1− t)Q(v) = −t(1− t)

(
‖u− v‖2H2

∗(Ω) − λ‖ux − vx‖
2
L2(Ω)

)
. (47)

Moreover, for all u, v ∈ H2
∗ (Ω) and all t ∈ [0, 1], some tedious computations show that

d
(
tu+ (1− t)v

)
− td(u)− (1− t)d(v) =

= − t(1− t)
4

{
(t2 − 3t+ 1)(‖B(v, u− v)‖2H2

∗∗(Ω) − ‖B(u, u− v)‖2H2
∗∗(Ω))

+2
(
B(v, v), B(v − u, v − u)

)
H2

∗∗(Ω)
+ 2(t2 − t+ 1)

(
B(u, u− v), B(u+ v, u− v)

)
H2

∗∗(Ω)

−4t(1− t)
(
B(u− v, u), B(v − u, v)

)
H2

∗∗(Ω)

}
by (34) ≤ C t(1− t) (‖u‖2H2

∗(Ω) + ‖v‖2H2
∗(Ω)) ‖u− v‖

2
H2

∗(Ω) ; (48)

here C > 0 is a constant independent of t, u, v. Consider the “unforced” functional

J0(u) =
1

2
‖u‖2H2

∗(Ω) + d(u)− λ

2
‖ux‖2L2(Ω) =

Q(u)

2
+ d(u) ; (49)

by putting together (47) and (48) we see that

J0

(
tu+ (1− t)v

)
− tJ0(u)− (1− t)J0(v) ≤

≤ − t(1− t)
2

(
‖u− v‖2H2

∗(Ω) − λ‖ux − vx‖
2
L2(Ω)

)
+ C t(1− t) (‖u‖2H2

∗(Ω) + ‖v‖2H2
∗(Ω)) ‖u− v‖

2
H2

∗(Ω)

≤ t(1− t)
(
C (‖u‖2H2

∗(Ω) + ‖v‖2H2
∗(Ω))−

λ1 − λ
2λ1

)
‖u− v‖2H2

∗(Ω) . (50)

Take f sufficiently small such that

‖f‖2L2(Ω) < K2 :=
(λ1 − λ)3

4C λ2
1

. (51)

By (46) and (51) we know that any critical point of J satisfies

‖u‖2H2
∗(Ω) ≤

λ1

(λ1 − λ)2
K2 =

λ1 − λ
4C λ1

=: ρ2 ;

put Bρ = {u ∈ H2
∗ (Ω); ‖u‖H2

∗(Ω) ≤ ρ}. Moreover, from (50) we know that

J0

(
tu+ (1− t)v

)
− tJ0(u)− (1− t)J0(v) ≤ 0 ∀u, v ∈ Bρ ,

with strict inequality if u 6= v and t 6∈ {0, 1}. This proves that J0 is strictly convex in Bρ and since J(u) equals
J0(u) plus a linear term (with respect to u), also J is strictly convex in Bρ.

Summarising, if (51) holds, then we know that:
• by (46) all the critical points of J belong to Bρ;
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• by the first part of the proof we then know that there exists at least a critical point in Bρ;
• J is strictly convex in Bρ.

We then deduce that J admits a unique critical point inBρ (its absolute minimum) and no other critical points
elsewhere. Together with Lemma 9, this completes the proof of item (iii).

(iv) If λ > λ1 we know from item (ii) that the unforced functional J0 defined in (49) has two global minima
±ū 6= 0. Then a sufficiently small linear perturbation of J0 has a local minimum in a neighborhood of both±ū.
Whence, if f is sufficiently small, say ‖f‖L2(Ω) < K, then the functional J defined by J(u) = J0(u)−

∫
Ω fu

admits two local minima in two neighborhoods of both ±ū. These local minima, which we name u1 and u2,
are the first two critical points of J . A minimax procedure then yields an additional (mountain-pass) solution.
Indeed, consider the set of continuous paths connecting u1 and u2:

Γ :=
{
p ∈ C0([0, 1], H2

∗ (Ω)); p(0) = u1, p(1) = u2

}
.

Since by Lemma 10 the functional J satisfies the (PS) condition, the mountain-pass Theorem guarantees that
the level

min
p∈Γ

max
t∈[0,1]

J
(
p(t)

)
> max

{
J(u1), J(u2)

}
is a critical level for J ; this yields a third critical point. By Lemma 9 this proves the existence of (at least) three
weak solutions of (23).

7 Proof of Theorem 3

Similar to Lemma 9, the functional whose critical points are solutions of problem (26) is

J(u) =
1

2
‖u‖2H2

∗(Ω) +

∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
+ d(u)− λ

2
‖ux‖2L2(Ω) −

∫
Ω
fu .

And similar to Lemma 10 one can prove that for any f ∈ L2(Ω) and any λ ≥ 0, the functional J is coercive
in H2

∗ (Ω), it is bounded from below and it satisfies the (PS) condition. Then the smooth functional J admits a
global minimum in H2

∗ (Ω) for any f and λ. This minimum is a critical point for J and hence a weak solution
of (26). This proves the first part of Theorem 3. Let us now prove the items.

(i) The proof of this item follows the same steps as item (iii) of Theorem 2: it suffices to notice that the
additional term

∫
Ω Υ(y)

(
k
2 (u+)2 + δ

4(u+)4
)

is also convex.
(ii) If f = 0, then u = 0 is a solution for any λ ≥ 0. We just need to show that it is not the global minimum

which we know to exist. Let e1 and α be as in (30) and consider the function

g(t) := J(te1) = −λ− λ1

2λ1
t2 +

k α

2
(t+)2 +

δ (t+)4

4

∫
Ω

Υ(y)e4
1 + t4 d(e1) t ∈ R . (52)

Since λ > λ1, the coefficient of (t−)2 is negative and the qualitative graph of g is as in Figure 3 (on the left the
case where λ < λ so that the coefficient of (t+)2 is nonnegative, on the right the case where also the coefficient
of (t+)2 is negative). It is clear that there exists t < 0 such that g(t) < 0. This means that J(te1) < 0 and that

Figure 3: Qualitative graphs of the functions g (left) and h (right).
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0 is not the absolute minimum of J . This completes the proof of item (ii).
(iii) We study first the case where f = 0 and we name J0 the unforced functional, that is,

J0(u) =
1

2
‖u‖2H2

∗(Ω) +

∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
+ d(u)− λ

2
‖ux‖2L2(Ω) .

We consider again the function g in (52) that we name here h in order to distinguish their graphs, h(t) = g(t)
as in (52). Since λ > λ, the coefficient of (t+)2 is now also negative and the qualitative graph of h is as in
the right picture of Figure 3. Then the function h has a nondegenerate local maximum at t = 0 which means
that also the map t 7→ J0(te1) has a local maximum at t = 0 and it is strictly negative in a punctured interval
containing t = 0. Let E = span{ek; k ≥ 2} denote the infinite dimensional space of codimension 1 being the
orthogonal complement of span{e1}. By the improved Poincaré inequality

λ2‖vx‖2L2(Ω) ≤ ‖v‖
2
H2

∗(Ω) ∀v ∈ E

and by taking into account Lemma 8 (i) and λ ≤ λ2, we see that

J0(u) ≥ λ2 − λ
2λ2

‖u‖2H2
∗(Ω) +

∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
≥ 0 ∀u ∈ E .

Therefore, the two open sets

A+ = {u ∈ H2
∗ (Ω); (u, e1)H2

∗(Ω) > 0, J0(u) < 0} , A− = {u ∈ H2
∗ (Ω); (u, e1)H2

∗(Ω) < 0, J0(u) < 0}

are disconnected. Since J0 satisfies the (PS) condition and is bounded from below, J0 admits a global minimum
u+ (resp. u−) in A+ (resp. A−) and J0(u±) < 0.

A sufficiently small linear perturbation of J0 then has a local minimum in a neighborhood of both u±.
Whence, if f is sufficiently small, say ‖f‖L2(Ω) < K, then the functional J defined by J(u) = J0(u)−

∫
Ω fu

admits a local minimum in two neighborhoods of both u±. A minimax procedure then yields an additional
(mountain-pass) critical point, see the proof of Theorem 2 (iv) for the details. This yields a third solution of
(26).
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