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Abstract. Turbulence is a long-standing mystery. We survey some of the
existing (and sometimes contradictory) results and suggest eight natural ques-

tions whose answers would increase the mathematical understanding of this

phenomenon; each of these questions, yet, gives rise to ten sub-questions.

Dedicated to Vladimir Maz’ya in occasion of his eightieth birthday, with great
esteem, deep admiration, and eight winks to his musical moments [208, Sect. 4.8].
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1. Prelude

N�e
s�	s��u�n�a� �c�e�r�t�e�z�z�a� �d�e�l�l�e 	s��c�i�e�n�z�e �è �d�o�v�e �n�o�n� 	s��i� 	p�ò �a	p	p�l�i�c�a�r�e �u�n�a� �d�e�l�l�e 	s��c�i�e�n�z�e
�m�a�t�e�m�a�t�i�ch�e, �o�v�v�e�r� �ch�e �n�o�n� 	s��o�n�o �u�n�i�t�e �c�o�n� �e
s�	s��e �m�a�t�e�m�a�t�i�ch�e.

L�e�o�n�a�r�d�o �d�a� V�i�n�c�i� (1452-1519)

In this paper we analyse from a mathematical point of view some problems
about fluids and structures arising from physics and engineering, with an emphasis
on the understanding of the aeroelasticity of suspension bridges. As we shall
see, mathematicians and engineers are quite unsatisfied of the existing models,
theories and explanations. Many doubts and natural questions are still waiting
for adequate theoretical answers, many phenomena that can be observed cannot
be fully explained and rigorously modelled. In the words of Sir Cyril Hinshelwood
(1956 Nobel Prize in Chemistry),

fluid mechanics was discredited by engineers from the start, which resulted
in an unfortunate split - between the field of hydraulics, observing phenom-
ena which could not be explained, and theoretical fluid mechanics explaining
phenomena which could not be observed.

About mathematics and reality, Albert Einstein (1921 Nobel Prize in Physics), in
his Geometry and Experience talk at the Prussian Academy of Sciences in Berlin
on January 27, 1921 said

One reason why mathematics enjoys special esteem, above all other sciences,
is that its laws are absolutely certain and indisputable, while those of all
other sciences are to some extent debatable and in constant danger of being
overthrown by newly discovered facts. [...] How can it be that mathematics,
being after all a product of human thought which is independent of experi-
ence, is so admirably appropriate to the objects of reality? [...] In my opinion
the answer to this question is, briefly, this: As far as the laws of mathematics
refer to reality, they are not certain; and as far as they are certain, they do
not refer to reality.

Our trio is organised as follows. In Section 2, we briefly overview some general
historical facts without intending to give a comprehensive panorama. In Section
3, starting from the d’Alembert paradox, we look at the drag and lift forces acting
on a body immersed in a fluid computed through Euler, Stokes and Navier-Stokes
equations. In Section 4, we describe the various flow behaviours arising past a
cylinder and we discuss some theoretical results when the obstacle is either fixed
or moving (with a prescribed movement). Section 5 is devoted to the description
of several unexplained aeroelastic phenomena observed in suspension bridges. In
Section 6, we emphasise how much work is still needed for a full understanding of
fluid-structure interactions. Finally, Section 7 deals with the role of the shape of
the obstacle in the analysis of turbulence. We also provide a rich (yet incomplete)
interdisciplinary bibliography.
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2. Blowing in the wind

Figure 1. Drawing of water vortex
by Leonardo Da Vinci, ca. 1510-1513.

Strong blowing winds, especially when they
hit an obstacle, generate air turbulence with
subsequent appearance of vortices behind the
obstacle. The first documented and surviving
realization of vortices is usually attributed to
some sketches by Leonardo da Vinci, see Figure
1. Nowadays, wind tunnel experiments artifi-
cially blow air flows and give precise pictures
of turbulence and of the dependence of the
vortex shedding on the parameters of the flow
[87,133,233,234], see e.g. the left picture in Fi-
gure 2. Vortex shedding is the cause of so-called
vortex-induced vibrations [6, 82, 83, 305–307],
namely oscillatory motions of the obstacle. Thanks to the huge progresses of the
numerical analysis of fluid flows and the increasing computer capacities, turbulence
may also be detected by refined numerics using Computational Fluid Dynamics
(CFD), see e.g. [88,96,99,105,240]. However, the current knowledge of turbulence
is still foggy with frequent updates. We refer to [103] for a general introduction
and to [16] for

the most recent advances in attacking these questions [the fundamental ques-
tions in turbulence] using rigorous mathematical tools.

Helmholtz [135] published the foundation of the theory 160 years ago, followed
by Stokes (1845), Strouhal (1878), Prandtl (1904), Bénard (1908), von Kármán
(1912) and, nowadays, according to [234, Section 1.1],

it is not only that the accumulated knowledge is vast, but also that the accre-
tion of knowledge and experience on the topic continues to grow unabated,
perhaps exponentially.

Figure 2. Left: vortices around the deck of a scaled bridge obtained ex-
perimentally in the wind tunnel of the Politecnico di Milano. Right: clouds off

the Chilean coast showing Kármán vortex streets (Landsat 7 image-NASA).
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The vortex formation within a flow surrounding an object is the basic obser-
vation that laid the foundations of aerodynamics. Complicated phenomena were
quickly observed, and the important parameters were identified. A general under-
standing of viscosity effects began to emerge during the mid-nineteenth century,
particularly in the works of Stokes [275, 276], followed later by Prandtl [241] who
introduced his boundary layer theory. Prandtl claims that the no-slip condition
holds even for very small viscosity, but its influence is confined to a small region
along the body, the so-called boundary layer. Within this layer the velocity of
the fluid rapidly changes from zero on the surface of the body to the free-stream
velocity of the flow. In presence of high curvature of the obstacle surface, the flow
can be interrupted entirely and the boundary layer may detach from the surface:
this phenomenon is called separation.

The separation process depends on viscosity and stream velocity whose impor-
tant influence is collected in the Reynolds number Re that expresses the ratio
between inertial forces and viscous forces of the flow. In the year 1883, Reynolds
[247] investigated which factors determine whether the motion of water in a pipe
is direct or sinuous, thereby introducing the dimensionless parameter

Re =
ρuL

µ
=
uL

ν
,

where ρ is the density of the fluid, u is its velocity, µ is its dynamic viscosity, ν is
the kinematic viscosity and L is the diameter of the pipe. Reynolds was interested
in the transition from laminar to turbulent regime: a flow is called laminar or
streamlined if it follows parallel layers, with no disruption between the layers,
whereas it is called turbulent if it undergoes irregular fluctuations or mixing, see
Figure 3. In a turbulent flow, the speed of the fluid is widely changing both in

Figure 3. Left: laminar flow around a bluff body. Right: turbulent flow
from an airplane wing (NASA-Photo ID: EL-1996-00130).

magnitude and direction. Experiments and numerics show that for Re � 1, the
flow is laminar. For a Reynolds number in the range between 1 and 100, the
flow exhibits a complicated (chaotic) structure, while for Re � 100, the flow is
turbulent, displaying a complex pattern formed by the velocity field. Quoting [93]:
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While much of the hemodynamics in a healthy human body has low Reynolds
number, resulting in laminar flow, relatively high Reynolds number flow is
observed at some specific locations [...] For instance, the peak Reynolds
number in the human aorta has been measured to be approximately 4000
[172].

Besides a blood flow in arteries, other turbulent flows include most natural rivers
which have Reynolds numbers well above 2000, lava flow, atmosphere and ocean
currents, wind-turbines wake, boat and building wakes or aircraft-wing tips. The
Reynolds number for the air surrounding an aircraft during flight varies from about
2× 106 for small slow-speed airplanes to 2× 107 for large high-speed airplanes.

According to Batchelor [18, Section 5.11], in practice, the most significant fea-
ture of a flow past a fixed body (fully immersed in a steady stream that is constant
at infinity), is the force exerted on the body by the fluid, which is usually decom-
posed into two components: the drag force FD parallel to the flow direction and
the lift force FL perpendicular to the flow. In practice, these forces are computed
through the formulas

(1) FD =
CD
2
ρAfW

2 , FL =
CL
2
ρApW

2 ,

where ρ is the fluid density, W is the upstream velocity, Af is the frontal area (the
projected area seen by an observer looking towards the object from a direction
parallel to the upstream velocity), and Ap is the planform area (the projected
area seen by an observer looking towards the object from a direction normal to
the upstream velocity). In (1), CD and CL denote, respectively, the drag and
lift coefficients, giving dimensionless forms of the drag and lift forces. They are
usually determined by help of a simplified analysis, some numerical procedures or
empirical rules based on (e.g. wind tunnel) experiments. We refer to [151, Chapter
9] for more details and to [5,133] in the particular case of suspension bridges. The
lift force is intimately related to the vortex shedding process: when asymmetric
vortices appear behind the bluff body, the asymmetry generates a forcing lift
which starts the vortex-induced vibrations. The vortex shedding in the wake of
a structure may also achieve one of its natural frequencies, resulting in a vortex-
induced resonance, with subsequent vibrations of the structure. A large variety of
models were used to phenomenologically study vortex shedding and vortex-induced
vibrations but a unified theory seems lacking: from [234] we quote

literature on vortex-induced vibrations is vast and continuously growing, both
on fundamental issues and on methods for their prediction in engineering,
where applications are numerous. [...] In fact, because of the practical and
theoretical importance of vortex-induced vibrations, models have been de-
veloped and used since the 1960s. Reviews show not only a large number
of them, but also significant differences in the fundamental aspects of their
formulations.
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For instance, the aerodynamic forces acting on the deck of a suspension bridge
vary with respect to many parameters. It is therefore important to study the aero-
dynamic derivatives which measure how those forces and moments change as other
parameters (such as airspeed, angle of attack, etc.) related to stability are per-
turbed. The aerodynamic derivatives have been so far determined experimentally,
and given the complexity of the vortex shedding phenomena and vortex-induced
vibrations, one needs a huge amount of experimental data before attempting a
theoretical analysis. Still concerning suspension bridges, we quote [234]:

some recent effort has gone into obtaining the aerodynamic derivatives using
numerical methods. For example, Larsen [182] uses a discrete vortex method
to obtain the aerodynamic derivatives for two different cross-sections. A
comparison between his results and the experimental data of Scanlan-Tomko
[259] shows the numerical data to be reasonably good, but probably not good
enough to obtain accurate stability predictions.

The study of vortex shedding is intimately related to vortex dynamics for which
a huge literature is available from the physical, engineering and mathematical
communities, see for instance [3, 17, 98, 169, 192, 193, 195, 202, 224, 242, 243, 251,
254, 260] and the numerous citations therein. Vortices appear in a great variety
of Ginzburg-Landau theories, models in fluid-mechanics, superconductivity and
superfluidity [4, 30,97,166,167,232,255,265,282,303].

The unforced incompressible Euler equations

(2) ut + (u · ∇)u+∇p = 0 , ∇ · u = 0 (x, y, z) ∈ Ω , t > 0

play a central role in theoretical fluid mechanics and even in mathematical physics,
not only because they model adiabatic and inviscid flows, but also because they
can be seen, in some particular situations, as the inviscid limit of the Navier-Stokes
system [195, 200] or as the limit of other model equations in some asymptotical
regime, see for instance [47,266]. Nevertheless, if one wishes to model turbulence,
there are several reasons not to consider (2). One is that vortices do not only
appear in high Reynolds regimes (e.g. for small viscosity), for which (2) would be
a good approximation; indeed, vortices can also be generated at low Reynolds, for
instance by singularities in the domain and, in particular, by possible obstacles
in the flow. Another one is the celebrated d’Alembert paradox [71–74], see next
section, which shows that the Euler equations (2) are not appropriate to directly
describe the lift and drag exerted from fluids on bluff bodies.

3. I believe I can fly

Why do airplanes fly? On the authority NASA website [219] one may read:

There are many explanations for the generation of lift found in encyclopedias,
in basic physics textbooks, and on Web sites. Unfortunately, many of the
explanations are misleading and incorrect. Theories on the generation of lift
have become a source of great controversy and a topic for heated arguments
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for many years. [...] To truly understand the details of the generation of lift,
one has to have a good working knowledge of the Euler equations.

The conclusion is a quite strong mathematical statement. So, let us start modelling
an incompressible non-viscous fluid in R3 \ B, where B is a solid ball, with the
Euler equations (2). We suppose that the stream velocity is constant at infinity,
i.e. there exists u∞ ∈ R3 such that u(x) → u∞ as |x| → ∞. Denoting by R the
radius of the ball and assuming that it is centered at the origin, it is readily seen
that the potential

(3) U(x, y, z) =

(
1 +

R3

2(x2 + y2 + z2)3/2

)
x

yields a steady state solution u = ∇U of (2) in R3 \ B with constant velocity
u∞ = (1, 0, 0) at infinity and such that u is tangent to ∂B, by which we mean that
u ·n = 0 on ∂B. Due to the symmetry of the field u = ∇U , one easily checks that
the flow pressure on the boundary of the ball is zero, i.e.∫

∂B

pn dσ = −1

2

∫
∂B

|u|2ndσ = 0,

which means that the fluid neither produces a drag, nor a lift. This obviously
contradicts everyday experience. Moreover, this theoretical paradox is not a con-
sequence of the symmetry of the obstacle B (that induces the symmetry of u).
Indeed, in the 18th century, d’Alembert [71–74] proved a surprising result about
stationary solutions of the Euler equations:

Après avoir ainsi développé mes principes, j’examine une hypothèse dont
plusieurs auteurs d’hydrodynamique se sont servis jusqu’ici, & je fais voir
que si on suivait une telle hypothèse pour déterminer la résistance d’un
fluide, cette résistance se trouverait nulle, ce qui est contraire à toutes les
expériences.

This result, nowadays known as the d’Alembert paradox has been and still is a
source of debate. In modern terminology, the d’Alembert paradox may be stated
as follows.

Theorem 1 ([71–74]). Let D ⊂ R3 be a compact smooth set and let n be the
inward unit normal vector to ∂D. Let u = u(x) (x ∈ Ω = R3 \ D) be a smooth
field over the closure of Ω, divergent-free, tangent to ∂D, and constant at infinity.
If u is irrotational, then u is a stationary solution of (2) in Ω and the fluid force
on the obstacle is zero, that is,

F =

∫
∂D

pn dσ = 0 .

The proof of Theorem 1 is based on classical tools from potential theory and
on the Divergence Theorem, see e.g. [126, Theorem 2.1], [201, Theorem 4.3] or
[277, Section 8.2]. Some comments about the irrotational assumption on the flow
are in order. A physical justification of this assumption is based on the fact that,
at very large distances from the obstacle, the flow may be seen as uniform (u ≡
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constant) so that it is indeed irrotational. But whether this condition remains true
all over R3 \ D is a delicate matter. In fact, by the vorticity-transport formula
[195, Proposition 1.8, p.20], the behavior of the vorticity at infinity is transported
in all the domain, provided the particle trajectories are smooth and invertible,
which would justify the assumption of irrotational flows in Theorem 1, see also
[117]. Even though this was already a concern of Birkhoff [32] (see below), it is
still an open problem whether (2) admits steady rotational solutions.

Among other things, a consequence of Theorem 1 is that birds and airplanes
cannot fly in an ideal incompressible fluid: probably, they fly just because... they
believe they can, see Figure 4 which is displayed in order to celebrate the artistic
contribution of V.G. Maz’ya in his amazing Tales for children and grown-ups [209];
the left picture is taken from [210].

Figure 4. They believe they can fly! Left picture: cover of V.G. Maz’ya’s

book [210]. Right picture: Dumbo (1941) by Disney Enterprises, Inc.

We refer to [131, 197, 273, 284] and the numerous references therein for further
discussions on the paradox. As shown by Theorem 1, although the Euler equations
(2) provide a good model of reality for many problems of fluid dynamics, they
cannot directly account for the lift force. Since only a viscous fluid satisfies the
no-slip condition of its particles on the surface of the body immersed in the flow,
it is nowadays commonly accepted that viscosity is needed to generate a lift, as
first suggested by Saint-Venant [253]. However, any rigorous physical justification
or mathematical proof remains far out of reach [126, 277]. Birkhoff [32, p.21]
conjectured the drag could be the result of an instability of potential flows:

the paradoxes of ideal fluid theory may be, in part, paradoxes of topological
oversimplification [by which he meant that there is no valid mathematical
reason to consider potential flows only]. [...] Though Dirichlet flows and
other steady flows are mathematically possible, there is no reason to suppose
that any steady flow is stable. It is perfectly conceivable that, in an “ideal”
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fluid, initially departing slightly from Dirichlet flow, irregularly varying tur-
bulent “eddies” are built up mathematically in the “wake” of an obstacle-
reproducing mathematically what is observed physically at large Reynolds’
numbers R. [...] To admit this possibility, we must reject the idea that there
is a necessary tendency towards symmetry in natural phenomena, and admit
the possibility that a symmetrically stated problem may not have any stable
symmetric solution.

Birkhoff was violently criticised by Stoker [274], especially for invoking instability,
and he did not insist more on this idea. Even more, in the second version of
Birkhoff’s book [33], these thoughts disappeared. More recently, Hoffman and
Johnson [143] reconsidered Birkhoff’s attempt to explain the paradox. Part of the
conclusion in [143] says:

We have presented a resolution of d’Alembert’s paradox based on analytical
and computational evidence that a potential solution with zero drag is ill-
posed as a solution of the Euler equations, and under perturbations develops
into a wellposed turbulent solution with substantial drag in accordance with
observations.

In a followup paper based on this explanation, Hoffman-Jansson-Johnson [141]
presented a new mathematical theory of flight, see also [142], which is fundamen-
tally different from the theory by Prandtl-Kutta-Zhukovsky [35,298,300]. Quoting
the authors:

The new theory shows that the miracle of flight is made possible by the
combined effects of (i) incompressibility, (ii) slip boundary condition and (iii)
3d rotational slip separation, creating a flow around a wing which can be
described as (iv) potential flow modified by 3d rotational separation. The
basic novelty of the theory is expressed in (iii) as a fundamental 3d flow
phenomenon only recently discovered by advanced computation and analysed
mathematically, and thus is not present in the classical theory. Finally, (iv)
can be viewed as a realization in our computer age of Euler’s original dream
to in his equations capture an unified theory of fluid flow.

The paper curiously starts with an Editorial Foreword which states:

The special character of this article requires some comments by the editors
on the purpose of its publication. Though, its mathematical content does not
meet the degree of mathematical rigor usually expected by articles in this
journal, the implications of the argument and the accompanying novel nu-
merical computations are of such far reaching importance for technical fluid
dynamics, particularly for the computation of certain features in turbulent
flow, that it deserves serious considerations. The main purpose of this pub-
lication is therefore to stimulate critical discussion among the experts in this
area about the relevance and justification of the view taken in this article and
its possible consequences for modelling and computation of turbulent flow.
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It is surprising that this paper has not received much attention and did not stimu-
late neither public criticism nor interest so far, see however the (publicly revealed)
private debate on Johnson’s blog [161]. Birkhoff’s doubt on the instability is, at
least mathematically, quite natural: it is well-known that symmetric problems can
simultaneously have unstable symmetric solutions and non symmetric stable so-
lutions. Among others, Tang and Aubry [281] have numerically studied Föppl’s
vortex model [98, 178, 254] which aims to describe an incompressible fluid past a
cylinder (this experiment is described with more details in Section 4). Tang and
Aubry analysed the symmetry breaking instability leading to vortex shedding:

It is well known that if a circular cylinder starts moving from rest in an in-
compressible fluid, twin vortices spinning in opposite directions form behind
the cylinder soon after motion begins. These vortices grow and become more
and more elongated as time increases until they reach their maximal size.
After that time, the bubble of vortices remains steady at low Reynolds num-
bers, develops into a time-dependent oscillating wake regime in which the
bubble remains attached to the body at about Re 48 − 50 or breaks down
into a Kármán vortex street at higher Reynolds numbers. It is interesting to
notice that if the initial condition is symmetric, the solution formally remains
symmetric at all later times. In other words, the subspace of symmetric solu-
tions is an invariant subspace of the Navier-Stokes equations [see Proposition
2 below] subject to the boundary conditions considered here. The fact that
the flow goes away from this subspace beyond the critical Reynolds num-
ber in both physical and numerical experiments means that the symmetric
bubble becomes unstable beyond the critical Reynolds number. It remains,
nevertheless, a solution at all Reynolds numbers. This observation led Föppl
[98] to investigate whether one can find steady solutions in the form of twin
vortices and study their stability property. Föppl represented the system
by building a two-dimensional, incompressible potential flow consisting of a
uniform oncoming flow, a pair of point vortices symmetrically located with
respect to the centerline behind the cylinder, and inner vortices placed to
satisfy the boundary condition on the body [see e.g. [178, 254]]. He found
fixed points i.e., steady flows for which the twin vortices can indeed maintain
their locations relative to the cylinder. Such equilibrium positions are located
on two symmetric curves starting from the rear stagnation point of the bub-
ble. Föppl, who also studied the stability of the equilibrium, showed that
the vortices are stable to all symmetric perturbations and unstable to some
asymmetric perturbations. However, there was a mistake in Föppl’s analyti-
cal results which was later detected and corrected by Smith [270] who showed
that the equilibrium is only marginally stable to all symmetric perturbations
instead of being stable as originally found by Föppl.
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The symmetry breaking is well documented by experimental works, see e.g. [65–67,
235]. Jackson [160] and Zebib [310] computationally tackled the symmetry break-
ing instability from the Navier-Stokes equations

(4) ut − ν∆u+ (u · ∇)u+∇p = 0 ∇ · u = 0,

where, as usual, ν > 0 is the kinematic viscosity, in the neighbourhood of the
critical Reynolds number. The transition is marked by a Hopf bifurcation which is
not fully understood as the Navier-Stokes equations yield an infinite-dimensional
dynamical system.

Even if a direct connection cannot be established with a symmetry breaking
instability of a steady state of the Euler equations, it is certainly worth mentioning
the following striking theoretical result due to Bardos et. al [15] that somehow
suggests that Birkhoff’s feeling is maybe not unreasonable:

Proposition 2 ([15]). Let u0 be a function of (x, y) only, then the weak solution
of the 3D Euler equations (2) might become spontaneously a function of (x, y, z).
If the initial data is axi-symmetric or helical symmetric, the weak solutions of the
Euler equations might spontaneously break the symmetry. On the contrary, if u0

is a function of (x, y), then the Leray-Hopf weak solution of the 3D Navier-Stokes
equations (4) remains a function of (x, y) only. For axi-symmetric initial data, or
helical initial data, the symmetry is also preserved.

In fact, the wild weak solutions of the Euler equations that do not obey the two-
dimensional symmetry of the initial data should be ruled out because they cannot
be obtained as vanishing viscosity limit solutions of the Navier-Stokes equations
(4). The existence of weak solutions of the Navier-Stokes equations has been
treated in pioneering works [148,177,188,191] in cylindrical domains. In the case
of a non-cylindrical, but a priori known domain, weak solutions were first studied
in [104] for the case of homogeneous Dirichlet boundary conditions. For details,
we refer to some classics [102,109,110,112,187,285] and to [248,289] for two more
recent additions to the literature.

Having in mind obstacles modelling suspension bridges, we consider the case
where the fluid is enclosed in a bounded box of R3 and we assume that the obstacle
is a cylinder, namely a 2D object times an interval. More precisely, we consider

Ω = {(−L,L)2 × (0,Λ)} \ {K × (0,Λ)}
for some L,Λ > 0 and some 2D obstacle K with D = K×(0,Λ). Since our purpose
is to analyse the drag and lift forces acting on the obstacle D, it is sometimes
convenient (especially for the lift) to restrict the attention to a 2D section of the
box, for instance at the midpoint. The domain Ω and its intersection Σ with the
plane z = Λ

2 are represented in Figure 5 (not in scale!), together with a sketch of
the flow and the appearance of vortices. The rectangular shape of the cross section
K of the obstacle D has been chosen here for simplicity of the picture; this model
was first suggested in [38,121] and subsequently applied in [122] for a study of non-
standard boundary conditions for the planar Stokes equations inducing vortices
around concave corners.
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Figure 5. The domain Ω and its intersection Σ with the plane z = Λ
2

.

We next discuss the computation of the drag and lift forces exerted on an ob-
stacle by the flow of a viscous fluid. The rate of strain tensor σ and the stress
tensor T of any viscous incompressible fluid are given by (see [180, Chapter 2]):

(5) σ(u) = ∇u+∇Tu , T(u, p) = −pI + νσ(u) ,

where I is the identity matrix (either 2 × 2 or 3 × 3, according to the space
dimension). As expressed by (5), in a viscous fluid, in addition to the pressure
drag, one needs to take into account the skin friction so that the total force exerted
by the fluid over the obstacle D is given by the vector field

(6) FD = −
∫
∂D

T(u, p) · n ,

where the minus sign is due to the fact that the outward unit normal n to Ω is
directed towards the interior of D. Assuming that the inflow is horizontal, namely
the only nonzero component of the boundary velocity is the x-component on the
boundary of the box (−L,L)2 × (0,Λ), the horizontal component in (6) is the
drag force, while the orthogonal component is the lift force. For smooth obstacles
D ⊂ R3 the drag force may also be written as

(7)
ν

2

∫
Ω

|σ(u)|2 .

see e.g. [21] for the details. It is clear that while the drag force is always acting
in the direction of the flow and hence in a one-dimensional direction, the lift force
is orthogonal to the drag and has two degrees of freedom in a 3D setting; this is
the precise reason why it may be convenient to focus on 2D cross sections of the
obstacle, especially when the obstacle is a cylinder aiming to model the deck of a
bridge as in Figure 5. In this case, for the drag force in (7), the integral must be
computed over the cross-section Σ.

It is possible to derive exact formulas for the drag exerted by a creeping flow
over bodies displaying special symmetries like spheres, ellipsoids and cylinders.
In 1851, Stokes [276] addressed the problem of the steady flow of a viscous fluid
(having constant density ρ and a constant free-stream velocity equal to u0 ∈ R3)
surrounding a rigid sphere of radius R. By neglecting, with respect to viscosity,
the convective term (u·∇)u appearing in the Navier-Stokes equations, he explicitly
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computed the velocity field of the flow and provided the following formula for the
drag over the sphere:

(8) FD = 6πρνR|u0|,
a result that remained in history as the Stokes law, see [181, Chapter 6]. Similar
expressions for an ellipsoid, a circular disk moving broadside-on, or a circular disk
moving edge-ways can be found in the book of Lamb [178, Article 339] (the first
edition of this work was published in 1879), from where we quote:

The formula of Stokes (8) for the resistance experienced by a slowly moving
sphere has been employed in physical researches of fundamental importance,
as a means of estimating the size of minute globules of water, and thence the
number of globules contained in a cloud of given mass. Consequently the con-
ditions of its validity have been much discussed both from the experimental
and from the theoretical side.

A rigorous refutation of the validity of Stokes law was performed by Oseen in 1910,
see [231], where it was proven that the convective term may be neglected only at a
sufficiently short distance from the sphere, precisely when |x|� ν/|u0|. Far away
from the body one may approximate u with u0, and subsequently (u · ∇)u with
(u · ∇)u0, by means of which Oseen presented the following linear model for the
far-field velocity:

(9) − ν∆u+ (u · ∇)u0 +
1

ρ
∇p = 0 ∇ · u = 0,

usually known as the Oseen equations, which constitute an intermediate step be-
tween the linear Stokes system and the fully non-linear Navier-Stokes system. An
exact resolution of (9) yields an improvement of Stokes law given by:

FD = 6πρνR|u0|
(

1 +
3R|u0|

8ν

)
,

as well as the following expression for the drag, by unit length, applied over an
infinite-length cylinder of radius R that is being held orthogonally to the stream,
see [180, Chapter II]:

FD =
4πρν|u0|

1
2 − γ − log

(
R|u0|

4ν

) ,
where γ = 0.57721... is the Euler-Mascheroni constant.

In order to highlight the role of the nonlinear term in the stationary Navier-
Stokes equations

(10) − ν∆u+ (u · ∇)u+∇p = 0 ∇ · u = 0,

following [123], we set up the problem in a perfectly symmetric 2D situation, for
instance Σ = (−L,L)2 \ K with L � diam(K); then Σ approximates the un-
bounded region outside K, see again the right picture in Figure 5. We decompose
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the boundary of Σ as ∂Σ = ∂K ∪ Γ with

Γ = {(x, y) ∈ R2 | x = −L, y ∈ (−L,L) } ∪ {(x, y) ∈ R2 | x ∈ (−L,L), y = −L }
∪ {(x, y) ∈ R2 | x = L, y ∈ (−L,L) } ∪ {(x, y) ∈ R2 | x ∈ (−L,L), y = L }.

We consider the boundary conditions

(11) u = (U, V ) on Γ, u = (0, 0) on ∂K,

for some given functions U, V ∈ H1/2(Γ) satisfying the compatibility condition
(zero total flux across Γ):

(12)

L∫
−L

[U(L, y)− U(−L, y)] dy +

L∫
−L

[V (x, L)− V (x,−L)] dx = 0.

Observe that a constant couple (U, V ) is an admissible data on Γ. The couple
(U, V ) models the fluid flow entering Σ with the usual no-slip condition on the
obstacle. We suppose first that the fluid is governed by the (linear) stationary 2D
Stokes equations

(13) − ν∆u+∇p = 0 ∇ · u = 0, in Σ ⊂ R2.

It is well known (see for example [285]) that for any (U, V ) ∈ H1/2(Γ) satisfying
(12) there exists a unique weak solution (u, p) ∈ H1(Σ)×L2

0(Σ) of (13)-(11) (here
L2

0(Σ) denotes the space of zero mean value functions in L2).
In a symmetric setting, the following result holds.

Theorem 3 ([123]). Suppose that Σ and K are symmetric with respect to the
x-axis. Assume also that the boundary data in (11) satisfy (12) and

(14) U(x,−y) = U(x, y) and V (x,−y) = −V (x, y) a.e. on Γ.

Then the solution (u, p) = (u1, u2, p) of (13)-(11) satisfies the following symmetry
property for a.e. (x, y) ∈ Σ:

(15) u1(x,−y) = u1(x, y), u2(x,−y) = −u2(x, y), p(x,−y) = p(x, y).

Theorem 3 is in clear contradiction with reality, see for instance Figure 2. This
discrepancy between Theorem 3 and Figure 2 shows the mere viscosity within the
linear Stokes equations (13) does not help to model turbulence and the subsequent
drag and lift forces on an obstacle. Furthermore, it should be pointed out that,
in the case of an incompressible fluid governed by (13) past a finite obstacle (with
a locally Lipschitz boundary), Stokes discovered in 1851 that there is no bounded
solution of (13) which vanishes on the surface of the obstacle and that tends to a
non-zero limit at infinity: this constitutes the so-called Stokes paradox, see [276].
Indeed, the velocity grows logarithmically with the distance from the body, see
[137, Section 3].

For the Navier-Stokes equations, we have the following result which supports the
instability of the symmetric steady state at a critical value of the stream velocity.
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Theorem 4 ([123]). For any (U, V ) ∈ H1/2(Γ) satisfying (12) there exists a weak
solution (u1, u2, p) ∈ H1(Σ)× L2

0(Σ) of (10)-(11). Moreover:
• there exists δ = δ(ν) > 0 such that if ‖(U, V )‖H1/2(Γ) < δ, then the weak solution

of (10)-(11) is unique;
• if K (and Σ) are symmetric with respect to the x-axis and if (U, V ) verifies (14),
then also (v1, v2, q) with

v1(x, y) = u1(x,−y), v2(x, y) = −u2(x,−y), q(x, y) = p(x,−y)

for a.e. (x, y) ∈ Σ solves the same problem;
• if K (and Σ) are symmetric with respect to the x-axis and if (U, V ) verifies (14)
and ‖(U, V )‖H1/2(Γ) < δ, then the unique weak solution of (10)-(11) satisfies (15).

Existence and uniqueness for small boundary data (U, V ) are well-known, see
e.g. [285, Theorems 1.5 and 1.6, Chapter II]. Since δ depends increasingly on ν
and, therefore decreasingly on Re, Theorem 4 is compatible with Figure 6: as
long as Re is small the flow is symmetric, while if Re is large uniqueness may be
lost and asymmetric solutions may arise. If (14) holds, for large values of Re the
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Figure 6. CFD simulation of a flow around a square cylinder (on the

left, Re= 30; on the right Re= 200) by Fuka-Brechler [105], reproduced with

courtesy of the authors. The scale indicates the vorticity.

solutions of (10)-(11) exist by couples: if there is an asymmetric solution, there
is also its “reflected” solution. This discussion shows that only the combination
of viscosity and nonlinearity gives solutions in line with experiments even if this
does not guarantee that (10) are perfectly suited to describe turbulence and vortex
formation. As long as (10) is in a uniqueness regime and that the flow and the
obstacle are symmetric or “almost symmetric” one deduces that the lift is zero or
small, according to the following statement.

Theorem 5 ([123]). Assume that K (and Σ) are symmetric with respect to the
x-axis, assume that (U, V ) ∈ H3/2(Γ) satisfy (12) and ‖(U, V )‖H1/2(Γ) < δ with δ
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as in Theorem 4. Let FK be as in (6) and let LK be the corresponding intensity
of the (vertical) lift force.
• If V = 0 and U verifies (14), then LK = 0.

• For all ε > 0 there exists η = η(U, V ) > 0 such that if ‖(Ũ , Ṽ )‖H3/2(Γ) < η, then
LK < ε; here,

Ũ(x, y) =
U(x, y)− U(x,−y)

2
, Ṽ (x, y) =

V (x, y) + V (x,−y)

2
a.e. on Γ

Although perfect symmetry does not exist in nature, almost symmetric flows do
exist, for instance when the wind is laminar and only in the x-direction. Theorem
5 impliess that large lifts may occur only when uniqueness of the solution is no
longer true. If the smallness assumption of (U, V ) is violated one may obtain
multiplicity results for (10)-(11), see [158, 244, 295, 296]. In particular, Velte [296]
showed that at a certain Reynolds number there is more than one solution of
(10) in the domain between two concentric rotating cylinders, see Section 4 and
[285, Section 4 in Chapter II]. In fact, with slightly more regularity of the data,
one also has the following generic property of a finite number of solutions.

Theorem 6 ([100]). Assume that the obstacle K has a C2-boundary ∂K. There
exists a dense open set O ⊂ {(U, V ) ∈ H3/2(Γ); (U, V ) satisfies (12)} such that if
(U, V ) ∈ O then the number of solutions of (10)-(11) is finite. Moreover, on any
connected component of O the number of solutions of (10)-(11) is constant.

We point out that, contrary to [100], we do not need the whole boundary of Σ
to be smooth since the equations in convex polygons (in our case, a square) can be
handled with ad-hoc techniques [212]. We expect that by crossing the separation
between two distinct connected components a bifurcation occurs. We also expect
the bifurcation to generate changes in the dynamics of the flow around the obstacle
and of the subsequent fluid-obstacle interaction. We are rather convinced that the
appearance of a lift force acting on an obstacle is due to an instability which arises
when the stream flow velocity overcomes a critical threshold. In fact, the physical
word instability mathematically translates into bifurcation which, in turn, may
appear only in presence of multiple solutions. A natural question then arises from
Figure 6, Theorem 6 and the non-uniqueness result in [296].

Problem 1. Prove that we always have multiple steady flows past any symmetric
body for large Re. Can we have multiple symmetric steady flows?

To our knowledge, multiple symmetric solutions of (10)-(11) have not even been
detected numerically.

4. Soul meets body

Three main mathematical difficulties arise to model a bluff (elastic or rigid) body
surrounded by a fluid: the modelling of the fluid, the modelling of the body and
the modelling of the mutual interaction which takes place on the interface where
the fluid meets the body. This so-called fluid-solid interaction (also referred to as
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fluid-structure, liquid-solid, fluid-particle, wind-bridge interaction, depending on
the context) became one of the main focuses of theoretical and applied researches
in fluid dynamics. Albeit the mathematical theory of the motion of a rigid body
in a fluid is a very classical and old problem, mathematicians became interested
in a systematic study of those models much later than their colleagues driven by
applications. As a consequence, many experiments or numerical observations still
require theoretical/mathematical justifications, some of them being currently out
of reach. In this section, we focus on models where there is no full interaction,
either the body is still or it undergoes a given movement. As already discussed in
Section 2, turbulence may appear when a flow hits a bluff body. Obvious examples
are the motion of a plane and the wind blowing past a structure such as a building
or a bridge. Real situations are usually geometrically complicated but even in the
case of an obstacle with a very simple geometry, the resulting flow can already
display amazing complexities. The most documented experiment in the literature
is that of spontaneous oscillations of the wake in the flow of a viscous liquid past
a circular cylinder [18, 28, 65, 66, 189, 203, 216, 261, 287, 288, 304]. We reproduce
here the setup of [288, Chapter 3]. A cylinder of diameter d is placed with its
axis normal to the flow having an upstream constant velocity u0. The physical
experiment is 3D but when the cylinder is so long compared with d, the situation
can be modelled by an infinite cylinder as the same behaviour likely appears in
every plane normal to the axis. Also, the other boundaries to the flow (e.g. the
walls of a wind tunnel or the borders of a water channel, in which the cylinder is
placed) can be assumed so far away that they have no effect. The pictures and
tables in Figure 7 and 8 summarise the observations and the transitions according
to the Reynolds number. One can vary the values of the diameter d of the cylinder,
the speed u0 of the flow, the density ρ and the viscosity of the fluid. It happens
that the flow pattern depends only on the Reynolds number (u0d/ν). Following
[288, Chapter 3], we describe the various changes that occur to the flow pattern
as Re varies. The experiment can be done in practice in a very wide range of
Re. Indeed, one can make it in the air modifying both u0 and d to cover the full
range; for instance, Re = 0.1 corresponds to a diameter of 10−6m (thin fibre) in an
airflow at speed 0.15m/s while Re = 106 can be achieved with a diameter of 0.3m
and a speed of 50m/s. As emphasised in [288, Chapter 3], the description of the
flow patterns is based on experimental observations, some numerics but very few
analytical or theoretical clues. For low Reynolds numbers, a 3D flow past a sphere
can be approximated by a Stokes flow that can be found explicitly [18, Section
4.9]. When Re � 1, the flow is very similar to a laminar flow and qualitatively
behaves like the flow arising from the potential (3), it is symmetrical upstream
and downstream; the pattern is its mirror image with respect to the diameter of
the cylinder which is parallel to the flow. At low Re, the pressure due to the drag
force is negligible and the effective drag on the body is entirely due to skin friction.

As Re is increased the upstream-downstream symmetry disappears. When Re
exceeds about 4, symmetrical vortices appear behind the cylinder and rotate in
opposite directions. These vortices enlarge with increasing Re. For Re > 40, the
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Figure 7. Regimes of flow across a smooth cylinder [189].

flow in the wake becomes unsteady. A further increase of the Reynolds number
elongates the vortices, which also begin to oscillate until they break away at a
Re of approximately 90. The breaking occurs alternatively from one to the other
side and the vortices travel downstream. This process is intensified with further
increase of Re while the shedding of vortices from alternate sides of the cylinder
is regular. This leads to formation of the characteristic wake which is known as
Kármán vortex street, see the right picture in Figure 2. The vortex motion is
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Table 1.1. Flow regimes at a circular cylinder (incompressible flow)

Reynolds number Re = V d/ν
Strouhal number Sr = f d/V

Reynolds number regime Flow regime Flow form Flow characteristic Strouhal number
Sr

Drag coefficient cD Separation angle ΘS

Re→ 0 Creeping flow Steady, no wake – see Fig. 1.12 –

3−4 < Re < 30−40 Vortex pairs in
wake

Steady, symmetric
separation

– 1.59 < cD < 4.52
(Re = 30) (Re = 40)

130◦ < ΘS < 180◦

(Re = 35) (Re = 5)

30
40 < Re < 80

90
Onset of
Karman
vortex street

Laminar, unstable
wake

– 1.17 < cD < 1.59
(Re = 100) (Re = 30)

115◦ < ΘS < 130◦

(Re = 90) (Re = 35)

80
90 < Re < 150

300
Pure Karman
vortex street

Karman vortex street 0.14 < Sr < 0.21

150
300 < Re < 105

1.3·105
Subcritical
regime

Laminar, with vortex
street instabilities

Sr = 0.21 cD ≈1.2 ΘS ≈80◦

105

1.3·105 < Re < 3.5 · 106
Critical regime

Laminar separation
Turbulent reattachment
Turbulent separation
Turbulent wake

No preferred
frequency

0.2 < cD < 1.2 80◦ < ΘS < 140◦

3.5 · 106 < Re Supercritical
regime
(transcritical)

Turbulent separation 0.25 < Sr < 0.30 cD ≈0.6 ΘS ≈115◦

Figure 8. Flow regimes at a circular cylinder [261].

periodic both in space and time. The pressure drag at this stage is already larger
than the profile drag. Having passed a transition range where the regularity of
shedding decreases, above a Re of 300, the vortex shedding becomes irregular.
There is still a predominant frequency but the amplitude appears to be random.
Notice that the critical regime can be anticipated as the roughness of the body
surface increases. At very high Reynolds number from about 3×105, the separation
point moves rearward on the cylinder, consequently the drag coefficient decreases
appreciably. The flow in the wake becomes so turbulent (with highly irregular
quick velocity fluctuations), that the vortex street pattern is no longer recognisable.
We refer to [136] for an analysis of the drag at the onset of vortex shedding. In the
description of this experiment, one sees that critical values of Re appear in the,
say, route to turbulence. It is a mathematical challenge to theoretically describe
the observed transition from laminar to turbulent flow. It is clearly any nonlinear
analyst’s dream to explain this experiment with a bifurcation diagram showing
successive losses of stability of patterns of less complicated structure giving rise to
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more complicated ones. Landau and Hopf [147,149,179,180] conjectured that the
transition to turbulence indeed occurs through repeated branching of manifolds of
quasi-periodic solutions. This conjecture was quickly refuted, see e.g. Iooss [156]:

En fait, cette idée a été caduque après l’article de Ruelle et Takens [252] re-
marquant, d’une part qu’une solution quasi-périodique sur un tore invariant,
n’est pas structurellement stable : une petite perturbation du système suffit à
la faire disparâıtre, ce qui est très gênant conceptuellement puisqu’on ne sera
jamais sûr d’approcher parfaitement, avec les équations choisies, le système
réel. D’autre part, ces auteurs ont montré qu’un état turbulent pouvait cor-
respondre à l’apparition d’un “attracteur étrange” dans l’espace des phases,
où un nombre fini de dimensions suffirait à le définir (ceci est déjà réalisable
sur un tore de dimension 3).

Despite this objection to the full conjecture, the idea of looking at bifurcations, in
particular from steady states to time-periodic solutions, is of great interest and was
initiated by Velte [295,296] followed by Iudovich [158,159], Iooss [154], Joseph and
Sattinger [162] and Rabinowitz [245]. We also refer to [23, 69, 101, 155, 163–165].
The motion of a viscous liquid past a circular cylinder is not the original motiva-
tion of those contributions. Many authors were rather motivated by a theoretical
explanation of weak turbulence appearing for instance in the celebrated experi-
ment of Rayleigh-Bénard convection. Others by the delicate application of Hopf
bifurcation in an infinite dimensional setting such as the PDEs arising from fluids,
first in a bounded setting (to model a fluid past a cylinder, one ideally needs a
priori to work in an exterior unbounded domain). A good physical model that can
fit in that setting [154] is the Taylor-Couette flow which consists of a viscous fluid
confined between two rotating cylinders. For low angular velocities, the flow is
steady and purely azimuthal: it is nowadays called a circular Couette flow (after
Couette, who used this experimental device to measure viscosity). Taylor investi-
gated the stability of a Couette flow [283]. Among other things, he claimed that
the no-slip condition, which was in dispute by the scientific community at the time,
is the correct boundary condition for viscous flows at a solid boundary, see also
[20]. Taylor showed that when the angular velocity of the inner cylinder achieves
a critical speed, the Couette flow becomes unstable and a secondary steady state
arises. This stationary state, known as the Taylor vortex flow, is characterised by
axisymmetric toroidal vortices. Increasing again the angular speed of the cylin-
der, the system undergoes instabilities which lead to states with greater complexity
both in time and space. The onset of turbulence arises beyond a critical Re. If
the two cylinders rotate in opposite sense, then spiral vortex flow arises. The
theoretical understanding of this experiment yielded many contributions. Velte
[296] confirmed that a bifurcation occurs at the same critical Reynolds number as
that given by the theory of small perturbations. For the mathematical treatment,
we refer to the book of Chossat and Iooss [57] and the citations therein. It is
however curious that bifurcation analysis, which is a powerful tool for instance in
the theory of dynamical systems or elliptic partial differential equations, was not
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so much used, at least theoretically, by the community of fluid dynamics after the
above mentioned pioneering works. One explanation might come again from the
complexity of the phenomena, as emphasised by van Veen [293]:

When studying fluid mechanics in terms of instability, bifurcation and invari-
ant solutions one quickly finds out how little can be done by pen and paper.
For flows on sufficiently simple domains and under sufficiently simple bound-
ary conditions, one may be able to predict the parameter values at which the
base flow becomes unstable and the basic properties of the secondary flow.
On more complicated domains and under more realistic boundary conditions,
such questions can usually only be addressed by numerical means.

For some developments on the computational modelling of bifurcations and in-
stabilities in fluid dynamics, we refer to [81, 90, 125, 150, 246, 294] and this list
is far from being exhaustive. For some numerical experiments with different
shapes of the obstacle, we refer to Section 7. Regarding the behaviour of a fluid
in the presence of an obstacle, a special reference needs to be addressed to the
works of V.G. Maz’ya and his collaborators in the linear theory of water waves
[174,175,190,205,206,290–292] starting from the year 1972, precisely when he was
at the Department of Applied and Computational Mathematics in the Leningrad
Shipbuilding Institute.

Drag and lift are clearly visible in practical experiments [301], although the pre-
cise physical mechanism of lift generation is not fully clarified. In our opinion, also
in view of Theorems 4 and 5, it could be the consequence of an instability: when
the drag is too large any tiny perturbation of the equilibrium position may give
rise to orthogonal movements of the body. This option and the lack of knowledge
suggest the following questions.

Problem 2. For a given obstacle, is there a critical threshold of the flow velocity
which initiates the lift? Is there a deterministic law (at least, an approximate law)
for the dependence of the lift on the flow?

We next discuss the behaviour (in an exterior domain Ω = R3 \ D) of a fluid
around a body D moving with a given law. The most studied case consists of a
solid rotating with a prescribed constant angular velocity and translating with a
constant velocity. The fluid is governed by the evolution Navier-Stokes equations
and it satisfies the no-slip condition both at infinity and on the obstacle. The
system is then written in a reference frame attached to the body, so that the fluid
domain becomes fixed, see [111]. Moreover, the no-slip condition on the body
becomes a dynamic Dirichlet condition. More precisely, we consider the following
evolution Navier-Stokes equations

(16)

 ut − ν∆u+
(
(u− V (t)) · ∇

)
u+∇p = 0, ∇ · u = 0, in Ω× R

u = V (t) on ∂D, lim|x|→∞ u = 0 for t ∈ R,
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where V = V (t) is the velocity field associated with the rigid motion of Dt, that
is, the velocity of the center of mass of D: Dt = D + V (t), which is assumed to
be periodic.

Theorem 7 ([115]). Let Ω = R3\D be an exterior domain of R3, let V ∈ H1(0, T )
be a T -periodic function. Then there exists at least one T -periodic weak solution
of (16).

The extension to a rotating body, also contained in [115], brings additional
difficulties because, in the reference frame of the body, the equations contain a
linear unbounded coefficient, which excludes the use of a perturbation of the model
without rotation. Under additional assumptions, a uniqueness and stability result
has been obtained in [225], see also [124]. We refer to the handbook chapter [111]
and to the recent book [223] for an account of the recent progresses.

We conclude this section with one of the few recent theoretical bifurcation results
concerning viscous fluids. Namely, we state Galdi’s existence and uniqueness result
[114] of a branching out time-periodic family of solutions arising from a non degen-
erate steady-state. The framework is the two-dimensional Navier-Stokes equations
in the exterior of a cylinder so that the result provides a rigorous analysis of part
of the experiment described above concerning the motion of a fluid past a cylin-
der. Indeed, it is experimentally observed that until a critical Reynolds number is
reached, the motion of the liquid in a region sufficiently far from the ends of the
cylinder (including it), is planar, steady and stable, whereas as soon as we pass
the critical value, the motion is still planar, but its regime becomes oscillatory.

More precisely, we recall the setup: a cylinder D, of diameter d, is placed with
its axis orthogonal to the flow of a viscous liquid having an upstream constant
velocity u0. Let Σ be the relevant two-dimensional unbounded region of flow (the
entire portion of the plane outside the normal cross-section K of D), and let e1 be
a unit vector parallel to u0. It is known that, under suitable assumptions on λ0,
the equations

(17)


Vt + λ((V − e1) · ∇)V = ∆V −∇P , ∇ · V = 0 in Σ× R,

V = e1 on ∂K × R , lim
|x|→∞

V (x, t) = 0 for all t ∈ R.

possess a unique steady-state solution branch (v0(λ), p0(λ)), with λ in a neighbor-
hood of λ0, see for instance [111]. Consider the perturbed fields V = v(x, t;λ) +
v0(x;λ), P = p(x, t;λ)+p0(x;λ) which solve (17) if and only if v and p are solutions
of the equations
(18)

vt + λ[((v − e1) · ∇)v + (v0(λ) · ∇)v + (v · ∇)v0(λ)] = ∆v −∇p in Σ× R,

∇ · v = 0 in Σ× R,

v = 0 on ∂K × R , lim
|x|→∞

v(x, t) = 0 for all t ∈ R.
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Theorem 8 ([114]). Under nondegeneracy conditions on the steady state (v0, p0)
(for which we refer to the original paper), there exists a non-trivial family of so-
lutions to (18), namely one solution (v, p) for each λ close to λ0, with (unknown)
time-period T (λ), such that (v,∇p) → (0, 0) as λ → λ0. These solutions exist
either for λ > λ0 or λ < λ0 (subcritical or supercritical bifurcation) and provide
the unique (up to phase-shift) time-periodic solution branching out from (v0, p0).

It is emphasised in [114] that numerical evidence [90, 246] suggests that the re-
quired nondegeneracy conditions hold at some critical Reynolds number. These are
spectral conditions on linearised operators around the steady state (v0, p0). The
pioneering results in [154, 158, 159, 162] give sufficient conditions, basically of the
same type as those of Theorem 8, for the existence (and uniqueness) of bifurcating
time-periodic solutions from steady-state solutions to the Navier-Stokes equations
but the assumption that the flow occupies a bounded domain is fundamental in
those previous works.

5. Floating bridge

5.1. Troubled bridge over water. The lack of a precise theory for drag and
lift discussed in Section 3 is not just a problem of aerospace engineering. Several
structures in civil engineering are subject to violent wind attacks and the result-
ing vortex shedding generates several dangerous oscillations in the structure, in
particular tall buildings or long-span bridges. In this respect, Hansen [133] points
out that

although a great deal of effort has been made during recent decades to improve
the analytical models used for predicting vibrations due to vortex shedding,
the analytical models available are still rather crude. The cross-wind forcing
mechanisms have proved to be so complex that there is no general analytical
method available to calculate cross-wind structural response. The main phys-
ical parameters involved in the forcing mechanisms have been clarified, but
the basic data used in full-scale predictions have not reached a general agree-
ment among researchers. Especially, the methods they use to take aeroelastic
effects, i.e. motion-induced wind loads, into account differ considerably.

Several companies specialised on wind actions on structures invest on experi-
mental and theoretical research on the topic [134]. In this section we discuss the
action of winds on suspension bridges; for an entry to the Engineering literature
on this subject we refer to [269, 308]. The first suspension bridges were erected
about two centuries ago, much earlier than the development of essential mathema-
tical tools for their study. Among other missing tools, we mention the knowledge
of elasticity, of nonlinear analysis, of higher order PDEs, of numerical analysis.
The need of a purely theoretical approach is made clear by Claude-Louis Navier
(1785-1836) who wrote that [221, p.xxj]
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L’étude des ponts suspendus n’aurait pas été possible sans les progrès que
l’analyse mathématique a faits dans ces derniers temps, et sans les institu-
tions au moyen desquelles les personnes chargées de la direction des travaux
publiques se trouvent initiées aux connaissances mathématiques les plus élevées.

Until some 70 years ago, the only mathematical treatises on suspension bridges
were the celebrated report by Navier [221] and the monograph by Melan [215]. In
November 1940, the Tacoma Narrows Bridge (TNB) collapsed and several videos
[278] witnessed its troubled behaviour over the water and its inevitable eventual
failure. The emotional reaction to the TNB collapse led different communities to
seek reliable models [31,36,238,239,249,257,258,309]. In spite of these attempts,
no real connection with the aerodynamics of actual suspension bridges was ever
attained, and the suggested equations yield conclusions which all differ from each
other. A typical example illustrating this discrepancy between theory and practice
is the formula used to compute the flutter velocity of the wind [249, p.163], [264],
[204, Formula (20)], [157, Formula (4.91)], [60, § 8] and many others. Holmes [146,
p.293] shows that none of them perfectly agrees with experimental measurements
whereas, from a theoretical point of view, in [24] one finds a proof that there exist
no “magic formula” able to compute flutter and satisfying all the rules expected
by engineers. This is a further defeat of the current models for turbulence: there
exists no reliable way to predict flutter within structures.

Furthermore, due to turbulence and to the subsequent vortex shedding, vertical
oscillations of the deck are to be expected, but the reason of the sudden transi-
tion from vertical to torsional oscillations is not clear. These oscillations were seen
prior to the collapses of several suspension bridges, see e.g. [120, Chapter 1]. Early
attempts [36, 249, 271] to explain this phenomenon were made by von Kármán, a
member of the Board appointed for the Federal Report [2]: he was convinced that
the torsional motion seen on the day of the TNB collapse was due to the vor-
tex shedding that amplified the already present torsional oscillations and caused
the center span to violent twist until the collapse [78, p.31]. Since then, many
different theories were suggested, each one claiming to have the full aerodynamic
explanation but, in fact, all being denied in subsequent investigations. Scanlan
[258, p.841] denied the von Kármán explanation due to a mismatch between fre-
quencies. Green-Unruh [130, Section III] believe that vortices form independently
of the motion and are not responsible for the catastrophic oscillations of the TNB.
Larsen [183, p.247] stated that

vortices may only cause limited torsional oscillations, but cannot be held
responsible for divergent large-amplitude torsional oscillations.

McKenna [214] noticed that the behaviour described by Larsen was never observed
at the TNB while Green-Unruh [130] claim that

the Larsen model does not adequately explain data or simulations at around
23m/s.

Bleich [34] suggested a possible connection between the instability in suspension
bridges and flutter of aircraft wings but Billah-Scanlan [31, p.122] believe that it is
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a great mistake to relate these two phenomena and they also claim that their own
work proves that the failure of the TNB was in fact related to an aerodynamically
induced condition of self-excitation in a torsional degree of freedom: from [234,
Section 1.2] we quote

the truth about self-excited oscillations is that they are not truly self-excited.

Moreover, Larsen [183, p.244] believes that the work in [31] fails to connect the vor-
tex pattern to the switch of damping from positive to negative whereas McKenna
[214] states that [31]

is a perfectly good explanation of something that was never observed, na-
mely small torsional oscillations, and no explanation of what really occurred,
namely large vertical oscillations followed by torsional oscillations.

A linear suspension bridge model introduced by Pittel-Yakubovich [238, 239] (see
also [309, Chapter VI]) was used in [309, p.457] to conclude that

the most dangerous phenomenon for the stability of suspension bridges is a
combination of parametric resonance.

But Scanlan [258, p.841] comments this explanation by writing that

Others have added to the confusion. A recent mathematics text [309], for ex-
ample, seeking an application for a developed theory of parametric resonance,
attempts to explain the Tacoma Narrows failure through this phenomenon.

To conclude this short overview, we mention that Scanlan [257, p.209] writes that

the original TNB withstood random buffeting for some hours with relatively
little harm until some fortuitous condition broke the bridge action over into
its low antisymmetrical torsion flutter mode.

The words fortuitous condition show that he also had no full answer. Finally,
McKenna [213, Section 2.3] writes that

there is no consensus on what caused the sudden change to torsional motion,

whereas Scott [262] says

opinion on the exact cause of the TNB collapse is even today not unanimously
shared.

Moreover, Paidoussis-Price-de Langre [234] raise several doubts on many existing
theories (such as the “vortex shedding hypothesis” [234, Chapter 6]) and the overall
conclusion is that the involved phenomena are too many and too complicated to
be modelled through simple equations. Summarising, all the attempts to find
a purely aeroelastic answer fail either because the quantitative parameters do
not fit the theoretical explanations or because the experimental results do not
confirm the underlying theory. This raises further fog on turbulence, the lack of
knowledge prevents the scientific community to explain a catastrophe such as the
TNB collapse.

In order to thin the fog, some attention should be devoted to the nonlinear
behaviour of structures. Recently, the transition from vertical and torsional os-
cillations was shown to be also the consequence of the nonlinear behaviour of
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structures [7–9,19,25–27,70,94,118,119]; see also the monograph [120]. The tools
used to reach this conclusion take their roots in extensions of the Floquet theory to
infinite dimensional dynamical systems. Several different models were considered,
all leading to the same response: if vertical oscillation reach a critical amplitude,
then they becomes unstable and may suddenly transfer energy towards torsional
oscillations. Since the purpose of these papers was to emphasise the contribution
of nonlinear elasticity for the appearance of instabilities in a suspension bridge,
most of the considered models were isolated, with no damping and no aerody-
namic effects. Therefore, although they bring a further crucial ingredient for the
description of instability, they fail to reproduce the fundamental aerodynamic phe-
nomena acting on a suspension bridge, from the vortex shedding to the appearance
of turbulence. It is unreasonable to view a bridge as an isolated system but, even
in presence of damping and forcing the same instability issue has been shown in
[37,52], as we outline in the next subsection.

5.2. Twist and shout. The TNB collapse is not an isolated event, several other
bridges failed in similar circumstances, see [120, Chapter 1]. Particularly impres-
sive appears the description for the Wheeling Suspension Bridge in West Virginia,
erected in 1849 and collapsed in 1854 during a violent storm. From [286] we quote:

...for a few moments we watched it with breathless anxiety, lunging like a ship
in the storm; at one time it rose to nearly the height of the towers then fell,
and twisted and writhed, and was dashed almost bottom upward. At last
there seemed to be a determined twist along the entire span, about one half
of the flooring being nearly reversed, and down went the immense structure
from its dizzy height to the stream below, with an appalling crash and roar...

Therefore, as for the TNB, the “twisted and writhed” (or “torsional”) movements
of the deck were the sign for an imminent collapse: when one sees such movement
on a bridge he should... shout and escape.

In a first simplified approach, the deck of a suspension bridge may be seen as a
thin fixed plate defined by D = (−`, `)× (−d, d)× (0,Λ) ⊂ R3, where d� `� Λ,
while the 3D region where the air surrounds the deck (either a wind tunnel or a
large region of the space) can be taken to be Ω = (−L,L)2 × (0,Λ) \ D, where
L� Λ. The domain Ω and its intersection with the plane z = Λ

2 are represented
in Figure 5 (not in scale): the rectangular shape of the cross section K has been
chosen for simplicity of the picture, other shapes closer to real designs will be
discussed in Section 7.

As we have seen in Section 3 for general cylindrical obstacles, the deck D of
the suspension bridge in Figure 5 is subject to the lift force g(x, z, t), generated
by the vortices, which moves the deck in the y-direction. In many instances of
fluid-structure interaction the deck is modelled as a Kirchhoff-Love plate [168,194]
so that a 3D cylinder is reduced to a 2D plate in the (x, z)-plane. Indeed, since
the thickness 2d is constant, it may be considered as a rigidity parameter and one
focuses the attention on the middle horizontal section D∗ (the intersection of D
with the plane y = 0), that is D∗ = (−`, `) × (0,Λ) ⊂ R2. This is physically
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justifiable as long as the vertical displacements remain in a certain range that
usually covers the displacements of the deck. If the cross section of the deck is
not a perfect rectangle, as in most suspension bridges, then D∗ represents the
projection of D on the plane y = 0. The deflections of this plate are described by
a function u = u(ξ, t) with ξ = (x, z) ∈ D∗. Starting for the Kirchhoff-Love plate
model, Berger [29] introduced a nonlocal nonlinear plate equation which appears
suitable to describe the deck of a bridge. Moreover, for a partially hinged plate
such as D∗, the buckling load only acts in the z-direction as for a one-dimensional
beam, see [170]. We are so led to consider the PDE

(19)


utt + δut + ∆2u− S

[∫
D∗
u2
z

]
uzz = g(ξ, t) in D∗ × (0, T )

u = uzz = 0 on [−`, `]× {0,Λ}
uxx + σuzz = uxxx + (2− σ)uxzz = 0 on {−`, `} × [0,Λ] ,

possibly complemented with some initial conditions

(20) u(ξ, 0) = u0(ξ), ut(ξ, 0) = v0(ξ) in D∗ .

In absence of forces, the plate returns in its horizontal position D∗ × {y = 0}
in the 3D space, the functions u0 and v0 are, respectively, the initial position and
velocity of the deck. The boundary conditions in (19) on the short edges are named
after Navier [220] and model the fact that the plate is hinged in connection with
the ground while the boundary conditions on the long edges model the fact that
the plate is free [199,297]. The constant σ is the Poisson ratio and one has σ ≈ 0.2.
The parameter δ models damping while both the surface density of mass M of the
plate and its flexural rigidity EI are written in adimensional form and are then set
to 1. Finally, S > 0 depends on the elasticity of the material composing the plate
and S

∫
Ω
u2
z measures the geometric nonlinearity of the plate due to its stretching.

The energy space for the study of (19) is

H2
∗ (D∗) = {v ∈ H2(D∗); v = 0 on [−`, `]× {0,Λ}} .

Also consider its dual space (H2
∗ (D∗))

′. We use the angle brackets 〈·, ·〉 to denote
the duality of (H2

∗ (D∗))
′ ×H2

∗ (D∗), (·, ·)L2 for the inner product in L2(D∗) with
the corresponding norm ‖·‖L2 , (· , ·)H2

∗
for the inner product in H2

∗ (D∗) defined by

(v, w)H2
∗

=

∫
D∗

(
∆v∆w−(1−σ)

(
vxxwzz+vzzwxx−2vxzwxz

))
, v, w ∈ H2

∗ (D∗) .

Since σ ∈ (0, 1), this defines a norm which makes H2
∗ (D∗) a Hilbert space; see

[95, Lemma 4.1]. Assuming that g ∈ C0(R+, L
2(D∗)), by solution of (19) we

mean a function

u ∈ C0(R+, H
2
∗ (D∗)) ∩ C1(R+, L

2(D∗)) ∩ C2(R+, (H
2
∗ (D∗))

′)

such that

〈utt, v〉+ δ(ut, v)L2 + (u, v)H2
∗

+ S‖uz‖2L2(uz, vz)L2 = (g, v)L2 ,
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for all t ∈ R+ and all v ∈ H2
∗ (D∗). Existence, uniqueness, and regularity results

for (19) may be found in [37]. Here we focus on the torsional stability issue, in
order to show that a simplified lift force within (19) may qualitatively reproduce
what occurred at the TNB. We then introduce the subspaces of even and odd
functions with respect to x:

H2
E(D∗) = {u ∈ H2

∗ (D∗) : u(−x, z) = u(x, z) ∀(x, z) ∈ D∗} ,
H2
O(D∗) = {u ∈ H2

∗ (D∗) : u(−x, z) = −u(x, z) ∀(x, z) ∈ D∗} .
ThenH2

E(D∗) ⊥ H2
O(D∗), H

2
∗ (D∗) = H2

E(D∗)⊕H2
O(D∗) and, for all u ∈ H2

∗ (D∗),
we denote by uV ∈ H2

E(D∗) and uT ∈ H2
O(D∗) its components according to this

decomposition. The space H2
E(D∗) contains the vertical displacements of the plate

whereas the space H2
O(D∗) contains the torsional displacements. We use this

decomposition in order to write any solution of (19) as

(21) u(ξ, t) = uV (ξ, t) + uT (ξ, t) ,

that is, by emphasising its vertical and torsional parts whose sketches are given
in Figure 9 where the grey pictures refer to the equilibrium position whereas the
dots (both black and grey) represent the position of the section of the sustaining
cables that are linked to the deck through hangers.

Figure 9. On the left (resp. right), vertical (resp. torsional) displacement

of a deck (cross-section).

Definition 1 (Torsional stability/instability). We say that g = g(ξ, t) makes the
system (19) torsionally stable if every solution of (19), written in the form (21),
satisfies ‖uTt (t)‖L2 + ‖uT (t)‖H2

∗
→ 0 as t → ∞. We say that g = g(ξ, t) makes

the system (19) torsionally unstable if there exists a solution of (19) such that
lim sup
t→∞

(‖uTt (t)‖L2 + ‖uT (t)‖H2
∗
) > 0.

In some cases of winds acting on the deck of a bridge, the lift force g does not
depend on the space variable ξ, that is g = g(t), even when computed pointwise. In
some other cases, in particular if the towers interact with the flow, g may depend
on the longitudinal position z. In most cases, it does not depend on x: therefore,
it is reasonable to assume that it is even with respect to x.

We now give sufficient conditions for the torsional stability.
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Theorem 9. [37] Let S > 0, assume that g is even with respect to x and

g ∈ C0(R+, L
2(D∗)) , g∞ = lim sup

t→∞
‖g(t)‖L2 < +∞.

• For any δ > 0 there exists g0 = g0(δ, S) > 0 such that if g∞ < g0, then g makes
the system (19) torsionally stable.
• For any g∞ > 0 there exists δ0 = δ0(g∞, S) > 0 such that if δ > δ0, then g
makes the system (19) torsionally stable.

Several comments are in order. Theorem 9 ensures torsional stability provided
that the lift force g is sufficiently small or the damping parameter δ is sufficiently
large. In real life, the latter statement appears more interesting: given a maximal
intensity of the wind in the region where the bridge will be built, one can design
a structure that remains torsionally stable under that wind, provided one inserts
strong enough dampers. Theorem 9 is not a perturbation statement, both the
constants g0 and δ0 can be explicitly computed, see [37]. In fact, the nonlinearity
plays against the torsional stability: for large S, g0 needs to be small whereas δ0
needs to be large. Theorem 9 is somehow sharp; numerical results in [37] show
that if g∞ is large or δ is small, then torsional instability appears. We believe that
this is what happened on the day of the TNB collapse: the wind was too strong
compared with the structural damping and this lead not only to large vertical
oscillations but also to their instability, that triggered the destructive torsional
oscillation.

6. (I can get now) interaction

After analysing the behaviour of the fluid around a fixed or moving body (Section
4) and the behaviour of a bridge excited by a given lift force (Section 5.2), we show
here that we can get no satisfaction from a full wind-structure interaction model,
where not only the fluid generates movements of structures but also the movements
of the structure modify the fluid flow.

Most of the current fluid-structure interaction models that are used in practical
applications rely on experimental and numerical tools. In the case of wind-bridge
interaction, these tools, that are nowadays consolidated, are fairly simple and are
based on the following assumptions: the wind is considered ergodic and stationary,
the bridge behaviour is considered linear, the aerodynamic loads are governed by
linear laws. As we have seen in Section 5, see also [176], the assumption of linear
behaviour of bridges is unreasonable. In the Engineering literature, the studies
started from the approaches used in the aeronautical field almost one century ago
since the works of Küssner [173], Sears [263, 299], Wagner [302] and Theodorsen
[302], and later applied to wind engineering by Davenport [302], Scanlan [75,259]
and others. The aeroelastic problem was initially studied on simple geometries
like flat plates, where simplified analytical solutions are achievable, and then ex-
tended to more complex shapes like airfoils or deck bridges through semi-empirical
methodologies. In the Mathematical literature, most of the contributions to fluid-
structure interactions are numerical. The reason is that even simple models give
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rise to extremely difficult problems: already well-posedness turns out to be quite
challenging. Let us survey some of the existing models and results.

After the seminal paper of Serre [267], the breakthrough theoretical results on
fluid-structure interaction appeared around 2000, see [61, 62, 79, 80, 129, 144, 145].
For a finite number of rigid bodies and incompressible as well as compressible fluid
models, we refer to Desjardins and Esteban [80]. We recall here the simpler case of
one spherical body following Conca, San Mart́ın and Tucsnak [62]. Let A ⊂ R3 be
an open bounded set representing the domain occupied by both the fluid and the
body, assumed to be a moving ball of radius 1. Denote, respectively, by Ωt ⊂ A
and Bt = A \ Ωt the parts of A occupied by the fluid and the body at a given
instant t. Then the system of equations modelling this fluid-structure interaction
reads

(22)



ut − ν∆u+ (u · ∇)u+∇p = 0 , ∇ · u = 0 in Ωt , t > 0 ,

u = 0 on ∂A , t > 0 , u = h′(t)− ω(t) ∧ n on ∂Bt , t > 0 ,

Mh′′(t) = −
∫
∂Bt

σn , t > 0 , Jω′(t) =
∫
∂Bt

n ∧ σn , t > 0 ,

u(x, 0) = u0(x) in Ω0 , h′(0) = h1 ∈ R3 , ω(0) = ω0 ∈ R3 .

In the above system, the unknowns are u(x, t), h(t) and ω(t), namely the velocity
field of the fluid, the position of the center of the ball and the angular velocity of
the ball, respectively. Therefore, the second identity in (22)2 imposes the no-slip
condition at the fluid-solid interface whereas (22)3 expresses the conservation of
linear and angular momentum for the body (as in (5), σ denotes the rate of strain
tensor of the fluid). The existence of weak solutions, up to collision, for problem
(22) is established in the following theorem.

Theorem 10. [62] Assume that the open set Ã = {x − y |x, y ∈ A} has smooth
boundary. Given h0 ∈ A such that dist(h0, ∂A) > 1, suppose that (u0, h1, ω0) is
an element of the following space:

Hh0 = {(v, `, k) ∈ L2(Ã)× R3 × R3 |∇ · v = 0 in Ã,

v · n = 0 on ∂Ã, v|B1
(y) = `+ k × y, v|Eh0

= 0},

where B1 is the unit ball of R3 and Eh0 = Ã \ (A− h0). Then, there exists T0 > 0
such that the problem (22) has a weak solution (U, h,w) for any T < T0. Moreover,
one of the following alternatives holds true:

(23) T0 = +∞ or lim
t→T0

dist(B(t), ∂A) = 0.

The “no-contact” assumption is crucial. Starovoitov [272] proved that there
exist at least two generalised solutions to the problem if collisions of the body with
the boundary of the flow region are allowed. These solutions are distinguished by
the behaviour of the body after collision with the boundary: in the first solution,
the body moves away from the boundary after the collision while in the second
solution, the body and the boundary remain in contact. Also, in the case of
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a compressible fluid, Feireisl [91] constructed a solution in which a ball remains
attached to the top surface of the cavity A regardless of the intensity of the gravity
force, thus showing that collisions may lead to non-physical situations in a standard
mathematical framework. The problem discussed in Theorem 10 was also tackled
for the Euler equations [230]. For further developments, we refer to [45,50,68,86,
92,113,116,132,153,222,256,279] and the references therein. A uniqueness result
has been obtained by Glass and Sueur [128] (both when the fluid is governed by
the Euler equations or the Navier-Stokes equations). It is also worth mentioning
that fluid-structure interaction problems have been considered for compressible
fluids in [41–43, 46] and stabilisation or control issues have been tackled e.g. in
[11,12,44,280].

Related to the unrealistic situation discovered in [91] lies the no-collision para-
dox, firstly encountered by O’Neill et al. [63, 64, 77, 229] during the 1960s. By
considering a rigid sphere, immersed in a stationary Stokes flow and falling over a
flat wall, they showed that the drag over the body diverges rapidly as it approaches
the ramp, thus impeding the sphere from touching the wall in finite time. The
paradox was later extended to the case of a Navier-Stokes flow, first in 2D and sub-
sequently in 3D [138, 139]. Only frontal collisions are taken into account in those
papers. In the 3D setting, as shown in [140], grazing collisions between smooth
bodies can occur. Here we just recall a result by Gérard-Varet and Hillairet [127]
who, in an attempt to explain the no-collision paradox, consider a general solid
body St ⊂ A and take into account that if the distance between ∂A and ∂St be-
comes very small (less than 10−6m), the no-slip condition is no longer accurate
and must be replaced by the following Navier condition:

(24)

{
(u− uS) · n = 0, (u− uS) ∧ n = −2α(σ · n) ∧ n on ∂St

u · n = 0, u ∧ n = −2β(σ · n) ∧ n on ∂A,

where uS(x, t) = h′S(t) + ω(t) ∧ (x − h(t)) is the velocity, at every point x of the
solid body St, whose center of mass is in position h(t) ∈ R3 at time t > 0. In
(24), impermeability is ensured by imposing that the normal component of the
relative velocity of the fluid is zero, whereas the coefficients α, β > 0 are the so-
called slip lengths (note that the tangential component of the relative velocity
may exhibit discontinuities). The existence of weak solutions, up to collision, for
problem (22)-(24) (exchanging Bt by St) is established in the following:

Theorem 11. [127] Let S ⊂ A be two C1,1 bounded domains of R3. Let u0 ∈
D(A)

L2(A)
, with D(A) being the subspace of solenoidal vector fields belonging to

C∞0 (A), and assume that there exist V,W ∈ R3 such that uS0 (x) = V +W ∧ (x−
h(0)), for every x ∈ ∂S. Furthermore, suppose that (u0−uS0 ) ·n = 0 on ∂S. Then,
there exists T0 ∈ (0,+∞] and a weak solution of (22)-(24) over [0, T ) associated to
the initial data u0 and uS0 . Moreover, such a weak solution exists up to collision,
that is, the alternative (23) holds.
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Further theoretical results are related to models with a linear elastic hyperbolic-
type equation describing the dynamics of the solid, by the Euler equations [53] or
the Navier-Stokes equations [13,14] or the Stokes equations [184] for the dynamic
of the fluid, and by suitable Neumann-type transmission boundary conditions (see
also [152] for the case of a non-Newtonian fluid). A major difficulty is then to deal
with the mismatch between parabolic and hyperbolic regularity and, so far, only
very few satisfactory regularity results have been obtained [10, 14, 184], thereby
proving that the setting is correct. Nonlinear plates interacting with fluids have
also been studied [54,79,218]. In fact, there are further models, with nonstandard
interface conditions [185], with mechanical damping [186] or stochastic forcing [56].
Finally, let us mention the survey [55] where a variety of models mathematically
describing the interaction between flows and oscillating structures are discussed.

7. Shape of things to come

Most of the phenomena discussed in this paper lead to shape optimization prob-
lems. In this section we raise some questions on the shapes of bridges to come.

The vortex pattern in dependence of the Reynolds number, as well described
for circular cylinders in Figures 7 and 8, depends furthermore strongly on the
shape of the bluff body. Davis and Moore [76] were among the first to study
numerically the vortex formation around rectangles, see also the incomplete list
of references [1, 40, 58, 85, 196, 198, 227, 311] for subsequent developments. Figure

Figure 10. From [1], vortices around a rectangle for different Re. From

left to right, top to bottom: Re<40, 38<Re<46, 42<Re<56, 50<Re<150,
100<Re<200, 150<Re<250, 200<Re<350, Re>350.

10 displays the pictures taken from [1] sketching the vortex pattern around a
rectangle for varying Reynolds numbers; this should be compared with Figure 7.
It turns out that vortices on the horizontal sides appear at Re≈100. As explained
for instance in [228], the flow patterns are strongly dependent of the aspect ratio
of the rectangle, as depicted in Figure 11 obtained with the OpenFOAM toolbox
[226], through the use of the SIMPLE algorithm for the numerical resolution of
the steady-state Navier-Stokes equations in laminar regime, see [48]. For short
rectangular cylinders the flow detaches completely and the wake structure is similar
to the case of a circular cylinder. For more elongated rectangular cylinders, the flow
exhibits a large-scale separation at the leading-edge and also a reattachment before
the definitive separation at the trailing-edge. This is in sharp contrast with the
case of a circular cylinder. Instabilities in the wake are observed in all bluff bodies
but only long bluff bodies present further instabilities due to the separating and
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Figure 11. CFD simulation of a 2D flow around rectangles of different
aspect ratio: 1.5, 2, 4 and 8 respectively. The scale indicates the pressure.
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reattaching leading-edge shear layer. We refer for instance to [51, 59] for detailed
studies of this complex mechanism. As highlighted in [58]:

Despite the fact that these kind of flows have been the subject of several
numerical and experimental studies, the topic is still attractive [...] the in-
terest is given by the fact that both experimental and numerical techniques
appear to be unable to tackle the problem in an unequivocal way. Indeed,
a large variability of results is found in the literature [...] The reason of
these discrepancies is the high sensitivity of the flow on the test boundary
conditions and measurement accuracy in experiments and on the turbulence
model, numerical schemes and mesh properties in CFD analysis.

The Strouhal number (St) is a dimensionless parameter introduced to describe
the frequency of the vortex-induced vibrations arising from the vortex shedding.
It is usually defined by

St =
ωL

W
,

where ω is the frequency of the vortex shedding, L is the characteristic length
(such as the hydraulic diameter or the airfoil/deck thickness) and W is the flow
velocity. For rectangular cross sections of decks of bridges, having thickness b and
width d, the Eurocode1 [89, Figure E.1] suggests the dependence of the Strouhal
number St on the aspect ratio d/b as plotted in the left picture of Figure 12.
But this characterization is not unanimously accepted by the entire engineering
community: in the (fairly discrepant) right picture of Figure 12 we reproduce
several different values computed by Japanese engineers [227,268].

Figure 12. Strouhal number in dependence of the thickness/width ratio.
On the left: Eurocode1 [89, Figure E.1]. On the right: data taken from [268];

each symbol corresponds to a different source.

To simplify the description of the phenomenon, the main vortex shedding regimes
have been defined and classified on the basis of the characteristics of the main vor-
tices involved. Each vortex type allows a specific dynamical state. Under the flow
conditions above mentioned and for a wide range of Reynolds numbers, the aspect
ratio d/b affects the vortex shedding and the loading on the structure significantly.

The wind force acting in the transversal direction depends on several structural
parameters and on the air density [89, (8.2); 269; 308], whereas the frequency of the



EIGHT(Y) MATHEMATICAL QUESTIONS ON FLUIDS AND STRUCTURES 35

vortices is computed in terms of the Strouhal number, of the scalar wind velocity
and of the cross-wind direction of the structure considered [133, (1)]. In turn, the
Strouhal number is usually computed experimentally and strongly depends on the
shape of the structure [89, E.1.3.2]. But the suggested values appear more like
“reasonable values” rather than “exact values”, see [99, Figure 7]: in particular,
it appears unlikely that the Strouhal number varies as a piecewise affine function
in terms of the ratio of a rectangular cross section, as suggested in [89, Figure
E.1]. Needless to say, this picture appears unrealistic from a purely mathematical
point of view. Determining how the Strouhal number affects the drag/lift forces
in dependence of the wind flow is of crucial importance for the stability of bridges.
This raises the following question.

Problem 3. Find a more reliable rule for the dependence St=St(d/b), possibly by
smooth interpolation of experimental results. Does there exist a minimum? What
are its physical and geometrical characterizations?

One of the great challenges in engineering consists in deducing the drag and
lift forces on the structure depending on the parameters of the flow (wind speed,
angle of attack, shape of the obstacle, etc.). Assuming that the fluid is governed
by the Navier-Stokes equations (10) in Ω = {(−L,L)2 × (0,Λ)} \ D, where
D does not intersect the boundary of the box (−L,L)2 × (0,Λ), there exists an
overwhelming literature concerning the drag-minimisation problem in terms of a
boundary control of the velocity field, specially in the works of Fursikov et al.
[106–108]. But one can also exploit the explicit form (7) in order to seek the
optimal shape of the body D (with given volume) that minimises the drag. This
optimization problem was tackled in two seminal papers by Pironneau [236, 237]
who associates to (10) the following linear problem:

−ν∆w+(w ·∇)u− (u ·∇)w = (u ·∇)u+∇q, ∇·w = 0 in Ω, w = 0 on ∂Ω,

where u solves (10) under the boundary conditions

(25) u = v on ∂{(−L,L)2 × (0,Λ)} , u = 0 on ∂D .

In optimal control theory, w is called the co-state vector of u although it has no
simple mechanical interpretation. The following result holds.

Theorem 12. [237] Assume that the boundary datum v in (25) is sufficiently
small, so that the solution u of (10)-(25) is unique. Then the body D0 of given
volume minimising the drag energy dissipation (7), if any, must be such that∣∣∣∣∂u∂n

∣∣∣∣2 + 2
∂w

∂n
· ∂u
∂n

is constant a.e. on ∂D0 .

As far as we are aware, this optimization problem has not been fully solved from
a theoretical point of view: in particular it is not clear in which class of obstacles
the minimiser has to be sought, see [22]. Some progress has been done numerically
[217] and for the Stokes case [49]. Moreover, much less is known for the lift and,
therefore, a further natural shape optimization problem arises.
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Problem 4. Find a reliable lift force formula. For a given cross-sectional area of
the deck of a suspension bridge, find the optimal shape minimising the (effects of
the) lift force. Same problem for the full 3D deck (here the extreme parts of the
obstacle are fixed on the boundary of the box).

This problem was recently addressed numerically in [123] but its full solution
still appears very far away. In fact, there exists a guideline for European engineers,
the Eurocode1 [89], but it mainly refers to short-span bridges (less than 200m) and
to particular situations that exclude cable-suspended bridges [89, p.9]. The Annex
E [89, p.114] provides criteria for the study of the effect of vortex shedding and
aeroelastic instabilities but, as we shall see below, the rules and parameters for the
computation of the lift are not unanimously shared. The deck hit transversally
by the flow creates vortices that generate the forcing lift which starts the vertical
oscillations of the bridge, see the sketch of a 2D cross section in the left picture in
Figure 13, yielding the vertical displacement of the whole 3D deck, see the right
picture in Figure 13. This qualitative explanation is shared by the entire engi-
neering community [183, 258, 262] and it has been experimented in wind tunnels.
As we have seen, it is not supported by a theoretical approach or a sound mod-
elling. The air and the deck occupy time-dependent domains, denoted respectively

Figure 13. Vortex shedding around a cross section K (left) and its effect

on the movement of the deck D (right).

by Ωt and Dt, giving a full fluid-structure interaction flavor to the just described
phenomenon. Moreover the cross section of a suspension bridge can have very
unpleasant shapes (quite different from circles and rectangles!) due to side-walks,
lamps, guard-rails, see the sketch in the right picture in Figure 15. More general
shapes are used in engineering plans; some of them are analysed in detail by the
EU regulatory of Eurocode1, see Figure 14 where we reproduce Figure 8.1 p.83
[89] (whose caption is “Cross-sections of normal construction decks”).

One should compare all these figures with those in [207, Chapter 1]. From a ma-
thematical point of view, domains with singularities require a delicate functional
setting since it is known [212] that existence and regularity results for PDEs may
fail even if the data are smooth. The singularities of solutions in a neighborhood
of a concave corner are described through functional spaces with weighted norms
[207]; see also [39, Chapter 5]. Refined regularity results for the Navier-Stokes
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Figure 14. Typical cross sections of suspension bridges from the Eurocode1 [89].

equations may be obtained in convex domains [171]: the obstacle problem consid-
ered here is clearly set in a nonconvex domain but, still, the following question
arises:

Problem 5. Can the regularity results by Kozlov-Maz’ya [171] be extended to
planar domains being the difference between two convex domains?

Some hints and updates on this problem may be found in [211]. This combina-
tion of regularity results in PDEs, shapes of structures, and resulting turbulence
gives rise to the following interdisciplinary question.

Problem 6. Can elliptic regularity in (theoretical) PDEs help to understand the
(physical) behaviour of turbulence in reality?

In this respect, we quote from [151, p.380]

the dimples on a golf ball are used to reduce the drag over that which would
occur for a smooth golf ball. Although this is undoubtedly of great interest
to the avid golfer, it is also important to engineers responsible for fluid-flow
models, since it does emphasise the potential importance of the surface rough-
ness. However, for bodies that are sufficiently angular with sharp corners, the
actual surface roughness is likely to play a secondary role compared with the
main geometric features of the body.

This seems to lower the interest of Problem 6 but one should then quantify what
is a “secondary role”.
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amplitude of the instantaneous angle of attack, may lead the deck
to work between stable and unstable conditions, which result in a
dangerous limit cycle. This instability mechanism shows impor-
tant nonlinear effects and therefore it represents an interesting
case to develop and validate nonlinear numerical models for the
aeroelastic problem. Therefore, such operating condition is used
to validate the nonlinear numerical model (Diana et al., 2008b),
whose results are compared with both experimental data and
linear model results (Diana et al., 2005), in terms of forces and
displacements.

In Section 2 we summarize the main characteristics of the
experimental setup. The aerodynamic behavior using a linear
approach is critically discussed in Section 3. In Section 4 nonlinear
effects on instability are analyzed and modeled. The proposed
nonlinear model is validated and compared with a linear one in
Section 5. Final remarks are reported in Section 6.

2. Experimental setup

Wind tunnel tests were performed at Politecnico di Milano. Tests
were designed to achieve the following goals: complete definition of
aerodynamic and aeroelastic forces including effects of aerodynamic
nonlinearities to compare linear and nonlinear approaches; com-
plete aeroelastic characterization of the suspended section model, in
terms of input (turbulent wind) and output (forces and displace-
ments) for numerical model validations.

2.1. Deck section shape

Following the previous considerations, we studied a single-box
deck section with a simple shape. The deck shape is taken from an
actual highway bridge, but without the barriers on the upper
surface. This simplification allows the measure of the aerody-
namic forces directly through the integration of the pressure
distribution. The deck section model is 2.91 m long and the
geometry and main dimensions of the section are reported in
Fig. 1.

2.2. Forcing systems

Three computer-controlled hydraulic actuators drive the
forced motion tests, generating a multi-degree of freedom
harmonic motion around a user-defined average angle of attack.
Two different kinds of motion law were used to measure flutter
derivatives and aerodynamic hysteresis loops: torsional motion
and vertical motion.

In free motion test configuration, the model is suspended in
the wind tunnel test section by means of steel cables. A harmonic
wind wave is generated by an active turbulence generator made
by a horizontal array of 10 NACA 0012 profile airfoils, 4 m wide.
The airfoils are driven by two brushless motors giving a pitching
motion with a user-defined motion law in terms of frequency
contents and amplitude. The turbulence generator is positioned
7 m upwind the model, while the incoming wind measure
is performed one chord before the leading edge by means of a
4-holes probe that resolves the instantaneous vertical and
horizontal wind components. The wind tunnel residual turbu-
lence intensities in the vertical and horizontal directions are,
respectively, Iw= 1.1% and Iu= 1.6%, with integral length scales x

Lw = 0.025 m and x Lu = 0.124 m. These values are negligible with
respect to the actively generated turbulent component. A partial
picture of the experimental setup is given in Fig. 2.

2.3. Force measurements

A pressure measurement system was set up in order to prevent
inertia forces subtraction problems during free motion tests
(Diana et al., 2004). Pressure is measured on a ring of 78 pressure
tabs around the middle section of the sectional model (see Fig. 3),
at a sampling frequency of 100 Hz. Sixteen pressure taps are
distributed along four lines aligned with the deck axis, two in the
upper part and two in the lower part, to measure the pressure
distribution correlation in the axial direction. The distribution of
the pressure taps was studied to refine the measure where strong
pressure gradient are expected (see Figs. 3 and 6). An example of
pressure correlation along the deck axis is reported in Fig. 4.

2.4. Motion measurements

During forced motion tests, two laser transducers measure the
deck vertical and torsional displacement when the model is linked to
the oil dynamic actuators. During free motion tests, a system of three
infrared cameras allows a nonintrusive measurement of the deck
displacements. The model displacement is reconstructed by measur-
ing the position of 10 markers located on the upper surface of the
deck model. These markers reflect the infrared light that is emitted by

Nomenclature

y horizontal deck motion, positive along horizontal
wind

z vertical deck motion, positive upward
y torsional motion, positive if nose-up
ym mean angle of attack
V average horizontal wind velocity component
v deterministic turbulent horizontal wind velocity

component
w deterministic turbulent vertical wind velocity com-

ponent
r air density
B deck chord length

L sectional model length
o circular frequency of oscillation
V!o reduced velocity V!o ¼ V=ðoBÞ
V* reduced velocity V! ¼ 2pV!o
c instantaneous angle of attack, defined in Eq. (4)
_c time derivative of c
aj

* j-th torsional flutter derivative
wy torsional admittance function
CD drag force coefficient; force is positive if along wind
CL lift force coefficient; force is positive if upward
CM pitching moment coefficient; moment is positive if

nose-up
bj coefficients of the model defined in Eq. (5)
i imaginary unit

Fig. 1. Deck section dimensions and shape.
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Figure 15. Possible cross section of a suspension bridge. Left: scaled

model proposed in [84].

We tested numerically four slight variants of deck shapes, each one having a
characteristic length of 1m and a characteristic height of 0.13m, based on the de-
sign proposed by Diana et al. [84, Figure 1] reproduced on the left of Figure 15,
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also obtained with the OpenFOAM toolbox. The main purpose being a qualitative
comparison of the aerodynamic response of those shapes (in terms on the intensity
of the developed vortices in the wake of each obstacle), each numerical experiment
was carried out with a Reynolds number of 104. The pressure distribution as
well as the streamlines of the velocity field are displayed in Figure 16. Observe
that the singularities of the cross-section create more vortices and more separa-
tion/reattachment points; in particular, the shape in the bottom figure influences
the fluid at larger distance.

The Eurocode1 [89] suggests to consider the force due to the vortex shedding
as a periodic function of time, whose frequency can be determined in terms of
the wind velocity, of the Strouhal number and other parameters. If g in (19) is
taken periodic, then one expects the existence of periodic solutions whose stability
plays a crucial role in the overall stability of (19): this was studied in the recent
work [37] as we now recall. The wind flow creates vortices around the deck of a
suspension bridge and the vortices increase the internal energy of the structure,
generating wide vertical oscillations which look somehow periodic in time. In fact,
the oscillations in suspension bridges display a prevailing mode of oscillation: from
[2, p.20] we learn that, in the months prior to the Tacoma collapse, one princi-
pal mode of oscillation prevailed and the modes of oscillation frequently changed.
Hence, even if the oscillations are governed by (disordered) forcing and damping,
the resulting oscillation is simple to describe. In fact, after some transient time
(depending on the size of the damping parameter δ), it can be shown that the
motions asymptotically approach periodic movements, at least in some particular
situations.

Theorem 13. [37] Let S > 0, assume that g ∈ C0(R+, L
2(D∗)), that g is τ -

periodic for some τ > 0, and let g∞ = maxt∈[0,τ ] ‖g(t)‖L2 . There exists g0 =
g0(δ, S) > 0 such that if g∞ < g0, then:
• the equation (19) admits a unique periodic solution Up;
• there exists η > 0 such that

lim
t→∞

eηt
(
‖ut(t)− Upt (t)‖2L2 + ‖u(t)− Up(t)‖2H2

∗

)
= 0

for any other solution u of (19).

Theorem 13 states that small periodic forcing terms (such as small vortex shed-
ding) generate a stable prevailing mode of oscillation to which all the solutions
approach as t increases. But since each periodic movement (or mode of oscilla-
tion) has its own threshold of instability, see [9, 19, 25, 27], it is more realistic to
address the following fluid-structure interaction problem.

Problem 7. Find a precise rule giving the prevailing mode of oscillation of a
plate in dependence of the features (velocity, angle of attack, Reynolds number,
turbulence) of the fluid hitting the plate.

An answer to this problem would be very useful for an unimodal analysis, as
suggested by the Eurocode1 [89, p.9 and p.118].
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Figure 16. CFD simulation of a 2D flow with Reynolds number 104

around different obstacles. The scale indicates the pressure.
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It is clear that (19) does not take into account that the deck may be composed
by several spans, in general three, or even many more as it is the case of the San
Francisco-Oakland Bay Bridge. The oscillations on each span induce oscillations
on the adjacent spans, although a precise rule is unknown. From a purely theo-
retical point of view, a detailed spectral analysis has been recently performed in
[118] and the interaction between spans has been analysed for several prototype
nonlinearities. Surprising behaviours of the vortex shedding have been detected
experimentally in case of asymmetric spans [250]. All this raises further fog on the
turbulent behaviour of the wind flow in case of fluid-structure interactions.

Problem 8. In a suspension bridge, determine the optimal ratio between spans in
order to maximise the stability and to lower the impact of the turbulent action of
the wind. Does the optimal configuration have equal side spans?

Throughout the paper, we have seen how symmetry influences both the vortex
formation and the behaviour of drag and lift forces. Clearly, also the symmetry of
the structure influences its stability. In Section 3 we also recalled one of Birkhoff’s
thought [32, p.21]

a symmetrically stated problem may not have any stable symmetric solution.

As a conclusion, we give our belief which is going even one step further: in gen-
eral, symmetry plays against stability, both in fluids and structures.
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Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010. 35

[109] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations.
Vol. I. Linearised steady problems. Springer Tracts in Natural Philosophy, 38. Springer-

Verlag 1994. 11

[110] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations.
Vol. II. Nonlinear steady problems. Springer Tracts in Natural Philosophy, 39. Springer-

Verlag 1994. 11

[111] G.P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with
applications, Handbook of mathematical fluid dynamics, Vol. I, 653–791, 2002 21, 22

[112] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations.

Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer
2011. 11

[113] G.P. Galdi, On time-periodic flow of a viscous liquid past a moving cylinder, Arch. Rational
Mech. Anal. 210, 451-498 (2013) 31

[114] G.P. Galdi, On bifurcating time-periodic flow of a Navier-Stokes liquid past a cylinder,

Arch. Rational Mech. Anal. 222, 285-315 (2016) 22, 23
[115] G.P. Galdi, A.L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equa-

tions around a moving body, Pacific J. Math. 223, 251-267 (2006) 22

[116] G.P. Galdi, A.L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under
the action of a time-periodic force, Indiana Univ. Math. J. 58, 2805-2842 (2009) 31

[117] G.P. Galdi, Flow of a viscous liquid past an obstacle at arbitrary Reynolds number, talk

given at the Waseda University, November 8 2016 8
[118] M. Garrione, F. Gazzola, Nonlinear equations and stability for beams and degenerate plates

with several intermediate piers, Springer Briefs, PoliMi (2019), to appear 26, 40

http://artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html
http://artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html


46 D. BONHEURE, F. GAZZOLA, AND G. SPERONE

[119] C. Gasparetto, F. Gazzola, Resonance tongues for the Hill equation with Duffing coefficients

and instabilities in a nonlinear beam equation, Comm. Contemp. Math. 20, 1750022, 22
pp. (2018) 26

[120] F. Gazzola, Mathematical models for suspension bridges, MS&A Modeling, Simulation and

Applications 15, Springer, Cham, 2015 24, 26
[121] F. Gazzola, G. Sperone, Navier-Stokes equations interacting with plate equations, Annual

Report of the Politecnico di Milano PhD School (2017) 11

[122] F. Gazzola, G. Sperone, Boundary conditions for planar Stokes equations inducing vortices
around concave corners, Milan J. Math. (2019). DOI 10.1007/s00032-019-00297-0 11

[123] F. Gazzola, G. Sperone, New bounds for the stability of a bluff body immersed in a viscous

fluid, in preparation 13, 14, 15, 36
[124] M. Geissert, M. Hieber, T.H. Nguyen, A General Approach to Time Periodic Incompressible

Viscous Fluid Flow Problems, Arch. Rational Mech. Anal. 220 (2016) 1095-1118 22
[125] Computational modelling of bifurcations and instabilities in fluid dynamics. Edited by

Alexander Gelfgat. Computational Methods in Applied Sciences, 50. Springer, Cham, 2019.

21
[126] D. Gérard-Varet, Some recent mathematical results on fluid-solid interaction. Lectures on

the analysis of nonlinear partial differential equations. Part 3, 209-235, Morningside Lect.

Math. 3, Int. Press, Somerville, MA, 2013 7, 8
[127] D. Gérard-Varet, M. Hillairet, Existence of weak solutions up to collision for viscous fluid-

solid systems with slip, Comm. Pure Appl. Math. 67, 2022-2075 (2014) 31

[128] O. Glass, F. Sueur, Uniqueness results for weak solutions of two-dimensional fluid-solid
systems, Arch. Ration. Mech. Anal. 218, no. 2, 907–944 (2015) 31

[129] C. Grandmont, Y. Maday, Existence de solutions d’un problème de couplage fluide-

structure bidimensionnel instationnarie, C. R. Acad. Sci. Paris Sér. I Math. 326 no. 4,
525–530 (1998) 30

[130] D. Green, W.G. Unruh, Tacoma Bridge failure, a physical model, Amer. J. Physics 74,
706-716 (2006) 24

[131] G. Grimberg, W. Pauls, U. Frisch, Genesis of d’Alembert’s paradox and analytical elabo-

ration of the drag problem, Physica D 237, 1878-1886 (2008) 8
[132] M.D. Gunzburger, H.-C. Lee, G.A. Seregin, Global existence of weak solutions for viscous

incompressible flows around a moving rigid body in three dimensions J. Math. Fluid Mech.

2, no. 3, 219–266 (2000) 31
[133] S.O. Hansen, Vortex-induced vibrations of structures, Structural Engineers World Congress

2007, November 2-7, 2007, Bangalore, India http://www.eurocodes.fi/1991/1991-1-4/

background/Hansen_2007.pdf 3, 5, 23, 35
[134] Svend Ole Hansen ApS publications, http://sohansen.dk/publications/ 23
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Doc. Math. 5, 15–21 (2000) 30

[146] J.D. Holmes, Wind loading of structures, (2nd Ed.) Taylor & Francis, London & New York,

2007 24
[147] E. Hopf, A mathematical example displaying the features of turbulence. Communications

on Appl. Math. 1, 303-322 (1948) 20
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