
1 INTRODUCTION  

Under suitable boundary and initial conditions, the 
following nonlinear beam equation was proposed by 
Lazer & McKenna (1990) as a model for a suspen-
sion bridge, when t > 0 
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where L > 0 denotes the length of the bridge, 
�� � ��
��, 0�,  ��� represents the force due to 
the cables which are considered as a spring with a 
one-sided restoring force (equal to �� if u is down-
ward positive and to 0 if u is upward negative), and 
W represents the forcing term acting on the bridge 
(including its own weight per unit length and the 
wind or other external sources). The solution u 
represents the vertical displacement when the beam 
is bending. Normalizing (1) by putting � � 1 and 
W� 1, and seeking traveling waves �	
, �
 � 1 �
�	
 � ��
 to (1) leads to the equation 
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In order to maintain the same behavior but with a 
smooth nonlinearity, Chen & McKenna (1997)   
consider also the equation 
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where " # . We wish to suggest here a variant of 
this model and to consider the more general equation 
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+ � 0,                       	4
   
where " # , � " # ,  and f is a locally Lipschitz 
function satisfying the sign condition 
 )	�
� - 0   for all � " #\�0�.                                 	5
 
This assumption reflects the fact that the nonlineari-
ty has the same sign as the vertical displacement w 
of the beam. Since the parameter k equals the 

squared velocity of the traveling wave, one usually 
assumes that k > 0. Nevertheless, a similar equation 
with a nonlocal term and with k < 0 is considered by 
Como et al. (2005) in order to describe the vertic-
al/torsional flutter of suspension bridges. Hence, eq-
uation (3) has interesting applications also in the 
case where k ≤ 0. Let us mention that, in the mathe-
matical community, when k is negative (4) is known 
as the extended Fisher-Kolmogorov equation, whe-
reas when k is positive it is referred to as Swift-
Hohenberg equation  (Peletier & Troy, 2001)   
As pointed out by McKenna (2006, Section 6), one 
of the most interesting behaviors for suspension 
bridges (including the Golden Gate and the Tacoma 
Narrows Bridge) is that 
large vertical oscillations can rapidly change,  al-
most instantaneously, to a torsional oscillation. 
A possible explanation to this fact is that since the 
motion cannot be continued downwards due to the 
cables, when the bridge reaches its equilibrium posi-
tion the existing energy generates a crossing wave 
and, subsequently, a torsional oscillation. 
Since the Tacoma Bridge collapse was due to a wide 
torsional motion of the bridge, the bridge cannot be 
considered as a one dimensional beam. 
This problem was overcome by Drábek et al. (2003, 
Section 2.3) by introducing the  deflection from ho-
rizontal as a second unknown function (besides the 
vertical displacement). Alternatively, we suggest to 
maintain the one dimensional model provided one 
also allows displacements below the equilibrium po-
sition; in other words, the unknown function w 
represents the sum of two terms, the vertical dis-
placement of the side of the bridge plus the deflec-
tion from horizontal. Hence, in our model, the nonli-
nearity f in  (4) should be unbounded also from 
below.  
In Figure 1 the dotted line represents the theoretical 
position of the suspension bridge in absence of the 
action of the cables whereas the horizontal line 
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represents the limit position of the bridge when 
stopped by the cables. 

Figure 1. Theoretical  position of  the suspension bridge with-

out cables (dotted line) and with cables  (solid line) 

A further remark concerns the source f. It is clear 
that more the position of the bridge is far from the 
horizontal equilibrium position, more the action of 
the wind becomes relevant because the wind hits 
transversally the surface of the bridge. For instance, 
in Figure 1 the action of the wind is more powerful 
in position A than in position B. If ever the bridge 
would reach the limit vertical position, the wind 
would hit it orthogonally. Hence, the forcing term f 
is superlinear, becoming more powerful for large 
displacements from the horizontal position. As our 
theoretical and numerical results seem to suggest, 
traveling waves with superlinear nonlinearities f  
blow up in finite time after wide oscillations. 
Is this the explanation of the Tacoma collapse? 
 
 
2 NUMERICAL RESULTS 

In order to numerically evaluate zeros of the com-
puted solution w to (4), we checked where the com-
puted discrete function changed sign. 
Then, for each detected interval, we used two differ-
ent methods: 
a) one step of bisection method; 
b) computation of exact zero of the linear interpola-
tion polynomial. 
From the known bisection error and the comparison 
between the two computed values of each zero, we 
obtain the estimated correct digits of values reported 
in the next tables. 
Concerning the computation of the solution w, we 
chose to use standard numerical methods for stiff 
equations, i.e. we used the MATLAB solvers 
ode15s, ode23s, ode23tb, according to the required 
efficiency and accuracy. We remind that ode15s  is 
a variable order solver with low/medium order of 
accuracy; ode23s is a one-step solver which can be 
in some case more effective than ode15s; ode23tb is 
an implicit Runge-Kutta formula with a first stage 
that is a trapezoidal rule step and a second stage that 
is a backward differentiation formula of order two. 
Solutions computed by different methods were com-

pared and then a reliable tolerance was chosen, in 
the sense that we used relative error threshold which 
revealed neither too tight nor too crude in order to 
guarantee the same results by different methods. 
Let us now describe our numerical results. 

 
Numerical Results 1. When )	�
 � 64� � �2, � �
�20 , the first 18  zeros of the solution w to (4)  sa-
tisfying [w(0), w'(0), w''(0), w'''(0)] =  [1, 0, 0, 0]  
are  given by: 

 
z4 = 0.716 ,  z$ = 1.7977 ,  z2= 2.13827 , 
z5 = 2.17358 ,  z6 = 2.18718 ,  z7 = 2.192412 , 
z8 = 2.194429 , z9 = 2.1952053 ,   z: = 2.1955044 ,  
z4; = 2.1956196 ,  z44= 2.19566400 , 
z4$ = 2.19568109 ,  z42 = 2.195687680 , 
z45 = 2.195690216 ,  z46 = 2.1956911931 , 
z47 = 2.1956915694 ,  z48 = 2.19569171433 , 
z49 = 2.19569177015 . 

 
Moreover the first 16 critical levels (ordered on col-
umns from left to right and then on consecutive 
lines) are given Table 1, where the levels of the rela-
tive maxima are highlighted in bold face. 

 

1.0000e+00 -7.28173e+01 5.54303e+02 -3.79831e+03 

2.56635e+04 -1.73041e+05 1.16639e+06 -7.86188e+06 

5.29910e+07 -3.57173e+08 2.40743e+09 -1.62267e+10 

1.09371e+11 -7.37197e+11 4.96887e+12 -3.34914e+13 

 
Table 1.  First critical levels of the solution w to (4)  satisfying 

 [w(0), w'(0), w''(0), w'''(0)] =  [1, 0, 0, 0]  and   )	�
 � 64� � 

�2, � � �20 . 
 

Here and in what follows only the estimated correct 
digits are reported. We quote an increasing number 
of digits in the zeros <= in order to emphasize the 
small differences which appear between two con-
secutive zeros.  
From the reported data, it appears that the amplitude 
of oscillations is increasing and that the length of the 
cycles (the distance between two consecutive zeros 
of the solution) is decreasing with s, until a threshold 
value where numerical computation stops because of 
the impossibility to reach the required accuracy by 
the variable step integrator in use. This may be a 
symptom of a vertical asymptote. 
We denote such threshold by T. In the Numerical 
Results 1 we have T=2.1957 (rounded to 5 signifi-
cant digits). Figure 2 plots the computed solution un-
til s = 2.05281, that is, just a little after the second 
relative maximum point. 
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Figure 2.  The computed solution until s = 2.05281,  referring 

to Numerical results 1 

 
Next, we slightly change the equation and we obtain 
 
Numerical Results 2. When  f(t)=t+�2,  k=0  the 
first 20 zeros of the solution  w  to (4)  satisfying  
[w(0), w'(0), w''(0), w'''(0)] = [1, 0, 0, 0] are given 
by: 

 
<4 = 1.9 ,  <$ = 4.0 ,  <2 = 4.77 ,  <5 = 5.08 ,  

<6   = 5.20 ,  <7 =  5.242 ,  <8  = 5.259 ,  <9 = 5.2661,  
< : = 5.2687 ,  < 4; =  5.26973 , <44 = 5.27012 , 
<4$ =  5.27027 ,  <42 = 5.270328 ,  <45 =  5.270350 ,  
<46 =  5.2703590 ,  <47 =  5.2703622 , 
<48 = 5.27036356 ,  <49  =  5.27036406 , 
<4: =  5.27036424 ,  <$; =  5.270364321 . 

 
Moreover, the first  20  critical levels (ordered on 
columns from left to right and then on consecutive 
lines) are given in Table 2, where the levels of the 
relative maxima are highlighted in bold face. 

 

1.0000e+00 -7.3459e+00 4.9789e+01 -3.3565e+02 

2.2622e+03 -1.5251e+04 1.0279e+05 -6.9287e+05 

4.6701e+06 -3.1478e+07 2-1216e+08 -1.4299e+09 

9.6376e+09 -6.4961e+10 4.3788e+11 -2.9514e+12 

1.9895e+13 -1.3410e+14 9.0384e+14 -6.0917e+15 

 

Table 1.  First critical levels of the solution w to (4)  satisfying 

 [w(0), w'(0), w''(0), w'''(0)] =  [1, 0, 0, 0]  and   )	�
 � � � 

�2,   � � 0 . 

 
In the case considered in the Numerical Results 2 it 
appears that T = 5.2704 (rounded to 5 significant di-
gits). In Figure 3 the second minimum point and the  
third maximum point can be easily recognized. It is 
worth noticing that the third maximum point is ob-
tained at about s = 5.17 and then between this value  
 

Figure 3. The computed solution referring to Numerical results 

2, until the third maximum point 

 

and T, further 7 relative maxima and 8 relative mi-
nima were computed. 
It appears that the behavior of oscillations is similar  

 

Figure 4.  The computed solution to (4)  with f(t)=t+�2,  k=3.6,   

[w(0), w'(0), w''(0), w'''(0)] = [0.9, 0, 0, 0] 

 

to the Numerical Result 1. Analogous behaviors of  
solutions were found when computing the solution 
to (4) for many different values of k (including large  
negative values) and with different initial conditions. 

Figure 5. The computed  solution to (4) with f(t)=t+�2,  k=3.5, 

[w(0), w'(0), w''(0), w'''(0)] = [1, 0, 0, 0], just until the fourth 

maximum 
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In Figures 4 and 5 we display the plot of two solu-
tions which have some small oscillations on a some-
how large interval of time and then wide oscillations 
in a very small interval of time. Numerical results 
suggest that the blow up time for the solutions occur 
respectively for T = 96.5947 and for T = 12.06618. 
Finally, for f(t) = t+�2,  Table 2 shows the numeri-
cally found blow up time T(k) (depending on k) of 
the solution w to (4) satisfying the initial conditions 
[w(0), w'(0), w''(0), w'''(0)] = [α, 0, 0, 0] 
 

 

Table 2. The numerically found blow up time T(k) (depending 

on k) of the solution w to (4) satisfying the initial conditions 

[w(0), w'(0), w''(0), w'''(0)] = [α, 0, 0, 0] 

 
This table suggests that T is decreasing with respect 
to α  (as expected) and increasing with respect to  k .  
Other values of  α and  k  display similar behaviors. 
However, for very large (positive) values of k  
and/or for very small (positive) values of  α our nu-
merical procedure does not show blow up but a 
somehow periodic behavior. In these cases we do 
not know if the solution is indeed periodic or if the 
blow up time T is so large that the numerical proce-
dure does not reach it with sufficient precision. 
 
We also tried some asymmetric nonlinearity. In the 
case where 
 )	�
 � 	� � �2 � &� � 1
/2,                                (7) 

k = 2, and [w(0), w'(0), w''(0), w'''(0)] = [1, 0, 0, 0]  
the computed solution exhibits a threshold value T = 
6.3009. The relative maximum and minimum values 
of the solution were estimated numerically and are 
reported in Table 3. The maximum points and values 
are written in bold characters. 
 

  s   0.0   3.8532 5.5342   6.1571 
w(s)   1.0 - 3.3786 11.055  -184.06 
  s 6.2754    6.29695  6.3009   6.3009 
w(s) 33.554 -1.5026e+5  73.377 -2.318e+10 
 
Table 3.  Maximum and minima of a solution to (4) in case (7) 

 

 
The last two extremal values are obtained for values 
of s which differ less than 10?5. Figure 6 displays 
the solution until the third maximum and shows that 
maxima values are much smaller than the absolute 
value of minima. 
 

Figure 6. Solution referring to Table 3 until the third maximum 

 
 
Our Numerical Results suggest that fourth order eq-
uations with superlinear nonlinearities exhibit travel-
ing waves which blow up in finite time after a long  
waiting time of apparent calm and sudden wide os-
cillations. This seems to be a serious obstruction to 
real projects where numerical and/or physical expe-
riments are performed on a finite interval of time.  
Even if these experiments would show that no se-
rious oscillations arise up to some large instant T,  
how can one be sure that  they  still do  not arise at a  
slightly larger instant T + ε with ε small?      
 

 

3   THEORETICAL  RESULTS 

We were able to find full theoretical evidence of the 
blow up in finite time only in particular situations. 
However, we believe that these results are enough to 
show that the numerical results explained in Section 
2 are reliable and that the blow up is not caused by 
computational instability. 
We first mention that Berchio at al. (2011) show 
that, under the sole assumption (5), the only way that 
finite time blow up can occur is with wide oscilla-
tions of the solution. More precisely, if a local solu-
tion   w   to  (3) blows up at some finite R" #, then 

lim�CD inf �	�
 �  �∞   and  

lim�CD sup �	�
 �  �∞                                   (8) 

Our first theoretical result (see Theorem 2, in Gazzo-
la & Pavani (2011)) states that, under suitable as-
sumptions on   f  and   k  , the solution to (4) exhibits 
''wide and thinning oscillations''. By this we mean 
that the altitude of the oscillation increases and tends 
to infinity whereas its cycle (the distance between 
two consecutive zeros of the solution) decreases and 
tends to zero. Clearly, this does not prove that blow 
up occurs in finite time but, at least, it gives a strong 
hint in this direction. 
In full detail, we assume that   f   is superlinear in the 
following sense 

 
  ) " LipLMN(#
,    there exists λ,δ,γ > 0    such that 

    α   1   2   20  200 1000 
T(-3.5) 4.2958 3.5266 1.3064 0.42008 0.18815 

T(-2) 4.6209 3.7144 1.3164 0.42041 0.18818 

T(0) 5.2704 4.0442 1.3303 0.42086 0.18822 

T(2.1) 6.6400 4.5684 1.3455 0.42133 0.18826 

T(2.9) 7.8974 4.8612 1.3516 0.42152 0.18827 

T(3.5) 12.066 5.1458 1.3562 0.42165 0.18829 
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  )	�
 O P�$ � Q|�|$�S   for every � " #               (9)  
 
and we consider (3)  in the limit situation where k =0   

    �����	�
 � )*�	�
+ � 0     	� " # 
.                	10
 
 
Then  we  consider  a  local solution   w   to  (10)  in 
a neighborhood of   s  =  0   such that 

��	0
���	0
 � �	0
����	0
 - 0 .                  (11) 

If  T " 	0, U�∞ U denotes the supremum of the max-
imal interval of continuation of w, then there exists 

an increasing sequence V�WXW"Y such that: 

  (i)    �W Z T  as \ C ∞ ; 

  (ii) �*�W+ � 0 and w has constant sign in               

*�W , �W�4+ f or all   \ " Y; 

  (iii)   limWC]*�W�4 � �W+ � 0; 
  (iv)   max�"`�a,�abcd|�	�
| C �∞. 
As already mentioned, this statement is not com-
pletely satisfactory since the assumptions on   f   and 
on   k   are quite restrictive and since it does not 
show that the solution   w   blows up in finite time 
since it could be   R = + ∞ . However, this statement 
gives a strong hint in favor of a blow up in finite 
time. 
Our second theoretical result (see Theorem 3 in 
Gazzola & Pavani (2011) ) gives an explicit example 
where the finite time blow up with wide and thin-
ning oscillations indeed occurs. As far as we are 
aware, this is the first example which exhibits this 
phenomenon. Fix any integer   n ≥ 5, let   � �
� ef?5e�9

$ g 0 and let 

     )	�
 � he	e?5

5 i

$
� � |�|9/	e?5
�                     (12) 

so that   f   is superlinear. In this case, there exists a 

solution   w = w(s)   to the equation 

    �����	�
 � ef?5e�9
$ ���	�
  � he	e?5


5 i
$

�	�
 � 

   +|�	�
|
j

klm  �	�
 � 0                                   (13)  

which is defined in a neighborhood of   s = − ∞ and 
such that (8)  holds for some finite  T " # . 
Note that when   n = 8, the above equation simply 
becomes    
�����	�
 � 20���	�
 � 64�	�
 � �	�
2 � 0.   	14
 
This result proves that fourth order equations such as 
(4) may exhibit finite time blow up with wide oscil-
lations. As shown by Gazzola & Pavani (2011), this 
is not the case in lower order differential equations. 

The proof of this result is based on three main in-
gredients: a Liouville-type nonexistence result for 
critical growth biharmonic partial differential equa-

tions, the radial version of this pde, and a suitable 
change of variables in the corresponding ode. 
As we have seen in Section 2, finite time blow up in 
more general situations is supported by numerical 
evidence. 
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