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On a Quasilinear Elliptic Di�erential

Equation in Unbounded Domains

G. Arioli and F. Gazzola
(�)

Summary. - Existence and multiplicity results for a variational qua-

silinear elliptic equation on unbounded domains are proved; the

solutions are obtained as critical points of a nonsmooth func-

tional. We consider the case where the functional is coercive or

has a saddle-point geometry.

1. Introduction

We consider the quasilinear elliptic equation in Rn (n � 3)
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@s

(x; u)DiuDju =

= b(x)u� �u+ g(x; u) ;

(1.1)

where the assumptions on aij, b and g are given in next section, and
we determine a weak entire solution in a suitable functional space. To
this end, we look for critical points of the functional J� : H

1(Rn)! R

de�ned by

J�(u) =
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where G(x; s) =
R s
0 g(x; t)dt; the main di�culty is that the functional

J� is not even locally Lipschitz continuous if the functions aij(x; s)
depend on s. However, a more careful analysis of J� shows that it has
some di�erentiability properties: as pointed out in [4], the Gâteaux-
derivative of J� exists at least in the smooth directions; namely, for
all u 2 H1(Rn) and � 2 C1

c (Rn) it is possible to evaluate

J 0�(u)[�] =

Z
Rn

X
i;j

aij(x; u)DiuDj�+
1

2
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Rn
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@s

(x; u)DiuDju�

�

Z
Rn

(b(x)� �)u��

Z
Rn

g(x; u)�:

According to the nonsmooth critical point theory developed in [8, 9],
the generalized critical points u of J� satisfy J 0�(u)[�] = 0 for all
� 2 C1

c (Rn) and hence solve (1.1) in distributional sense. In Section
3 we briey recall the basic de�nitions and properties of this theory
and we refer to the original papers for an extensive treatment.

Existence results for (1.1) in a bounded domain were proved in [1];
in this paper we extend these results to Rn : in fact, the statements
proved below hold for any unbounded smooth domain.

In (1.1) we assume that � � 0 and we look for solutions in dif-
ferent functional spaces when � > 0 or � = 0; we �rst prove an
existence result for (1.1) in the general case and then a multiplicity
result in the case where the functions aij and g are, respectively,
even and odd with respect to u.

2. Statement of the results

We assume an ellipticity condition on the matrix [aij(x; s)] and a

semipositivity condition on the matrix
h
s
@aij
@s (x; s)

i
; more precisely,

we assume that there exists � > 0 such that for a.e. x 2 R
n , all

s 2 R and all � 2 Rn

X
i;j

aij(x; s)�i�j � �j�j2 (2.1)
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and

s
X
i;j

@aij
@s

(x; s)�i�j � 0: (2.2)

We require the coe�cients aij(x; u) and b(x) to satisfy8>>><
>>>:

aij � aji

aij(x; s);
@aij
@s (x; s) 2 L1(Rn � R;R)

aij(x; �) 2 C1(R) for a.e. x 2 Rn

lim
jsj!1

aij(x; s) = Aij(x)

(2.3)

and

b 2 L
n
2 (Rn). (2.4)

Let g : Rn � R ! R be a Carath�eodory function and assume that

there exist � 2 L
2n
n+2 (Rn) and � 2 L

n
2 (Rn) such that

jg(x; s)j � �(x) + �(x)jsj for all s 2 R and for a.e. x 2 Rn (2.5)

and

lim
jsj!1

g(x; s)

s
= 0 uniformly w.r.t. x 2 Rn ; (2.6)

furthermore, if G(x; s) =
R s
0 g(x; t)dt; we require that

G(x; s)! +1 if jsj ! 1 for a.e. x 2 Rn ; (2.7)

2G(x; s)� sg(x; s)! +1 if jsj ! 1 for a.e. x 2 Rn ; (2.8)

2G(x; s)� sg(x; s) � 0 for a.e. x 2 Rn and for all s 2 R (2.9)

and that there exists  2 L1(Rn) such that

G(x; s) � (x) for a.e. x 2 Rn and for all s 2 R; (2.10)

an example of a function g satisfying the above requirements is given
by g(x; s) = s1=3e�jxj.
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Denote by D = D1;2(Rn) the closure of C1
c (the space of smooth

functions in R
n with compact support) with respect to the norm

k�k2 =
R
Rn
jr�j2 and byH = H1(Rn) the closure of C1

c with respect

to the norm k�k2H =
R
Rn
jr�j2+�2; we consider the standard Hilbert

structure on the spaces D and H. Under the above assumptions we
prove:

Theorem 2.1. Assume (2.1)-(2.10). Then if � = 0 equation (1.1)

admits a weak solution u0 2 D, while for all � > 0 equation (1.1)

admits a weak solution u� 2 H.

In order to establish the geometrical properties of the functional
J0, we consider the linear self-adjoint operator L

1 : D ! D implic-
itly de�ned by

(L1u; v) =

Z
Rn

X
i;j

Aij(x)DiuDjv � b(x)uv: (2.11)

It is well known (see [10] for an extensive treatment of the topic)
that under the assumptions we take on Aij and b the whole spec-
trum �(L1) but a �nite set of eigenvalues with �nite multiplicity is
contained in some interval [�min; �max] with 0 < �min � �max < +1:
As L1 is self-adjoint, there exist orthogonal subspaces D+; D0 and
D� of D such that D = D+�D0�D� and L1 is positive de�nite on
D+; negative de�nite on D� and D0 = kerL1; let k be the number
of nonpositive eigenvalues, i.e. k = dimD0 + dimD�.

Similarly, to consider the case � > 0 we de�ne the linear self-
adjoint operator L1� : H ! H by

(L1� u; v)H =

Z
Rn

X
i;j

Aij(x)DiuDjv � (b(x)� �)uv: (2.12)

The spectrum �(L1� ) but a �nite set of eigenvalues with �nite multi-
plicity is contained in [�=2;+1), the spaceH splits orthogonally into
the positive, null and negative subspacesH��H0�H+ and if k is the
number of nonpositive eigenvalues of L1� , then k = dimH0+dimH�:

The equation is said to be resonant when the corresponding linear
operator has a nontrivial kernel; the resonant case is in general more
di�cult to handle because no a priori estimates are available.
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If the coe�cients of the equation satisfy for all s 2 R and for a.e.
x 2 Rn the following symmetries

aij(x; s) = aij(x;�s) and g(x; s) = �g(x;�s); (2.13)

then u � 0 is a solution of equation (1.1) and nontrivial solutions
can be obtained by applying index theory: assume that � � 0 in
(2.5) and let

g0(x) = lim sup
s!0

2G(x; s)

s2
; (2.14)

then g0 2 L
n
2 (Rn): De�ne the linear self-adjoint operators L0 :

D ! D and L0
� : H ! H by

(L0u; v) =

Z
Rn

X
i;j

aij(x; 0)DiuDjv � b(x)uv � g0(x)uv

and

(L0
�u; v)H =

Z
Rn

X
i;j

aij(x; 0)DiuDjv � (b(x)� �)uv � g0(x)uv:

The operators L0 and L0
� have the same properties of L1 and L1� :

in particular their positive subspaces have �nite codimensions, which
we denote by m. We prove the following:

Theorem 2.2. Assume (2.1)-(2.10) and (2.13). Let � = 0 (resp.

� > 0) and let m and k be de�ned as above. If k > m, then equation

(1.1) admits at least k �m pairs of nontrivial weak solutions in D
(resp. H).

3. Variational setting

We briey recall some basic de�nitions of the nonsmooth critical
point theory introduced in [8, 9].
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De�nition 3.1. Let (X; d) be a metric space, I 2 C(X;R) and let

x 2 X. We denote by jdIj(x) the supremum of the � 2 [0;+1) such
that there exist � > 0 and a continuous map

H : B(x; �) � [0; �] �! B(x; 2�)

such that for all y 2 B(x; �) and for all t 2 [0; �] we have

d(H(y; t); y) � t and I(H(y; t)) � I(y)� �t

where B(x; r) := fy 2 X; d(x; y) < rg; jdIj(x) is called the weak

slope of I at x.

De�nition 3.2. Let (X; d) be a metric space and I 2 C(X;R); a

point x 2 X is said to be critical for I if jdIj(x) = 0. A real number

c is said to be a critical value for I if there exists x 2 X such that

I(x) = c and jdIj(x) = 0.

We will prove that the functional J� satis�es a weaker version of
the Palais-Smale condition which is due to Cerami [6] in the smooth
context: in our framework the Palais-Smale-Cerami (PSC) sequences
and the PSC condition are de�ned as follows:

De�nition 3.3. Let X be a Banach space and let I 2 C(X;R). A

sequence fxmg � X is called PSC sequence if I(xm) is bounded and

(1 + kxmk)jdIj(xm) ! 0: We say that I satis�es the PSC condition

if all its PSC sequences are precompact.

Following [1] we introduce

De�nition 3.4. Let X be a Banach space, let I 2 C(X;R) and let

Y be a dense subspace of X. If the directional derivative of I exists

for all x in X in all the directions y 2 Y we say that I is weakly Y-

di�erentiable and we call weak Y-slope in x the extended real number

kI 0Y (x)k� := supfI 0(x)[�] : � 2 Y; k�kX = 1g:

We can now state the version of the saddle point theorem which
we use:

Theorem 3.1. Let � = 0 (resp. � > 0), D = V �W (resp. H =
V �W ), where V 6= f0g is �nite dimensional; let J� be de�ned as in

(1.2) and assume that
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(i) J� satis�es the PSC condition

(ii) there exists � 2 R such that J�(x) � � for all x 2W

(iii) there exist � < � and R > 0 such that I(x) � � for all x 2
@BR

T
V

Then equation (1.1) has a solution u 2 D (resp. u 2 H) in

distributional sense.

Proof. The functional J� is of the type

J�(u) =

Z
Rn

L�(x; u;ru)dx; (3.1)

where L� : R
n � R � Rn ! R satis�es the following assumptions for

all � � 0:

L�(x; s; �) is measurable with respect to x for all (s; �) 2 R � Rn

L�(x; s; �) is of class C
1 with respect to (s; �) for a.e. x 2 Rn

and there exist h1 2 L1(Rn), h2 2 L1
loc(R

n), h3 2 L1loc(R
n) and

c 2 [0;+1) such that for all (s; �) 2 R � R
n and a.e. x 2 R

n the
following inequalities hold:

jL�(x; s; �)j � h1(x) + c(jsj
2n
n�2 + j�j2)���@L�@s (x; s; �)

��� � h2(x) + h3(x)(jsj
2n
n�2 + j�j2)���@L�@� (x; s; �)

��� � h2(x) + h3(x)(jsj
2n
n�2 + j�j2);

if � > 0; i.e. if we set the problem in the space H, then the �rst

inequality is replaced by the weaker jL�(x; s; �)j � h1(x)+c(jsj
2n
n�2 +

s2 + j�j2). With the above growth conditions and by adapting The-
orem 1.5 in [4] to our case, we infer that J� is continuous, weakly
C1
c (Rn)�di�erentiable and that the weak slope gives an upper esti-

mate of the weak C1
c (Rn)�slope, i.e.

jdJ�j(u) � k(J�)
0
C1c

(u)k�. (3.2)

In particular, if u is a critical point of J�, then equation (1.1) is
satis�ed in distributional sense. To complete the proof it su�ces to
reason as for Theorems 3 and 5 in [1].
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Remark. If � > 0 and u 2 H satis�es jdJ�j(u) < +1, then it
is well known that the conditions (2.1)-(2.5) implyX

i;j

@aij
@s

(x; u)DiuDjuu 2 L1(Rn)

and therefore J 0�(u)[u] is well de�ned, see [4, 5] for details. The case
� = 0 and u 2 D can be handled similarly by extending the result
in [3] to the following lemma:

Lemma 3.2. Let 
 be (any) open set in R
n let T 2

�
D1;2(
)

��
\

L1
loc(
) and u 2 D1;2(
) satisfying Tu � f in 
 for some function

f 2 L1(
): Then Tu 2 L1(
) and the duality product hT; ui equalsR

 Tu.

Proof. The proof follows by inspection of the proof in [3].

If the equation is invariant under a Z2-action, Theorem 4 in [1]
yields:

Theorem 3.3. Take the same assumptions of Theorem 3.1; assume

moreover that J� is even and that there exist �; � > 0 and a subspace

U of D (resp. H) of �nite codimension such that

(iv) J�(x) � � for all x 2 @B�
T
U

(v) codim(U) < dim(V ).

Then the equation (1.1) admits at least dim(V )�codim(U) pairs
of nontrivial distinct solutions in distributional sense in D (resp. H).

4. Preliminary lemmas

Let 
 � R
n and p � 1; we set kukLp(
) =

�R

 juj

p�1=p and kukp =�R
Rn
jujp

�1=p
. The following lemma states that

R
Rn

G(x; um) is sub-
quadratic for diverging um.

Lemma 4.1. Assume (2.5) and (2.6). If fumg � D (resp. fumg �
H) is a sequence such that kumk ! 1 (resp. kumkH !1), thenR

Rn
G(x; um)

kumk2
! 0

�
resp.

R
Rn

G(x; um)

kumk2H
! 0

�
as m!1:
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Proof. Let fumg � D be such that kumk ! 1; we claim that there
exists a sequence f"mg � R

+ such that "m ! 0 and, for a.e. x 2 Rn

jG(x; um(x))j � �(x)kumk
1=2 +

�(x)

2
kumk+ "mjum(x)j

2 : (4.1)

Take x 2 Rn ; we prove (4.1) in the case um(x) > 0, the case um(x) <
0 being similar. If um(x) < kumk

1=2 then, by (2.5) we have

jG(x; um(x))j �

Z kumk1=2

0
jg(x; t)jdt �

Z kumk1=2

0
(�(x) + �(x) � t)dt

= �(x)kumk
1=2 +

�(x)

2
kumk

and (4.1) follows. If um(x) � kumk
1=2, by H�older inequality we get

Z um(x)

kumk
1
2

t

����g(x; t)t

���� dt �

"Z um(x)

kumk
1
2

t2dt

# 1
2

�

"Z um(x)

kumk
1
2

����g(x; t)t

����
2

dt

# 1
2

� jum(x)j
3
2 � "mjum(x)j

1
2 ;

where "m depends on kumk and by (2.6) "m ! 0; combining this
with the previous inequality we obtain (4.1).

Choose " > 0 and let 
 � R
n be a bounded open set such

that k�k
L
n
2 (
c)

< "; where 
c = R
n n 
: By H�older inequality, the

continuous embedding D � L
2n
n�2 (Rn) and (2.5) we have����

Z

c

G(x; um)

���� �
� k�k

L
2n
n+2 (
c)

kumk
L

2n
n�2 (
c)

+
1

2
k�k

L
n
2 (
c)

kumk
2

L
2n
n�2 (
c)

� ckumk+ "ckumk
2;

furthermore, by integrating (4.1) we have����
Z


G(x; um)

���� � ckumk+ "mkumk
2
L2(
);

and these two inequalities yield the result by the arbitrariness of ".
The proof in the H case follows similarly.
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From now on, all the assumptions of Theorem 2.1 are taken. We

prove that for every unbounded sequence fumg such that J�(um) is
upper bounded, we can estimate the growth of its norm by means of
a suitable local L2-norm:

Lemma 4.2. Let � = 0 (resp. � > 0). There exist a bounded set


 � R
n and � > 0 such that for all sequences fumg � D (resp.

fumg � H) satisfying supJ�(um) < 1 and kumk ! 1 (resp.

kumkH !1) the following inequality holds:

kumk � �kumkL2(
)
�
resp. kumkH � �kumkL2(
)

�
.

Proof. We �rst consider the case � = 0 and fumg � D; for all " > 0
there exist an open bounded set 
" and two functions b1 2 L

n
2 (Rn)

and b2 2 L1(Rn) such that b = b1+ b2, kb1kn
2
< " and suppb2 � 
".

Indeed choose 
" so that kbk
L
n
2 (
c

")
< "

2 : The restriction of b to 
"

is in L
n
2 (
"); therefore there exist two functions ~b2 and b3 such that

~b2 2 L1(
"), b3 2 L
n
2 (
") and kb3kL

n
2 (
")

< "
2 : To conclude take

b1(x) =

�
b3(x) if x 2 
"

b(x) if x =2 
"

and

b2(x) =

�
~b2(x) if x 2 
"

0 if x =2 
":

The result follows by choosing " small enough, taking into account

that D is continuously embedded into L
2n
n�2 and setting 
 = 
".

By (2.1) we have

J0(um) � ckumk
2 �

Z
Rn

G(x; um)�
1

2

Z
Rn

b(x)u2m; (4.2)

then, by Lemma 4.1 and the previous observation we have����
Z
Rn

b(x)u2m

���� �
Z
Rn

jb1(x)u
2
mj+

Z

"

jb2(x)u
2
mj

� kb1kn
2
ku2mk n

n�2
+ kb2k1kumk

2
L2(
")

� c"kumk
2 + kb2k1kumk

2
L2(
")

:
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In the H case the proof goes similarly: in particular note that in-
equality (4.2) still holds when changing to the H�norm because
� > 0:

Lemma 4.3. All the PSC sequences for J� are bounded in D if � = 0
and in H if � > 0.

Proof. We consider the case � = 0; the other one follows simi-
larly. By contradiction, let fumg be a diverging PSC sequence;
by the remark in the previous section, for m large we can evalu-
ate J 00(um)[um] � 2J0(um) and taking into account (2.2) and (3.2)
we have

O(1) �

Z
Rn

2G(x; um)� g(x; um)um: (4.3)

Let vm(x) := um(x)
kumk

, then there exists v 2 D such that, up to a

subsequence, vm * v and therefore vm ! v in L2
loc and vm(x)! v(x)

for a.e. x 2 Rn ; Lemma 4.2 implies that v 6= 0.

By (2.8) we infer that 2G(x; um)�g(x; um)um ! +1 on a subset
of Rn with positive measure, hence by (2.9) and Fatou LemmaZ

Rn

[2G(x; um)� g(x; um)um]! +1;

which contradicts (4.3).

Lemma 4.4. Let fumg � D (resp. fumg � H) be a PSC sequence

for the functional J0 (resp. J� with � > 0). Then fumg is precom-

pact.

Proof. Let fumg be a PSC sequence, by Lemma 4.3 fumg is bounded,
hence um * u for some u. By a standard procedure, see e.g. Theo-
rem 2.2.7 in [5], on a subsequence b(x)um ! b(x)u and g(x; um) !

g(x; u) in L
2n
n+2 ; then, by extending to Rn Theorem 2.1 in [2], by

taking into account the local L2 convergence of fumg to u and by
reasoning as in Lemma 2.3 in [4], we infer that u is a solution in
distributional sense of equation (1.1).

If � = 0, then the result follows as in [4].
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If � > 0; by taking the same steps as in the proof of inequality
(2.3.10) in [4] we infer that

lim sup
m!1

Z
Rn

X
i;j

aij(x; um)DiumDjum + �u2m �

Z
Rn

X
i;j

aij(x; u)DiuDju+ �u2;

by (2.1) we have

minf�; �gkum � uk2H

�

Z
Rn

X
i;j

aij(x; um)DiumDjum � 2

Z
Rn

X
i;j

aij(x; um)DiumDju

+

Z
Rn

X
i;j

aij(x; um)DiuDju+ �

Z
Rn

�
u2 + u2m � 2umu

�

and by Lebesgue dominated convergence theorem we obtain

lim sup
m!1

kum � uk2H � 0

which proves that um ! u in H.

5. Proofs of the results

Recall that we de�ned k to be the number of nonpositive eigenvalues
of L1 (resp. L1� ) counted with their multiplicity. We �rst con-
sider the case � = 0 and k � 1 and we prove that the geometrical
requirements of the saddle point theorem hold.

Proposition 5.1. Assume (2.1)-(2.10). Then

(i) there exists � 2 R such that for all u 2 D+ we have J0(u) � �

(ii) there exist � < � and R > 0 such that if u 2 D� � D0 and

kuk = R, then J0(u) � �.

Proof. Since J0(um) is bounded on bounded subsets of D, then (i)
holds if J0(um) ! +1 for every sequence fumg � D+ such that
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kumk ! 1. Consider a diverging sequence fumg � D+: by Lemma
4.1

R
Rn

G(x; um)=kumk
2 ! 0, therefore it su�ces to prove that for

m large enoughZ
Rn

X
i;j

aij(x; um)DivmDjvm �

Z
Rn

b(x)v2m � c > 0 ; (5.1)

where vm = um
kumk

. There exists v 2 D; kvk � 1, such that vm * v

and
R
Rn

bv2m !
R
Rn

bv2 on a subsequence, since b 2 L
n
2 .

To prove (5.1) we use the same device as in [7].
Let lm =

R
Rn

P
i;j
aij(x; um)DivmDjvm; as flmg is bounded, on a

subsequence lm ! l and two cases may occur:
1) l >

R
Rn

P
i;j
Aij(x)DivDjv. In this case inequality (5.1) follows

because v 2 D+.

2) l �
R
Rn

P
i;j
Aij(x)DivDjv. Then by (2.1) we have

�kvm � vk2 �

Z
Rn

X
i;j

aij(x; um)Di(vm � v)Dj(vm � v)

=

Z
Rn

X
i;j

aij(x; um)DivmDjvm

� 2

Z
Rn

X
i;j

aij(x; um)DivmDjv

+

Z
Rn

X
i;j

aij(x; um)DivDjv ;

but Divm * Div in L2, and aij(x; um)Djv ! Aij(x)Djv in L2 by
Lebesgue dominated convergence theorem, thereforeZ

Rn

X
i;j

aij(x; um)DivmDjv !

Z
Rn

X
i;j

Aij(x)DivDjv;

Z
Rn

X
i;j

aij(x; um)DivDjv !

Z
Rn

X
i;j

Aij(x)DivDjv ;
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hence vm ! v in D and (5.1) follows.

To prove (ii) it su�ces to prove that if fumg � D� � D0 is a
diverging sequence, then J0(um) ! �1. Since dimD� + dimD0 <
+1 and (2.7) holds, then G(x; um) ! +1 on a subset of Rn with
positive measure; by (2.10) and Fatou Lemma we infer

Z
Rn

G(x; um)! +1 ;

the result follows by compactness taking into account (2.2) and the
fact that if um 2 D��D0; then the quadratic part of the functional
is nonpositive.

Similarly, when � > 0 and k � 1 the following proposition holds:

Proposition 5.2. Assume (2.3)-(2.10) and let � > 0. Then

(i) there exists � 2 R such that for all u 2 H+ we have J�(u) � �.

(ii) there exist � < � and R > 0 such that if u 2 H� � H0 and

kukH = R, then J�(u) � �.

Proof. The proof is substantially the same as in Proposition 5.1. We
only point out that in order to prove (i), using the same notation of
the previous proof, we have to show that for m large

Z
Rn

X
i;j

aij(x; um)DivmDjvm �

Z
Rn

(b(x)� �)v2m � c > 0: (5.2)

Let lm =
R
Rn

P
i;j
aij(x; um)DivmDjvm + �

R
Rn

v2m; then lm ! l up to

a subsequence.

If l >
R
Rn

P
i;j
Aij(x)DivDjv + �

R
Rn

v2 we are done.
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If l �
R
Rn

P
i;j
Aij(x)DivDjv + �

R
Rn

v2, then by (2.1) we have

minf�; �gkvm � vk2H �

Z
Rn

X
i;j

aij(x; um)DivmDjvm

� 2

Z
Rn

X
i;j

aij(x; um)DivmDjv

+

Z
Rn

X
i;j

aij(x; um)DivDjv

+ �

Z
Rn

�
v2 + v2m � 2vmv

�

and we conclude as in the proof of Proposition 5.1.

By Lemma 4.4 and the above propositions, the assumptions of
Theorem 3.1 are ful�lled and Theorem 2.1 is proved if k � 1.

If k = 0, then L1 (resp. L1� ) is positive de�nite in D (resp.
H), and by the same argument as in the proofs of the previous
propositions we infer that J� is coercive; furthermore the functional
satis�es the PSC condition, therefore it admits a minimum u. By
a standard argument of nonsmooth critical point theory [8] we have
jdJ�j(u) = 0; hence u is a solution in distributional sense of (1.1)
and the proof of Theorem 2.1 is complete.

We prove Theorem 2.2 in the case � = 0, the other being similar.
By the de�nition of the operator L0 there exists a subspace D+

0 � D
of codimension m such that (L0u; u) � cjjujj2 for all u 2 D+

0 . Recall

that g0 was de�ned in (2.14), then by (2.9) the map s 7�! G(x;s)
s2 is not

increasing for s 2 [0;+1), which together with the semipositivity
condition (2.2) yields

J0(u) �
1

2

Z
Rn

X
i;j

aij(x; 0)DiuDju�
1

2

Z
Rn

b(x)u2 �
1

2

Z
Rn

g0(x)u
2

=
1

2
(L0u; u)
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for all u 2 D; this proves that

lim inf
u!0; u2D+

0

J0(u)

kuk2
> 0;

therefore the hypotheses of Theorem 3.3 are ful�lled and the proof
of Theorem 2.2 follows.
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