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Abstract. We study a class of quasilinear elliptic equations suggested by C.H. Der-
rick in 1964 as models for elementary particles. For scalar fields we prove some new
nonexistence results. For vector-valued fields the situation is different as shown by

recent results concerning the existence of solitary waves with a topological constraint.

1. Introduction. For any (scalar or vector-valued) field ¢ = ¢(z,t), with x € R™
and t € R, consider the Lagrangian density

1 2

— 2_
£=—5(Ivyl

9y

ot - F(¥)

where V denotes the gradient with respect to the space variables = and F' is a smooth
function. The Euler-Lagrange equation of the corresponding action functional
is the semilinear wave equation

A= / / Cdudt
24

YT ~AY+F'()=0  inR" (1)

In a celebrated paper concerning nonlinear wave equations as models for elemen-
tary particles, C.H. Derrick [7] raised the following question: Can (1) have stable,
time-independent, localized solutions in n = 3 dimensions?

The static solutions ¢(x,t) = u(z) of (1) solve the semilinear elliptic equation

—Au+ F'(u)=0 inR" (2)

By localized solution Derrick means one such that both the following integrals

/ |Vu)? de, / F(u)dz

converge. For physical reasons we restrict our attention to the class of solitary
waves, that is of solutions vanishing at infinity. Concerning (2), Derrick proved the
following result.

Theorem 1. Assume that F € C'(R),
F(s) > F(0)=0 VseR (3)
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and let u be a solitary wave of (2) having finite energy, namely
1
E= 5/ |Vu|2da:+/ F(u)dz < 400 ,

then necessarily u = 0.

Assumption (3) implies that u = 0 is a solution (the vacuum) and that “the
energy density (for static solutions) has the desirable feature of being everywhere
positive”. Theorem 1 is proved in [7] in the case n = 3 by means of a simple
rescaling argument; the very same proof may be used for any n > 2. If instead of
(3) we only assume F’(0) = 0, then any static, localized solution of (1) is unstable.

This is the starting point of Derrick’s discussion: “We are thus faced with the
disconcerting fact that no equation of type (1) has any time independent solutions
which could be interpreted as elementary particles.” Then he suggests “some pos-
sible ways out of this difficulty”. The first one consists in the transformation of
the semilinear equations (1) and (2) to quasilinear equations. More precisely, he
considers the Lagrangian density
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> —F(¥)
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and he points out that his nonexistence proof fails for p > n. “Such a Lagrangian,
however, leads to a very complicated differential equation.”

In the static case, the above Lagrangian yields the quasilinear elliptic equation

~Apu+ F'(u) =0 in R" 4)

where A,u = div(|Vu[P~2Vu) denotes the p-Laplace operator.

Forty years after Derrick’s paper, we attempt to study the existence of solitary
waves of finite energy. In this paper we consider equation (4) assuming (3) and n,p >
1. In Section 2 we deal with the scalar equation and we establish some nonexistence
results which partially extend Theorem 1 to the quasilinear case; these results are
new in the case p > n. In Section 3 we recall some recent existence results obtained
in the vector-valued case. The solutions we consider are called topological solitary
waves (for short topological solitons): not only they vanish at infinity but they
are also characterized by a topological invariant, the charge. In some sense, these
solutions give an answer to the question raised by Derrick concerning elementary
particles.

2. Scalar case: nonexistence results. In this section we prove nonexistence
results for the scalar equation (4). Under suitable assumptions on F, it is known [8,
15] that bounded weak solutions of (4) belong to v (R™). We first extend Theorem
1 to the quasilinear equation (4) under an additional monotonicity assumption:

Theorem 2. Assume that F € C*(R), that F satisfies (3) and the further condition

sF'(s) >0 VseR (5)
If u is a distributional solitary wave of (4) such that
1
&= ;/ |Vul|? dx +/ F(u)dz < 400 (6)

then necessarily u = 0.
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Proof. By (3) and (6) we deduce that u € D"P(R™). Consider a sequence {u;} C
C§°(R™) such that ug(z)u(z) > 0 for a.e. x € R™ and such that uy — u in DVP(R™).
Then, from (4) we get

/ \Vu\piz Vu - Vugdz + / F'(u)updz = 0.
Hence, letting &k — 400, by Fatou’s Lemma (recall (5) and ugu > 0) we infer

/ \VulP da:—i—/ F'(u)udz < 0.
By (5), this shows at once that u = 0. O

If we remove assumption (5) and the finite energy condition (6), we can prove
nonexistence of nontrivial solutions of (4) in the restricted class of radial solitary
waves. Strictly related to previous results in [9], we have

Theorem 3. Assume that F € C1(R) and that F satisfies (3). If u € C1(R") is a
distributional radial solitary wave of (4), then necessarily u = 0.

Proof. We perform the proof by combining some tools introduced in [9]. Assume
that (4) admits a C' distributional radial solitary wave u = u(r) where r = |z|.
Then, it is known [9] that |u/|P~2u’ € C'(R) and that u solves the problem

(WP +

n—1

W/ (r)[P~? (r) = F'(u(r))  (r >0)
(7)
W' (0)=0, limu(r)=0,
where primes denote differentiation with respect to . In this proof, all the limits
are intended as r — oco. Consider the energy function

B(r) =) - F(r)) . (2 0) ®)

By differentiating with respect to r and using equation (7) we obtain
n—1

£0) = | (w2 o) - Fue)| v = -2 er <o
(

)
This proves that lim E(r) exists. Since lim F(u(r)) = 0, (8) shows that also lim v/ (r)
exists; but this limit is necessarily 0 because limu(r) = 0. Hence, using again (8),
we infer that

9

lim E(r) =0. (10)

Moreover, by (3) we have E(0) = —F(u(0)) < 0. This, combined with (9) and (10)
proves that F(u(0)) = 0 and E(r) = 0. In turn, this yields E’(r) = 0 which, in view
of (9), shows that w/(r) = 0. Since u vanishes at infinity, we finally get u =0. O

Several remarks about Theorem 3 are in order. First of all, note that as soon
as we drop the sign assumption (3) on F, for (4) existence results for nonnegative
radial solitary waves may be obtained, see [10].

Next, a natural question that we leave as an open problem is if in Theorem 3 one
can drop the radial symmetry assumption on the solution. To this end, we recall
that radial symmetry of bounded positive solutions of (4) has been widely studied.
First, it has been proved in [11] in the semilinear case p = 2 under an additional
assumption on the decay at infinity of the solution; subsequently, this assumption
was removed in [13]. The very same statement was extended to the singular case
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1 < p < 2in [5]. In the degenerate case p > 2, the situation is more delicate
and radial symmetry of positive solutions of (4) is known only under the additional
assumption that the solution admits a unique critical point, see [13]. On the other
hand, in view of [9], if F'(s) > 0 in a (right) neighborhood of s = 0, then positive
radial solutions to (4) may exist only whenever [, |F(s)|"*/Pds = +oc0. Otherwise,
nonnegative radial solutions of (4) have compact support (a ball). In such case,
radially symmetric solutions about two different centers and with disjoint supports
may be “sticked” together in order to obtain multibump solutions, see again [13]
and references therein. Hence, it is readily seen that radial symmetry of nonnegative
solutions may fail. Moreover, as far as we are aware, nothing seems to be known
about the symmetry of sign changing solutions.

Finally, note that Theorem 3 does not exclude the existence of radial solutions
which do not vanish at infinity. On the other hand, if we replace (3) with the
stronger assumption

F(s) > F(0) =0 for all s # 0 and liminf F(s) > 0 (11)

|8] =00
then any finite energy solution of (4) vanishes at infinity, provided that
p>n, (12)

which is precisely the situation where Theorem 3 gives new informations. To see
this, note that in such case any solution u of (4) satisfying (6) is Holder continuous;
therefore, if there exist ¢ > 0 and a sequence {z;} C R" such that |z;| — oo and
|u(zr)| > c, then there exists p,§ > 0 such that F'(u(z)) > ¢ for all « such that
|z — x| < p for some k. This would violate (6). Taking into account this fact,
Theorem 3 has the following

Corollary 1. Assume (12), that F € CY(R) and that F satisfies (11). If u €
CL(R™) is a distributional radial solution of (4) satisfying (6), then necessarily
u = 0.

3. Vector-valued case: topological solitons. In this section we deal with the
vector-valued equation (4) and we recall some results concerning topological soli-
tary waves; this notion, in connection with quasilinear elliptic equations, has been
introduced in [4]. Contrary to the scalar case, here the existence of solutions is
guaranteed by a topological constraint. Formula (4) represents now a system of
quasilinear equations where

F is a real smooth function defined in some 2 C R**!;

F’ denotes the gradient of F;

the solutions u are vector-valued fields u = (u!,...,u"*!) : R® — Q;

A,u denotes the vector whose j-th component is div(|Vu[P~2Vu).

As suggested by Derrick, throughout this section we require that p > n.
We also assume that
(F1): F € CY(Q) where Q = R*"™\{y} and n € R**1\ {0};
(F2): F(¢) > F(0) = 0 for every £ € Q; F is twice differentiable at £ = 0 and
its Hessian matrix is non degenerate;
(F3): there exist ¢, p > 0 such that, if [¢] < p, then F(& 4 n) > c|¢["?/("=P);
(F4): liminfjg o F(£) > 0.
Consider the function space

H = L*(R") N DYP(R™);
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by (12), the functions in H are bounded, Holder continuous and vanish at infinity
(see [2]). By (F1) and (F2) the real-valued energy functional

E(u)zl/ \Vu\pder/ F(u)dz
p kel kel

is well-defined on the open set
A={ue H; u(x) #nVeeR"}.

Moreover, the energy functional £ is coercive and £(u) — 400 as u — OJA, see
[2]; note that the proof of coercivity can be improved taking into account the proof
in [12].

For every u € A we define the topological charge.

Definition 1. For every u € A, let
S(u) ={z e R"; |u(z)] > [nl}.

Then, if S(u) # 0, we define the topological charge of u as the integer number

ch(u) = deg(P ou, S(u), N), (13)
where P is the projection of R™\{n} on the sphere > = {¢ € R"*L; | — 9| = |n|}
and N = 2n. If S(u) = 0, we set ch(u) = 0.
Remark 1. In [4] and [2] two different definitions of topological charge have been
given. In the Appendix of [6] it has been shown that they are equivalent.

Although the functional £ is weakly lower semicontinuous in A, we cannot min-
imize it over the connected components

Ap = {u € A; ch(u) = k} (keZ)
since the domain R" is not compact and the A are not weakly closed.
The first existence result concerning (4) was proved in [2]; it is based on a Split-

ting Lemma (for energy and charge), in the spirit of the Concentration-Compactness
Lemma in unbounded domains. The result is as follows:

Theorem 4. Assume (12) and that F satisfies (F1)-(F2)-(F3)-(F4). Then there

exists a weak solitary wave of (4) obtained as minimum of £ in
A" ={u € A; ch(u) #0}.

Remark 2. Let u* denote the minimizer of the energy £ in A*. It is still an open
problem to evaluate ch(u*). By [4], we know that either ch(u*) = 1, or there are at
least two nontrivial local minimizers of the energy.

If we introduce a suitable invariance property for F, we also have the existence
of a solution of (4) for every fixed value of the charge. In the target space R"™! we
choose a reference frame so that

n=(1,0,...,0).
In this reference frame, for every ¢ € R"*! we write
¢ = (%.€)
with & € R and € € R™. Using this notation we require
(F5): for every £ = (fo, 5) € R™"! and for every g € O(n) (orthogonal group)

F(&,98) = F(&,9).
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Then, the following multiplicity result holds, see [12].

Theorem 5. Assume (12) and that F satisfies (F1)-(F2)-(F3)-(F5). Then, for
every k € 7 there exists uy, € Ay, weak solitary wave of (4).

We point out that these solutions are not true minima of the energy &£; they are
constrained minima on A N Fiz where

Fix = {u = (up,0) € H; ug(g9z) = ug(x),d(gz) = gi(zr) Vg € O(n),Vax € R"}.

The subspace Fix, which is the set of fixed points for a suitable O(n)-action in-
troduced by Skyrme (see [14]), is a natural constraint for finding critical points of
E. On the other hand, in Fix there is no loss of compactness because we have a
uniform decay to zero at infinity of bounded sequences (Radial Lemma).

Remark 3. If we interpret these solitary waves as elementary particles and the
topological charge as electric charge, it is natural to study the interaction between
solitons of this kind and their own electromagnetic field; this has been done in [3]
and [6]. The same techniques introduced in [4] have been used for a class of non-
linear perturbations of Schroedinger equation; for these equations, time-depending
solutions have been studied, deriving also the equations of the Bohmian version of
Quantum Mechanics (see [1] and references therein).
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