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Summary: We study the spectrum of a biharmonic Steklov eigenvalue problem in a bounded
domain ofRn . We characterize it in general and give its explicit form in the case where the domain
is a ball. Then, we focus our attention on the first eigenvalue of this problem. We prove some
estimates and study its isoperimetric properties. By recalling a number of known results, we finally
highlight the main open problems still to be solved.

1 Introduction and results
Let � ⊂ Rn (n ≥ 2) be a bounded domain with∂� ∈ C2, let d ∈ R and consider the
boundary eigenvalue problem


�2u = 0 in�
u = 0 on∂�
�u = duν on∂�,

(1.1)

whereuν denotes the outer normal derivative ofu on ∂�. We are interested in studying
the eigenvalues of (1.1), namely those values ofd for which the problem admits nontrivial
solutions, the corresponding eigenfunctions. The purpose of the present paper is to collect
a number of known (and old) results, to prove some new results and to suggest some open
questions.

Elliptic problems with eigenvalues in the boundary conditions are usually called
Steklov problems from their first appearance in [21]. By solution of (1.1) we mean
a functionu ∈ H2 ∩ H1

0(�) such that∫
�

�u�v dx = d
∫
∂�

uνvν dS for all v ∈ H2 ∩ H1
0(�). (1.2)

By takingv = u in (1.2), it is clear that all the eigenvalues of (1.1) are strictly positive.
LetH(�) := [H2 ∩ H1

0(�)] \ H2
0(�) and

d1 = d1(�) := min
u∈H(�)

∫
�

|�u|2

∫
∂�

u2
ν

. (1.3)

AMS 2000 subject classifications: 49R50, 35J40, 35P15
Key words and phrases: biharmonic operator, eigenvalues problems, shape optimization
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316 Ferrero -- Gazzola -- Weth

The numberd1 represents the least positive eigenvalue andd−1/2
1 is the norm of the

compact linear operatorH2 ∩ H1
0(�)→ L2(∂�), defined byu �→ uν|∂�. Moreover, as

pointed out by Kuttler [11],d1 is the sharp constant for a priori estimates for the Laplace
equation {

�v = 0 in�

v = g on∂�
(1.4)

whereg ∈ L2(∂�). Indeed, using Fichera’s principle of duality (see [7] and also (1.11)
below), for the solutionv of (1.4) one has

d1(�) · ‖v‖2
L2(�)

≤ ‖g‖2
L2(∂�)

andd1(�) is the largest possible constant for this inequality.
The first eigenvalued1 also plays a crucial role in the positivity preserving property

for the biharmonic operator�2 under the boundary conditionsu = �u − duν = 0 on
∂�, see [4, 8]. It is shown there that ifd ≥ d1, then the positivity preserving property
fails, whereas it holds whend is in a left neighborhood ofd1 (possiblyd ∈ (−∞, d1)).
We refer to [4, 8] for further details. We also refer to [12] for several inequalities between
the eigenvalues of (1.1) and other eigenvalue problems.

The boundary condition in (1.1) has an interesting interpretation in theory of elasticity.
Consider the model problem{

�2u = f in �

u = �u − (1− σ)κuν = 0 on∂�
(1.5)

where� ⊂ R2 is an open bounded domain with smooth boundary,σ ∈ (−1,1/2) is the
Poisson ratio andκ is the mean curvature of the boundary (with the convention thatκ

is measured from inside, that is, positive where the boundary of the domain is convex).
Problem (1.5) describes the deformationu of the linear elastic supported plate� under
the action of the transversal exterior forcef = f(x), x ∈ �. The Poisson ratioσ of an
elastic material is the negative transverse strain divided by the axial strain in the direction
of the stretching force. In other words, this parameter measures the transverse expansion
(resp. contraction) ifσ ≥ 0 (resp.σ < 0) when the material is compressed by an external
force. We refer to [14, 22] for more details. The restriction on the Poisson ratio is due
to thermodynamic considerations of strain energy in the theory of elasticity. As shown
in [14], there exist materials for which the Poisson ratio is negative and the limit case
σ = −1 corresponds to materials with an infinite flexural rigidity, see [22, p. 456]. This
limit value forσ is strictly related to the eigenvalue problem (1.1). Indeed, if we assume
that� is the unit disk, thend = (1− σ)κ = 1− σ . Moreover, by Theorem 1.3 below,
the first eigenvalued of (1.1) is equal to 2, which impliesσ = −1. Hence, the limit value
σ = −1, which is not allowed from a physical point of view, also changes the structure
of the stationary problem (1.5): when� is the unit disk andd = (1− σ)κ = 2, (1.5)
either admits an infinite number of solutions or it admits no solutions at all, depending
on f .
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On a Steklov eigenvalue problem 317

We are firstly interested in the description of the spectrum of (1.1). Throughout this
paper we endow the Hilbert spaceH2 ∩ H1

0(�) with the scalar product

(u, v) =
∫
�

�u�v dx. (1.6)

Consider the subspace

Z =
{
v ∈ C∞(�) : �2v = 0, v = 0 on∂�

}
(1.7)

and denote byV the completion ofZ with respect to the scalar product in (1.6). Then,
we prove

Theorem 1.1 Assume that � ⊂ Rn (n ≥ 2) is an open bounded domain with C2

boundary. Then, problem (1.1)admits infinitely many (countable) eigenvalues. The only
eigenfunction of one sign is the one corresponding to the first eigenvalue. The set of
eigenfunctions forms a complete orthonormal system in V .

The vector spaceV also has a different interesting characterization:

Theorem 1.2 Assume that � ⊂ Rn (n ≥ 2) is an open bounded domain with C2

boundary. Then, the space H2 ∩ H1
0(�) admits the following orthogonal decomposition

with respect to the scalar product (1.6)

H2 ∩ H1
0(�) = V ⊕ H2

0(�).

Moreover, if v ∈ H2 ∩ H1
0(�) and if v = v1 + v2 is the corresponding orthogonal

decomposition, then v1 ∈ V and v2 ∈ H2
0(�) are weak solutions of


�2v1 = 0 in �

v1 = 0 on ∂�

(v1)ν = vν on ∂�

and



�2v2 = �2v in �

v2 = 0 on ∂�

(v2)ν = 0 on ∂�.

(1.8)

When� = B (the unit ball) we may determine explicitly all the eigenvalues of (1.1).
To this end, consider the spaces of harmonic homogeneous polynomials:

Dk := {P ∈ C∞(Rn); �P = 0 inRn, P homogeneous polynomial of degreek − 1}.
Also, denote byµk the dimension ofDk. We refer to [3] for the basic properties of the
spacesDk and of their dimensionsµk. In particular, we have

D1 = span{1}, µ1 = 1,

D2 = span{xi; (i = 1, . . . , n)}, µ2 = n,

D3 = span{xi x j; x2
1 − x2

h; (i, j = 1, . . . , n, i �= j, h = 2, . . . , n)}, µ3 = n2+n−2
2 .

Then, we prove
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318 Ferrero -- Gazzola -- Weth

Theorem 1.3 If n ≥ 2 and� = B, then for all k = 1,2,3, . . . :

(i) the eigenvalues of (1.1)are dk = n + 2(k − 1);

(ii) the multiplicity of dk equals µk;

(iii) for all ψk ∈ Dk, the function ϕk(x) := (1− |x|2)ψk(x) is an eigenfunction corre-
sponding to dk.

Remark 1.4 Theorems 1.1 and 1.3 become false ifn = 1. It is shown in [4] that the one
dimensional problem

uiv = 0 in (−1,1), u(±1) = u′′(−1)+ du′(−1) = u′′(1)− du′(1) = 0, (1.9)

admits onlytwo eigenvalues,d1 = 1 andd2 = 3, each one of multiplicity 1. The reason
of this striking difference is that the “boundary space” of (1.9) has precisely dimension
2, one for each endpoint of the interval(−1,1). This result is consistent with Theorem
1.3 sinceµ1 = µ2 = 1 andµ3 = 0 whenevern = 1.

By combining Theorems 1.1 and 1.3 we obtain

Corollary 1.5 Assume that n ≥ 2 and that � = B. Assume moreover that for all k ∈ N
the set {ψ�k : � = 1, . . . , µk} is a basis ofDk chosen in such a way that the corresponding
functionsϕ�k are orthonormal with respect to the scalar product (1.6). Then, for any u ∈ V
there exists a sequence {α�k} ∈ �2 (k ∈ N; � = 1, . . . , µk) such that

u(x) = (
1− |x|2) ∞∑

k=1

µk∑
�=1

α�kψ
�
k (x) for a.e. x ∈ B.

We now restrict our attention to thefirst eigenvalued1(�). To this end, we recall
a consequence of Fichera’s principle of duality [7]. Assume that∂� ∈ C2 and let

C2
H(�) :=

{
v ∈ C2(�); �v = 0 in�

}
.

We consider the norm defined by‖v‖H := ‖v‖L2(∂�) for all v ∈ C2
H(�). Then, we

consider
H := the closure ofC2

H(�) with respect to the norm‖ · ‖H .

Finally, we define

δ1 = δ1(�) := min
h∈H\{0}

∫
∂�

h2

∫
�

h2
. (1.10)

The minimum in (1.10) is achieved. To see this, combine the continuous embedding (for
weakly harmonic functions)H−1/2(∂�) ⊂ L2(�) (see Th́eor̀eme 6.6 in Ch. 2 in [15])
with the compact embeddingL2(∂�) ⊂ H−1/2(∂�).

Fichera’s principle [7] states that

δ1(�) = d1(�) for all � such that∂� ∈ C2. (1.11)

For the reader’s convenience we quote a new proof of this statement in Section 5.
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On a Steklov eigenvalue problem 319

Problem 1.6 Does equality (1.11)hold also if ∂� �∈ C2? This question is strictly related
with the following: are the maps � �→ d1(�) and � �→ δ1(�) continuous with respect
to Hausdorff convergence of domains?

In view of the important applications explained in the introduction, one is interested in
finding both lower and upper bounds ford1(�). First, we extend to any space dimension
n ≥ 2 a lower bound ford1(�) obtained for planar domains (n = 2) by Payne [16], see
also Kuttler [10] for a different proof. This estimate is useful forconvex domains since it
involves the mean curvature of the boundary as stated in the following

Theorem 1.7 Let � ⊂ Rn (n ≥ 2) a bounded convex open domain with C2 boundary.
For all x ∈ ∂�, let K(x) denote the mean curvature at x and let

K := min
x∈∂� K(x).

Then d1(�) ≥ nK and equality holds if and only if � is a ball.

By rescaling, it is not difficult to see that the map� �→ d1(�) is homogeneous of
degree−1, namely, for any� andk > 0 we haved1(�) = kd1(k�). This suggests thatd1
should somehow be related to the “isoperimetric ratio”|∂�|/|�|. As noticed by Kuttler
[10], this is indeed the case: by takingh ≡ 1 in (1.10) and using (1.11) one readily gets

d1(�) ≤ |∂�|
|�| for all � such that∂� ∈ C2. (1.12)

In Section 7, we determineextremal sets for the isoperimetric inequality (1.12):

Theorem 1.8 Let � ⊂ Rn (n ≥ 2) be a bounded connected domain with C2 boundary.
Then

d1(�) = |∂�|
|�|

if and only if � is a ball.

Problem 1.9 The above mentioned homogeneity also suggests that the map� �→ d1(�)

could be monotone decreasing with respect to domain inclusions. Is this true?

We now deal with a particular class of nonsmooth domains. It is clear that (planar)
rectangles are slightly easier to handle than general domains. We consider the two families
of rectangles

∀a ∈
(
0,
π

2

]
, Ra := (0, π − a)× (0, a), ∀α ∈ (0,√π ] , Qα :=

(
0,
π

α

)
× (0, α).

(1.13)

We note that theRa’s have thesame perimeter 2π as the unit disk, whereas theQα’s have
thesame area π as the unit disk. Moreover,Rπ/2 andQ√

π are squares.
Smith [19, 20] conjectured that for any domain�, one hasd1(�) ≥ d1(�

∗), where�∗
is the ball having the same measure as�. In particular, for planar domains� of measure
π (as the unit disk), this would mean thatd1(�) ≥ 2. This conjecture was disproved by
Kuttler [10] who shows that

d1

(
Q√

π

)
< 1.9889. . . (1.14)
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In fact, Kuttler’s estimate [10, p.3] is given for the squareQ′ := (0,1)2 for which
d1(Q′) < 3.5254. . . , so that (1.14) is obtained by rescaling this inequality. In order
to prove (1.14), Kuttler uses directly the characterization (1.3) ofd1(Q√

π) and finds
a suitable linear combination of a fourth order polynomial with the stress function of
Q√

π to get an upper bound ford1(Q√
π). In Section 8, by using Fichera’s principle

(1.11) and a much simpler trial function, we improve (1.14) with the following

d1

(
Q√

π

)
< 1.96256. (1.15)

We now consider rectangles with sizes of different length. In Section 9 we show that
if they maintain the same perimeter and become “thin” thend1 tends to infinity:

Theorem 1.10 For all 0< a ≤ π
2 let Ra be as in (1.13). Then,

π

2
≤ lim inf

a→0
[a · d1(Ra)] ≤ lim sup

a→0
[a · d1(Ra)] ≤ πd1(Rπ/2) < (2.2146)π.

Theorem 1.10 complements somenumerical approximations of d1 for rectangles
obtained by Kuttler [11] using a posteriori / a priori inequalities, see also [13]. We recall
here his results: for our convenience, we scale [11, Table 1] to the case of the rectangles
Ra defined in (1.13) and we add the last column, according to Theorem 1.10.

Table 1.1: Numerical estimates ford1(Ra) of rectanglesRa such that|∂Ra| = 2π.
a π/2 5π/11 4π/9 3π/7 2π/5 π/3 2π/7 → 0

d1(Ra) > 2.2118 2.2261 2.2331 2.2459 2.2846 2.4493 2.666 →∞
d1(Ra) < 2.2133 2.2304 2.2359 2.2498 2.2878 2.4542 2.6839

In view of these results, Kuttler suggests a new and weaker conjecture, which we state
for any space dimensionn:

Conjecture 1.11 ([10]) Let B ⊂ Rn denote the unit ball. Let � ⊂ Rn be a smooth
bounded domain whose surface measure satisfies |∂�| = |∂B|. Then, n = d1(B) ≤ d1(�).

In other words, the first eigenvalued1 is expected to be minimal on the ball, among
all domains having thesame surface measure. In connection with this conjecture, we also
make the following

Remark 1.12 For thesecond order Steklov problem{
�u = 0 in�
uν = λu on∂�,

(1.16)

it is known (see [6, Theorem 3]) that the first (nontrivial) eigenvalueλ1 = λ1(�) satisfies
λ1(�) ≤ λ1(�

∗) where

λ1 = λ1(�) := inf
u∈H(�)

∫
�

|∇u|2

∫
∂�

u2
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and

H(�) :=

u ∈ H1(�) \ H1

0(�);
∫
∂�

u = 0


 .

Therefore, (1.15) and the possible validity of Conjecture 1.11 would show that the fourth
order problem (1.1) and the second order problem (1.16) are completely different.

Consider now the rectanglesQα defined in (1.13) and which have fixed area. By
Theorem 1.10 and by rescaling (it suffices to putα = √

aπ/(π − a)) we obtain

Corollary 1.13 For all 0< α ≤ √π let Qα be as in (1.13). Then,
π

2
≤ lim inf

α→0
[α · d1(Qα)] ≤ lim sup

α→0
[α · d1(Qα)] ≤ πd1(Rπ/2) < (2.2146)π.

Therefore, also for thinning rectangles of fixed area, the first eigenvalued1 tends to
infinity, although at a lower rate. Then, we may also rescale Table 1.1 above and obtain
for the rectanglesQα in (1.13):

Table 1.2: Numerical estimates ford1(Qα) of rectanglesQα such that|Qα| = π.

α2 π 5π/6 4π/5 3π/4 2π/3 π/2 2π/5 → 0

d1(Qα) > 1.9601 1.9647 1.9667 1.97 1.9838 2.0465 2.1347 →∞
d1(Qα) < 1.9615 1.9685 1.9693 1.9734 1.9866 2.0506 2.149

The numerical estimate in the first column of Table 1.2 seems to show that (1.15) is
almost optimal.

Problem 1.14 From (1.15) we know that the ball (at least ifn = 2) is not the minimizer
for d1 among domains having the same measure. Does there exist an optimal shape for
this minimization problem? At least in the class ofconvex domains, we feel that the
answer could be affirmative.

2 Proof of Theorem 1.1
Let Z be as in (1.7) and define onZ the scalar product given by

(u, v)W :=
∫
∂�

uνvν dS for all u, v ∈ Z (2.1)

and we denote byW the completion ofZ with respect to this scalar product. Then, we
prove:

Lemma 2.1 The (Hilbert) space V is compactly embedded into the (Hilbert) space W.

Proof: By definition ofd1 we have

‖u‖W = ‖uν‖L2(∂�) ≤ d−1/2
1 ‖�u‖L2(�) = d−1/2

1 ‖u‖V ∀u ∈ Z (2.2)

and hence any Cauchy sequence inZ with respect to the norm ofV is a Cauchy sequence
with respect to the norm ofW . SinceV is the completion ofZ with respect to (1.6), it
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follows immediately thatV ⊂ W . The continuity of this inclusion can be obtained by
density from (2.2).

It remains to prove that this embedding is compact. To this purpose, letum ⇀ u in V ,
so that alsoum ⇀ u in H2 ∩ H1

0(�). Then by trace embedding and compact embedding
H1/2(∂�) ⊂ L2(∂�) we obtain immediatelyum → u in W . �

Denote byI1 : V → W the embeddingV ⊂ W and byI2 : W → V ′ the continuous
linear operator defined by

〈I2u, v〉 = (u, v)W ∀u ∈ W, ∀v ∈ V.

Moreover, letL : V → V ′ be the linear operator given by

〈Lu, v〉 =
∫
�

�u�v dx ∀u, v ∈ V.

ThenL is an isomorphism and in view of Lemma 2.1, the linear operatorK = L−1I2I1 :
V → V is compact. Since forn ≥ 2, V is an infinite dimensional Hilbert space and
K is a compact self-adjoint operator with strictly positive eigenvalues thenV admits an
orthonormal base of eigenfunctions ofK and the set of the eigenvalues ofK can be
ordered in a strictly decreasing sequence{µi} which converges to zero.

Therefore problem (1.2) admits an infinite set of eigenvalues given bydi = 1
µi

and
the eigenfunctions of (1.2) coincide with the eigenfunctions ofK . The demonstration of
Theorem 1.1 will be complete once we prove

Lemma 2.2 If dk is an eigenvalue of (1.1)corresponding to a positive eigenfunction ϕk
then dk = d1.

Proof: Sinceϕk > 0 in � and ϕk = 0 on ∂�, then (ϕk)ν ≤ 0 on ∂� and in turn
�ϕk = dk(ϕk)ν ≤ 0 on ∂�. Therefore by�2ϕk = 0 in � and the weak comparison
principle, we infer�ϕk ≤ 0 in�. Moreover, sinceϕk > 0 in� andϕk = 0 on∂�, the
Hopf boundary lemma implies that(ϕk)ν < 0 on∂�. Let ϕ1 be a positive eigenfunction
corresponding to the first eigenvalued1 (see Theorem 1 in [4]). Thenϕ1 also satisfies
(ϕ1)ν < 0 on∂� and hence from

dk

∫
∂�

(ϕk)ν(ϕ1)ν dS =
∫
�

�ϕk�ϕ1dx = d1

∫
∂�

(ϕk)ν(ϕ1)ν dS > 0

we obtaindk = d1. �

3 Proof of Theorem 1.2
We start by proving thatZ⊥ = H2

0(�). Let v ∈ Z andw ∈ H2 ∩ H1
0(�). After two

integrations by parts we obtain∫
�

�v�w dx =
∫
�

�2v w dx +
∫
∂�

(wν�v−w(�v)ν) dS =
∫
∂�

wν�v dS
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for all v ∈ Z andw ∈ H2∩H1
0(�). This proves thatwν = 0 on∂� if and only ifw ∈ Z⊥

and henceV⊥ = Z⊥ = H2
0(�).

Let v ∈ H2 ∩ H1
0(�) and consider the first Dirichlet problem in (1.8):


�2v1 = 0 in�
v1 = 0 on∂�
(v1)ν = vν on∂�.

(3.1)

Sincevν ∈ H1/2(∂�), by Lax–Milgram Theorem and Théor̀eme 8.3 in Ch. 1 in [15], we
deduce that (3.1) admits a unique solutionv1 ∈ H2 ∩ H1

0(�) such that

‖�v1‖L2(�) ≤ C ‖vν‖H1/2(∂�) . (3.2)

This proves thatv1 ∈ V . Letv2 = v−v1, then(v2)ν = 0 on∂� and, in turn,v2 ∈ H2
0(�).

Moreover, by (3.1) we infer∫
�

�v2�w dx =
∫
�

�v�w dx −
∫
�

�v1�w dx =
∫
�

�v�w dx ∀w ∈ H2
0(�)

(3.3)

which proves thatv2 is a weak solution of the second problem in (1.8).

4 Proof of Theorem 1.3
We start with the following technical result:

Lemma 4.1 Let k ∈ N, let � ⊂ Rn (n ≥ 2) be a bounded domain with boundary ∂� of
class Ck+1. Let u ∈ Ck+1(�) be such that u ≡ 0on ∂�. Consider the functionϕ : �→ R
defined by

ϕ(x) := u(x)

dist(x, ∂�)
.

Then, there exists δ > 0 such that ϕ ∈ Ck(�δ), with �δ = {x ∈ �; dist(x, ∂�) < δ}.

Proof: It is well-known (see e.g. [2]) that there existsδ > 0 such thatx �→ dist(x, ∂�)
is of classCk+1(�δ); this will give the “size” ofδ. Therefore, by localCk+1-charts, we
may restrict our attention to the case where

� = Rn+, ∂� =
{

x = (x1, . . . , xn) ∈ Rn; x1 = 0
}
, dist(x, ∂�) = x1, ϕ(x) = u(x)

x1
,

with u ∈ Ck+1({x1 ≥ 0}) andu(x) = 0 wheneverx ∈ ∂�. We denotex = (x1, x′); then,
by the mean value Theorem, we have

ϕ(x) = u(x)− u
(
0, x′

)
x1

= 1

x1

1∫
0

∂u

∂x1

(
tx1, x′

)
x1 dt =

1∫
0

∂u

∂x1

(
tx1, x′

)
dt.

Since ∂u
∂x1

∈ Ck({x1 ≥ 0}), we conclude that alsoϕ ∈ Ck({x1 ≥ 0}). �
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Consider now an eigenfunctionu of (1.1). Thenu ∈ C∞(B) and by Lemma 4.1 we
can write

u(x) = (
1− |x|2)ϕ(x) (4.1)

with ϕ ∈ C∞(B). We have

uxi = −2xiϕ +
(
1− |x|2)ϕxi ,

and on∂B,

uν = x · ∇u = x · (−2xϕ+ (1− |x|2)∇ϕ) = −2ϕ. (4.2)

Moreover,

�u = −2nϕ− 4x · ∇ϕ + (1− |x|2)�ϕ. (4.3)

Hence

�u = −2nϕ − 4ϕν on∂B. (4.4)

From (4.3) we get fori = 1, . . . , n,

(�u)xi = −(2n + 4)ϕxi − 4
n∑

j=1

x jϕx j xi − 2xi�ϕ +
(
1− |x|2)�ϕxi ,

and therefore

(�u)xi xi = −2(n + 4)ϕxi xi − 4x · ∇(ϕxi xi )− 2�ϕ− 4xi(�ϕ)xi +
(
1− |x|2)�ϕxi xi .

Summing with respect toi and recalling thatu is biharmonic inB, we obtain

0= �2u = −2(n + 4)�ϕ− 4x · ∇�ϕ− 2n�ϕ − 4x · ∇�ϕ + (1− |x|2)�2ϕ

= (
1− |x|2)�2ϕ − 8x · ∇�ϕ− 4(n + 2)�ϕ. (4.5)

Writing (4.5) as an equation inw = �ϕ, we get(
1− |x|2)�w− 8x · ∇w− 4(n + 2)w = 0 in B,

so that

0= −(1− |x|2)4�w+ 8
(
1− |x|2)3x · ∇w+ 4(n + 2)

(
1− |x|2)3w

= −div
[(

1− |x|2)4∇w]+ 4(n + 2)
(
1− |x|2)3w. (4.6)

Multiplying the right-hand side of (4.6) byw and integrating by parts overB, we obtain∫
B

(
1− |x|2)4|∇w|2+ 4(n + 2)

∫
B

(
1− |x|2)3w2 =

∫
∂B

(
1− |x|2)4wwν = 0.

Hence�ϕ = w ≡ 0 in B. Now from (1.1), (4.2) and (4.4) we get

ϕν = d − n

2
ϕ on∂B. (4.7)
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Therefore, we obtained the following result:

Lemma 4.2 The number d is an eigenvalue of (1.1)with corresponding eigenfunction u
if and only if ϕ defined by (4.1)is an eigenfunction of the boundary eigenvalue problem{

�ϕ = 0 in B
ϕν = aϕ on ∂B,

(4.8)

where a = d−n
2 .

So we are led to study the eigenvalues of the second order Steklov problem (4.8).
Since we were unable to find an explicit reference, we quickly explain how to obtain
them. In radial and angular coordinates(r, θ), the equation in (4.8) reads

∂2ϕ

∂r2 +
n − 1

r

∂ϕ

∂r
+ 1

r2�θϕ = 0, (4.9)

where−�θ denotes the Laplace-Beltrami operator on∂B. From [5, p.160] we quote

Lemma 4.3 The operator−�θ admits a sequence of eigenvalues {λk} having multiplicity
µk equal to the number of independent harmonic homogeneous polynomials of degree
k − 1. Moreover, λk = (k − 1)(n + k − 3).

In the sequel, we denote bye�k (� = 1, . . . , µk) the independent normalized eigen-
functions corresponding toλk. Then, one seeks functionsϕ = ϕ(r, θ) of the kind

ϕ(r, θ) =
∞∑

k=1

µk∑
�=1

ϕ�k(r)e
�
k(θ).

Hence, by differentiating the series, we obtain

�ϕ(r, θ) =
∞∑

k=1

µk∑
�=1

(
d2

dr2ϕ
�
k(r)+

n − 1

r

d

dr
ϕ�k(r)−

λk

r2ϕ
�
k(r)

)
e�k(θ) = 0.

Therefore, we must solve the equations

d2

dr2ϕ
�
k(r)+

n − 1

r

d

dr
ϕ�k(r)−

λk

r2ϕ
�
k(r) = 0, k = 1,2, . . . , � = 1, . . . , µk. (4.10)

With the change of variablesr = et (t ≤ 0), equation (4.10) becomes a linear constant
coefficients equation. It has two linearly independent solutions, but one is singular. Hence,
up to multiples, the only regular solution of (4.10) is given byϕ�k(r) = rk−1 because

2− n +√(n − 2)2+ 4λk

2
= k − 1.

Since the boundary condition in (4.8) readsd
drϕ

�
k(1) = aϕ�k(1) we immediately infer that

a = k̄ − 1 for somek̄. In turn, Lemma 4.2 tells us that

dk̄ = n + 2
(
k̄ − 1

)
.

The proof of Theorem 1.3 is so complete.
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5 Proof of Fichera’s principle of duality (1.11)
We say thatδ is an eigenvalue relative to problem (1.10) if there existsg ∈ H such that

δ

∫
�

gv =
∫
∂�

gv for all v ∈ H.

Clearly,δ1 is the least eigenvalue. We prove (1.11) by showing that bothδ1 ≥ d1 and
δ1 ≤ d1.

Proof of δ1 ≥ d1: Let h be a minimizer forδ1, then

δ1

∫
�

hv =
∫
∂�

hv for all v ∈ H. (5.1)

Let u ∈ H(�) be the unique solution of{
�u = h in �
u = 0 on∂�.

(5.2)

Integrating by parts we have∫
�

hv =
∫
�

v�u =
∫
∂�

vuν for all v ∈ H ∩ C2(�).

By a density argument, the latter follows for allv ∈ H. Inserting this into (5.1) gives

δ1

∫
∂�

vuν =
∫
∂�

v�u for all v ∈ H.

This yields�u = δ1uν on∂�. Therefore,

δ1 =

∫
∂�

h2

∫
�

h2
=

∫
∂�

|�u|2

∫
�

|�u|2
= δ2

1

∫
∂�

u2
ν

∫
�

|�u|2
.

In turn, this implies that

δ1 =

∫
�

|�u|2

∫
∂�

u2
ν

≥ min
v∈H(�)

∫
�

|�v|2

∫
∂�

v2
ν

= d1.

�

Proof of δ1 ≤ d1: Let u be a minimizer ford1 in (1.3), then�u = d1uν on ∂� so that
�u ∈ H1/2(∂�) ⊂ L2(∂�) and∫

∂�

v�u = d1

∫
∂�

vuν for all v ∈ H. (5.3)
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Let h := �u so thath ∈ L2(�) ∩ L2(∂�). Moreover,�h = �2u = 0 (in distributional
sense) and henceh ∈ H. Two integrations by parts (and a density argument) yield∫

�

hv =
∫
∂�

vuν for all v ∈ H.

Replacing this into (5.3) gives∫
∂�

hv = d1

∫
�

hv for all v ∈ H.

This proves thath is an eigenfunction relative to problem (1.10) with corresponding
eigenvalued1. Sinceδ1 is the least eigenvalue, we obtaind1 ≥ δ1. �

6 Proof of Theorem 1.7
Let ϕ be a first eigenfunction of (1.1) such thatϕ > 0 in � andϕν < 0 on ∂� (see
Lemma 2.2). The boundary condition�ϕ = d1ϕν on∂� also reads

ϕνν + (n − 1) Kϕν = d1ϕν on∂� (6.1)

(see e.g. (4.68) on p. 62 in [17]). Therefore(
ϕ2
ν

)
ν
= 2ϕννϕν = 2 [d1− (n − 1) K ] ϕ2

ν

so that if we putD2ϕD2ϕ =
n∑

i, j=1

(
∂i jϕ

)2, by (1.1) and integration by parts, we obtain

2
∫
∂�

[d1− (n − 1) K ] ϕ2
ν dS

=
∫
∂�

(
ϕ2
ν

)
ν

dS =
∫
∂�

(
|∇ϕ|2

)
ν

dS

=
∫
�

�
(
|∇ϕ|2

)
dx = 2

∫
�

∇ (�ϕ)∇ϕ dx + 2
∫
�

D2ϕD2ϕ dx

= −2
∫
�

ϕ�2ϕ dx + 2
∫
∂�

ϕ (�ϕ)ν dS+ 2
∫
�

D2ϕD2ϕ dx

= 2
∫
�

D2ϕD2ϕ dx ≥ 2

n

∫
�

|�ϕ|2 dx.

Finally, by (1.2) we have

2
∫
∂�

[d1− (n − 1) K ] ϕ2
ν dS ≥ 2d1

n

∫
∂�

ϕ2
νdS
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from which we obtain ∫
∂�

(
d1

n
− K

)
ϕ2
ν dS ≥ 0, (6.2)

which implies at once thatd1 ≥ nK .
It remains to prove that equality holds if and only if� is a ball. If d1 = nK , then

d1 ≤ nK(x) for x ∈ ∂� and sinceϕν < 0 on∂�, by (6.2) we infer thatK(x) ≡ d1
n . This

proves that� is a ball in view of Alexandrov’s characterization of spheres [1].

7 Proof of Theorem 1.8
Assume that equality holds in (1.12). Then,h ≡ 1 is a minimizer for (1.10) and, according
to Fichera’s principle (see (5.2)), the minimizeru of (1.3) is thestress function for� (the
solution of the torsion problem), namely{−�u = 1 in�

u = 0 on∂�.

Sinceu also solves the Euler equation (1.1) withd = d1, we have a solution to the
problem

−�u = 1 in�, uν = −d−1
1 on∂�, u = 0 on∂�.

By a result of Serrin [18], this shows that� is a ball and completes the proof.

8 Proof of (1.15)
In view of the results in [9], we may argue as for (5.2) in order to show that

d1(R) ≤ δ1(R) for all rectangleR. (8.1)

For our convenience, we translate the squareQ√
π and consider instead

Q :=
(
−
√
π

2
,

√
π

2

)2

.

For allk ∈ R, consider the harmonic functionhk(x, y) := x4+ y4− 6x2y2+ k. Then by
(1.10) and (8.1) we have

d1(Q) ≤ δ1(Q) ≤

∫
∂Q

h2
k dS

∫
Q

h2
k dxdy

for all k ∈ R. (8.2)

Via direct computation we obtain∫
∂Q

h2
k dS = √

π

(
4k2− 2

5
π2k + 59

1260
π4
)
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and ∫
Q

h2
k dx dy = πk2− 1

30
π3k + 59

25200
π5.

We recall that 3.141592< π < 3.141593. Hence, if we choosek = 2.69 we obtain∫
∂Q

h2
k dS <

√
3.141593

(
4 · (2.69)2− 2 · (2.69) · (3.141592)2

5
+ 59 · (3.141593)4

1260

)

and hence ∫
∂Q

h2
k dS < 40.56426.

On the other hand we have∫
Q

h2
k dx dy > (3.141592) · (2.69)2 − (3.141593)3 · (2.69)

30
+ 59 · (3.141592)5

25200
> 20.66911.

By inserting these estimates into (8.2) we obtain (1.15).

9 Proof of Theorem 1.10
Let u ∈ H2 ∩ H1

0(Rπ/2) be a (positive) minimizer for (1.3) when� = Rπ/2:

d1(Rπ/2) =

∫
Rπ/2

|�u|2

∫
∂Rπ/2

u2
ν

.

By uniqueness of the minimizer,u is symmetric inRπ/2 so that

π/2∫
0

u2
x(0, y) dy =

π/2∫
0

u2
x

(π
2
, y
)

dy =
π/2∫
0

u2
y(x,0) dx =

π/2∫
0

u2
y

(
x,
π

2

)
dx. (9.1)

Fix a ∈ (0, π2 ), let Ra := (0, π− a)× (0, a) and consider the functionv ∈ H2∩ H1
0(Ra)

defined by

v(x, y) = u

(
π x

2(π − a)
,
π y

2a

)
.

Then,

d1(Ra) ≤

∫
Ra

|�v|2

∫
∂Ra

v2
ν

(9.2)
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and we estimate the two integrals in the right-hand side of (9.2). We have

vx(x, y) = π

2(π − a)
· ux

(
π x

2(π − a)
,
π y

2a

)
,

vxx(x, y) =
(

π

2(π − a)

)2

· uxx

(
π x

2(π − a)
,
π y

2a

)
,

and

vy(x, y) = π

2a
· uy

(
π x

2(π − a)
,
π y

2a

)
, vyy(x, y) =

( π
2a

)2 · uyy

(
π x

2(π − a)
,
π y

2a

)
.

Hence, applying (9.1) and with obvious changes of variables, we obtain
a∫

0

v2
x(π − a, y) dy =

a∫
0

v2
x(0, y) dy = π2

4(π − a)2

a∫
0

u2
x

(
0,
π y

2a

)
dy

= aπ

2(π − a)2

π/2∫
0

u2
x(0, y) dy = aπ

8(π − a)2

∫
∂Rπ/2

u2
ν,

π−a∫
0

v2
y(x, a) dx =

π−a∫
0

v2
y(x,0) dx = π2

4a2

π−a∫
0

u2
y

(
π x

2(π − a)
,0
)

dx

= π(π − a)

2a2

π/2∫
0

u2
y(x,0) dx = π(π − a)

8a2

∫
∂Rπ/2

u2
ν.

Therefore, we infer ∫
∂Ra

v2
ν =

π

4

(
a

(π − a)2
+ π − a

a2

) ∫
∂Rπ/2

u2
ν. (9.3)

Moreover, with a change of variables, we also obtain

∫
Ra

|�v|2 = 4a(π − a)π2
∫

Rπ/2

(
u2

xx(x, y)

16(π − a)4
+ uxx(x, y) · uyy(x, y)

8a2(π − a)2
+ u2

yy(x, y)

16a4

)
dx dy. (9.4)

Next, as noticed by Kuttler [11, p. 334], we recall that two integration by parts yield∫
Rπ/2

uxx(x, y) · uyy(x, y) dx dy =
∫

Rπ/2

u2
xy(x, y) dx dy > 0.

Hence, we may estimate (9.4) as follows∫
Ra

|�v|2 ≤ π2(π − a)

4a3

∫
Rπ/2

|�u|2. (9.5)

Inserting (9.3) and (9.5) into (9.2) yields

d1(Ra) ≤ (π − a)3

a(π2− 3πa+ 3a2)
d1(Rπ/2).
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Lettinga → 0, shows that

lim sup
a→0

[a · d1(Ra)] ≤ π d1(Rπ/2),

which is precisely the upper bound in the statement of Theorem 1.10.
In order to prove the lower bound, we rewrite [11, (15)] as

d1(Ra) ≥ π

2

√
1

(π − a)2
+ 1

a2

and we leta → 0.
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Lecture Notes Math. 194, Springer, 1971.

[6] F. Brock. An isoperimetric inequality for eigenvalues of the Stekloff problem.
ZAMM, 81:69–71, 2001.
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