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Summary: We study the spectrum of a biharmonic Steklov eigenvalue problem in a bounded

domain ofR". We characterize it in general and give its explicit form in the case where the domain

is a ball. Then, we focus our attention on the first eigenvalue of this problem. We prove some
estimates and study its isoperimetric properties. By recalling a number of known results, we finally
highlight the main open problems still to be solved.

1 Introduction and results

LetQ c R" (n > 2) be a bounded domain withf2 € C?, letd € R and consider the
boundary eigenvalue problem

A2u=0 in
u=20 onos2 (1.2)
Au = du, onoas,

whereu, denotes the outer normal derivativewobn 92. We are interested in studying
the eigenvalues of (1.1), namely those valuesdfoir which the problem admits nontrivial
solutions, the corresponding eigenfunctions. The purpose of the present paper is to collect
a number of known (and old) results, to prove some new results and to suggest some open
guestions.

Elliptic problems with eigenvalues in the boundary conditions are usually called
Steklov problems from their first appearance in [21]. By solution of (1.1) we mean
a functionu € H2 N H}(Q) such that

/AuAvdx = d/uvvv ds  forallve HZN HA(Q). (1.2)
Q Q2

By takingv = u in (1.2), it is clear that all the eigenvalues of (1.1) are strictly positive.
Let #(Q) := [HZN H3(@)]\ H3(2) and
f |Aul?
di=di(@) := min 22—

ueH() / W2
v

a2

(1.3)
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316 Ferrero - Gazzola - Weth

The numberd; represents the least positive eigenvalue dﬁaz is the norm of the
compact linear operatdi? N H(Q) — L2(3Q2), defined byu > u,|se. Moreover, as
pointed out by Kuttler [11]¢d; is the sharp constant for a priori estimates for the Laplace
equation

Av=0 IinQ

1.4
v=g on 92 (14
whereg € L2(3%2). Indeed, using Fichera’s principle of duality (see [7] and also (1.11)
below), for the solution of (1.4) one has

(@) - 11F2 gy < 1912050,

andd; () is the largest possible constant for this inequality.
The first eigenvaluds also plays a crucial role in the positivity preserving property
for the biharmonic operatok? under the boundary conditions= Au — du, = 0 on
02, see [4, 8]. It is shown there thatdf > dj, then the positivity preserving property
fails, whereas it holds whedhis in a left neighborhood afl; (possiblyd € (—oo, dy)).
We refer to [4, 8] for further details. We also refer to [12] for several inequalities between
the eigenvalues of (1.1) and other eigenvalue problems.
The boundary conditionin (1.1) has an interesting interpretation in theory of elasticity.
Consider the model problem
{ A%u = f in Q
(1.5)
u=Au—(1—-o)u, =0 ono

whereQ c R? is an open bounded domain with smooth boundarg, (—1, 1/2) is the
Poisson ratio and is the mean curvature of the boundary (with the convention#hat

is measured from inside, that is, positive where the boundary of the domain is convex).
Problem (1.5) describes the deformatioof the linear elastic supported plazunder

the action of the transversal exterior for€e= f(x), x € Q. The Poisson ratie of an
elastic material is the negative transverse strain divided by the axial strain in the direction

of the stretching force. In other words, this parameter measures the transverse expansion

(resp. contraction) if > 0 (respo < 0) when the material is compressed by an external
force. We refer to [14, 22] for more details. The restriction on the Poisson ratio is due
to thermodynamic considerations of strain energy in the theory of elasticity. As shown
in [14], there exist materials for which the Poisson ratio is negative and the limit case
o = —1 corresponds to materials with an infinite flexural rigidity, see [22, p. 456]. This
limit value for o is strictly related to the eigenvalue problem (1.1). Indeed, if we assume
thatQ2 is the unit disk, them = (1 — o)k = 1 — 0. Moreover, by Theorem 1.3 below,
the first eigenvalud of (1.1) is equal to 2, which implies = —1. Hence, the limit value

o = —1, which is not allowed from a physical point of view, also changes the structure
of the stationary problem (1.5): whem is the unit disk andl = (1 — o)x = 2, (1.5)
either admits an infinite number of solutions or it admits no solutions at all, depending
on f.
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We are firstly interested in the description of the spectrum of (1.1). Throughout this

paper we endow the Hilbert spabi# N H3(£2) with the scalar product

(U, v) =/AuAvdx. (1.6)
Q
Consider the subspace
z= {vecw(ﬁ):A2u=o, v=00nasz] (1.7)

and denote by the completion ofZ with respect to the scalar product in (1.6). Then,
we prove

Theorem 1.1 Assume that 2 ¢ R" (n > 2) is an open bounded domain with C?
boundary. Then, problem (1.1) admits infinitely many (countable) eigenvalues. The only
eigenfunction of one sign is the one corresponding to the first eigenvalue. The set of
eigenfunctions forms a complete orthonormal systemin V.

The vector spac¥ also has a different interesting characterization:

Theorem 1.2 Assume that 2 ¢ R" (n > 2) is an open bounded domain with C?
boundary. Then, the space H? N H&(Q) admits the following orthogonal decomposition
with respect to the scalar product (1.6)

HZN Hg(Q) = V @ HE().

Moreover, if v € H2 N H(Q) and if v = v1 + vy is the corresponding orthogonal
decomposition, thenv; € V and vo € Hg(sz) are weak solutions of

A2y =0 inQ A2y = A%y inQ
v1=0 on 02 and v =0 on 02 (1.8)
vy = vy on o (v2)y, =0 on ox2.

When$ = B (the unit ball) we may determine explicitly all the eigenvalues of (1.1).

To this end, consider the spaces of harmonic homogeneous polynomials:
Dy :={P € C*@R"); AP =0inR", P homogeneous polynomial of degree- 1}.

Also, denote byuk the dimension oDk. We refer to [3] for the basic properties of the
spacedy and of their dimensiongg. In particular, we have

Dy = sparfl}, n1=1,
Dy = sparixi; (i=1,...,n)}, w2 =n,
D3 = sparxixj: X2 —x& (.j=1...ni#) h=2..n) pg="02

Then, we prove
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Theorem 1.3 Ifn>2and Q2 = B, thenforallk=1,2,3,...:
(i) theeigenvaluesof (1.1)aredk = n+ 2(k — 1);
(if) the multiplicity of dx equals wk;

(iii) for all yx € Dy, the function k() := (1 — |x|?)y¥k(X) is an eigenfunction corre-
sponding to d.
Remark 1.4 Theorems 1.1 and 1.3 become false i 1. It is shown in [4] that the one
dimensional problem
u? =0 in(=1 1), u(£l) =u’(-=1) +du'(-1) =u”(1) —du'(1) =0, (1.9)

admits onlytwo eigenvaluesg; = 1 andd,; = 3, each one of multiplicity 1. The reason

of this striking difference is that the “boundary space” of (1.9) has precisely dimension
2, one for each endpoint of the intervat1, 1). This result is consistent with Theorem
1.3 sinceu1 = w2 = 1 andus = 0 wheneven = 1.

By combining Theorems 1.1 and 1.3 we obtain
Corollary 1.5 Assumethat n > 2 and that 2 = B. Assume moreover that for all k € N
the set {wﬁ ¢ =1,..., ux} isabasisof Dy chosenin such away that the corresponding
functions |, are orthonormal with respect to the scalar product (1.6). Then, for anyu € V
there exists a sequence {oeﬁ} el?(keN;€=1,...,uk) suchthat

o0 Mk

u) = (1- ) "> eoqy(x)  foraexeB.

k=1 ¢=1
We now restrict our attention to tHest eigenvalued;(2). To this end, we recall
a consequence of Fichera’s principle of duality [7]. Assumeakae C? and let
C3(Q) = {v € C2(Q): Av=0in Q} .

We consider the norm defined Qy|in = (vl 2¢5q,) for all v € C2H (). Then, we
consider .
H := the closure o () with respect to the norm- [|.

Finally, we define
v

. Q2
01 =061(RQ):= mn ————.
1= 81(£2) N /hz
Q

The minimum in (1.10) is achieved. To see this, combine the continuous embedding (for
weakly harmonic functionsfi ~1/2(3Q2) c L?(Q) (see Tieorme 6.6 in Ch. 2 in [15])
with the compact embedding?(8$2) c H~12(3%2).

Fichera’s principle [7] states that

81(Q) = di(Q)  forall  such thavs2 e C2. (1.11)
For the reader’s convenience we quote a hew proof of this statement in Section 5.

(1.10)
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Problem 1.6 Doesequality (1.11)hold alsoif 82 ¢ C?? Thisquestionis strictly related
with the following: are the maps Q@ +— di(2) and Q — §1(€2) continuous with respect
to Hausdorff convergence of domains?

Inview of the important applications explained in the introduction, one is interested in
finding both lower and upper bounds f(£2). First, we extend to any space dimension
n > 2 a lower bound fod; (£2) obtained for planar domaina & 2) by Payne [16], see
also Kuttler [10] for a different proof. This estimate is useful fonvex domains since it
involves the mean curvature of the boundary as stated in the following

Theorem 1.7 Let @ ¢ R" (n > 2) a bounded convex open domain with C? boundary.
For all x € 92, let K(x) denote the mean curvature at x and let

K = mgg K(X).
Xe
Then d1(2) > nK and equality holdsif and only if Q2 isaball.

By rescaling, it is not difficult to see that the m&p— d;(2) is homogeneous of
degree-1, namely, for any2 andk > 0 we havel; (€2) = kd;(k2). This suggests thalg
should somehow be related to the “isoperimetric raths?|/|€2|. As noticed by Kuttler
[10], this is indeed the case: by takihg= 1 in (1.10) and using (1.11) one readily gets

02
di(Q) < II—QI| for all Q such thaBs2 e C2. (1.12)
In Section 7, we determinextremal sets for the isoperimetric inequality (1.12):

Theorem 1.8 Let @ ¢ R" (n > 2) be a bounded connected domain with C? boundary.

Then
l6Q|
di() = =
! Q|

if and only if Q2 isaball.

Problem 1.9 The above mentioned homogeneity also suggests that the map Q +— di(R2)
could be monotone decreasing with respect to domain inclusions. Is thistrue?

We now deal with a particular class of nonsmooth domains. It is clear that (planar)
rectangles are slightly easier to handle than general domains. We consider the two families
of rectangles

Va e (o,%], Raoi= 0 m—a)x(0a, Vee(0,y7]. Qui= (o, g) % (0, ).
(1.13)

We note that thd?y's have thesame perimeter 2z as the unit disk, whereas ti@,’s have
thesame area = as the unit disk. MoreoveR; /> and Qﬁ are squares.

Smith [19, 20] conjectured that for any dom&inone hasly (R2) > di(2*), whereQ*
is the ball having the same measure&agn particular, for planar domairf? of measure
7 (as the unit disk), this would mean that($2) > 2. This conjecture was disproved by
Kuttler [10] who shows that

dh (Q ﬁ) <1.9889... (1.14)
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In fact, Kuttler's estimate [10, p.3] is given for the squapé := (0, 1) for which
d1(Q’) < 3.5254..., so that (1.14) is obtained by rescaling this inequality. In order
to prove (1.14), Kuttler uses directly the characterization (1.3100 ) and finds

a suitable linear combination of a fourth order polynomial with the stress function of
Q= to get an upper bound fal (Q ). In Section 8, by using Fichera’s principle
(1.11) and a much simpler trial function, we improve (1.14) with the following

dh (Q ﬁ) < 1.96256 (1.15)

We now consider rectangles with sizes of different length. In Section 9 we show that
if they maintain the same perimeter and become “thin” ttietends to infinity:

Theorem 1.10 For all 0 < a < 7 let Ry beasin (1.13) Then,
% < Iimigf [a- di(Ry)] < limsup[a- di(Ra)] < 7d1(Ry/2) < (2.21407.
a— a—0

Theorem 1.10 complements somemerical approximations of d; for rectangles
obtained by Kuttler [11] using a posteriori/ a priori inequalities, see also [13]. We recall
here his results: for our convenience, we scale [11, Table 1] to the case of the rectangles
Ra defined in (1.13) and we add the last column, according to Theorem 1.10.

Table 1.1: Numerical estimates fad; (Ra) of rectanglesR such thaioRy| = 2.
a /2 5r/11 47 /9 3 /7 2 /5 /3 21 /7 -0
d1(Ra) > 2.2118 | 2.2261 | 2.2331 | 2.2459 | 2.2846 | 2.4493 | 2.666 | — oo
d1(Ra) < 2.2133 | 2.2304 | 2.2359 | 2.2498 | 2.2878 | 2.4542 | 2.6839

Inview of these results, Kuttler suggests a new and weaker conjecture, which we state
for any space dimensiam

Conjecture1.11 ([10]) Let B c R" denote the unit ball. Let 2 c R" be a smooth
bounded domainwhose surface measure satisfies|9$2| = |0B|. Then,n = d1(B) < d1(2).

In other words, the first eigenvaluk is expected to be minimal on the ball, among
all domains having thsame surface measure. In connection with this conjecture, we also
make the following

Remark 1.12 For thesecond order Steklov problem

{Au:O in Q

u, = AU onos2, (-16)

it is known (see [6, Theorem 3]) that the first (nontrivial) eigenvalue- 11(2) satisfies

A1(2) < A1(2%) where
/ Vul2
M=MQ) = inf 2

ucH(Q) / /2

02
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and

H(Q) := {u e HY(Q) \ H}(Q); /u =0
02

Therefore, (1.15) and the possible validity of Conjecture 1.11 would show that the fourth
order problem (1.1) and the second order problem (1.16) are completely different

Consider now the rectangle3, defined in (1.13) and which have fixed area. By
Theorem 1.10 and by rescaling (it suffices to put /ax/(;x — a)) we obtain

Corollary 1.13 For all 0 < @ < /7 let Q, beasin (1.13) Then,
% < Iimir&f [or - d1(Qqa)] < limsup[e - d1(Qq)] < wd1(Ry/2) < (2.2146 7.
o= a—0

Therefore, also for thinning rectangles of fixed area, the first eigendaltends to
infinity, although at a lower rate. Then, we may also rescale Table 1.1 above and obtain
for the rectangle®), in (1.13):

Table 1.2: Numerical estimates fal; (Q) of rectangleQ,, such thai Q| = .
o? T 57/6 | 4rn/5 | 3n/4 | 2n/3 /2 27/5 | -0
d1(Qq) > 1.9601 | 1.9647 | 1.9667 | 1.97 1.9838 | 2.0465 | 2.1347 | — oo
d1(Qq) < 1.9615| 1.9685 | 1.9693 | 1.9734 | 1.9866 | 2.0506 | 2.149

The numerical estimate in the first column of Table 1.2 seems to show that (1.15) is
almost optimal.

Problem 1.14 From (1.15) we know that the ball (at leashit= 2) is not the minimizer

for d; among domains having the same measure. Does there exist an optimal shape for
this minimization problem? At least in the class aginvex domains, we feel that the
answer could be affirmative.

2 Proof of Theorem 1.1
Let Z be as in (1.7) and define ahthe scalar product given by

(U, V)w := / u,v, dS forallu,ve Z (2.2)
02

and we denote byV the completion ofZ with respect to this scalar product. Then, we
prove:

Lemma 2.1 The (Hilbert) space V is compactly embedded into the (Hilbert) space W.

Proof: By definition ofd; we have
—-1/2 —-1/2
lullw = Ul 250y <07 < llAU 2 =d; “lluly YueZ  (2.2)

and hence any Cauchy sequencg with respect to the norm &f is a Cauchy sequence
with respect to the norm diV. SinceV is the completion ofZ with respect to (1.6), it

“Jap|oy JybuAdoa ayy Aq uoissiwiad uapLm yym pamojje Ajuo si asn JayjQ "Ajuo asn jeuosiad inoK 1o} ajoie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoid si ajane siyj



322 Ferrero - Gazzola - Weth

follows immediately thalV ¢ W. The continuity of this inclusion can be obtained by
density from (2.2).
It remains to prove that this embedding is compact. To this purposeylet uinV,

so that alsaim — uin H2N H(_:}(Q). Then by trace embedding and compact embedding

H1/2(3) c L2(8$2) we obtain immediatelyy, — uin W. O

Denote byl1 : V — W the embeddiny c W and byl, : W — V’ the continuous
linear operator defined by

(lou, v) = (U, V) Yue W, Yve V.

Moreover, letL : V — V' be the linear operator given by

(Lu,v) = / AUAv dXx Yu,v e V.
Q

ThenL is an isomorphism and in view of Lemma 2.1, the linear openétet [t PY PR
V — V is compact. Since fon > 2, V is an infinite dimensional Hilbert space and
K is a compact self-adjoint operator with strictly positive eigenvalues Yhadmits an
orthonormal base of eigenfunctions if and the set of the eigenvalues i§f can be
ordered in a strictly decreasing sequefyeg which converges to zero.

Therefore problem (1.2) admits an infinite set of eigenvalues giveth by % and
the eigenfunctions of (1.2) coincide with the eigenfunctionk offhe demonstration of
Theorem 1.1 will be complete once we prove

Lemma 2.2 If dg isan eigenvalue of (1.1)corresponding to a positive eigenfunction ¢y
then dx = dj.

Proof: Sincegx > 0 in Q andgx = 0 on %2, then (pk), < 0 on a2 and in turn
Agk = dk(gk)y < 0 on 3. Therefore byA2px = 0 in  and the weak comparison

principle, we inferAgx < 0 in Q. Moreover, sincey > 0 in Q2 andgkx = 0 on a2, the
Hopf boundary lemma implies thépy), < 0 ond2. Let 1 be a positive eigenfunction
corresponding to the first eigenvalde (see Theorem 1 in [4]). Thep; also satisfies
(¢1)y < 00na2 and hence from

dk/(‘ﬁk)v(¢l)vdsz f ApkAp1dx = dlf(¢k)v(¢l)vds> 0
194 Q 194

we obtaindk = dj. O

3 Proof of Theorem 1.2

We start by proving thaZt = H2(Q). Letv € Z andw € H2 N H3 (). After two
integrations by parts we obtain

/AUAde=fszde+/(wvAv—w(Av)v) dS:/wvAvdS
Q Q aQ aQ
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forallv e Zandw € H2NH(Q). This proves thab, = 0 onaQ ifand only ifw € Z+
and henc&/+ = Z+ = H3(Q).
Letv € H?2 N H3(Q) and consider the first Dirichlet problem in (1.8):

szl =0 inQ
v1=0 ona2 (3.1)
(v1)y = vy onodg2.

Sincev, € HY2(3%2), by Lax—Milgram Theorem and Bome 8.3 in Ch. 1 in [15], we
deduce that (3.1) admits a unique solutigre H2 N H(Q) such that

”AUIHLZ(Q) <C ||Uv||H1/2(aQ) . (3.2)
This provesthat; € V. Letvo = v—wv1, then(vz), = 00na2 and, inturny, € HS(Q).
Moreover, by (3.1) we infer

/szAw dX:/AvAw dX—/Alew dX:/AvAw dx VYwe Hg(Q)

Q Q Q Q
(3.3)

which proves that, is a weak solution of the second problem in (1.8).

4 Proof of Theorem 1.3

We start with the following technical result:

Lemma4.l Letk e N, let @ ¢ R" (n > 2) be a bounded domain with boundary 92 of
classCK1. Letu e CKt1(Q) besuchthat u = 00on 8. Consider thefunctiong : @ — R
defined by

%) e u(x)
00 = Fistx o)

Then, thereexists § > 0 such that ¢ € CK(Q;), with 25 = {x € Q; dist(x, Q) < 8}.

Proof: It is well-known (see e.g. [2]) that there exists> 0 such thak — dist(x, 3S2)
is of classC*1(€2s); this will give the “size” ofs. Therefore, by locaC**1-charts, we
may restrict our attention to the case where

n n - ux)
Q=R], 0Q={x=(X1....%) € R x1 =0}, dist(x, 0Q) = x1, @(X) = —~
1

with u € Ckt1({x1 > 0}) andu(x) = 0 whenevex € 3$2. We denotex = (x1, X'); then,
by the mean value Theorem, we have

1 1
ux)—u(0,x) 1 [ du , au
=—— 7 7 - = [ — (txq, dt = [ — (txg, X') dt.
(X) k. leaxl(xl X') X1 / Xl(xl X)
0
Sinceg’T“1 € CX({x¢ > 0}), we conclude that alsp € CK({x1 > 0}). o
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Consider now an eigenfunctianof (1.1). Thenu € C*(B) and by Lemma 4.1 we
can write

u) = (1— x12)e(x) (4.1)
with ¢ € C>®(B). We have
Uy = —2Xip + (1 - |X|2)¢Xiv

and ongB,
Uy =X-VU=X-(=2x¢ + (1 — |X|?)Vg) = —2¢. (4.2)
Moreover,
Au = —2n¢ — 4x- Vo + (1 — |x]%) Ag. (4.3)
Hence
Au = —2ngp — 4¢, ondB. (4.4)

From (4.3)we getfor=1,...,n,
n
(AU)y = —(@n+ Doy — 4 Xjoxx — 2 Ap + (1— [X12) Apy;,
j=1

and therefore
(AU)yx = —2(N+ Dgxx, — 4X - V(pxx) — 280 — 4Xi (Ag)x + (1 — [X12) Agxx;-
Summing with respect tband recalling thati is biharmonic inB, we obtain
0=A%u=—-2(n+4)A¢p—4x-VAg—2nAp — 4% - VAp + (1— x)A%p
= (1 x[*)A% — 8x- VAp — 4(N+ 2)Ag. (4.5)
Writing (4.5) as an equation im = Ag, we get
(1—Ix?)Aw—8x-Vw —4n+2w=0  inB,
so that
0=—(1—-1x?)*Aw+8(1— x?)° Vw + 4 +2) (1 — [x12)°w
- —div[(l— |x|2)4Vw] + 4 +2)(1— x2)w. (4.6)
Multiplying the right-hand side of (4.6) by and integrating by parts ov&, we obtain
/ (1— x?)*IVwl? + 4+ 2) / (1 x?)%u? = / (1— x%)*ww, = 0.
B B B

HenceA¢p = w = 0 in B. Now from (1.1), (4.2) and (4.4) we get
d—n

Oy = 10 ondB. 4.7)
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Therefore, we obtained the following result:

Lemma 4.2 The number d isan eigenvalue of (1.1)with corresponding eigenfunction u
if and only if ¢ defined by (4.1)is an eigenfunction of the boundary eigenvalue problem

{A(p:O inB (4.8)

oy = ap on B,

wherea = 91,

So we are led to study the eigenvalues of the second order Steklov problem (4.8).
Since we were unable to find an explicit reference, we quickly explain how to obtain
them. In radial and angular coordinatest), the equation in (4.8) reads

¢ n—13 1

ke =4 S Ay =0, 4.9
ar2 r arJrr2 g (4.9)

where— Ay denotes the Laplace-Beltrami operatoradh From [5, p.160] we quote

Lemma 4.3 Theoperator — Ay admitsa sequence of eigenvalues{ii} having multiplicity
i equal to the number of independent harmonic homogeneous polynomials of degree
k — 1. Moreover, Ak = (k— 1)(n + k — 3).
In the sequel, we denote teﬁ (¢ = 1,..., ug) the independent normalized eigen-
functions corresponding t. Then, one seeks functiops= ¢(r, 6) of the kind

o0 Mk

o(r,0) =Y > pk(e(O).

k=1¢=1

Hence, by differentiating the series, we obtain

2la i n-1d , M g
Apr.0) =3 Y| gz + —— o) — 00 ) &(®) = 0.
k=1 ¢=1
Therefore, we must solve the equations
d? n—-1d Ak
W(pﬁ(r) + Ta(pﬁ(r) - r—zgoﬁ(r) =0, k=1,2..., ¢=1,..., 1k (4.10)

With the change of variables= €' (t < 0), equation (4.10) becomes a linear constant
coefficients equation. It has two linearly independent solutions, but one is singular. Hence,
up to multiples, the only regular solution of (4.10) is givend@r) = rk=1 pecause

2—n n—2)2 4+ 4
+ V/( e+ K Ck_1

Since the boundary condition in (4.8) rea@@ﬁ(l) = agoﬁ(l) we immediately infer that
a =k — 1 for somek. In turn, Lemma 4.2 tells us that

dR=n+2(I_<—1).

The proof of Theorem 1.3 is so complete.
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5 Proof of Fichera'sprinciple of duality (1.11)
We say that is an eigenvalue relative to problem (1.10) if there exgstsH such that

8/gv=/gv forallv e H.
Q ]

Clearly, §1 is the least eigenvalue. We prove (1.11) by showing that Bpth d; and
§1 < dj.

Proof of §1 > di: Leth be a minimizer fo1, then

81/hv :/hv forallv e H. (5.1)
Q Elo)

Letu € H(2) be the unique solution of

Au=h IinQ
{ u=~0 onog. (5-2)

Integrating by parts we have

/hv:vau:/vuv forallveHﬂCZ(ﬁ).
Q Q

a2
By a density argument, the latter follows for ale H. Inserting this into (5.1) gives

81/qu=/vAu forallv e H.
aQ aQ

This yieldsAu = 8;u,, on3<2. Therefore,

/hz /|Au|2 /uﬁ

Q2 Q2
81 =52
/h2 /|Au|2 /|Au|2
Q Q Q
In turn, this implies that
f |Auf? / |Av|?
81=972 min Qizdl.
/ug veEH(Q) /UE 5
0 9]

Proof of §1 < dj: Letu be a minimizer ford; in (1.3), thenAu = diu, on 32 so that
Au € HY2(3Q) ¢ L2(3%2) and

/vAu = d1/ vu, forall v e H. (5.3)
02 02
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Leth := Au so thath € L2(2) N L?(8$2). Moreover,Ah = A?u = 0 (in distributional
sense) and hendee H. Two integrations by parts (and a density argument) yield

/hv:/vuv forall v € H.
Q aQ

Replacing this into (5.3) gives

/hv=d1/hv forall v e H.
aQ Q

This proves thah is an eigenfunction relative to problem (1.10) with corresponding
eigenvaluda;. Sinced; is the least eigenvalue, we obtain > §;. O

6 Proof of Theorem 1.7

Let ¢ be a first eigenfunction of (1.1) such that> 0 in Q and¢, < 0 on a2 (see
Lemma 2.2). The boundary conditidty = di¢, on a2 also reads

o+ (N—1) Kg, =di1p, 0NQ (6.1)
(see e.g. (4.68) on p. 62 in [17]). Therefore

(sof)v = 2pupy = 2[d1 — (N — 1) K] ¢2

n
so that if we putD?pD%p = " (8ijgo)2, by (1.1) and integration by parts, we obtain
ij=1

2 [ 11— m-DKIgZds

C =), 0= ()

9]
A /A(|v¢|2) dx :2/V(A(p) Vo dx+2/ D2yD2p dx
Q Q Q
= —2/(pA2(p dX—l—Z/(p(Acp)U dS+ 2/ D2¢D?%p dx
Q Q2 Q

2
= 2/ D2pD?%p dx > E/lAcpIZdX.
Q Q

Finally, by (1.2) we have

2d
2/[d1—(n—1)K]<pdez Tlfquds
02 02
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from which we obtain

/ (% - K> $2dS> 0, (6.2)

02

which implies at once that; > nK.

It remains to prove that equality holds if and only<¥fis a ball. Ifd; = nK, then
d1 < nK(x) for x € 92 and sincep, < 0 ona<, by (6.2) we infer thak (x) = %. This
proves that2 is a ball in view of Alexandrov’s characterization of spheres [1].

7 Proof of Theorem 1.8

Assume that equality holds in (1.12). Thén= 1 is a minimizer for (1.10) and, according
to Fichera’s principle (see (5.2)), the minimizeof (1.3) is thestress function for 2 (the
solution of the torsion problem), namely

—Au=1 inQ
u=~0 onos.

Sinceu also solves the Euler equation (1.1) wilh= d;, we have a solution to the
problem

—AuU=1in%, u, = —d;* ondQ, u=00onaQ.

By a result of Serrin [18], this shows th@tis a ball and completes the proof.

8 Proof of (1.15)
In view of the results in [9], we may argue as for (5.2) in order to show that
di(R) < 81(R) for all rectanglerR. (8.1)
For our convenience, we translate the squ@re; and consider instead
o- (%)
2 2 ’

For allk € R, consider the harmonic functidw(x, y) := x* + y* — 6x?y? + k. Then by
(1.10) and (8.1) we have
/ h2ds

aQ

/ h2 dxdy
Q

d1(Q) <481(Q) < forallk € R. (8.2)

Via direct computation we obtain

2 59
fhﬁdS: T <4|<2 = g712k+ an“)
iQ
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and
1 59
h? dxdy = 7k? — =73k + ——7°.
/ axdy = k" = 357K+ Seo0d"
Q

We recall that 3141592< 7 < 3.141593. Hence, if we chooge= 2.69 we obtain

2.(2.69) - (3.1415932 . (3.1415934
/ hﬁd5<¢3.141593<4.(2.69)2— (269 - (3.141593° | 59- (3141593 )
aQ

5 1260

and hence
f h2 dS < 40.56426

0Q
On the other hand we have

(3.141593% . (2.69  59-(3.141592°

30 25200 > 20.66911

/ h2dxdy > (3.141592 - (2.69)% —
Q
By inserting these estimates into (8.2) we obtain (1.15).

9 Proof of Theorem 1.10

Letu € H? N H(Ry/2) be a (positive) minimizer for (1.3) whe@d = Ry2:

/ AU

Ry
d1(Rej2) = —2 -

Vv

u
IRe/2

By uniqueness of the minimizeu,is symmetric inR;/> so that

/2 7/2 /2 7/2

T T
/ u2(0, y) dy = / UE(E, y) dy = / ug(x, 0) dx = / u?,(x, E) dx.  (9.1)
0 0 0 0
Fixa e (0,%), letRa := (0, 7 — @) x (0, a) and consider the functione H2 N H}(Ra)
defined by
_ i
v Y =u <2(n —a 2a> '
Then,
[ a0
di(Re) = —2—— 9.2)
K
0Ra
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and we estimate the two integrals in the right-hand side of (9.2). We have

LT RN
Y = 5w a “X<2(n—a)’ 2a>’

. T 2 T X Ty
vxx(X, y) = (m) - Uxx (m 2—a> ,

T T X Ty T X Ty

T2
”y(x’y)zﬁ'”y<2(n—a)’2_a)’ ”W(X’V)Z(£> '“W<2(n—a)’2_a)'

Hence, applying (9.1) and with obvious changes of variables, we obtain

and

a a 2 a
2, _ 2 _ T 2(n *Y
/vx(n aydy = /vx(O, y)dy = 74(77_&)2/% (0, Za) dy
0 0 0
/2
arn 2 an 2
= — O’ d = —F s
zm—mZ/““ ydy 8@—@2/1%
0 aRzz/Z
T—a T—a T—a

2
/ Uy(X, a) dx f Uy(X, 0) dx = E Uy (m, 0) dx
0 0 0

/2
n(w — a) 5 n(w —a) 2
T / uy(X, O) dX == W / uv.
0

aR7'[/2
Therefore, we infer

2 T a T—a 5
/vv— 4<(n—a)2+ 2 ) / u;. (9.3)
0Ra

0Rz/2

Moreover, with a change of variables, we also obtain

2 2
2 _ _ 2 Uy (X, Y) Uxx (X, Y) - Uyy(X, Y) Uyy(X, Y)
R[ |Av|© = 4a(nr — a)w Rf (16(71 mp + 8221 — a)? + Lol dxdy. (9.4)
T/ 2

Next, as noticed by Kuttler [11, p. 334], we recall that two integration by parts yield

f Uxx(X, Y) - Uyy(X, y) dxdy = [ uiy(x, y) dxdy > O.
Ry/2 Ry/2
Hence, we may estimate (9.4) as follows

2

s  mo(m—a) 2
Ra Rﬂ/Z

Inserting (9.3) and (9.5) into (9.2) yields

(r — a3
(72 — 3ra+ 3a2)

di(Ra) < A d1(Ry/2).

“Jap|oy JybuAdoa ayy Aq uoissiwiad uapLm yym pamojje Ajuo si asn JayjQ "Ajuo asn jeuosiad inoK 1o} ajoie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoid si ajane siyj



On a Steklov eigenvalue problem 331

Lettinga — 0, shows that

limsupa- di(Ra)] < 7 di(Ry/2),

a—0

which is precisely the upper bound in the statement of Theorem 1.10.
In order to prove the lower bound, we rewrite [11, (15)] as

1 1

T
di(Ra) > W a a2 + 2

and we leta — 0.
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