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Abstract

A general theory for the study of families of processes in the weak topology of some Banach
space is suggested: sufficient conditions for the existence and connectedness of attractors are
proved. The results apply to (nonlinear) nonautonomous evolution partial differential equations
for which the behavior of the corresponding processes is better described when the phase space
is endowed with its weak topology.
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1 Introduction

The study of processes on complete metric spaces started with the pioneering papers by Sell [23],
Dafermos [9, 10] and Ball [4]: it looks difficult to give an exhaustive list of the subsequent results
existing in literature but let us just mention the monographs [16, 18] where further references
may be found. Processes are particularly useful in the study of evolution PDFE’s; it is well-known
12, 21, 25] that for autonomous PDE’s the long-time behavior of the solution may be described by a
family of operators which enjoy the semigroup properties: processes represent the generalization of
semigroups to the nonautonomous case. In the last few years, the attention has turned to families
of processes, see [6, 7, §].

In order to apply the tools involved in these theories some compactness properties of the process
(or semigroup) defined by the equation are requested; even for fully nonlinear PDE’s, when the
equation is dissipative, standard energy estimates usually suggest to study the long-time behaviour
of the solution in the norm topology of some Banach space or with the metric of some nonlinear
space, see e.g. [20, 25| and references therein. However, in some cases the nonlinearity in the
equation only allows to prove nice compactness properties of the corresponding process in the
weak topology, see e.g. [3, 5, 12, 17, 19, 24]|. A general theory which also allows to treat families
of processes for these equations seems not to be known: in this paper we make an attempt in
this direction. To this end, we introduce a self-contained analysis which is based on the notion
of uniformly compactifying at infinity (UCI in the sequel) family of processes; in metric spaces,
this compactness assumption is exploited by Arosio [1] in the context of semigroups (see also [21]):
it allows to study the compactness properties of the problem in terms of sequences. Our main



results concern the case of weak topologies: assuming that the family of processes is UCI, we reach
sufficient conditions for the existence and connectedness of attractors when the phase space is some
reflexive separable Banach space endowed with its weak topology. These results generalize in some
sense to a different context previous results by Chepyzhov-Vishik [6, 7, 8] and Gobbino-Sardella
[15]. In literature, the study of evolution equations in the weak topology is usually handled in
a different way, see e.g. [12, 13] !: one first proves the existence of an absorbing set which is
bounded in the norm topology and hence, relatively compact in the weak topology; next one uses
the metric induced by the weak topology on bounded sets. The aim of this paper is to insert these
problems into a more general framework and to avoid the use of a metric: all definitions and proofs
are stated in a more topological fashion. In Remark 1 below we show that our assumptions are
actually weaker than the existence of a bounded absorbing set.

This paper is organized as follows: in Section 2 we introduce the basic tools for the study of
processes in weak topologies of Banach phase spaces. In Section 3 we state our main results,
sufficient conditions for the existence and connectedness of attractors for families of processes
acting in the weak topology of some separable reflexive Banach space; the proofs of these results
are quoted in Section 4. Finally, in Section 5 we apply our results to the study of the long-time
behavior of the solutions of some nonautonomous parabolic equations when the forcing term is
free to run in a suitable bounded subset of a functional space: the equations considered are the
modified Navier-Stokes equations introduced by Prouse [22] and some general parabolic equations
with a monotone principal part.

2 Notations and definitions

Throughout this paper we assume that X is a reflexive separable Banach space: we will essentially
deal with the case where X is endowed with its weak topology and, when we wish to highlight this
fact, we will denote the space by X,,; to say that a sequence {x,,} C X converges weakly to = we
simply denote x, — x. We denote by B the set of bounded subsets of X: it is well-known that if
B € B then B is relatively compact in X,. In the sequel, for all 7 € R we set R, := [7, +00).

Several slightly different definitions of process are given in literature, see e.g. [6, 16, 18]; in this
paper we use the following

Definition 1 A family of operators U(t,7) : X — X, 7 € R, t € R, is a process on X if the
following two conditions hold:

(1) U(r,7) =1 (identity on X ) for every T € R;

(1) U(t,s)U(s,7) =U(t,T) for every t € R,.

Consider now a family of processes {Us(t,7), f € F'} depending on a parameter f € F, where
F'is a topological space; the parameter f is called the symbol of the process Uy. In order to define
absorbing sets the topology is not needed: in the following definition, we specify that the absorbing
sets we consider are uniform with respect to the symbol f, namely, that they do not depend on f.

Definition 2 A set By C X is said to be uniformly absorbing (u-absorbing) for the family
of processes {Us(t,7), f € F} if for every B € B and every T € R there exists T = T(7,B) € R,
such that

UUf(t,T)BCBO vVt € Rr .

feF

n fact, the attractor for the KAV equations found in [13] is in the norm topology, see [14].



It is well-known that the notion of attraction is related to the topology considered in the phase
space X:

Definition 3 A nonempty set A C X is said to be w-u-attracting for {Us(t,7), f € F} if every
open set O C X, such that O O A is u-absorbing.

Definition 4 A compact set A C Xy, is said to be the minimal w-u-attractor for the family of
processes {Uy(t,7), f € F} if the following two conditions occur:

(i) A is w-u-attracting;

(1) A is contained in any closed w-u-attracting set.

The above property of minimality is the natural generalization of the invariance property in the
definition of semigroup’s attractors.

In order to study the properties of the family of processes we need to introduce different kinds
of continuity:

Definition 5 A family of processes {Us(t,T), f € F} acting on the space X, is:
(i) t-continuous if V(x, f) € X x F the map (t,7) — Uy(t,7)x is continuous;

(ii) z-continuous if V(1,t, f) € R x Ry x F' the map x +— Us(t, T)x is continuous;
(iii) fo-continuous if ¥V(7,t) € R x Ry the map (x, f) — Us(t,7)x is continuous.

The existence of a minimal w-attractor is related with the compactness properties of the family
of processes: for this reason, we introduce the

Definition 6 The family of processes {Uf(t,T); f € F'} is said to be uniformly compactifying
at infinity (UCI) if for all T € R, for all {f,} C F, for all {t,} C R such that t,, — +oo and
for all {x,} € B the set {Uy, (tn, T)xn} is relatively compact in X,

Finally, in order to present a useful characterization of the minimal w-attractor, we introduce
the notion of complete trajectory of a process:

Definition 7 A curve z(s), s € R is said to be a complete trajectory of the process U(t,7)

if U(t, 7)x(T) = z(t) for every T € R and t > 7.

3 Main results

Throughout this section we assume that
X is a reflexive separable Banach space (1)

and, for all » > 0 we set B, := {z € X; ||z|| < r}; moreover, we assume that F' is a topological
space.
For all 7 € R and B € B we define the uniform w-limit set

wr(B) = J U Ust,7)B ;

s>T t>s feF

as X, satisfies the first axiom of countability, it is not difficult to verify that an equivalent char-
acterization is the following

wy(B) = {m eX: Hap} CB, Hfu} CF, 3y — 400 s.t. Uy, (ty, T)an — w} )
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Our first result consists in two necessary and sufficient conditions for the existence of the min-
imal uniform w-attractor: one of these conditions is the weak topology version of the standard
assumption [7, 18] that the family of processes is uniformly asymptotically compact.

Theorem 1 Assume (1) and let F' be a topological space; assume that a family of processes
{Us(t,7); f € F} is defined on Xy,. Then the following conditions are equivalent:
(i) there exists a compact nonempty w-u-attractor A;
(i) the following conditions hold:
(a) {Us(t,7); feF}is UCK
(b) Urer Unen wr(Bn) is bounded;

(1) there exists the minimal w-u-attractor A and it can be characterized by

A= J U wr(B)

T7ER neN

Remark 1 In Theorem 1 no continuity assumptions on the family of processes are needed. Note
also that the existence of a bounded u-absorbing set is a sufficient condition which ensures that
(#i7) holds; it is obviously not necessary as shows the following example. Take X = (2, consider
the shift operator ® : £2 — ¢2, namely

V(! 2%, 2P, .)€ ¢ Ozt 2?23, .) = (0,2, 2%, ..)

and the discrete (z-continuous) dynamical system {®"}: then, {0} is the minimal w-attractor but
{®"} does not admit a bounded absorbing set. O

Assume now that on the space F' it is defined a semigroup of operators {S;, ¢ > 0} which
satisfies the following translation relations (see [6]):

SiF=F vt>0, Us,f(t,7) =Us(t +5,7+s) Vs>0, feF, 7TeR, teR,. (3)
With this assumption we prove that the uniform w-limit does not depend on 7:

Proposition 1 If (3) holds, then for all 71,72 € R and all B € B we have w;, (B) = w,(B).

Therefore, from now on, when (3) holds we simply denote by w(B) the uniform w-limit set of
B € B; in this case, under the assumptions of Theorem 1, by Proposition 1 we obtain directly the
following characterization of the minimal w-u-attractor:

A= U w(By) -
ncN

However, when (3) holds and F' is compact we can give a more precise characterization of A by
adapting the approach of [6] to our context: on the space X x F' define the family of operators
{T;} t e R") by

Yz, f)eXxF Yt>0 Tz, f):= (Uf(t,())x, Stf> . (4)

We recall that a set A C X x F'is invariant with respect to the family of operators {13} if ;A = A
for all t > 0. We prove



Theorem 2 Assume (1) and let F' be a compact space. Assume that a family of processes
{Us(t,7); f € F} is defined on X, and that a semigroup of operators {S;, t > 0} is defined
on F and satisfies (3). Assume moreover that:

(i) {Us(t,7); f € F} possesses the minimal w-u-attractor A;

(it) {Ug(t,7); f € F} is fr-continuous.

Then the family of operators {1t} defined in (4) is a semigroup which possesses the minimal w-
attractor T C X X F which is invariant with respect to the semigroup {Ti}. Moreover, A is the
projection of T onto X and can be characterized by

A= {az(O)‘ x(t) is an arbitrary complete trajectory of Ug(t,T) for some f € F} .

Let us underline the fact that assumption (¢) of Theorem 2 may be replaced by either (¢) or
(#2) of Theorem 1. Finally, we are interested in sufficient conditions for the connectedness of the
minimal w-u-attractor (when it exists) related to a family of processes:

Theorem 3 Let X satisfy (1) and let F' be a connected topological space; let {Us(t,T), f € F} be a
family of t-continuous and fr-continuous processes on Xy,. If there exists the minimal w-u-attractor
A, then A is connected.

4 Proofs of the main results
The proof of Theorem 1 requires two lemmas:

Lemma 1 Make the assumptions of Theorem 1. If the family of processes is UCI and B is a
(nonempty) bounded set then w,(B) is nonempty.

Proof. Let T € R, x € B, f € F and consider ¢, := n(|7| + 1) (n € N). As the family of processes
is UCI, we infer that the sequence {Uy(ty,T)x} is relatively compact in X,,; hence, there exists
x € X such that Uy(t,,7)x — &, up to a subsequence: by (2) we infer that € w,(B). This proves
that w,(B) # 0. O

Lemma 2 Let A, B € B; if A w-u-attracts B then w.(B) C A for all T € R.
Assume also that {Ug(t,7); f € F} is UCIL if wr(B) C A for all T € R, then A w-u-attracts B.

Proof. Assume that A w-u-attracts B: we claim that w,(B) C A for all 7. Fix 7 € R and let
x € wr(B): by (2) we know that

HantC B, Hfu} CF, Iy — +oo st U, (tn, T)Tn — T ;
hence, for all open set O 3 x there exists n(O) such that
U, (tn, T)xn € O VYn > n(0) . (5)

By contradiction, assume that = ¢ A; as X,, is a Hausdorff space and A is w-compact, there exist
two open sets O, > x and O4g D A such that O, N 04 = §. By (5), we have U, (tn, T)xn € Oy
for sufficiently large n; hence, Uy, (tn,T)xn & Oa for large n: this contradicts the fact that A is
w-u-attracting B.

To prove the second statement, we also argue by contradiction. Assume that w,(B) C A for all
7; by contradiction, assume also that there exist 7 € R and an open set O D A such that for all



t € R, there exist t > t and f € F such that Uf(f, T)B ¢ O: then, there exist three sequences
{t,} C R; satisfying t,, — 400, {z,} C B and {f,} C F such that

Uy, (tn, T)an € O . (6)
As the process is UCI, there exists Z € X such that
Ufn (tTZ?T)[I;n — T, (7)

up to a subsequence; by (2), we have T € w,(B) and therefore, z € A C O, which contradicts

(6)-(7). O

Remark 2 By Lemmas 1 and 2, we infer that for all nonempty B € B the set w,(B) is nonempty
and w-compact for all 7 € R. O

We are now ready to give the

Proof of Theorem 1. We prove that (i) = (1) = (¢it) = (4):

(i42) = (4): trivial.

(i) = (i1): we first prove that {U;(¢,7); f € F}is UCL Fix 7 € R, {fn} C F, {t,} C R, such
that ¢, — 400 and {x,} € B: we claim that the set K := {Uy, (tn,T)zn; n € N} is relatively
compact in X,,; to this end, it is enough to prove that ¢(K) is bounded for every ¢ in the dual space
X' of X. So, let ¢ € X’ and fix ¢ > 0: due to the compactness of A, there exists a finite subset
{a1,...,am} of A such that the set O :=J;{y € X : |¢(y — a;)| < e} is an open neighbourhood of
A. Since {x,} € B and A is a w-u-attractor, there exists k € N such that Uy, (t,,7)z, € O for
each n > k. Hence, for every n > k there exists ¢ = 1, ..., m such that

|¢(Ufn (tnaT)wn - az)| <e.

Now, let ¢ > 0 be such that |¢(a)| < ¢ for all @ € A and [p(Uy, (tn, T)xyn)| < c for all n < k. Tt
follows that
|p(Uy, (tn, T)zn)| <c+e  VYneN,

which proves the claim. In order to prove (i) (b), we just observe that, due to (i) and Lemma 2,
one has w,(B,) C A for alln € N and 7 € R.

(i7) = (i4i): let A be as in the statement (¢i), then A is compact by (i) (b). Moreover, by
Lemma 1 we have w;(By,) # 0 for all n,7: this proves that A # . Take B € B, then there exists
n € N such that B C By; hence, w,(B) C w-(By,) for all 7. Therefore, w,(B) C A for all 7,
and, by Lemma 2 we infer that A w-u-attracts B: by arbitrariness of B, this proves that A is
w-u-attracting. Finally, let A’ be another closed w-u-attracting set, then by Lemma 2 we infer
that w,(By) C A for all 7,n: hence, U, U,, w-(Br) € A and, since A’ is closed, 4 C A’; this
proves that A is minimal. a

Proof of Proposition 1. Let B € B, assume that 7 > 71 and let T =19 —79; by (3), for all t € R,
we have

U Ust.m)B = | Us, st =7.m)B = |J Us(t =7,71)B .
fer feF fer

Therefore, for all s € R, we infer

U Uutns=J JUt-7n)B= |J | Ust,n)B;

t>s fer {>s fEF t>s—7 feF



finally, by taking the closure and intersecting for s > m we get

N U Uutms= 1 U Uutns,

s>To t>s feF s—T>T11 t>s—T fEF

that is, the result. O

In order to prove Theorem 2, consider the space X, x I' endowed with the product topology
and note that by Proposition 3.1 in [6] the family of operators {1} is a semigroup. We say that
a subset Y C X x F' is bounded in X,, x F if its projection IIx(Y) on the space X is bounded.
Extending Definition 3 we say that a set A C X x F w-attracts a bounded set B if for each open
set O D A of X, x F there exists ¢ such that T3(B) C O for all ¢ > ¢. The minimal w-attractor 7
(if it exists) is a compact invariant set which attracts every bounded subset of X, x F. For every

bounded set B, we define w(B) := s> U>s 11 (B)-

Lemma 3 Make the assumptions of Theorem 2; then, for each nonempty bounded set B C Xy X F'
w(B) is a (nonempty) invariant set. Moreover, for all compact set A and all bounded set B one
has that A attracts B if and only if w(B) C A.

Proof. The fact that w(B) is invariant follows from the definition because {T}} is a semigroup.
By Theorem 1, the compactness of F' and assumption (¢) of Theorem 2, one readily shows that
the dynamical system {7} } satisfies the following property: for each bounded sequence {(x,,, f,)} C
Xw x F' and every t,, — +oo the set {T}, (xn, fn); n € N} is relatively compact in X, x F'. Then
the proof follows similarly to the ones of Lemmas 1 and 2. O

The first part of Theorem 2 is proved by means of

Lemma 4 Under the hypotheses of Theorem 2, there exists the minimal w-attractor T of the
dynamical system (4).

Proof. Denote by X the set of compact w-attractors of X x F: we have X # () because A x F € X;
hence, we can define X := (45, A. From Lemma 3 it follows that w(B) C g for each bounded set
B C X x F. Therefore, ¥y is a (nonempty) compact w-attractor; moreover, since ¥g is bounded,
one has w(3g) C ¥p. On the other hand, by Lemma 3, for all bounded set B C X x F and all
A € X we have w(B) C A; hence, w(B) C g. Then, as w(B) is invariant by Lemma 3, we get

w(B) =w*(B) Cw(X) :

again by Lemma 3 this implies that w(X) € X; this proves that 3¢ C w(Xg), that is, Xp = w(Xp).
Tt follows that 7 := ¥ is invariant and, by its definition, it is also the minimal w-attractor of

{13} O
Let us now complete the

Proof of Theorem 2. Let T denote the minimal w-attractor of (4) found in Lemma 4 and set
U := lIx(7). Obviously, U is a nonempty w-compact subset of X; we prove that U is a w-u-
attracting set. Since F' is compact, for each 7 € R and every bounded subset B of X, one has
that 7 attracts B x F': then, by (4), for all open set O C X,, satisfying O D U there exists ¢ > 0
such that Us(t,0)B C O for all ¢ > t and all f € F; by (3) this implies that for all 7 € R there
exists T = T(7, B) € R such that

UUWJWQO,
fer



that is, U is a compact w-u-attracting set. By definition of A, this proves that A C U.
In order to prove the converse relation, note that the steps used to obtain (3.13) in the proof of
Corollary 3.1 in [6] do not depend on the topology involved and hence, we have:

U= {m(O)‘ x(t) is an arbitrary bounded complete trajectory of Ug(t,7) for some f € Hy(T)} .

So, fix & € U; then, there exists fy € F' and a complete bounded trajectory a(t) of Uy, (¢, T) such
that x(0) = Z. As [ is invariant, for all n € N there exists f € F' such that S, f" = fy; then, by
(3), for all n € N we have

z=w(0) = Uto (0, —n)a(—n) = Us,, fn (0, —n)z(—n) = Ugn (n,0)z(—n) .

Since By := {x(—n) : n € N} is bounded, by (2) we have € w(By); then, by Lemma 2, we get
Z € A, which proves that U C A. O

Proof of Theorem 3. By contradiction, assume that A4 is not connected and let A = A; U Ay, where
Aj and Ay are nonempty, disjoint, compact subsets of X,,; since X, is a Hausdorfl space, there
exist two open sets @1 and Qs such that 07 D Ay, Oy D Ay and O N Oy = 0.

Take 7 € R, then, as A is w-u-attracting, for all n € N there exists t,, € R, such that

U Urt,7)B, CO1U0; Yt >ty ; (8)
fer

since F' x By, is connected and by fa-continuity, the set UpcpUy(t,7)By, is also connected for all
t. Therefore, (8) implies that for all t > t,, there exists ¢ = i(¢) € {1,2} such that

U Ust,7) B, C O -
fer

by t-continuity we infer that ¢ does not depend on ¢; hence, there exists ¢ € {1,2} such that

U Ust,n)B. CO;  Vt>t, .
fer

By repeating the above arguments for B, 1 we infer that there exists j € {1,2} such that

U Urt,7)Bois CO; VE> by -
fer

since By, C By+1 we infer that ¢ = j. Therefore, there exists ¢ € {1,2} such that for all B € B we
have

U Us(t,7)B C O; for all ¢ large enough;

fer

this implies that A C O; and contradicts the assumption that A is not connected. O

5 Some applications

In this section we apply the results of Section 3 to prove the existence and connectedness of
attractors of processes associated to some differential equations; to this end, we introduce some
functional spaces. Let €2 C R™ be an open bounded set with smooth boundary; we denote by LP



the space of p power absolutely integrable functions, by W™? the Sobolev spaces of functions in
LP with their first m generalized derivatives in LP, by H™ = W™? the Hilbertian Sobolev spaces,
by H{* the H™-closure of the space of smooth functions with compact support in {2 and by -, the
normal trace operator. To simplify notations we delete the domain of definition €2 and we denote
O =4, 0= 5= (i=1,..n),

To describe the long-time behavior of the solutions of a differential equation we need to define
some other spaces. If p € [1,4+00) and X is a Banach space we denote by LP(7,t; X) the space of
functions defined on [r,¢] with values in X for which the p® power of the X-norm is integrable
on [7,t]; by L*>(7,t; X) we denote the space of functions whose X-norm is essentially bounded on
[7,t]. For all p € [1,400) we define the Banach space of L -translation bounded (t.b.) functions
on R taking values in a Banach space X:

s+1
L(R: X) o= {f € LX) sup [ (0t < oo}
endowed with the norm

s+1 1/p
Il =suw ([ ) e

5.1 A modified Navier-Stokes equation

We consider the modification of the Navier-Stokes equations for incompressible fluids suggested
by Prouse [22]: here u and p denote respectively the velocity vector and the pressure of the fluid.
The modified Navier-Stokes equations subject to an external force f read as follows:

Ou— Ap(u) + (u-Viu+Vp—V(V-pu) = f in Q x [r,7]
V-u=0 in Q x [1,7]
u=>0 on 99 x [1,T]

(9)

w(z, 7) = up(x) ifx e

where 7 € R and T' > 7; we refer to [22] for physical motivations of (9). We consider the Hilbert
spaces

H:={ucl* V-u=0 and yu=0} V:={uc H}; V-u=0}
and the dual space V* of V. We assume that the function ¢ in (9) satisfies
o) = o (Jul)u
ceCHRY), o) >u>0, >0 VEeRT
ifn>3 Is>n+1, 3a,8,§ >0 suchthat B >0(8) > a1 VE>E
ifn=2 3s>1, 3a,8,& >0 such that B > 0(€) > st VE>&.

(10)

Let f € LY(7,T; H) + L*(1,T; V*) and ug € H; we say that u solves (9) if
u€ L2(1,T; V)N L®(7,T; H) N L5+ (7, T; LsH1)
(Ow — Ap(u) + (u-V)u— f,h) =0

Vh e L*(1,T;V) N L>®(1,T; H) 0 LS (7, T; W2+

u(z,7) = uo(x) .



Extending previous results of [11, 22], in [12] a family of processes associated to (9) has been
studied independently of the dimension n > 2. By taking into account the results of [12] and of
the previous sections we obtain

Proposition 2 Let ¢ be as in (10), assume that f € L*(1,T; H) + L*(7,T;V*) and ug € H; then
there exists a unique solution w of (9) and u is continuous in [1,T] in the Hy,-topology.
Moreover, if F is any bounded subset of L% (V*), then the family of processes {Us(t,7), f € F}
associated to (9) possesses a minimal connected Hy,-u-attractor A.

Proof. Existence, uniqueness and continuity of the solution of (9) are proved in Theorem 2.2 in
[12].

Let F be a bounded subset of L% (V*), then F is w-compact in LZ (R;V*), see [8]: Theorem 4.6
in [12], Theorems 1 and 2 yield the existence (and characterization) of a minimal H,-u-attractor
A for the family of processes {Uy(t,7), f € F'}; by Proposition 4.8 in [12], all the assumptions of

Theorem 3 are satisfied: hence, the w-u-attractor A is connected. O

Remark 3 The existence of a w-u-attractor for (9) is proved in [12] under more restrictive assump-
(R; H) + L, (R; V),

tions; more precisely, f is required to be translation compact (t.c.) in L} e

loc
that is, it is assumed that the hull of f, defined by

Lioe(RH)+LE, (R;V™)

loc

H(f)::{f(-+s): seR} :

is compact in L} (R; H) + L% .(R; V*): we denote by Li,(H) + L2,(V*) the set of such functions.
Let f € Li.(H) + L2,(V*), take X = H and F = H(f), then all the assumptions of Theorem 3 are
satisfied: hence, the attractor A defined in Theorem 2.3 in [12] is connected.

Finally, for all f € L% (V*), one may apply Theorems 1-3 by letting F' be the weak hull of f (see

[8]), namely the weak L2 (R;V*)-closure of the set {f(-+s): s € R}. O

loc

5.2 General parabolic equations with a monotone principal part

In this section we consider a class of degenerate parabolic equations which have been studied in
the autonomous case by Babin-Vishik [2] and other authors.
Consider n functions a; (i = 1, ...,n) satisfying a; € C? N WLH*(R", R) and

Y 5620 vogeR”
i,j=1 ">7
Spo, >0 st (1L+[¢7) =D a6 = pol¢? V¢ e R,

=1

Consider also n? functions b;; (4,7 = 1, ...,n) satisfying b;; € L°°(Q2) and

bij = bji Z bw(l’)&fj >0 Vf € Rn, Ve el.
i=1
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Finally, consider a function b € L>®(2) and n functions b; (i = 1,...,n) satisfying b; € C*(Q).
Under these assumptions we study the problem

(£

Opu — i Oi[bij (2)0;u] + Zi;bz(w)&u - Zai [a;(Vu)] + v +b(z)u=f inQx [1,T]

ij=1 i=1
u=0 ondQx|[r,T] (11)
u(z,7) =ug(x) faxeQ.

The following result holds:

Proposition 3 Assume that ug € L*()) and f € L*(R; L?); then, under the above assumptions,
(11) admits a unique solution

we L®(r,T; LA N LA (1, T; HY) N LA (7, T; LY N C(,T; L2) .

Moreover, if F = {g € L*(R; L*); ||gll;2m.z2) < R} for some R > 0, then the family of processes
{Us(7,t); f € F} admits a minimal connected L2 -u-attractor A.

Proof. In the autonomous case, the proof of existence is performed by the standard Galerkin
method, see e.g. Theorem 1.3.1 in [2]: when f depends on ¢ it suffices to remark that the estimates
of step 2 pp. 40-41 in [2] still hold. Uniqueness follows by arguing by contradiction.

In order to apply our abstract results to (11), let us first draw an energy estimate. By reasoning
as in the proof of Theorem 1.3.1 in [2], i.e. by multiplying (11) by u(¢) in L? and by taking into
account Proposition 1.3.1 in [2] we arrive at

d
—lu®3 + [u@®l3 < IFOIE + K

where K is a positive constant depending only on the functions a;, b;;, b and b;; therefore, we
obtain

5 () < (170I3 + K)e'

and finally, by integrating over [7, %], we get
lu@)II3 < llwollze™ * + 172z + K(L—€") . (12)

Take X = L?, F = {g € L*(R; L?); ||gll;2r;z2) < R} for some R > 0 so that F' is w-compact
in L?(R; L?); then, (12) implies that the set A := {v € L?; |[v||3 < K + 1 + R?} is a bounded
u-absorbing set. Theorems 1 and 2 then yield the existence (and characterization) of a minimal
attractor A. Moreover, the family of processes is ftz-continuous: hence, Theorem 3 implies that
A is connected. O

Remark 4 The previous result may also be stated for a wider class of forcing terms f and when
in (11) the term w3 is replaced by a more general function g(u). O
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