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Abstract

A rectangular plate modeling the roadway of a suspension bridge is considered. Both the contributions
of the bending and stretching energies are analyzed. The latter plays an important role due to the presence
of the free edges. A linear model is first considered; in this case, separation of variables is used to determine
explicitly the deformation of the plate in terms of the vertical load. Moreover, the same method allows us to
study the spectrum of the linear operator and the least eigenvalue. Then the stretching energy is introduced
without linearization and the equation becomes quasilinear; the nonlinear term also affects the boundary
conditions. We consider two quasilinear models; the surface increment model (SIM) in which the stretching
energy is proportional to the increment of surface and a nonlocal model (NLM) introduced by Berger in the
50’s (see [3]). The (SIM) and the (NLM) are studied in detail. According to the strength of prestressing we
prove the existence of multiple equilibrium positions.
Keywords: nonlinear elasticity, prestressed plates, bending and stretching energy, variational methods.
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1 Introduction

Consider a rectangular plate hinged at two opposite edges and free on the remaining two edges. We have in
mind is a suspension bridge and our purpose is to study several different models to describe its behavior. We
view the roadway of the bridge as a long narrow rectangular thin plate, hinged on its short edges where the
bridge is supported by the ground, and free on its long edges. Let L denote its length and 2` denote its width; a
realistic assumption is that 2` ∼= L

100 . For simplicity, we take L = π so that, in the sequel,

Ω = (0, π)× (−`, `) ⊂ R2 . (1)

This model is considered in [8] where the analysis of the bending energy of the plate leads to a fourth order
elliptic equation. However, motivated by the presence of free parts of the boundary, the stretching energy was
neglected. A more accurate analysis would have to take account of the stretching energy. From a mathematical
point of view, one may notice thatH2 ⊂ H1 and that theH2-norm bounds theH1-norm; whence, the stretching
energy may be considered as a “lower order term” when compared with the bending energy. But, as we
shall see, the former plays an important role in the model and a deep motivation to introduce the stretching
energy comes from structural engineering and physics. Concrete is weakly elastic and heavy loads can produce
cracks. On the other hand, metals are more elastic and react to loads by bending. For this reason, prestressed
concrete structures have been conceived. According to [19, p.28], the father of prestressed concrete bridges
is the French engineer Eugène Freyssinet (1879-1962) and these bridges were first built some 75 years ago.
Prestressing metal tendons (generally of high tensile steel) are used to provide a clamping load which produces
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a compressive stress that balances the tensile stress that the concrete compression member would otherwise
experience due to a load. Prestressed concrete is obtained by casting concrete around tensioned tendons; this
method produces a winning interaction between tendons and concrete. It protects the tendons from corrosion
and allows for direct transfer of tension. The concrete adheres and bonds to the bars, and when the tension is
released it is transferred to the concrete as compression by static friction. This technique creates an “elasticized
concrete” and explains on the one hand why stretching is negligible when computing the total energy of the
plate Ω, and on the other hand why it should not be neglected if the purpose is to analyze a more precise model.

In the present paper we study the plate model by considering also the stretching energy. First we consider
a linear model and we prove that the problem is well-posed. With a separation of variables method we also
determine the explicit solution and this allows to quantify the cross behavior of the plate, a phenomena clearly
visible in the Tacoma Narrows Bridge collapse [23]. Next, we analyze the competing effect between bending
and stretching, which occurs in prestressed structures; this brings us to study an eigenvalue problem and its
spectrum. With these results, the linear theory seems to be sufficiently clear. However, in recent years, the
nonlinear structural behavior of suspension bridges has been uncovered, see e.g. [4, 10, 15, 22]. Therefore,
a linear model may not be sufficiently accurate to describe the static behavior of bridges, especially for large
deflections as the ones visible in the video [23]. Although mathematical models in nonlinear elasticity are fairly
complicated it seems that their use is unavoidable. In an important paper, dated some decades ago, Gurtin [12]
showed the necessity of nonlinear models in elasticity and concludes his work by writing

Our discussion demonstrates why this theory is far more difficult than most nonlinear theories of mathemat-
ical physics. It is hoped that these notes will convince analysts that nonlinear elasticity is a fertile field in
which to work.
Since fully nonlinear plate equations appear intractable, and since linear equations fail to highlight important

phenomena, a first step should be to study models having some nonlinearity only in the lower order terms.
This appears to be a good compromise between too poor linear models and too complicated fully nonlinear
models. This compromise is quite common in elasticity, see e.g. the book by Ciarlet [6, p.322] who describes
the method of asymptotic expansions for the thickness ε of a plate as a “partial linearization”

in that a system of quasilinear partial differential equations, i.e., with nonlinearities in the higher order
terms, is replaced as ε → 0 by a system of semilinear partial differential equations, i.e., with nonlinearities
only in the lower order terms.

In this paper we make one further step towards fully nonlinear models. Instead of a semilinear model,
where the nonlinearities merely appear in the zero order term of the differential equation, we consider two
quasilinear models with nonlinearities involving derivatives of the unknown function (the vertical displacement
of the plate). The Euler-Lagrange equation contains second order nonlinear differential operators while the
highest order operator (fourth order) remains linear. We first consider the stretching energy as a multiple of
the increment of the surface and not just its first order asymptotic approximation which is usually employed to
describe small displacements of the plate. Then we consider a nonlocal quasilinear model (NLM) going back to
Berger [3] which may be seen as a second order approximation of the stretching energy. For both these models
we derive a quasilinear Euler-Lagrange equation and we prove existence and multiplicity results depending on
the strength of prestressing.

This paper is organized as follows. In Section 2 we recall the classical model for the energy of an elastic
plate. In Section 3 we study the linearized model and we state the corresponding results: well-posedness
(Theorem 1), explicit form of the solution and behavior of the cross bending (Theorem 2), analysis of the least
eigenvalue and of the whole spectrum of the linearized bending-stretching competition (Theorem 4). In Section
4 we consider the quasilinear (SIM): after deriving the Euler-Lagrange equation (30) from the minimization
of the energy, we prove existence and multiplicity results for both the homogeneous problem (Theorem 5)
and the inhomogeneous problem (Theorem 6). In Section 5 we introduce the (NLM) by adapting the Berger
model to our partially hinged plate: we derive the Euler-Lagrange equation (38) from the minimization of the
energy, then we prove existence and multiplicity results for both the homogeneous problem (Theorem 7) and
the inhomogeneous problem (Theorem 8). Finally, Sections 6-11 are devoted to the proofs of the results.
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2 A model for a partially hinged plate

Stretching occurs when the horizontal position of the plate is fixed on the boundary ∂Ω and a deformation of Ω
yields a variation of its surface. In our case, the plate is fixed on the two short edges and a deformation of the
plate necessarily yields a variation of its surface. Von Kármán [26] assumes that the elastic force is proportional
to the increment of surface in such a way that the stretching energy for the plate, whose vertical deflection is u,
reads

ES(u) =

∫
Ω

(√
1 + |∇u|2 − 1

)
dxdy. (2)

For small deformations u, the asymptotic expansion (
√

1 + |∇u|2 − 1) ∼ |∇u|2/2 leads to the Dirichlet
integral

ES(u) =
1

2

∫
Ω
|∇u|2 dxdy. (3)

The classical bending theory for an elastic beam goes back to Bernoulli and Euler. This theory was extended
to plates by Kirchhoff [13] and Love [17]. The bending energy of the plate Ω involves curvatures of the surface,
that is, second order derivatives. Let κ1 and κ2 denote the principal curvatures of the graph of the function u
representing the deformation of the plate. Then, according to [9, 13] (see also [11, Section 1.1.2]), the bending
energy of the deformed plate Ω is given by

EB(u) =
Eh3

12(1− σ2)

∫
Ω

(
κ2

1

2
+
κ2

2

2
+ σκ1κ2

)
dxdy (4)

where h denotes the thickness of the plate, σ the Poisson ratio defined by σ = λ
2(λ+µ) andE the Young modulus

defined by E = 2µ(1 + σ), with the Lamé constants λ, µ > 0 depending on the material. Then

0 < σ <
1

2
. (5)

For metals we have σ ≈ 0.3, see [17, p.105].
For small deformations u the terms in (4) are approximations of the second order derivatives of u. More

precisely, for small deflections u, one has

(κ1 + κ2)2 ≈ (∆u)2 , κ1κ2 ≈ det(D2u) = uxxuyy − u2
xy ,

and therefore
κ2

1

2
+
κ2

2

2
+ σκ1κ2 ≈

1

2
(∆u)2 + (σ − 1) det(D2u).

This leads to a bending energy given by

EB(u) =
Eh3

12(1− σ2)

∫
Ω

(
1

2
(∆u)2 + (σ − 1) det(D2u)

)
dxdy.

Whence, up to a constant multiplier, the bending energy of the plate is given by

EB(u) =

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy)
)
dxdy . (6)

Note that, by (5), the quadratic part of the functional (6) is positive.
Summarizing, by recalling both (3) and (6), the total elastic energy of the plate is given by

ET (u) =

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy) +
δ

2
|∇u|2

)
dxdy , (7)
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where δ > 0 is a parameter measuring the stretching capability of the plate. Then, if f denotes an external
vertical load acting on the plate Ω and if u is the corresponding (small) deflection of the plate in the vertical
direction, by (4) the total energy Ef of the plate becomes

Ef (u) =

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy) +
δ

2
|∇u|2

)
dxdy −

∫
Ω
fu dxdy. (8)

The unique minimizer u of Ef satisfies the Euler-Lagrange equation ∆2u − δ∆u = f in Ω. We now
determine the boundary conditions for a plate modeling a bridge. To get started, in Figure 1 we consider a (one
dimensional) beam.

Figure 1: The depicted boundary condition for the left endpoints of these two cross sections is clamped, while
the boundary conditions for the right endpoints are respectively hinged and free.

The function describing a clamped beam vanishes together with its first derivative at the endpoints of the
beam. The function describing a hinged beam vanishes together with its second derivative at the endpoints of
the beam. A free endpoint is obtained when no constraints are imposed.

A two dimensional rectangular plate has several resemblances to a beam due to the absence of curvatures on
the boundary. The edges x = 0 and x = π are hinged, since they are fixed to the ground and are free to rotate
around the fixed edges in order to avoid bending of the plate close to these edges. Hence, we have

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−`, `) . (9)

No physical constraints are available on the edges y = ±` and the derivation of the boundary conditions there is
much more involved, see [25, Section 6.48] (and also, more recently, [24, (2.40)]) for the case with no stretching
δ = 0. Here, we derive them while minimizing the energy functional Ef , defined in (6), on the space

H2
∗ (Ω) :=

{
w ∈ H2(Ω); w = 0 on {0, π} × (−`, `)

}
. (10)

We also introduce
H := the dual space of H2

∗ (Ω)

and we denote by 〈·, ·〉 the corresponding duality. Since we are in the plane, H2
∗ (Ω) ⊂ C0(Ω) so that the

condition on {0, π} × (−`, `) is satisfied pointwise. If f ∈ L1(Ω), then the functional Ef is well-defined in
H2
∗ (Ω), otherwise we need to replace

∫
fu with 〈f, u〉.

The energy (8) has been obtained after the linearization which led to approximate the stretching energy (2)
with the Dirichlet integral in (3); this energy and the corresponding linear Euler-Lagrange equation are analyzed
in the next section. If one avoids the approximation and considers the stretching energy (2), then the (SIM) is
adopted and a quasilinear equation is obtained; this case will be analyzed in Section 4. Finally, in Section 5 we
analyze the (NLM) which appears as an intermediate nonlinear case between the stretching energy (2) and the
Dirichlet integral (3).

3 Analysis of the linearized model

The first somehow standard statement is the connection between minimizers of the energy function Ef and a
suitable Euler-Lagrange equation.
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Theorem 1. Assume (5) and let f ∈ H. Then there exists a unique u ∈ H2
∗ (Ω) such that∫

Ω
[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx) + δ∇u · ∇v] dxdy = 〈f, v〉 ∀v ∈ H2

∗ (Ω) ; (11)

moreover, u is the minimum point of the convex functional Ef . If f ∈ L2(Ω) then u ∈ H4(Ω). Finally, if
u ∈ C4(Ω) ∩ C3(Ω) satisfies (11), then u is a classical solution of

∆2u− δ∆u = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−`, `)
uyy(x,±`)+σuxx(x,±`) = uyyy(x,±`)+(2− σ)uxxy(x,±`)−δuy(x,±`) = 0 ∀x ∈ (0, π).

(12)

As a consequence of Theorem 1, we see that the boundary conditions on the free edges read

uyy(x,±`)+σuxx(x,±`) = 0 , uyyy(x,±`)+(2−σ)uxxy(x,±`)−δuy(x,±`) = 0 ∀x ∈ (0, π) . (13)

Since we have in mind a long narrow rectangle, that is `� π, it is reasonable to assume that the forcing term
will not depend on y. So, we now assume that

f = f(x) , f ∈ L2(0, π). (14)

In this case, we may solve (12) by separating variables. We first extend the source f as an odd 2π-periodic
function over R and then expand it in a Fourier series

f(x) =
∞∑
m=1

βm sin(mx) , βm =
2

π

∫ π

0
f(x) sin(mx) dx , (15)

where the series converges in L2(0, π) to f . Then we prove

Theorem 2. Assume (5) and suppose that f satisfies (14)-(15). Then the unique solution of (12) is given by

u(x, y) =
∞∑
m=1

[
βm

m2(m2 + δ)
+Am cosh(my) +Bm cosh(

√
m2 + δy)

]
sin(mx)

where the coefficients Am = Am(`) and Bm = Bm(`) are defined by

Am =
−σ(1−σ)m√

m2+δ[(1−σ)m2+δ]2 sinh(m`) coth(`
√
m2+δ)− (1−σ)2(m2+δ)m3 cosh(m`)

βm

Bm =
σ[(1−σ)m2+δ]

[(1−σ)m2+δ]2 cosh(`
√
m2+δ)− (1−σ)2m3

√
m2+δ coth(m`) sinh(`

√
m2+δ)

βm
m2 + δ

.

(16)

Theorem 2 describes the dependence on y of the equilibrium when the forcing term merely depends on x.
The y-dependence is a measure of the tendency to cross bending, which was the main cause of the collapse of
the Tacoma Narrows Bridge, see [23]. The coefficients of βm in (16) are negative for Am and positive for Bm,
and tend to vanish as m→∞. The tendency to cross bending is well estimated by

u(x, `)− u(x, 0) =

∞∑
m=1

[
Am(cosh(m`)− 1) +Bm(cosh(`

√
m2 + δ)− 1)

]
sin(mx) .

In order to study the nonlinear problem, we need to set up a suitable functional framework. Let D2w denote
the Hessian matrix of a function w ∈ H2(Ω). Thanks to the intermediate derivatives theorem, see [1, Theorem
4.15], the space H2(Ω) is a Hilbert space if endowed with the scalar product

(u, v)H2(Ω) :=

∫
Ω

(
D2u ·D2v + uv

)
dxdy for all u, v ∈ H2(Ω) .

It is proved in [8, Lemma 4.1] that on the closed subspace H2
∗ (Ω) (see (10)) we may also define a different

scalar product. More precisely, we have
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Proposition 3. Assume (5). On the space H2
∗ (Ω) the two norms

w 7→ ‖w‖H2(Ω) , w 7→ ‖w‖H2
∗(Ω) :=

[∫
Ω

[
(∆w)2 + 2(1− σ)(w2

xy − wxxwyy)
]
dxdy

]1/2

are equivalent. Therefore, H2
∗ (Ω) is a Hilbert space when endowed with the scalar product

(u, v)H2
∗(Ω) :=

∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy . (17)

We also need the space

H1
∗ (Ω) :=

{
w ∈ H1(Ω); w = 0 on {0, π} × (−`, `)

}
. (18)

Since H1
∗ (Ω) 6⊂ C0(Ω) we need to define this space in a more rigorous way. Consider the space

C∞∗ (Ω) :=
{
w ∈ C∞(Ω); ∃ ε > 0 , w(x, y) = 0 if x ∈ [0, ε] ∪ [π − ε, π]

}
which is a normed vector space when endowed with the Dirichlet norm

‖u‖H1
∗(Ω) =

[∫
Ω
|∇u|2 dxdy

]1/2

. (19)

Then we define H1
∗ (Ω) as the completion of C∞∗ (Ω) with respect to the norm ‖ · ‖H1

∗(Ω); the scalar product in
H1
∗ (Ω) is defined by

(u, v)H1
∗(Ω) :=

∫
Ω
∇u∇v dxdy ∀(u, v) ∈ H1

∗ (Ω) . (20)

It is quite standard to prove that the embedding H2
∗ (Ω) ⊂ H1

∗ (Ω) is compact and that the optimal embedding
constant is given by

Λ := min
w∈H2

∗(Ω)

‖w‖2H2
∗(Ω)

‖w‖2
H1

∗(Ω)

. (21)

This yields the Poincaré-type inequality

Λ‖w‖2H1
∗(Ω) ≤ ‖w‖

2
H2

∗(Ω) ∀w ∈ H2
∗ (Ω) ; (22)

this inequality is strict unless w minimizes the ratio in (21), that is, w is a nontrivial solution of the eigenvalue
problem

∆2u+ Λ∆u = 0 in Ω

u(0, y)=uxx(0, y)=u(π, y) = uxx(π, y)=0 ∀y ∈ (−`, `)
uyy(x,±`)+σuxx(x,±`)=uyyy(x,±`)+(2− σ)uxxy(x,±`)+Λuy(x,±`)=0 ∀x ∈ (0, π).

(23)

In 1910, von Kármán [26] described the large deflections and stresses produced in a thin elastic plate subject
to compressive forces along its edge by means of a system of two fourth order elliptic quasilinear equations. An
interesting phenomenon associated with this nonlinear model is the appearance of “buckling”, namely the plate
may deflect out of its plane when these forces reach a certain magnitude. The linearization of the von Kármán
equations for an elastic plate over a planar domain Ω under pressure also leads to the eigenvalue equation
(23), although with different boundary conditions. Miersemann [20] studied in some detail the corresponding
eigenvalue problem. We can also refer to [11, Section 1.3.2] for further details and more recent bibliography.
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Note also that (23) is similar to (12) with δ = −Λ and f = 0. By strict monotonicity of the function (of
variable λ) on the left hand side, we know that there exists a unique λ ∈ (0,

√
σ) such that

λ

(λ2 − σ)2
tanh(`λ) =

1

(1− σ)2
tanh(`) . (24)

By taking advantage of Theorem 1, we obtain

Theorem 4. Let Λ = Λ1 be as in (21) and let λ ∈ (0,
√
σ) be the unique solution of (24), then

Λ = 1− λ2 ∈ (1− σ, 1)

and, up to a multiplicative constant, the unique solution of (23) is positive in Ω and is given by

w(x, y) =
{

[Λ− (1− σ)] cosh(`
√

1− Λ) cosh(y) + (1− σ) cosh(`) cosh(y
√

1− Λ)
}

sinx . (25)

Moreover, (23) admits a sequence of divergent eigenvalues

Λ1 < Λ2 ≤ ... ≤ Λk ≤ ... (26)

whose corresponding eigenfunctions {wk} form a complete orthonormal system in H2
∗ (Ω).

Theorem 4 is by far nontrivial. First of all, the computation of the exact value of the least eigenvalue requires
some effort; if σ = 1/3 and ` = π/200 then Λ ≈ 0.889. Secondly, and more important, it is well-known that
the first eigenfunction of some biharmonic problems may change sign; when Ω is a square, Coffman [7] proved
that the first eigenfunction of the clamped plate problem changes sign, see also [14] for more general results
and [11, Section 3.1.3] for the updated history of the problem. Hence, the positivity of w was not expected.
Last but not least, note that (23) is not a standard eigenvalue problem such as Lu = Λu for some linear operator
L; some work is needed in order to exhibit a linear compact and self-adjoint operator.

4 The surface increment quasilinear model (SIM)

We study here the behavior of the plate without the approximation (3):

Ef (u) =

∫
Ω

(
|∆u|2

2
+ (1− σ)(u2

xy−uxxuyy)− P
(√

1 + |∇u|2 − 1
))

dxdy − 〈f, u〉

=
1

2
‖u‖2H2

∗(Ω) −
P

2
‖u‖2H1

∗(Ω) + P

∫
Ω
N(|∇u|)dxdy − 〈f, u〉 (27)

where ‖ · ‖H2
∗(Ω) is the norm defined in Proposition 3, ‖ · ‖H1

∗(Ω) is the Dirichlet norm defined in (19), and

N(s) =
1

2
s2 −

√
1 + s2 + 1 =

1

8
s4 − 1

16
s6 +O

(
s8
)
. (28)

Notice that,
N(s) ≥ 0 and N ′′(s) ≥ 0 . (29)

The constant P > 0 is the axial force acting on the short edges of the plate (prestressing). We have P > 0
if the plate is compressed and P < 0 if the plate is stretched. The energy function Ef may not be convex,
hence it may admit critical points different from the global minimizer: although the only stable equilibrium is
the global minimizer, other unstable equilibria may exist. By arguing as for Theorem 1 one can verify that the
critical points of the energy Ef (u) solve the following (nonlinear) Euler-Lagrange equation:

∆2u+ P∇ ·
(

∇u√
1+|∇u|2

)
= f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−`, `)

uyy(x,±`)+σuxx(x,±`)=uyyy(x,±`)+(2−σ)uxxy(x,±`)− δ(u)uy(x,±`)=0 ∀x ∈ (0, π)

(30)
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where
δ(u) = − P√

1 + |∇u|2
.

For a given f ∈ H we say that u ∈ H2
∗ (Ω) is a weak solution of (30) if

(u, v)H2
∗(Ω) − P

∫
Ω

∇u · ∇v√
1 + |∇u|2

dxdy = 〈f, v〉 ∀v ∈ H2
∗ (Ω) . (31)

First we consider the homogeneous case f = 0. In this case, we say that u ∈ H2
∗ (Ω) is a weak solution of

(30) if

(u, v)H2
∗(Ω) − P

∫
Ω

∇u · ∇v√
1 + |∇u|2

dxdy = 0 ∀v ∈ H2
∗ (Ω) . (32)

Of course, u = 0 always solves (32) and the interesting question is whether nontrivial solutions also exist. In
this respect, we prove

Theorem 5. Let Λk (k ≥ 1) be as in (26) and put Λ0 = 0. If

P ∈ (Λk,Λk+1] (33)

for some k ≥ 0, then (32) admits at least k pairs of nontrivial solutions ±uj .

The picture in Figure 2 displays the qualitative behavior of the energy functional E0 when P ∈ (Λ1,Λ2].
There is an unstable equilibrium (at the origin) and two stable equilibria symmetric with respect to the origin.

Figure 2: Qualitative description of the energy E0 with three equilibria.

For P > Λ2, Theorem 5 gives additional multiplicity and the qualitative graph of E0 becomes more compli-
cated, with more unstable solutions.

For the nonhomogeneous problem our result is less precise. However, also when f 6= 0 we may state a result
about uniqueness and multiplicity of solutions.

Theorem 6. Let Λ be as in (21) (see Theorem 4).
(i) If P ≤ Λ, then for all f ∈ H the problem (32) admits a unique solution u ∈ H2

∗ (Ω);
(ii) If P > Λ, then for all f ∈ H the problem (32) admits at least a solution u ∈ H2

∗ (Ω);
(iii) If P > Λ, there exists γ = γ(P ) > 0 such that if ‖f‖H < γ then (32) admits at least 3 solutions.

Theorem 6 deserves several important comments.
From a physical point of view, it is not unexpected. If the prestressing constant is sufficiently small (that is,

P ≤ Λ), then there exists a unique equilibrium position for any given external forcing and this equilibrium is
stable. But if prestressing is sufficiently large (that is, P > Λ) then other equilibria may appear. We conjecture
that for increasing P (and given small f ) the number of solutions also increases.

For the proof of Theorem 6 we use a perturbation argument. Therefore, if P ∈ (Λ1,Λ2] the picture in Figure
2 still displays the qualitative behavior of the energy functional Ef : there is an unstable equilibrium (close to the
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origin) and two stable equilibria (nearly symmetric with respect to the origin). For larger P , further solutions
may appear but they cannot be directly derived from Theorem 5 due to the instability of the solutions found
there. Of course, if f belongs to some space related to the kernel of the second derivative of E0 one may also
maintain the unstable solutions of the homogeneous problem; but we will not pursue this further.

The classical Fredholm alternative tells us that nonhomogeneous linear problems at resonance lack either
existence or uniqueness of the solution. The simplest relevant example is the equation ∆u + λu = f in a
bounded domain Ω ⊂ Rn (n ≥ 1) under Dirichlet boundary conditions; if λ is an eigenvalue of the Laplacian,
that is −∆u = λu admits a nontrivial solution w ∈ H1

0 (Ω), the existence of solutions of the nonhomogeneous
problem depends on f ∈ H−1(Ω): there are no solutions if 〈f, w〉 6= 0 and there are infinitely many solutions
otherwise. Theorem 6 (and Theorem 5) tells us that (30) admits a unique solution also at resonance, when
P = Λ, for any f ∈ H; this confirms the nonlinear nature of (30).

5 The nonlocal quasilinear model (NLM)

We study here the behavior of the plate subject to prestressing and we follow the model suggested by Berger
[3]: see also the previous model for a beam suggested by Woinowsky-Krieger [27]. The elastic energy to be
considered reads

Ef (u) =

∫
Ω

(
|∆u|2

2
+ (1−σ)(u2

xy−uxxuyy)−
P

2
|∇u|2

)
dxdy +

S

4

(∫
Ω
|∇u|2dxdy

)2

− 〈f, u〉

=
1

2
‖u‖2H2

∗(Ω) −
P

2
‖u‖2H1

∗(Ω) +
S

4
‖u‖4H1

∗(Ω) − 〈f, u〉 (34)

where ‖ · ‖H2
∗(Ω) is the norm defined in Proposition 3 and ‖ · ‖H1

∗(Ω) is the Dirichlet norm defined in (19). Here
S > 0 depends on the elasticity of the material composing the roadway, S

∫
Ω |∇u|

2 measures the geometric
nonlinearity of the plate due to its stretching, and P > 0 is the prestressing constant. Again, we have P > 0 if
the plate is compressed and P < 0 if the plate is stretched.

By arguing as in the proof of Theorem 1, one sees that the critical points of the energy Ef (u) solve the
following (nonlinear, nonlocal) Euler-Lagrange equation:

∆2u+
(
P − S

∫
Ω
|∇u|2dxdy

)
∆u = f in Ω . (35)

Note that the second order expansion of N(s) in (28) leads to an energy similar to (34) with

P

8

∫
Ω
|∇u|4dxdy instead of

S

4

(∫
Ω
|∇u|2dxdy

)2

; (36)

these terms are quite similar and hence the Berger energy (34) may be considered as a second order (nonlinear)
approximation of (27). Using (36) yields the quasilinear equation

∆2u+ P∆u− P

2
∆4u = f in Ω

where ∆4 is the p-Laplacian operator with p = 4; this equation should be compared with (35).
For simplicity we put

δ(u) = −P + S

∫
Ω
|∇u|2 dxdy (37)

so that the corresponding boundary value problem for (35) reads
∆2u− δ(u) ∆u = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−`, `)

uyy(x,±`)+σuxx(x,±`)=uyyy(x,±`)+(2−σ)uxxy(x,±`)− δ(u)uy(x,±`)=0 ∀x ∈ (0, π) .

(38)
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For a given f ∈ H we say that u ∈ H2
∗ (Ω) is a weak solution of (38) if

(u, v)H2
∗(Ω) + δ(u)(u, v)H1

∗(Ω) = 〈f, v〉 ∀v ∈ H2
∗ (Ω) . (39)

It appears quite instructive to deal first with the homogeneous case f = 0: the energy functional E0 has a rich
structure. In this case, we say that u ∈ H2

∗ (Ω) is a weak solution of (38) if

(u, v)H2
∗(Ω) + δ(u)(u, v)H1

∗(Ω) = 0 ∀v ∈ H2
∗ (Ω) . (40)

We then prove a precise multiplicity result.

Theorem 7. Let S > 0, let Λk (k ≥ 1) be as in (26) and put Λ0 = 0.
If P ∈ (Λk,Λk+1] for some k ≥ 0 and at least one of the eigenvalues Λ2, ...,Λk has multiplicity larger than

1, then (40) admits infinitely many solutions.
If P ∈ (Λk,Λk+1] for some k ≥ 0 and all the eigenvalues Λ2, ...,Λk have multiplicity 1, then (40) admits

exactly 2k + 1 solutions which are explicitly given by

u0 = 0 , ±uj = ±
√
P − Λj
S

wj (j = 1, ..., k) (41)

where wj is an H1
∗ (Ω)-normalized eigenfunction of (23) corresponding to the eigenvalue Λj (j = 1, ..., k).

Moreover, for each solution the energy is given by

E0(u0) = 0 , E0(±uj) = −(P − Λj)
2

4S
(j = 1, ..., k) (42)

and the Morse index M is given by

M(u0) = k , M(±uj) = j − 1 (j = 1, ..., k) . (43)

The statement of Theorem 7 can be made more precise in the case of infinitely many solutions. Any simple
eigenvalue Λj generates solutions satisfying (42) and (43). Multiple eigenvalues Λj generate infinitely many
solutions which are linear combinations of the (multiple) related eigenfunctions, they still satisfy (42) but they
are degenerate critical points for E0.

The picture in Figure 2 displays again the qualitative behavior of the energy functional E0 when P ∈ (Λ1,Λ2].
However, in this case more details are available. If Λ2 is simple, the picture of Figure 3 represents the 2D space

Figure 3: Qualitative description of the energy E0 with five equilibria.

spanned by the first two eigenfunctions {w1, w2} and the five solutions {u0,±u1,±u2}; the arrows represent
the directions where the energy E0 decreases. Theorem 7 (in particular, (43)) states that only ±u1 are stable
(global minima) while all the other critical points of E0 are saddle points. If P ∈ [Λ2,Λ3], in the orthogonal
complementary space of codimension 2, the trivial solution u0 is a global minimum for E0. By standard
minimax techniques, one could try to link the two minima±u1 in order to find further unstable (mountain pass)
solutions. But Theorem 7 states that the only solutions are (41) so that the minimax point is one of the uj’s
(j = 0, ..., k) and no additional unstable solutions exist.

For the nonhomogeneous problem the result is similar to Theorem 6:
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Theorem 8. Let S > 0 and let Λ be as in (21) (see Theorem 4).
(i) If P ≤ Λ, then for all f ∈ H the problem (38) admits a unique weak solution u ∈ H2

∗ (Ω).
(ii) If P > Λ, then for all f ∈ H the problem (38) admits at least a weak solution u ∈ H2

∗ (Ω); moreover,
there exists γ = γ(P, k) > 0 such that if ‖f‖H < γ then (38) admits at least 3 weak solutions.

The same comments and remarks following Theorem 6 apply also to Theorem 8. But a further remark about
a priori estimates may be given here. Of course, this makes sense in the case of a unique solution P ≤ Λ. By
taking v = u in (39), we obtain

‖u‖2H2
∗(Ω) − P‖u‖

2
H1

∗(Ω) + S‖u‖4H1
∗(Ω) = 〈f, u〉 ≤ ‖f‖H‖u‖H2

∗(Ω) . (44)

If P < Λ, then by (22) this yields the following a priori estimate for the unique solution of (38):

‖u‖H2
∗(Ω) ≤

Λ

Λ− P
‖f‖H . (45)

As P → Λ this estimate is of little interest and one may wonder whether a different a priori estimate may be
obtained for P = Λ. But this is not the case, as shown by the following counterexample. Let w denote an
H1
∗ (Ω)-normalized eigenfunction corresponding to Λ and let f = α∆w for some α > 0. By Theorem 8, the

problem (38) admits a unique solution; one may check that

u = − 3

√
α

S
w

is the solution. Then

‖u‖H2
∗(Ω) =

√
Λ ‖u‖H1

∗(Ω) =

√
Λ

3
√
S

3
√
α , ‖f‖H = α‖∆w‖H ,

so that no a priori estimate such as ‖u‖H2
∗(Ω) ≤ C‖f‖H can hold; to be convinced, it suffices to let α→ 0. On

the other hand, for any P > 0, from (44) we infer that

either ‖u‖H1
∗(Ω) ≤

√
P

S
or ‖u‖H2

∗(Ω) ≤ ‖f‖H

so that, by (21),

‖u‖H1
∗(Ω) ≤ max

{√
P

S
,
‖f‖H√

Λ

}
and a kind of priori estimate in the weaker norm H1

∗ (Ω) is always available.
Note that by taking v = u in (31), if P < Λ, we also obtain the a priori estimate (45) for the unique solution

of (30). But contrary to (38), nothing can be said when P → Λ or when P = Λ.

6 Proof of Theorem 1

By Proposition 3, the bilinear form (17) is a scalar product over H2
∗ (Ω). Therefore, since δ > 0, the bilinear

form defined in the right hand side of (11) is coercive (and symmetric). By the Lax-Milgram Theorem, we infer
that for any f ∈ H there exists a unique u ∈ H2

∗ (Ω) satisfying (11). This proves the first part of Theorem 1.
We now show that smooth weak solutions and classical solutions coincide and we justify the boundary

conditions. If u ∈ H2
∗ (Ω), then u vanishes identically on the two short edges of Ω and hence

u(0, y) = u(π, y) = uy(0, y) = uy(π, y) = uyy(0, y) = uyy(π, y) = 0 for y ∈ (−`, `) . (46)
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Recalling the Gauss-Green formula∫
Ω

∆u∆v dx dy =

∫
Ω

∆2uv dx dy +

∫
∂Ω

[
∆u vν − v (∆u)ν

]
ds

and with some integration by parts, we obtain that if u ∈ C4(Ω) ∩H2
∗ (Ω) satisfies (11), then∫

Ω
(∆2u−δ∆u−f)v dxdy +

∫ `

−`
[uxx(π, y)vx(π, y)−uxx(0, y)vx(0, y)] dy (47)

+

∫ π

0

{
[uyyy(x,−`)+(2−σ)uxxy(x,−`)−δuy(x,−`)] v(x,−`)−[uyy(x,−`)+σuxx(x,−`)] vy(x,−`)

}
dx

+

∫ π

0

{
[uyy(x, `)+σuxx(x, `)] vy(x, `)−[uyyy(x, `)+(2−σ)uxxy(x, `)−δuy(x, `)] v(x, `)

}
dx = 0

for any v ∈ H2
∗ (Ω). If we choose v ∈ C2

c (Ω) in (47), then all the boundary terms vanish and we deduce that
∆2u = f in Ω. Hence we may drop the double integral in (47). By the arbitrariness of v, the coefficients of
the terms vx(π, y), vx(0, y), v(x,−`), vy(x,−`), vy(x, `), and v(x, `) must vanish identically and we obtain
(9)-(13). We have so proved that if u ∈ C4(Ω) ∩H2

∗ (Ω) satisfies (11) then it is a classical solution of (12).

7 Proof of Theorem 2

We make use of separation of variables methods. See [8, 16, 18, 21, 28] for the same technique applied to
simpler problems for rectangular plates. We introduce the auxiliary function

φ(x) :=
∞∑
m=1

βm
m2(m2 + δ)

sin(mx) (48)

and we observe that it solves the following boundary value problem for an ordinary differential equation

φ′′′′(x)− δφ′′(x) = f(x) in (0, π) , φ(0) = φ′′(0) = φ(π) = φ′′(π) = 0 .

Moreover, φ′′2(0, π) is given by

φ′′(x) = −
∞∑
m=1

βm
m2 + δ

sin(mx) (49)

and the series (49) converges in H2(0, π) and, hence, uniformly.
We now define v(x, y) := u(x, y)− φ(x) so that if u solves (12), then v satisfies

∆2v − δ∆v = 0 in Ω

v = vxx = 0 on {0, π} × (−`, `)

vyy + σvxx = −σφ′′ on (0, π)× {−`, `}

vyyy + (2− σ)vxxy − δvy = 0 on (0, π)× {−`, `} .

(50)

We seek solutions of (50) by separating variables, namely we seek functions Vm = Vm(y) such that

v(x, y) =

∞∑
m=1

Vm(y) sin(mx)

solves (50). Then

∆2v(x, y)− δ∆v(x, y) =

∞∑
m=1

[V ′′′′m (y)− (2m2 + δ)V ′′m(y) + (m4 + δm2)Vm(y)] sin(mx)

12



and the equation in (50) yields

V ′′′′m (y)− (2m2 + δ)V ′′m(y) + (m4 + δm2)Vm(y) = 0 for y ∈ (−`, `) . (51)

The characteristic equation of (51) is λ4−(2m2 +δ)λ2 +m4 +δm2 = 0 and therefore λ ∈ {±m,±
√
m2 + δ}.

Whence, the solutions of (51) are linear combinations of

{cosh(my), sinh(my), cosh(
√
m2 + δ y), sinh(

√
m2 + δ y)}

but, due to the symmetry of Ω and to the uniqueness of the solution v of (50), we know that Vm is even with
respect to y. Hence, we seek functions Vm of the form

Vm(y) = Am cosh(my) +Bm cosh(
√
m2 + δ y) (52)

where Am = Am(`) and Bm = Bm(`) have to be determined by imposing the boundary conditions in (50).
This yields [

m2 (1− σ)
]
Am coshm`+

[
m2 (1− σ) + δ

]
Bm cosh m̃` = σβm/m̃

2

m
[
m2 (1− σ) + δ

]
Am sinhm`+ m̃m2 (1− σ)Bm sinh m̃` = 0

where m̃ =
√
m2 + δ. To simplify further the notation, set am = m2 (1− σ) and bm = σβm/m̃

2 in this pair
of equations, so that

am coshm` Am + (am + δ) cosh m̃` Bm = bm

m (am + δ) sinhm` Am + m̃am sinh m̃` Bm = 0.

The determinant of this system is

Cm = m̃a2
m coshm` sinh m̃`−m (am + δ)2 sinhm` cosh m̃`.

It can be shown (for instance, by using (54) as in the proof of Lemma 9 below) that Cm < 0 for all positive
integers m. Therefore

Am =
m̃am sinh m̃`

Cm
bm , Bm =

−m (am + δ) sinhm`

Cm
bm

and (16) follows.

8 Proof of Theorem 4

We first note that η(x, y) := sinx satisfies

η ∈ H2
∗ (Ω) ,

‖η‖2H2
∗(Ω)

‖η‖2
H1

∗(Ω)

= 1 .

Moreover, η does not satisfy the boundary conditions in (23) so that it is not an eigenfunction. Combined with
(21), these facts show that

Λ < 1 . (53)

Next, we note that a simple differentiation yields

d

dt

(
tanh(t)− t(1− tanh2(t))

)
= 2t tanh(t)(1− tanh2(t)) > 0
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and therefore
t(1− tanh2(t)) < tanh(t) ∀t > 0 . (54)

We seek solutions of (23) by separating variables, that is, in the form

u(x, y) =

∞∑
m=1

Vm(y) sin(mx) .

Then

∆2u+ Λ∆u =
∞∑
m=1

[V ′′′′m (y) + (Λ− 2m2)V ′′m(y) +m2(m2 − Λ)Vm(y)] sin(mx)

and we are led to find nontrivial solutions Vm ∈ C∞(−`, `) of the equation

V ′′′′m (y) + (Λ− 2m2)V ′′m(y) +m2(m2 − Λ)Vm(y) = 0 y ∈ (−`, `) . (55)

We derive the boundary conditions for Vm from (23) and we obtain

V ′′m(±`)− σm2Vm(±`) = 0 , V ′′′m (±`)−
(

(2− σ)m2 − Λ
)
V ′m(±`) = 0 . (56)

Since they are evaluated at ±` these boundary conditions will enable us to separate between the even and odd
terms.

The characteristic equation associated with (55) reads

α4 + (Λ− 2m2)α2 +m2(m2 − Λ) = 0 =⇒ (α2 −m2)(α2 + Λ−m2) = 0 . (57)

The estimate (53) tells us that all the solutions to (57) are real numbers and are given byα ∈ {±m,±
√
m2 − Λ}.

Hence, the general solution of (55) reads

Vm(y) = a cosh(my) + b sinh(my) + c cosh(y
√
m2 − Λ) + d sinh(y

√
m2 − Λ) (a, b, c, d ∈ R) .

By (53) we also know that
∃λ ∈ (0, 1) , Λ = (1− λ2)m2

and the general solution of (55) becomes

Vm(y) = a cosh(my) + b sinh(my) + c cosh(mλy) + d sinh(mλy) (a, b, c, d ∈ R) , (58)

so that

V ′′m(y)− σm2Vm(y) = m2
[
(1− σ)a cosh(my) + (λ2 − σ)c cosh(mλy)

+(1− σ)b sinh(my) + (λ2 − σ)d sinh(mλy)
]
,

V ′′′m (y)−
(

(2− σ)m2 − Λ
)
V ′m(y) = m3

[
(σ − λ2)a sinh(my)− λ(1− σ)c sinh(mλy)

+(σ − λ2)b cosh(my)− λ(1− σ)d cosh(mλy)
]
.

Hence, by imposing the boundary conditions (56) and by separating the odd and even terms, we get (1− σ) cosh(m`) a+ (λ2 − σ) cosh(m`λ) c = 0

(λ2 − σ) sinh(m`) a+ λ(1− σ) sinh(m`λ) c = 0 ,
(59)

 (1− σ) sinh(m`) b+ (λ2 − σ) sinh(m`λ) d = 0

(λ2 − σ) cosh(m`) b+ λ(1− σ) cosh(m`λ) d = 0 .
(60)

We are seeking nontrivial functions Vm of the form (58) and hence nontrivial solutions a, b, c, d of the above
systems. We first prove
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Lemma 9. For any m ∈ N there exists a unique λm ∈ (0, 1) such that (59) admits a nontrivial solution (a, c).
Moreover, λm ∈ (0,

√
σ) and (1− λ2

m)m2 > 1− λ2
1 for all m ≥ 2.

Proof. The determinant of (59) vanishes if and only if

f(λ) = f(1) , (61)

where
f(s) :=

s

(s2 − σ)2
tanh(m`s) ∀s ∈ [0,

√
σ) ∪ (

√
σ, 1] . (62)

We claim that there exists a unique λ ∈ (0, 1) such that (61) holds. To see this, we note that

f ′(s) =
3s2 + σ

(σ − s2)3
tanh(m`s) +

m`s

(σ − s2)2

[
1− tanh2(m`s)

]
∀s ∈ (0,

√
σ) ∪ (

√
σ, 1) .

Therefore, f ′(s) > 0 for all s ∈ (0,
√
σ) since f ′ is the sum of two positive terms. On the other hand, by (54)

we have

f ′(s) < − 3s2 + σ

(s2 − σ)3
tanh(m`s) +

tanh(m`s)

(s2 − σ)2
= −2

s2 + σ

(s2 − σ)3
tanh(m`s) < 0 ∀s ∈ (

√
σ, 1) .

Hence, f is strictly increasing in (0,
√
σ) and strictly decreasing in (

√
σ, 1); its graph is qualitatively as in

Figure 4: Qualitative plot of the graph of f , the function defined in (62).

Figure 4. This proves that for any m ≥ 1 there exists a unique λm ∈ (0, 1) such that (61) holds. Moreover,
λm ∈ (0,

√
σ). This completes the first part of the proof.

Next we remark that, by (5) and what we just proved, for any m ≥ 2 we have (1− λ2
m)m2 > 4(1− σ) > 2.

This shows that (1− λ2
m)m2 > 1− λ2

1 and completes the proof. 2

Now we prove

Lemma 10. For any m ∈ N there exists at most one λm ∈ (0, 1) such that (60) admits a nontrivial solution
(b, d). Moreover, if such λm exists and if λ1 is as in Lemma 9 then (1− (λm)2)m2 > 1− λ2

1 for all m ≥ 1.

Proof. The determinant of (60) vanishes if and only if

g(λ) = g(1) (63)

where

g(s) =
(s2 − σ)2

s
tanh(m`s) ∀s ∈ (0, 1] . (64)

By differentiating we find

g′(s) =
(s2 − σ)(3s2 + σ)

s2
tanh(m`s) +

(s2 − σ)2

s
m`
[
1− tanh2(m`s)

]
∀s ∈ (0, 1] .
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Figure 5: Qualitative plot of the graph of g, the function defined in (64).

If s >
√
σ then g′(s) > 0 since it is the sum of two positive terms. If s <

√
σ then by (54) we get

g′(s) < 4(s2 − σ) tanh(m`s) < 0 ∀s ∈ (0,
√
σ) .

Therefore, the graph of g is qualitatively as in Figure 5. If lims→0 g(s) = m`σ2 ≤ (1− σ)2 tanh(m`) = g(1)
then no λ ∈ (0, 1) satisfying (63) exist (see the left picture in Figure 5). If the opposite inequality holds (a
case which certainly occurs for large m) then there exists a unique λm ∈ (0, 1) satisfying (63) and, moreover,
λm ∈ (0,

√
σ) (see the right picture in Figure 5). In particular, as in the proof of Lemma 10, this tells us that

(1− (λm)2)m2 > 1− λ2
1 for all m ≥ 2 for which λm exists. So, it remains to prove that 1− (λ1)2 > 1− λ2

1

if λ1 exists. Recalling that λ1 satisfies (63) for m = 1, we have

((λ1)2 − σ)2

λ1
= (1− σ)2 tanh(`)

tanh(`λ1)

by (61) =
tanh2(`)

tanh(`λ1) tanh(`λ1)

(λ2
1 − σ)2

λ1

by monotonicity of tanh >
(λ2

1 − σ)2

λ1
.

Since s 7→ (s2−σ)2

s is decreasing in (0,
√
σ) this shows that λ1 < λ1 and then that 1− (λ1)2 > 1− λ2

1. 2

By Lemmas 9 and 10 we know that the least eigenvalue Λ for (23) is given by Λ = 1− λ2 where λ = λ1 is
the unique solution of (61) when m = 1, that is,

λ

(λ2 − σ)2
tanh(`λ) =

1

(1− σ)2
tanh(`) .

In this case, the determinant of (59) vanishes and a possible choice of nontrivial a, c leads to a nontrivial
function V1 of the form

V1(y) = [Λ− (1− σ)] cosh(`
√

1− Λ) cosh(y) + (1− σ) cosh(`) cosh(y
√

1− Λ) .

By multiplying this function by sinx we obtain w as in (25).
Finally, note that with the scalar products defined in (17) and (20) the eigenvalue problem (23) reads

(u, v)H1
∗(Ω) =

1

Λ
(u, v)H2

∗(Ω) ∀v ∈ H2
∗ (Ω) .

The left hand side of this equation implicitly defines a linear operator L : H2
∗ (Ω)→ H2

∗ (Ω) such that

(Lu, v)H2
∗(Ω) = (u, v)H1

∗(Ω) ∀v ∈ H2
∗ (Ω) .
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The operator L is self-adjoint since

(Lu, v)H2
∗(Ω) = (u, v)H1

∗(Ω) = (v, u)H1
∗(Ω) = (Lv, u)H2

∗(Ω) = (u, Lv)H2
∗(Ω) ∀u, v ∈ H2

∗ (Ω) .

Moreover, by the compact embedding H2
∗ (Ω) ⊂ H1

∗ (Ω) and the definition of L, the following implications
hold:

un ⇀ u in H2
∗ (Ω) =⇒ un → u in H1

∗ (Ω) =⇒ sup
‖v‖

H2∗(Ω)
=1

(un − u, v)H1
∗(Ω) → 0

=⇒ sup
‖v‖

H2∗(Ω)
=1

(L(un − u), v)H2
∗(Ω) → 0 =⇒ Lun → Lu in H2

∗ (Ω)

which shows that L is also compact. Then, from the theory of linear compact self-adjoint operators, we know
that L admits a sequence of eigenvalues and the corresponding eigenfunctions form an Hilbertian basis of
H2
∗ (Ω). This proves the last part of Theorem 4.

9 Proof of Theorem 5

The proof of Theorem 5 is based on the following result:

Theorem 11. Let H be a Hilbert space and let J ∈ C1(H,R). Suppose that J satisfies the following assump-
tions:

(i) J satisfies the Palais-Smale condition (PS): if un is a sequence such that J (un) is bounded and J ′ (un)→
0, then it has a converging subsequence.

(ii) J is bounded below.

(iii) J is twice differentiable for u = 0, and J ′′(0) has Morse index k.

(iv) J is even.

Then J has at least 2k pairs of nontrivial critical points ±uj , j = 1, ..., k.

Proof. This theorem is a variant of a classical result in critical point theory. For example, it can be deduced
from Theorem 5.2.23, p.369 in [5]. Let us check that all the assumptions of this theorem are satisfied. Using
the notation of [5], we take a = inf J and the condition a < J(0) is satisfied. Let us check assumption (i).
Take E ⊂ H to be the space spanned by the eigenfunctions corresponding to the negative eigenvalues of the
self-adjoint operator defined by the bilinear form J ′′(0) [u, v]. Then there exist b < 0 = J(0) and ρ > 0 such
that

sup
u∈E∩∂Bρ

J(u) ≤ b (Bρ := {u ∈ H; ‖u‖ < ρ}) .

Assumption (ii) is verified taking F = {0}. Assumption (iii) is trivially verified. The conclusion of Theorem
5.2.23 in [5] is that there are at least dimE − dimF couples of nontrivial critical points of J . Since dimE =
{Morse index of J ′′(0)} and dimF = 0, the conclusion of the theorem follows. 2

In order to apply Theorem 11 to the functional E0(u), we need the following two lemmas:

Lemma 12. The functional Ef (u) satisfies (PS) on H2
∗ (Ω).
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Proof. Let un be a sequence such that Ef (un) is bounded and Ef (un)→ 0. Then we have that

M ≥ Ef (un) =
1

2
‖un‖2H2

∗(Ω) − P
∫

Ω

(√
1 + |∇un|2 − 1

)
dxdy − 〈f, u〉

≥ 1

2
‖un‖2H2

∗(Ω) − P
∫

Ω
(1 + |∇un|) dxdy − ‖f‖H‖un‖H2

∗(Ω)

≥ 1

2
‖un‖2H2

∗(Ω) − 2π`P −
√

2π`P

√∫
Ω
|∇un|2dxdy − ‖f‖H‖un‖H2

∗(Ω)

≥ 1

2
‖un‖2H2

∗(Ω) − 2π`P −
√

2π`PΛ‖un‖H2
∗(Ω) − ‖f‖H‖un‖H2

∗(Ω) (65)

Hence ‖un‖H2
∗(Ω) is bounded and un converges weakly to some ū ∈ H2

∗ (Ω) (up to a subsequence). We need
to prove that this convergence is strong. The condition Ef (un)→ 0 can be rewritten as follows:

Lun + P∇ ·

(
∇un√

1 + |∇un|2

)
− f = χn

where L : H2
∗ (Ω)→ H is the linear operator defined by

〈Lu, v〉 = (u, v)H2
∗(Ω)

and χn is a sequence inH converging to 0. Since L is positive definite, it is invertible. The operator

u 7→ ∇ ·

(
∇u√

1 + |∇u|2

)

is continuous from H2
∗ (Ω) to L2(Ω) and hence it is compact from H2

∗ (Ω) toH. Then, the sequence ∇un√
1+|∇un|2

converges strongly inH (up to a subsequence). Then

un = L−1

[
f − P∇ ·

(
∇un√

1 + |∇un|2

)
+ χn

]

converges strongly in H2
∗ (Ω). 2

Lemma 13. The functional Ef (u) is bounded below and coercive.

Proof. By (65) we have that

Ef (u) ≥ 1

2
‖un‖2H2

∗(Ω) − a‖un‖H2
∗(Ω) − 2π`P ≥ −1

2
a2 − 2π`P

where a =
√

2π`PΛ + ‖f‖H. Thus Ef (u) is bounded below and coercive. 2

We are now ready to prove Theorem 5. We need to show that the functional Ef (u) satisfies all the assumptions
of the functional J in Theorem 11. It is straightforward to check that E0 ∈ C1(H2

∗ (Ω),R). By Lemmas 12 and
13 we have that J satisfies assumptions (i) and (ii). Assumption (iii) follows from (33) and the definition (26)
of Λk. Finally assumption (iv) follows from the fact that we have f = 0.
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10 Proof of Theorems 6 and 8

If P ≤ Λ, then the quadratic form
‖u‖2H2

∗(Ω) − P‖u‖
2
H1

∗(Ω)

is nonnegative definite; moreover, by (29), the term∫
Ω
N(|∇u|)dxdy

is strictly convex and continuous. Hence the energy E0(u) defined by (27) is a coercive strictly convex func-
tional so that it has a unique minimum. This proves the first point of Theorem 6.

If P > Λ, by Lemma 13, the functional Ef preserves the coerciveness and, since it satisfies (PS) by Lemma
12, it has a minimizer. Hence (30) admits at least a weak solution u ∈ H2

∗ (Ω). This proves the second point of
Theorem 6.

For the multiplicity result (when P > Λ) we use a perturbation argument. By Theorem 5 we know that E0(u)
has two absolute minimum points ±ū 6= 0. Then any small linear perturbation of E0 has a local minimum
in a neighborhood of both ±ū. Whence, if ‖f‖H is sufficiently small, the functional Ef defined by Ef (u) =
E0(u)− 〈f, u〉 admits two local minima in a neighborhood of ±ū. These local minima, which we name v1 and
v2, are the first two solutions of (30). A minimax procedure then yields an additional mountain-pass solution.
More precisely, consider the class of all the continuous paths connecting v1 and v2:

Γ :=
{
p ∈ C0([0, 1], H2

∗ (Ω)); p(0) = v1, p(1) = v2

}
.

Since the functional Ef satisfies the Palais-Smale condition, the mountain-pass principle by Ambrosetti-Rabinowitz
[2] guarantees that the level

min
p∈Γ

max
t∈[0,1]

Ef
(
p(t)

)
> max

{
Ef (v1), Ef (v2)

}
is a critical level for Ef ; this yields a third solution to (30) and concludes the proof of Theorem 6.

The proof of Theorem 8 is similar. The quadratic part of the energy functional is the same. The remainder
part is convex and all the above arguments can be slightly modified accordingly.

11 Proof of Theorem 7

If P ≤ Λ, then by taking v = u in (40) and by using (22), we obtain(
1− P

Λ

)
‖u‖2H2

∗(Ω) + S‖u‖4H1
∗(Ω) ≤ ‖u‖

2
H2

∗(Ω) − P‖u‖
2
H1

∗(Ω) + S‖u‖4H1
∗(Ω) = 0 .

This shows that u0 = 0 is the unique solution of (40). It is the absolute minimum of the coercive functional E0.
The proof of Theorem 7 in the case P ∈ (Λ0,Λ1] is therefore complete.

Assume now that P ∈ (Λk,Λk+1] for some k ≥ 1. Obviously, u0 = 0 solves (40) for any S and P and the
question is then whether u0 is the only solution. In fact, u may be a nontrivial solution of (40) if and only if
−δ(u) equals an eigenvalue of (23) (see (26)):

Λj = P − S
∫

Ω
|∇u|2 dxdy

for some j ≥ 1. Since Λk < P ≤ Λk+1 this is possible only for j = 1, ..., k in which case

‖u‖2H1
∗(Ω) =

P − Λj
S

. (66)
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This proves that (41) are the only solutions of (40). If some Λj has multiplicity larger than 1, this proves the
existence of infinitely many solutions being eigenfunctions corresponding to Λj and satisfying (66).

Let us compute the energies of the solutions. By (66), and recalling that uj solves (23) with Λ = Λj , we get

‖uj‖2H1
∗(Ω) =

P − Λj
S

, ‖uj‖2H2
∗(Ω) =

Λj(P − Λj)

S
.

A simple computation then yields (42).
Finally, let us prove (43). We first remark that, in view of (23), any eigenfunction wj corresponding to the

eigenvalue Λj satisfies
Λj (wj , v)H1

∗(Ω) = (wj , v)H2
∗(Ω) ∀v ∈ H2

∗ (Ω) ; (67)

in particular, we have

‖wj‖H1
∗(Ω) = 1 ∀j , v =

∞∑
i=1

αiwi =⇒ ‖v‖2H2
∗(Ω) =

∞∑
i=1

Λiα
2
i , ‖v‖2H1

∗(Ω) =
∞∑
i=1

α2
i . (68)

Let uj (j = 1, ..., k) be a solution of (40), see (41), and let v ∈ H2
∗ (Ω). For all t ∈ R we compute

E0(uj + tv)− E0(uj); since uj solves (40) we obtain

E0(uj+tv)−E0(uj) = t2

[
‖v‖2H2

∗(Ω)

2
+

(
S

2
‖uj‖2H1

∗(Ω) −
P

2

)
‖v‖2H1

∗(Ω)+S(uj , v)2
H1

∗(Ω)

]
+o(t2) as t→0

by (41)-(67) = t2

[
‖v‖2H2

∗(Ω)

2
−Λj

2
‖v‖2H1

∗(Ω)+S(uj , v)2
H1

∗(Ω)

]
+o(t2) as t→0. (69)

In turn, if v is as in (68) and we apply the implications there, then (69) implies

E0(uj + tv)− E0(uj) = t2

[
1

2

∞∑
i=1

Λiα
2
i−

Λj
2

∞∑
i=1

α2
i +(P − Λj)α

2
j

]
+o(t2) as t→0

= t2

1

2

∞∑
i=j+1

(Λi−Λj)α
2
i +(P−Λj)α

2
j−

1

2

j∑
i=1

(Λj−Λi)α
2
i

+o(t2) as t→0.

This shows that the second derivative of E0(u) at u = uj is a linear operator which is negative definite on a
subspace of finite dimension j − 1 and positive definite on its orthogonal subspace (which has codimension
j − 1). This proves (43) for j = 1, ..., k.

For u0, the same argument yields

E0(u0 + tv)− E0(u0) = E0(tv) =

(
1

2
‖v‖2H2

∗(Ω) −
P

2
‖v‖2H1

∗(Ω)

)
t2 +

S

4
‖v‖4H1

∗(Ω) t
4 .

Therefore, t 7→ E0(tv) has a local maximum at t = 0 if and only if ‖v‖2H2
∗(Ω) < P‖v‖2H1

∗(Ω), a case which
occurs for v ∈ span{w1, ..., wk}. This proves (43) also for u0.
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