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1 Introduction 

We consider one dimensional lattices with infinitely many particles having nearest 
neighbor interaction: the interaction we consider is repulsive-attractive, that is, 
with a force being repulsive for small displacements and attractive for large 
displacements; periodic motions for purely attractive interactions can also be 
found, see [2, 3]. The state of the system at time t is represented by a sequence 
q(t) = {qi(t)} (i E Z), where qi(t) is the state of the i-th particle: let ~/ii denote 
the potential of the interaction between the i-th and the (i + 1)-th particle (whose 
displacement is qi - -  q i + l ) ,  then the equation governing the state of q i ( t )  reads 

( l )  qi = ~ - - | ( q i - - 1  --  q i )  - -  49~(q i  - -  qi+l)  ; 

if we define the potential of the system • : ~ --~ R by ~(q) : =  ~ ' ~ i E z q ~ i ( q i  - 

qi+l ), then equations (1) can be written in a vectorial form 

(2) ~ = - ~ ' ( q )  . 

Since the problem is clearly invariant with respect to translations of the whole 
system, the natural framework to study this problem is the Hilbert space 

H := q :S 1 - - - . I ~ ;  qo(t )dt=O,  

i~Ezfoor[(iti(t))Z+(qi(t)--qi+l(t))2] d t < ° ° )  

endowed by the scalar product 

(P' q) := Z [Pi(t)ili(t) + (pi(t) - Pi+l(t))(qi(t) - qi+l(t))] dt ; 
i E Z  



628 G. Arioli et al. 

we consider the functional J : H ~ ]R defined by 

1/0  /0 J (q )  := ~ ILt(t)[2dt - ~(q(t))dt  

whose critical points are periodic solutions of (2), see [8]. Assume that Vi E Z 
i) ~)i( t )  ----" --OLi t2 + Vi( t ) ,  o~ i > 0 

ii) 3~5 > 0 such that Vi'(t)t >_ (2 + 6)Vi(t) >_ O, Vt c 

iii) limltt_~+~ Vi(t) = +c~ 
1,1 

iv) E E Cto c . 
We also require a spatial periodicity in order to have the functional J invariant 

for translations of indices (see formula (5) below): 
v) Bm E N such that ~)i+m ~-- ~)i, Vi E Z. 
Note that conditions i), ii), iii) and iv) imply that Vi C Z 
- ~ i  ( 0 )  = 0 

- Vi is superquadratic at the origin and at infinity 
- #i has a strong local maximum in 0 
- ~bi admits at least two local minima 
- denote by 0i, the nonzero stationary points of ~bi; then maxj #i (0ej) < 0. 

Under the above assumptions it is proved in [2] that the functional J satisfies 
the geometric assumptions of the mountain pass Theorem and that, if b is the inf- 
max level, J admits a critical level not higher than b; the motion corresponding 
to such a critical level are non-constant if the period is large enough. 

The main result we prove in this paper is Theorem 2 which can be stated 
approximately as follows: 

System (2) admits infinitely many periodic motions up to its symmetries; fur- 
thermore if 3& > 0 such that the set o f  critical points at level lower than b + & 
is Z times a compact set (that is, the countable disjoint union o f  a compact set 
.27{" with its translations), then there exist infinitely many periodic non-constant 
motions of  multibump type, i.e. having most o f  their (finite) energy concentrated 
in a finite number of  disjoint regions o f  the lattice. 

The variational structure of our problem possesses some analogies with that of 
the problem of homoclinic orbits for non-autonomous Hamiltonian systems with 
periodic potentials. Indeed in both cases, the functional being invariant under the 
action of a non-compact group Z, the Palais-Smale compactness condition does 
not hold at any level; on the other hand, the same action may allow to prove 
the existence of solutions of multibump type by sticking suitable solutions. This 
structure was discovered by $6r6 [10] for the problem of homoclinics studied in 
[5]. Since then, some progress in this field has been obtained in several subsequent 
papers, and different techniques have been developed, see [4, 6, 11]; similar 
arguments are also used in [7] for the search of homoclinic type solutions of 
semilinear elliptic PDE' s. 

In all these papers the multibump solutions are obtained under the assumption 
that the mountain pass sublevel does not contain "too many" critical points: 
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it is required that either such critical points are finite, or they are countable. 
These assumptions do not cover the case where the functional is invariant under 
the action of a continuous compact group as well: since our problem is indeed 
invariant under an S 1-action, we extended the result to the more general case 
of assumption (A) in Theorem 2. To explain more precisely our result some 
preliminaries are in order. 

2 The main result 

For all a, b E > such that b < a we denote 

j a  = j - l ( ( _ c x ~ , a ] )  , Jb = J -~ ( [b ,  +cx3)) , 

and 

J~ = J - l ( [ b , a ] ) ,  

K={q EH\{O}; J'(q)=O} 
K " = K  n J  ~ , K b = K  n J b  , K~ = K a A K b  . 

In [2] it is proved that the functional J is well defined on H,  J ~ C 1 (H, •) 
and that for large period T (say T > i") it admits nontrivial critical points, which 
are periodic solutions of (2). More precisely it is proved that B?/ E j 0  \ {0} and 
that 0 is a strong local minimum for J ;  therefore, if B(q, r) denotes the H - b a l l  
centered in q with radius r, 

(3) ~A > 0 such that K N B(0, A) = 0 

and the functional has a mountain-pass level given by 

(4) 

where 

b := inf max J(q) > 0 
7~F qC'y([0,l]) 

F := {'7 C C([0, I ] , H ) ;  "7(0)=0, 7(1) = ?/} , 

hence a Palais-Smale sequence exists at level b by a standard procedure. From 
now on we will always assume the condition T > ~" to be satisfied in order to 
guarantee the nontriviality of  the critical points. 

The functional J is invariant under both a representation of  Z which we 
denote • following Srr6 [10], and a representation of  S 1 which we denote by Y2. 
These representations are defined by: 

(5,): Z × H  ~ H ,  (k ,q)  H k , q  

and 
Y2:S I × H - - + H  , 

l for where (k *q(t))i = qi+km(t)--~ qk~n 

[~2(7-, q(t))]i = qi(t + 7") . 

Let 1 E N, k = ( k l , . . . , k  l) E Z t and E/= ( q i , . . . , q t )  E H t, we define 
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I 

j=l  

for all sequences of  l-tuples of  integers kn = (k~ , . . . ,  k,t,), by k,~ --~ cc we mean 

that for i ¢ j I k / - ~ I ~ cc as n --~ c~. 
The previous notations are useful to define the multibump solutions: 

Definition 1 A critical point q is a multibump solution of  kind (l, p) E ~ × ]R + if  
~ :  = ( k l , . , . ,  k t) E 2~ t and gl = ( q l , . . . ,  q l ) ,  q j  E K, such that q E B(k  * gl, P). 

Due to the Z and S 1 invariance, the functional J does not satisfy the Palais- 
Smale condition; nonetheless the following representation theorem holds: 

Theorem 1 Assume i), ii), iii), iv) and v); let q('*) E H be a Palais-Smale se- 
quence for  J at level b > O. Then there exist a subsequence still denoted by q(~), 
l points qJ E K (j = 1 , . . . , l ) ,  and l sequences of  integers ~ (n E N, l > 1), 
such that i f  gl = (q l , .  . . , qt) and k~ = (kin, . . . ,  kin), then 

t[q(n) - kn "41[ 
~ = 1 J  (qJ) = b ,  

fen ----~ O0 . 

Remark. The proof of  this result and an upper estimate for l are given in [2]. 
Note that even if I > 1, we cannot state that there exist l different critical 

points, as it could be q i = qj for i ~ j .  

The aim of  this paper is to prove a multiplicity theorem for the existence of  
critical points of J ;  we will prove the following result: 

Theorem 2 Assume i), ii), iii), iv) and v); then K / ( S  1 × Z) contains infinitely 
many points. More precisely i f  b is defined as in (4) and 

(A) 3& > 0 and a compact set 3~4~" C H such that K b+& = UkEZ k * ,~7~j, 

then b is a critical level and Vn E 1~ and Va, p > 0 system (2) admits infinitely 
many multibump solutions o f  kind (n, p) in jnb+_a a/(S 1 × E). 

3 Proof of the main result 

We refer to the next section for the proofs of  the results stated here. 
To prove Theorem 2, from now on we assume that (A) holds. For the sake 

of  simplicity we prove the theorem in the case n = 2: the proof can be extended 

without major changes if n > 2. 
We introduce some other notations: for all q E K b+a we denote by .~TCq the 

compact subset of  K b÷c~ to which q belongs; for all k E Z and reals b > a > 0 

we define 
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'~,~'(k) := {u EH; d ( u , k , . " 7 , , 5 " ~ ) < a }  , ~'~ :=~o'o(O) , ~ga= U ~'~(k) 
kEZ 

and 
. 7 " ( k ,a ,b )  := {u E H ;  d ( u , k ,  ~7{') E (a ,b)}  ; 

note that for all q E K b+a there exists an integer/¢ such that .~£q = k • . ~ .  
Finally, for all l E N, /¢ = ( k l , . . . , k  t) E Z t and reals b > a > 0 we define 

k*.~U := k l * , ~ + . . . + k  t , , ~  a n d . 7 ( k ,  a,  b) := {u E H;  d(u, k*,~zC) E (a, b)}. 

Remark. For all q E H we denote by Y2q = Uo{g2oq} the orbit of  such point 
under the representation f2: an example of  particular interest of  the compact set 
.TrSJq is f2q when q E K; therefore if (A) does not hold, then Kb+~/Z consists 
of infinitely many critical orbits for all c~ > 0. 

The first lemma is a consequence of  Theorem 1: it gives a lower bound for 
I IJ ' l l  in a suitable set, and it will replace in some sense the standard Palais-Smale 
condition at level lower than b + &: 

L e m m a  1 (a) 3ro > 0 such that if q I , q2 E K b+c~ and 3rS"~q 1 f~ , ~ q 2  = O, then 

d ( , ~ ' q l , , ~ ' q  2) := min lip1 _p2[] > 3r0 . 
(pl ,p2)E,)7~q I ×,~'q2 

(b) Vp E (0, r0), #p := inf{llJ'(q)ll; q E U,~Ez'7(k, p, r0)} > 0. 
(c) For all Palais-Smale sequence q(n) at level c < b + 6~ satisfying Ilq ("+~) - 
qCn)ll ~ 0, there exists k E Z such that d(q(n),k * . ~ )  --~ 0 (and hence q(") 
admits a converging subsequence). 

Remark. The statement (c) in the previous lemma is a weaker version of  the 
Palais-Smale condition which is sufficient to prove a deformation lemma (see 
Lemma 2 below). A similar idea was used in [5] with the condition they called 
(PS) :  in the particular case they considered ( P S )  is also weaker than the classi- 
cal Palais-Smale condition since they had isolated critical points, but for a more 
general problem ( P S )  is not a weaker condition. 

By the next results we give a "local" mountain pass characterization of  
the critical level b. Choose 0 < 6 < r0/3 and set # = inf{lIJ'(q)ll; q E 
Uk~z , ~ ( k ,  6, r0)}; # > 0 by Lemma 1 (b) and the following deformation lemma 
holds: 

L e m m a  2 For all positive e < min(&, 6tz/2) there exists r/ : [0, 2e] × H --~ H 
such that: 

(a) ~l(s, u) = u for  all u f[ lb+a  and all u E "~?de Ob-& 

(b) ~J(~(s, u)) < 0 
(c) ¢/(26, J b+~ \ ~ 3 e )  C j b - ~  
(d) r/(2c, J b+e) C Jb-e  u ~3~. 

The previous lemma is used to prove the following: 
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L e m m a  3 Let r E (0, r0). There exist Wr > 0 such that for  all w E (0, •r) there 
exists a path "Yr,~ E F and M (0 < M < oo) integers (ki } satisfying: 

(a) 7,,~([0, 11) f3 Jb-2w C U~l  ~'~'(ki) 
(b) ")/r,w([0, l ] )  C jb+w. 

We apply the previous result with r = r0/4: we choose w < min(wr, r#~/3) )  
(#~ is defined in Lemma 1) and consider the path 7r,~' given by Lemma 3; note 
that w is chosen arbitrarily and this will be useful to prove that the statement of  
Theorem 2 holds Va > 0. We can isolate the "interesting" part of %,~ as stated 
in 

L e m m a  4 There exist to, tl E (0, 1) such that, up to a translation of  indices: 

(a) "Yr,~([to, t l ] )  C ~r" 
(b) 7r,~o(ti) E O~r, i = O, 1 
(c) The set F = (Ja fq ~ )  disconnects ~rr~ and the endpoints 7r,~(to) and 

~/r,w(q) belong to different connected components of  ~ .  

We can rescale t on the path %,~ given by the previous result: for t E [0, 1] 
let ~/(t) = 7r,,~(t0 + t(tl - to)); by Lemma 3 we have 

(6) "~({0, 1}) C j b - 2 ~  and 5([0, 11) C jb+~ ; 

consider the class of paths 

F '  := {7 E C([0, 1], ~ ) ;  7(i) = 5(i) for i = 0, 1} ,  

by Lemma 4(c) we have 

(7) inf max J(7( t ) )  >_ b . 
"yEF ~ tE[0,1] 

Let 7j : [0, T] --* H (j = 1,2) (we omit the subscript k) be the paths defined by 

= [ [k,5(t)]i if i  > 0  
(8) [ '~l( t )] i  [ O i f i  < 0  

and 
= ~ [ ( - k )  • ~,(t)]i if i < 0 

/ 

(9) [')'2(t)]i 

L O i f i _ > O ;  

note that by the continuity of  J we have 

(10) 3~ > 0 such that B(~/(i),~) C J b-3~ (i =0 ,1) ,  

therefore if k is sufficiently large, the endpoints of the truncated paths 7j (J = 1, 2) 
are still "good" endpoints for the mountain pass characterization of b. We can 
therefore state that the following classes of paths: 

F( := (7  E C([0, 11, ~7(k)); 7(i)  = 71(i) for i = 0, 1} 
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and 
/-~ := {7 E C([0, 1], ~ ; ' ( -k ) ) ;  7(i) = 72(i) for i = 0, l} 

have the same mountain pass points of  the class F t, up to translation of  indices 
of  km or -kin. 

Using again the continuity of  J ,  the fact that 7j([0, 1]) (with j = 1,2) is 
compact in H and (6), we have 7/([0, 1]) C jt,+~k, with ~k ~ w as k ~ oc; we 
choose k so large that wk < ¼~, i.e. 

5 
( l l )  maxJ(7j) < b +-~c , j = l ,2  . 

[o,t] 

Define for all k E I~.~: 

[1 = {q E H; d ( q , ( - k ) , , ~  +k *,7{')  < 4r = r0} , 

[7 = {q E H; d ( q , ( - k ) * , ~  +k ,,~Z'Sf) < 2r} , 

Q = [0, 112 , 

"~" Q --~ [1, (tl, t2) ~ "~(tl, t2) = 3q (tl) + '3/2(/2) , 

F2 = {'7 E C(Q,[1);  71o4 = ~loQ}, 

and for all q E H,  

(12) Fi(q) = lilil 2 + Iqi - qi+l ; 

each functional F i m e a s u r e s  in some sense the amount of the norm around the 
particle labeled by i, indeed ~ i  Fi(q) = Ilqll 2 for all q C H .  By the properties 
of  ~i, there exists a constant a such that if It[ is small enough, say Itl < L then 

- - ~ i ( t )  < at:. 
By the same arguments used to prove (11), we can choose k so large that 

(without restrictions we assume k even) 

Z Fi (q)<r2  V q E ( - k ) , , ~ + k * , ~ ;  
ill<k/2+2 

for such k we also have 

(13) Z Fi (q )<17r  2 Vq E[1 , 

lil<_kl2+l 

i.e. the particles with low index only possess a small portion of  the total energy 

of the system. 
By the embedding H 1 C L ~ we can also choose k so large that 

l iqi-qi+lil~c<7 VqE[1,  Vi, [ i l < k / 2 + 2 .  

Denote by k~ an integer such that for all k > kw the above statements are 
fulfilled: this integer will be used in the final part of  the proof. 

We wish to prove the existence of  a critical point in [1 by means of  a suitable 
variational characterization. The following lemma will be used in order to prove 

some estimates on the functional level: 
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L e m m a  ff There exists a constant A > 0 which only depends on r, such that i f  
k is the same integer as in (8) and (9), then for  any map 7 E 1"2, there exists a 
map 7 ~ C 1 "2 such that for  all r C Q: 

(a) 7 ' ( r ) i  = 7(r) i  i f  lil > k /2  
(b) [7 '(r)]o ~ 0 
(c) J (7 ' ( ' r ) )  _< J (7(r))  + A / k .  

As a consequence, the following estimate holds for all "I, E 1"2: 

(14) J (7 ( r ) )  >__ J (7+(r ) )  + J ( ' y - ( r ) )  - A / k  Vr E Q , 

where we set 

(15) [7+(r)]i = / [7(r)]i if i > 0 

L 0 i f i  < 0  

and 

(16) [7-(7")]i = / [7(r)]i i f /  < 0 

I 

L 0 i f i  > 0 .  

Define 

/3= inf max J ( q ) ;  
,yE F 2 q@y(Q) 

to give a mountain-pass structure to level /3 (which will be the desired critical 
level) we prove that the functional is low on "~(OQ): 

L e m m a  6 I f  k is large enough, then max J (~(OQ )) < 2b ~. 

Exploiting ideas of  both [4] and [10] we give an estimate of /3  depending on 
the choice of  w: 

L e m m a  7 I f  k is large enough, then 2b - ~ </3  < 2b + 5 w. 

The next result states that in /~ \ / ~  the functional is "steep"; this will be 
useful to build the deformation of  Lemma 10. 

L e m m a  8 I f k  is large enough, then for  all q C B \ [~, [IJ/(q)ll > / z~ /2 .  

To build a deformation in/~ we also need a local Palais-Smale condition: to 
prove it we make use of  Theorem 1 and of  the fact that the "movement of  a 
bump" implies a change of norm of at least A. 

L e m m a  9 The Palais-Smale condition holds in B, i.e. every sequence {q(n)} C/~  
such that j~(q(n)) __~ 0 is precompact. 

Finally, we can define the desired deformation 
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K2b+5w/2 Lemma 10 Let U C B be a neighborhood o f  2b-~/s (q ~" There exist r 1 E 

C(/~ × [0, 1],B) such that 

'r](J 2b+Sw/2 \ U, 1) C j2b-ta/5 
.2b +5co / 2 

~l(q, t) = q i f  q ,_ J 2 b - w / 5  

~(., t) is equivariant with respect to f2. 

Theorem 2 is now proved if we show that when (A) holds and k is large 
enough, then there exists a critical point in/~ at level/3; choose k larger than k~ 
and so large to satisfy the statements of  Lemmas 6, 7 and 8. If  such critical point 
does not exist, we can use Lemma 10 to deform the path ~. By the properties of  
such deformation, as maxJ( '~) < 2b + ~v, we get 

and 

~/(~(-), 1) E F 2 

max < 2 b - w / 5 ,  
r/(-~'(Q ), 1) 

which contradicts the definition of/3. Theorem 2 follows now for all a because 
of the arbitrariness of  w (we chose it before Lemma 4) and of  Lemma 7. 

4 Proofs of the lemmas 

Proof o f  Lemma 1. (a) Set 

c := lim min lip 1 - n ,p2[[ = 2 min IIP[I -> 2A > 0 . 
n---+oo (pl ,p2)E ~/,'2 pE,~r~', 

Then the inequality d(.~7,'Y, n * ,~TZ/) < c /3  holds only for a finite number of  
integers and (a) is proved by the compactness of  ,J~5"~; it is not restrictive to 
assume r0 < A/2, k given by (3). 

(b) Suppose the contrary: then by the invariance of  the functional there exists 
a sequence {q(n)} C H such that q(n) E .~7"(0, p, r0) and jt(q(n)) __+ O. AS 5 7  is 
bounded, {q(")} is a PS sequence and by Theorem 1 there exist l critical points 
ql . . . .  ,ql and a sequence {~:n} C Z l, k~ --+ oo, such that, up to a subsequence 

that is, for large enough n 

Ilq (") - kn * oi l  ~ O ,  

kn * ~t E . 7 ( 0 ,  p /2 ,  2r0) , 

but this is not possible, indeed as [:, ~ oo we have k~ --~ k i E ZU{+c~}U{--cx)} 
for n --+ oo and k i C ~ for at most one value of i. The assertion follows bearing 
in mind that Iqq i tl >- A > 2r0 and that each bump of  the PS sequence carries at 
least an amount of  norm A. 
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(c) By Theorem 1 there exists a subsequence q ~ )  such that IIq ~ )  - h ~  *ull 
0; if IIq ~'+a~ - q~")l l  ~ 0 and (c) is false, then there exists p E (0, r0) such that 
for all k there exists mg and q(rn~) E J~"(hk, P, r0). This is impossible because for 
all p E (0, r0), l E 1~ and for all sequences {~'~} C Z t such that k, ~ oc for 
n ~ o o w e h a v e  

(17) liminf{inf{llJ '(q)l];  q E g'(~:,,, p, r0)}} > 0 .  

Indeed, it is easy to prove (17) by contradiction: assume that there exists a se- 
quence {q("~} with q(m E . '~(k~, p, r0), j , (q(m) ~ 0 and ~:n --+ o~. By Theorem 
1 (up to a subsequence) there exist l ~ critical points (u~ , . . .  ,u r )  =: fi and a 
sequence h, such that h,~ ---+ oc and ]]q (n) - h~ • ull ~ 0, hence for n large 
enough h, • fi E .'Y"(k,, p/2,  2r0). This is not possible because of part (a) and 
2ro < A. [] 

Proof of  Lemma 2. Let h : N ~ [0, 1] be any Lipschitz continuous function 
satisfying h(s) = 1 if s E [b - e , b  + e] and h(s) = 0 if s ¢ [b - &,b + &]; let 

: H --* [0, 1] be another Lipschitz continuous function such that ~(u)  = I if 
u ~ ~?~26 and ~(u)  = 0 if u E ~g6. Let ~7 be the flow defined by 

(18) 
{ ~7~.~ =-h(J( r / ) )~)( r / )  J ~  

~(0, u) = u 

Obviously (18) admits a unique solution 7/in a suitable right neighborhood of 
0; assume for the moment that for all u E H such a neighborhood is the whole 
half  line [0, +oc): properties (a) and (b) are straightforward. 

Take any u E jb+~ \ ~g36, then r/(s, u) ~ ~g26 for all s E [0, 2el (i.e. 
h(J O?)) = 1), indeed 

f0 e -¢ ' ' "  AS ~ - -  '~ 6 . 
11~(2e, u) - ~/(0, u)l] = h ( J ( ~ / ) ) ~ 0 ? ) ~ , , ' l ( ~  2e# 

By contradiction, if  ~/(2e, u) f[ jb-e, then for all s E [0, 2el we have J(r/(s,  u)) > 
b - e and therefore 

fo e d fo 2e J(r/(2e, u)) - J(u)  = J(rl(s, u))ds = J'(rl(s, u))[rf(s, u)]ds = - 2 e  , 

from which we get the contradiction J(~7(2e, u)) _< b - e and (c) is proved. 
To prove (d) take u E jb+e and note that if Vs E [0,2e] we have ~/(s,u) 

~ 2 6  then by the previous reasoning ~(2e, u) E jb-e. So, assume that there 
exists g E [0,2e] such that rt(g,u) E ~2~ ,  then ~7(s,u) E ~ 3 6  for all s E [0,2e] 
because in ~'36 \ ~ 6  we have 

6 
IIn'll ~ ~-~ < ~ and II~(s, u) - ~(~, u)H ~ m a x  11~'11 Is - ~1 < 6 .  
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To complete the proof of  the lemma we still have to prove the existence of  the 
solution zl of (18) for all initial data u E H and for all "times" s E [0,+oo): by 

ib÷6 such that the corresponding flow r/ contradiction, assume there exists u E ~b-6 
is defined only on [0, S), S < +oc: then lim sups~s-  JJr/'(s,u)JJ = +oo. Consider 
the following Cauchy problem: 

(19) aa~z = - h  (J (~)))~((P) tlJ'IS))II : 

~(0, u) = u 

since I1~'11 -< 1 its solution qo(z) is defined for all z E N+. Note also that 

~ l ( s , u ) = q ) ( f o  s 1 d u )  Ilj ,(~(t,u))jj  t, 

(Jo ) (20) and ~(z ,u )  = ~1 [IJ ' (~(t ,u))Hdt,u , 

indeed it is easy to see that the above functions satisfy (18) and (19) respectively; 
by (20) we see that the curves defined by ~ and ~ for a given u are equal up 
to a reparametrization and therefore we have limz_,~ ~(z, u) = l ims~s-  ~l(s, u) 
which gives 

fo +°° u))Jtdt = < +oo ; S 

from the previous equality we easily infer that there exists a sequence z, --* +e~ 
such that Jz,, - z ~ - : j  ~ 0 and [IJ'(~(z~,u))l[ ~ O, hence, by the Lipschitz 
continuity of  ~ we get II~(z., u) - ~ ( z . - t ,  u)ll ~ o. By the properties of  h we 

lb+a hence, by (b) J(rl(zn,u)) know that Vs E [0, S) we have r/(s,u) E Ob-a, 
c E [b - ~, b + ~]: the sequence rl(z,, u) has all the properties of  Lemma 1 (c), 
therefore for n large enough (say when z, > S~), ~l(z,,,u) E 'eZ~e, hence, ~ --- 0 
which contradicts S < +oc. [] 

Proof o f  Lemma 3. Choose "~ E F satisfying maxJ( '~) < b + w. As Im~ is 
compact there exist M integers k ~,. , . ,  k M (M > 0 otherwise the deformation rl 
of  Lemma 2 would lead to a contradiction of the definition of b) such that 

If  e > 0 satisfies the hypothesis of  Lemma 2 and Wr = e/2, then there exists 
a deformation rl whose properties imply that ,~(t) := ~/(2e, ~(t)) satisfies (a) and 
(b). [3 

Proof o f  Lemma 4. By a compactness argument we infer that there exists an 
integer l and 21 real numbers 0 < t( < t ° < t~ < t ° < . . .  < t[ < t ° < 1 such 
that if we denote by ,~/the union of  the connected components of  q'r,~([0, 1]) n 
Jb-2~ which intersect Jb, we have 
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l 

j=l 

that is. the path "Tr,w enters and exits 1 times the set Ui ~ i'(ki) and t], t ° are the 

values assumed by the parameter o n  O~/rr'(ki). 

By the variational characterization of b and by the properties of the path 
"/r,~o we also infer that there exists i E (1 , . . .  , l) such that Jb N ~£(k i) dis- 
connects ~£(k i) (denote by B0 and B1 the disconnected parts) and there exists 
j ¢ (1 , . . .  , l )  such that "),,,~(tt) ¢ Bo and %,~(t ° )  E B1. It is not restrictive to 
assume k i = 0 and we satisfy easily points (a), (b) and (c) by defining to = t] 

and tt = t ° .  [] 

Proof of  Lemma 5. For all m ~ { - k / 2 - 1 , . . . , - 2 }  and n E { 2 , . . . , k / 2 +  1} 
we define a map Pro, : /) ~ [0, 34r2] 2 by P m n ( q )  = (Fro(q)+ Fm+j(q),F,,(q)+ 
F,,+l(q)). Choose any T E/-2 and let 

(21) Amn = "7--1(pmnl[[O, 68r2/k)2]) : 

by (13) the collection {Am~} is a finite open cover of Q; let Arch(T) E H be 
defined for all ~- E Q by 

0 

[Amn (7-)]i = 7 ( T )  i __ T1 for "/(q-)i (t)dt 

if i ~ {m, . . . ,  n } or "r ~2 Amn 

otherwise. 

We first prove that there exists A > 0 such that for all couples (m, n) and for all 
7- EAmn we have J(7(7-)) > J (T ( r )  - Amn(r)) - A /k ;  by the definition of Amn 
it suffices to prove that 

__ f T  ~ m - - l ( q m - 1  --  glm) -- f T  ~n(On -- q,+l) 

- 2~[,,2 f [  g)i(?li- Oi+,)- A /k ,  

where for all i we set gli = -~ f r  qi .  

By the convexity of -~fi for small values of its argument (recall that Ilqi -- 

qi+l Ile~ <-- t )  and by Jensens' inequality we have 

--  ~ i ( q i  --  q i + l )  ~ - T  y~ ~i(~li  --  ~]i+1) ----- - -  Z ~i((] i  -- ~/i+1) 
i=m i=m 

and finally by (21) 
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t f  r gam-l(qm-, - glm) + f ~  4~.(gln - q.+,) 

-- fT  q~m-l(qm-l -- qm) -- fT  ~n(qn -- qn+l)[ 

< Cr [fT(qm_ 1 --0m)2+ fT(gln--qn+l)2+ fT(qm-I - -qm)2+ fT(qn--qn+l) 2] 

< 2(7 [fT(q m -- g/m)2 + f T ( q n -  Eln)2 +2  g(qm_,- qm)2 +2  g(q.- q.+,)J 
< c(Fm(q) + Fm+l(q) + F.(q) + Fn+l(q)) <_ A / k  , 

where we used the embedding H :  C L 2. 
To complete the proof choose any partition of the unity {P.,n } subjected to 

{Am.} and let A(7-) = ~}]m.p~.(7-)kmn(7-). Finally define 3"(r) = 3'(r) - A(r) :  

properties (a) and (b) are straightforward (taking into account that f f  qodt = 0 
for all q E H),  while property (c) is deduced from the fact that in a neighborhood 
of zero the functional is convex, and therefore 

J (7(r) - ~ m .  P, . . (r)k.~.  (r)) = J ( ~ . . .  pro. (r)(7(r)  - A,.,,(r))) 

A : J(7(7-)) + A <-- E m n P m n ( T ) J ( 3 "  (7-) -- Amn(T)) <-- ~mnP mnJ(3"(T)) + T -k " 

[] 

Proof of Lemma 6. Let 7- = (7-1,7-2) C OQ. By (8) and (9) "/1 and "72 have disjoint 
support; by (10), (11) and the definition of 5' we have 

J(Ty(T))=J(3"l(7-1)+3"2(7-2))=J(*yl(T1))+J(3"2(7-2))< b - - ~ w  + b+-~w . 

[] 

Proof of Lemma 7. To prove the lower estimate, choose k > 6A/co; we have to 
prove that maxr~a  J(3'(7-)) >_ 2b - co/6 for all "7 c /-2: take any such 3' and 
consider the functions ",/+ and 3 ' -  defined in (15) and (16). Let qal E C([0, 1]; Q) 
be such that ~ : ( j )  E {j} × [0, 1] , j  = 0, 1, then 3"+(~off-)) E F ' ;  hence, by (7) 

(22) max J[7+(qOl(t))] > b . 
tG[0,11 

We also define Qb = {7- ~ Q, J (7+( r ) )  -> b}; by (22) we know that ab separates 
{1} × [0, 1] and {0} x [0, 1]. Let Q+ denote the connected component of Q \ Qb 
containing {0} x [0, 1] and let 

t" 
J d(7-, Qb) if 7- E Q+ 

O'I(T ) 
- -d( r ,  Qb) if 7- E Q \ Q+ ; 

obviously ~rl E C(Q,I~) ,  ~rl > 0 on {0} × [0, 1] and or1 < 0 on {1} × [0, 1]. In 
a similar way we define qo2 instead of qol, and <r2 in a dual way. 
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By a theorem of Miranda [9], we know that 3¢ = (7-1, T2) E Q such that 
crl(?) = a2('?) = 0. By (22) and (14) we have 

co co 
maxJ(7(~-)) > J(') '(¢)) > J[3,+(~l(T1))] + J [3'-(cp2(7-2))] - > 2b - - 
,EQ -- -- 6 6 

The upper estimate can be obtained using (11): 

5 
/3 < max J( '~(r)) = max J ( f l (Ti )  + "Y2(~-2)) = 2maxJ(Tj( t ) )  < 2b + ~w . 

- -  r E Q  ~-EQ td  

[] 

Proof of Lemma 8. Given any point q E B \ B, we split it into the sum q+ + q -  
such that at least one between q+ and q -  is in jT"(k, r/2,  ro) for a certain k; 

then by Lemma 1 we get ]lJ'(q±)l[ _> ~ .  
More precisely, let Fi be as in (12); choose k so large that 

(23) 

r 2 

maxqE(-k)*.~" Si>-k/2 Fi(q) < ~ , 
r 2 

maxqel,*.~" ~i<k/2  F,.(q) < 

and k > 102r'-~2 

Let q E/~ \/~ and set Gi(q) = Fi- l (q)+Fi(q)+Fi+l(q):  by (13) there exists 
an integer j ,  ~1 -< k /2 ,  such that 

(24) Gj(q) < 51rZ/k < tz__~ . 
- 2 

Define q+ by 

i f j  < 0 a n d b y  

¢ 
q+ = ~ qi i f /  > j  

L glj i f /  < j  

t '  

], q i - c l j  • i f i  > j  
q~ 

L 0 i f /  < j  

if j > 0. Then define q -  = q - q+; this cumbersome definition is necessary 

because we need to have q+, q -  E H and therefore we need to have fo r q~ = 

for q o  = 0. For all p E ( - k )  • ,~Trf + k • ,~f~ define p+ and p -  in the same way 
as q÷ and q - ;  for such q and p we have 

2r < Ilq - p l l  = Ilq + + q -  - P +  - p - l l  ~ Ilq + -p + l l  + IIq- - p - I I  , 

therefore either Ilq + -p+ l ]  -> r or Nq- - P - I I  ~ r. Assume the first inequality 
holds; by our choice of  p there exist p l  E ( - k )  • ,~zr~" and p2 E k ,  ,~g~'~ such 
that p = p l  +p2 :  by (23) liP- - p ~ l t  < r /2  and lip + -p211 < r/2.  Then 
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q+ C 2 7 ( k ,  r/2, ro) and by Lemma 1 IIJ'(q+)ll >_ # [  > 0, which implies that for 

all ¢ > 0 3p ~ E H,  [Ip~[I = 1 such that 

(25) J ' (q+)[pe]  > #~ - c .  

Assume that j < 0 (if j > 0 the same result can be obtained with slight modi- 
fications). By the definition of  J~ it is not restrictive to assume p f  = p f  for all 

i < j :  therefore 

' - p f i O  I J ' ( q+ ) lpq  - J ' ( q ) l p q l  <_ fo '/ 'j(qi - qs+,)(Pf - 

(26) + f0 T ~ j - l ( q j - 1 - - q J ) ( P f - I - - P ~ )  

+ yf  ~j(qj -- qj+l)(P; i P ; +  l ) I 

By H61der inequality, the embedding H 1 C L 2, (24) and (26) we get IJt(q+)[p~] - 
L t .  Jr(q)L°e]t -< 2 ' by the arbitrariness of  e and (25) we infer the result. [] 

Proof of Lemma 9. Let q(") satisfy the hypothesis. By Theorem 1 there exists k / 

such that 

q(n) L qi - -  k i  , - - * 0  
n 

i= l  

where qi are critical points for J .  The assertion follows because r0 < A/2 (see 
Proof of  Lemma 1), and because/3  is a neighborhood of radius r0 of a compact 

set. [] 

Proof of Lemma 10. The proof is standard (see e.g. [8] Lemma 6.5), except for 
an important detail: the Palais-Smale condition (which is needed in order to give 
a lower estimate of  IlJ'][) does not hold in the whole space but only in /~ ,  then 
we have to ensure that the deformation does not bring any point in /7  out of /7 ;  
this information is provided by Lemma 8, which yields a lower estimate for IIJ~ll 
in B \ B according to which any point traveling f rom/7  to 0/7 along the flow 
associated to _ j r  must decrease its level (as assigned by J )  of  at least 3w. [] 
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