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Abstract We prove that minimizers for subcritical second-order Sobolev embed-
dings in the unit ball are unique, positive and radially symmetric. Since the proofs of
the corresponding first-order results cannot be extended to the present situation, we
apply new and recently developed techniques.
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1 Introduction

Let B denote the unit ball in R
n (n ≥ 2) and let ‖·‖q denote the Lq(B) norm. Consider

the second-order Sobolev spaces

either H = H2
0(B) or H = H2(B) ∩ H1

0(B) . (1.1)

In view of the Sobolev–Rellich–Kondrachov theorem, both spaces in (1.1) compactly
embed into Lp(B) for any 1 ≤ p < 2∗ = 2n/(n − 4), with the convention that 2∗ = ∞
if n = 2, 3, 4. These embedding properties are well explained through the inequalities

Sp‖u‖2
p ≤ ‖�u‖2

2 for all u ∈ H , Sp = min
w∈H\{0}

‖�w‖2
2

‖w‖2
p

. (1.2)
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Since the embeddings are compact, for any 1 ≤ p < 2∗ there exists a minimizer up
for Sp, namely, there exists a nontrivial function up ∈ H such that Sp‖up‖2

p = ‖�up‖2
2.

The main result of this paper is the following.

Theorem 1 Let 2 < p < 2∗. Then, in both cases (1.1), the minimization problem (1.2)
has, up to multiplication by a constant, a unique solution up. This solution is positive,
radially symmetric and radially decreasing.

We recall that, in the case H = H2
0(B), minimizers of (1.2) are weak solutions [see (1.7),

for a definition] of the following boundary value problem with Dirichlet boundary
conditions

⎧
⎨

⎩

�2u = |u|p−2u in B

u = ∂u
∂ν

= 0 on ∂B,
(1.3)

whereas in the case H = H2(B) ∩ H1
0(B), minimizers of (1.2) are weak solutions of

the corresponding problem with the Navier boundary conditions, i.e.,
{

�2u = |u|p−2u in B
u = �u = 0 on ∂B.

(1.4)

As an interesting consequence of the positivity of minimizers of (1.2) and the Hopf
boundary lemma, we infer that the best Sobolev constant Sp for H = H2 ∩ H1

0 in (1.2)
is strictly smaller than the constant Sp for H = H2

0 . In fact, this is true on an arbitrary
bounded domain and not just on the ball B, see Sect. 5. This is in striking contrast
with the critical case p = 2∗ (n ≥ 5) for which van der Vorst [20] showed that the two
embedding constants coincide.

Concerning the uniqueness of positive solutions of (1.3) and (1.4), we quote a result
due to Dalmasso and Troy.

Theorem 2 [9, 19] Let 2 < p < 2∗. Then:

(i) Problem (1.4) has a unique positive solution which is radially symmetric and
radially decreasing.

(ii) Problem (1.3) has a unique radial positive solution which is radially decreasing.

Even if Theorem 2 is known, in Sect. 3 we give a new proof of uniqueness of radial
positive solutions of (1.3), (1.4) by using a recent comparison result by McKenna and
Reichel [13]. It is worth pointing out that although radial symmetry of minimizers of
(1.2) occurs in both cases (1.1), we cannot prove radial symmetry of arbitrary positive
solutions of (1.3). Thus, we state the following:

Open question: Is every positive solution of (1.3) radially symmetric?

If this is true, then problem (1.3) also has a unique positive solution by Theorem 2(ii).
The present paper is motivated by the results available for the first-order Sobolev

space H1
0(B) which compactly embeds into Lp(B) for any 1 ≤ p < 2∗ = 2n/(n − 2),

with the convention that 2∗ = ∞ if n = 2. These embeddings read

�p‖v‖2
p ≤ ‖∇v‖2

2 for all v ∈ H1
0(B) , �p = min

w∈H1
0\{0}

‖∇w‖2
2

‖w‖2
p

. (1.5)
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If vp is a minimizer for �p, then also |vp| is a minimizer. And since a minimizer for �p
satisfies the Euler equation

{−�v = |v|p−2v in B
v = 0 on ∂B ,

(1.6)

vp is necessarily of one sign by the maximum principle. Elliptic regularity enables
us to infer that vp is smooth and therefore, for p ≥ 2, vp is radially symmetric and
radially decreasing according to [11, Theorem 1]. Finally, from [11, Lemma 2.3] we
know that there exists a unique positive solution of (1.6). By combining all these facts
we conclude that, up to multiplicative constants, there exists a unique minimizer vp
for �p and that it is positive, radially symmetric and radially decreasing. Let us also
mention that positivity and radial symmetry (but not uniqueness!) may be proved via
the Schwarz symmetrization, see [17].

Summarizing, in order to obtain these properties for vp, besides the maximum
principle the following tools have been used in the literature. Firstly, the possibility
of replacing v ∈ H1

0(B) with |v|. Secondly, the symmetry and the uniqueness results
of [11]. Unfortunately, none of these tools can be used for embeddings of the second-
order Sobolev spaces H in (1.1). Indeed, if u ∈ H2(B), then, in general, |u| 	∈ H2(B).
The same implication is also false for the Schwarz symmetrization, see [7,8] for a
recent discussion of the problem. Moreover, the full extension of the symmetry result
in [11] seems out of reach for the corresponding fourth-order elliptic equations, see
[16]. Finally, the uniqueness statement in [11, Lemma 2.3] does not hold for the
corresponding fourth-order ordinary differential equation, since also the “shooting
concavity” u′′(0) represents a degree of freedom. Hence, in order to prove our results,
we need to follow different methods. We obtain the positivity of minimizers up by
using arguments inspired by [10,20]. Then, in the space H2(B) ∩ H1

0(B) we may apply
the symmetry result by Troy [19] to obtain its radially symmetry. In the space H2

0(B)

the situation is more involved and we introduce a new technique based on polar-
ization. This two-point rearrangement has been applied successfully to variational
problems posed in first-order Sobolev spaces or Lp-spaces, see e.g. [2,3,5,6,15] and
the references therein. Its applicability to higher order problems is new and some-
what surprising, since in general polarized H2-functions do not belong to H2 anymore.
Once minimizers up are known to be positive and radially symmetric, Theorem 1 can
be obtained by applying Dalmasso’s uniqueness result [9] for radial positive solutions
of (1.3) and (1.4).

The paper is organized as follows. In Sect. 2, we prove that, up to reflection u �→ −u,
minimizers of the minimization problem (1.2) are strictly positive in B. In Sect. 3,
based on the comparison principle by McKenna and Reichel [13], we give a new
proof of Dalmasso’s result stating that both (1.3) and (1.4) have a unique radial
positive solution. Combining this with Troy’s radial symmetry result [19] for positive
solutions of (1.4), Theorem 2 is obtained. Also, Theorem 1 follows in the case where
H = H2(B)∩H1

0(B). In Sect. 4, we then show that, in the case H = H2
0(B), every mini-

mizer of the minimization problem (1.2) is radially symmetric and radially decreasing.
This completes the proof of Theorem 1 for H = H2

0(B). In Sect. 5, we prove the strict
inequality between the embedding constants Sp mentioned above.
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Finally, we collect some definitions and notations used throughout the paper. We
say that a function u ∈ H2

0(B) is a weak solution of (1.3) if
∫

B

�u�v dx =
∫

B

|u|p−2 uv dx for all v ∈ H2
0(B). (1.7)

Moreover, we say that a function u ∈ H2(B)∩H1
0(B) is a weak solution of (1.4) if (1.7)

holds for all v ∈ H2(B) ∩ H1
0(B). By [12, Theorem 1], every weak solution of (1.3) is

in fact a classical solution. Also, by [20, Lemma B.3], every weak solution of (1.4) is a
classical solution. We endow both Hilbert spaces H = H2

0(B) and H = H2(B)∩H1
0(B)

with the scalar product

(u, v) =
∫

B

�u�v dx for u, v ∈ H. (1.8)

For a subset A ⊂ R
n, we denote by int(A), A and ∂A the interior, the closure and the

boundary of A.

2 Positivity of minimizers for (1.2)

The existence of minimizers for problems (1.2) may, in both cases (1.1), be obtained
by a standard argument from the calculus of variations based on the compact embed-
dings H ⊂ Lp(B). In this section, we prove that if u is a minimizer, then u or −u is
strictly positive on B. We give two proofs of this fact, both based on the following
maximum principle:

Lemma 1 Let K = {w ∈ H; w ≥ 0 a.e. in B} and assume that u ∈ H satisfies
∫

B

�u�v ≥ 0 for all v ∈ K ;

then u ∈ K. Moreover, one has either u ≡ 0 or u > 0 a.e. in B.

Proof When H = H2(B) ∩ H1
0(B), the statement follows by the maximum principle

for the operator −�: take an arbitrary non-negative ϕ ∈ C∞
c (B) and use as test func-

tion vϕ ∈ K such that −�vϕ = ϕ. When H = H2
0(B), the statement is a consequence

of Boggio’s principle [4], see [10, Lemma 2] and [1, Lemma 16] for the details. ��
In view of Lemma 1, strict positivity of the minimizer u of (1.2) follows if we show

that u ∈ K.

First proof We use an abstract result on a decomposition method in dual cones devel-
oped in [14] and already used for higher order problems in [10]. We consider the dual
cone of K, namely,

K′ =
⎧
⎨

⎩
w ∈ H;

∫

B

�w�v ≤ 0 for all v ∈ K
⎫
⎬

⎭
.

For contradiction, assume that a minimizer u of (1.2) is sign-changing. By the propo-
sition in [14] there exists a unique couple (u1, u2) ∈ K × K′ such that u = u1 + u2 and
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∫

B �u1�u2 = 0. Consider the function v := u1 − u2. Then, since u1 ≥ 0 and u2 < 0
(by Lemma 1) we have v(x) ≥ |u(x)| for a.e. x ∈ B with strict inequality on a subset of
positive measure. Hence, ‖v‖p > ‖u‖p. Moreover, by orthogonality

∫

B

|�v|2 =
∫

B

|�u1|2 +
∫

B

|�u2|2 =
∫

B

|�u|2.

Therefore,

‖�u‖2
2

‖u‖2
p

>
‖�v‖2

2

‖v‖2
p

,

which contradicts the assumption that u minimizes (1.2). ��

Second proof Let u be a minimizer for (1.2). Modulo scaling, we may assume that u is
a solution of (1.3) or (1.4). Suppose by contradiction that u is sign-changing in B and
let w be a solution of the following problem:

⎧
⎨

⎩

�2w = |u|p−1 in B

w = ∂w
∂ν

= 0 on ∂B
or

{
�2w = |u|p−1 in B
w = �w = 0 on ∂B .

(2.1)

Lemma 1 implies that w > |u| in B. Hence, multiplying the equations in (2.1) by w
and integrating by parts we obtain

‖�w‖2
2 =

∫

B

w|u|p−1 dx <

∫

B

w2|u|p−2 dx ≤ ‖w‖2
p‖u‖p−2

p

so that

‖�w‖2
2

‖w‖2
p

< ‖u‖p−2
p = ‖u‖p

p

‖u‖2
p

= ‖�u‖2
2

‖u‖2
p

.

This contradicts the fact that u is a minimizer for (1.2). ��
Remark 1 A third proof which only works in the case where H = H2(B)∩ H1

0(B) can
also be obtained arguing as in [20]. It consists in showing that a minimizer u of (1.2)
necessarily has �u which does not change sign in B, see also Lemma 6.

3 A simple proof of uniqueness of positive radial solutions

In this section, we prove that the boundary value problems (1.3) and (1.4) admit at
most one positive radial solution. Our proof has some points in common with the one
of Dalmasso (see [9]), but it is somewhat shorter since it relies on a useful comparison
principle due to McKenna and Reichel [13]. In this section, we do not distinguish
between a radial function u and the induced function u = u(r) of the radial variable,
so that rn−1�u(r) = (rn−1u′(r))′ for r ≥ 0. We first note the following.

Lemma 2 Let R > 0, and let u ∈ C4(BR) be a radial function such that u > 0, �2u > 0
in BR and u|∂BR = 0. Then u′(r) < 0 for 0 < r < R.
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Proof By integrating [rn−1(�u)′]′ = rn−1�2u over [0, r], we obtain (�u)′(r) > 0 for
r ∈ (0, R), so that �u is strictly increasing on [0, R]. If �u ≥ 0 in BR, then, because of the
boundary condition u|∂BR = 0, the maximum principle yields a contradiction. Hence
�u(0) < 0, and thus u′(r) < 0 for r > 0 close to 0, since rn−1u′(r) = ∫ r

0 sn−1�u(s) ds.
Now suppose by contradiction that there is a minimal r0 > 0 such that u′(r0) = 0.
Then �u(r0) = u′′(r0) ≥ 0. Thus, �u(r) > 0 for r0 < r ≤ 1. But then

rn−1u′(r) =
r∫

r0

sn−1�u(s) ds > 0 for r > r0,

so that u is increasing on [r0, R]. This contradicts the assumption u(R) = 0.

We will use the following comparison principle for radial functions due to McKenna
and Reichel [13]:

Proposition 1 Assume that f : R → R is locally Lipschitz continuous and strictly
increasing. Let u, v ∈ C4 (BR) be positive radial functions such that

⎧
⎨

⎩

�2v(r) − f (v (r)) ≥ �2u (r) − f (u (r)) in [0, R)

v(0) ≥ u (0) , v′ (0) = u′ (0) = 0, �v (0) ≥ �u (0)

(�v)′ (0) = (�u)′ (0) = 0.

Then we have

(i) v(r) ≥ u(r), v′(r) ≥ u′(r), �v(r) ≥ �u(r), (�v)′(r) ≥ (�u)′(r) for any r ∈ [0, R]
(ii) if there exists ρ ∈ (0, R) such that v > u in (0, ρ) then v (r) > u (r) , v′ (r) > u′ (r) ,

�v (r) > �u(r), (�v)′ (r) > (�u)′ (r) for any r ∈ (0, R] .

Starting with the proof, we now assume by contradiction that u1 	= u2 are two
positive radial solutions of (1.3) or (1.4). In radial coordinates r = |x|, the functions
u1 and u2 solve the following initial value problem (for some A1, A2, B1, B2):

{
(rn−1(�ui)

′)′ = rn−1up−1
i r ∈ (0, 1],

ui(0) = Ai, u′
i(0) = 0, �ui(0) = Bi, (�ui)

′(0) = 0
i = 1, 2 . (3.1)

Applying Proposition 1 to problem (3.1), we deduce that A1 	= A2 or B1 	= B2 since
otherwise we have u1 ≡ u2. If A1 = A2, then we necessarily have B1 	= B2 and, up to
switching u1 with u2, we may assume that B1 > B2. Since u1(0) = u2(0) = A1 = A2
and u′

1 (0) = u′
2 (0) = 0, there exists ρ > 0 such that

u1 (r) > u2 (r) for all r ∈ (0, ρ) (3.2)

so that by Proposition 1(ii) we infer u1 (1) > u2 (1). But this contradicts the boundary
condition u1(1) = u2(1) = 0 in (1.3) and (1.4). Therefore, from now on we may assume
that A1 	= A2. We define

vi(r) = A−1
i ui(A

− p−2
4

i r) for all r ∈
(

0, A
p−2

4
i

)
, i = 1, 2

and

B̃i = �vi(0), Ri = A
p−2

4
i , i = 1, 2.

Then for i = 1, 2 the functions vi solve the ordinary differential equation (3.1) on
(0, Ri) and satisfy vi (0) = 1 and vi(Ri) = 0. We may assume that B̃1 	= B̃2, since
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otherwise by Proposition 1 we have v1 ≡ v2 and, in turn, u1 ≡ u2. Moreover, up to
switching v1 with v2, we may suppose that B̃1 > B̃2. Applying to v1 and v2 the same
argument employed for (3.2), by Proposition 1(ii) it follows that

R1 > R2, v1 (r) > v2 (r) , v′
1(r) > v′

2(r) and �v1(r) > �v2(r) for all r ∈ (0, R2] .

(3.3)

Now in the case of (1.3) we conclude that v′
1(R2) > v′

2(R2) = A−(p+2)/4
2 u′

2(1) = 0,
contrary to Lemma 2. In the case of (1.4), we infer that �v1(R2) > �v2(R2) = 0.
But, since �2v1 > 0 in BR1 and �v1 = 0 on ∂BR1 , we have �v1 < 0 in BR1 by the
maximum principle, so that in particular �v1(R2) < 0. Since in both cases we arrived
at a contradiction, the proof is finished.

4 Radial symmetry of the Sobolev minimizers under Dirichlet boundary conditions

In this section we prove the following.

Theorem 3 If u ∈ H2
0(B) is a minimizer for (1.2), then u is Schwarz symmetric, i.e., it

is radially symmetric and nonincreasing in the radial variable.

Let H ⊂ R
n be an affine half-space, and let σH : R

n → R
n be the reflection at

the boundary ∂H of H. Let C0(R
n) be the space of continuous functions on R

n with
compact support. For v ∈ C0(R

n), we define the polarization vH of v relative to H by

vH(x) =
{

max{v(x), v(σH(x))}, x ∈ H,

min{v(x), v(σH(x))}, x ∈ R
n \ H.

We note that, by a straightforward argument, ‖vH‖p = ‖v‖p for all v ∈ C0(R
n),

1 ≤ p ≤ ∞ and all affine half-spaces H ⊂ R
n. Moreover, we have the identity

v(x) + v(σH(x)) = vH(x) + vH(σH(x)) for every x ∈ R
n. (4.1)

Now let H0 denote the family of all closed affine half-spaces H ⊂ R
n such that

0 ∈ int(H). Then we have the following useful characterization, which follows directly
from [6, Lemma 6.4].

Proposition 2 A function v ∈ C0(R
n) is Schwarz symmetric (with respect to the origin)

if and only if v = vH for every H ∈ H0.

If u ∈ H2
0(B) is a minimizer for (1.2), then u solves (1.3). As already mentioned,

in view of [12, Theorem 1] we then have u ∈ C∞(B) so that, by trivial extension, u
may be seen as a function in C0(R

n). And by Proposition 2, the problem of showing
Schwarz symmetry of u is reduced to showing that u = uH for every H ∈ H0. To follow
this approach, we first need some crucial estimates for Green’s function G = G(x, y)

of �2 on B relative to the Dirichlet boundary conditions. It is convenient to introduce
the quantity

θ(x, y) =
{

(1 − |x|2)(1 − |y|2) if x, y ∈ B

0 if x 	∈ B or y 	∈ B.
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Then for x, y ∈ B, x 	= y, we have the following representation due to Boggio,
see [4, p. 126]:

G(x, y) = cn|x − y|4−n

(
θ(x,y)

|x−y|2 + 1
)1/2

∫

1

τ 2 − 1
τn−1

dτ = cn

2
|x − y|4−n

θ(x,y)

|x−y|2∫

0

z
(z + 1)n/2 dz.

(4.2)

Here cn is a positive constant which only depends on the dimension n. In the following,
we will assume that G is extended in a trivial way to R

n × R
n \ {(x, x) : x ∈ R

n}, i.e.,
G(x, y) = 0 if |x| ≥ 1 or |y| ≥ 1. Then formula (4.2) is valid for all x, y ∈ R

n, x 	= y. For
h ∈ C0(R

n) we consider the function Gh : R
n → R defined by

Gh(x) =
∫

Rn

G(x, y)h(y) dy.

Then Gh ≡ 0 on R
n \ B, and Gh|B is the unique solution of the problem

⎧
⎨

⎩

�2u = h in B

u = ∂u
∂ν

= 0 on ∂B.

To avoid lengthy notations, from now on we write x instead of σH(x) for any x ∈ R
n

whenever the underlying affine half-space H is understood.

Lemma 3 Let H ∈ H0. Then for x, y ∈ H, x 	= y, we have

G(x, y) ≥ max{G(x, y), G(x, y)}, (4.3)

G(x, y) − G(x, y) ≥ |G(x, y) − G(x, y)|. (4.4)

Moreover, if x, y ∈ int(B ∩ H), then we have strict inequalities in (4.3) and (4.4).

Proof We first note that, since H ∈ H0, we have |z| ≥ |z| for all z ∈ H. Hence, if
x 	∈ B or y /∈ B, then also x /∈ B or y /∈ B, and both sides of inequalities (4.3) and (4.4)
are zero in this case. Therefore, it suffices to consider x, y ∈ int(B ∩ H) and to prove
the strict inequality in (4.3) and (4.4). It is easy to see that

|x − y| = |x − y| < |x − y| = |x − y| for x, y ∈ int(H). (4.5)

Moreover, since |x| > |x| and |y| > |y| for all x, y ∈ int(H), we have

θ(x, y) > max{θ(x, y), θ(x, y)} ≥ min{θ(x, y), θ(x, y)} > θ(x, y). (4.6)

We now write G(x, y) = cn
2 H(|x − y|2, θ(x, y)) with

H : (0, ∞) × [0, ∞) → R, H(s, t) = s2− n
2

t/s∫

0

z
(z + 1)n/2 dz.

We first verify the following properties of H:

∂sH(s, t) < 0, (4.7)

∂tH(s, t) > 0, (4.8)

∂s∂tH(s, t) < 0 (4.9)
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for s, t > 0. Indeed,

∂sH(s, t) =
(

2 − n
2

)
s1− n

2

t/s∫

0

z
(z + 1)n/2 dz − t2

s(t + s)n/2 , (4.10)

so that (4.7) immediately follows for n ≥ 4. Since 3x + 2 < 2(x + 1)3/2 for all x > 0,
putting n = 3 in (4.10) we obtain

∂sH(s, t) = 3st + 2s2 − 2
√

s(t + s)3/2

s(t + s)3/2 < 0,

which proves (4.7) for n = 3. Finally, since x/(x + 1) < log(x + 1) for all x > 0, putting
n = 2 in (4.10) we obtain

∂sH(s, t) = t
t + s

− log
t + s

s
< 0,

which proves (4.7) also for n = 2. Moreover,

∂tH(s, t) = t
(t + s)n/2 > 0 and ∂s∂tH(s, t) = − nt

2(t + s)n/2+1
< 0

so that (4.8), (4.9) are also true.
From (4.7) and (4.8) it follows that

H(s1, t1) > H(s2, t2) if s1 < s2, t1 > t2, (4.11)

while (4.8) and (4.9) imply that

H(s1, t4) − H(s1, t1) =
t4∫

t1

∂tH(s1, t) dt >

t4∫

t1

∂tH(s2, t) dt >

max{t2,t3}∫

min{t2,t3}
∂tH(s2, t) dt

= |H(s2, t2) − H(s2, t3)| if 0 < s1 < s2, 0 < t1 < t2, t3 < t4.
(4.12)

The strict inequality in (4.3) follows directly from (4.5), (4.6) and (4.11). Moreover,
the strict inequality in (4.4) follows from (4.5), (4.6) and (4.12). ��

Lemma 4 Let H ∈ H0, let f ∈ C0(R
n) be a non-negative function with support con-

tained in B, and let u = Gf , w = GfH. Then:

w(x) ≥ w(x) for x ∈ H, (4.13)

w(x) ≥ uH(x) for x ∈ H, (4.14)

w(x) + w(x) ≥ uH(x) + uH(x) for x ∈ R
n. (4.15)

Moreover, if f 	≡ fH, then inequality (4.15) is strict for every x ∈ int(B ∩ H).



574 A. Ferrero et al.

Proof Let x ∈ H. Then, since fH(y) ≥ fH(y) for all y ∈ H, we have

w(x) − w(x) =
∫

Rn

[G(x, y) − G(x, y)]fH(y) dy

=
∫

H

(
[G(x, y) − G(x, y)]fH(y) + [G(x, y) − G(x, y)]fH(y)

)
dy

≥
∫

H

(
[G(x, y) − G(x, y)] + [G(x, y) − G(x, y)]

)
fH(y) dy.

By Lemma 3, the integrand in the last line is non-negative; hence (4.13) follows. Next,
using (4.1) and Lemma 3, we obtain

w(x) − u(x) =
∫

Rn

G(x, y)(fH(y) − f (y)) dy

=
∫

H

(
G(x, y)[fH(y) − f (y)] + G(x, y)[fH(y) − f (y)]

)
dy

=
∫

H

(
G(x, y) − G(x, y)

)
[fH(y) − f (y)] dy ≥ 0. (4.16)

Moreover,

w(x) − u(x) =
∫

Rn

[G(x, y)fH(y) − G(x, y)f (y)] dy

=
∫

H

(
G(x, y)fH(y) − G(x, y)f (y) + G(x, y)fH(y) − G(x, y)f (y)

)
dy.

(4.17)

To estimate the integrand in (4.17), we distinguish two cases. If y ∈ H is such that
fH(y) = f (y), then also fH(y) = f (y) and by (4.3), (4.4) we have

G(x, y)fH(y) − G(x, y)f (y) + G(x, y)fH(y) − G(x, y)f (y)

= [G(x, y) − G(x, y)]fH(y) + [G(x, y) − G(x, y)]fH(y)

≥
(

G(x, y) − G(x, y) + G(x, y) − G(x, y)
)

fH(y) ≥ 0.

On the other hand, if y ∈ H is such that fH(y) = f (y), then fH(y) = f (y) and by (4.3),
(4.4) we obtain

G(x, y)fH(y) − G(x, y)f (y) + G(x, y)fH(y) − G(x, y)f (y)

= [G(x, y) − G(x, y)]fH(y) + [G(x, y) − G(x, y)]fH(y)

≥
(

G(x, y) − G(x, y) + G(x, y) − G(x, y)
)

fH(y) ≥ 0.

Going back to (4.17) we find w(x) − u(x) ≥ 0, and together with (4.16) this yields
w(x) ≥ uH(x) for x ∈ H. Hence (4.14) holds.
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To prove (4.15), we may assume that x ∈ H. Since

w(x) + w(x) =
∫

Rn

[G(x, y) + G(x, y)]fH(y) dy

=
∫

H

(
[G(x, y) + G(x, y)]fH(y) + [G(x, y) + G(x, y)]fH(y)

)
dy

and

u(x) + u(x) =
∫

Rn

[G(x, y) + G(x, y)]f (y) dy

=
∫

H

(
[G(x, y) + G(x, y)]f (y) + [G(x, y) + G(x, y)]f (y)

)
dy,

we find

w(x) + w(x) − [u(x) + u(x)]
=

∫

H

(
[G(x, y) + G(x, y)](fH(y) − f (y)) + [G(x, y) + G(x, y)](fH(y) − f (y))

)
dy

=
∫

H

(
G(x, y) + G(x, y) − [G(x, y) + G(x, y)]

)
(fH(y) − f (y)) dy ≥ 0 (4.18)

again by (4.1) and Lemma 3. By (4.1) we also obtain

w(x) + w(x) ≥ u(x) + u(x) = uH(x) + uH(x), for x ∈ R
n. (4.19)

To conclude the proof, we note that f ≡ fH ≡ 0 on R
n \ B. This follows since H ∈ H0,

f ≥ 0 in B and f ≡ 0 on R
n \B. Moreover, if f (y) 	= fH(y) for some y ∈ int(H∩B), then,

for fixed x ∈ int(B ∩ H), the integrand in (4.18) is strictly positive in a neighborhood
of y by the strict inequality in (4.4). Hence the inequality in (4.19) is strict if f 	≡ fH

and x ∈ int(B ∩ H). This completes the proof of the lemma.

Lemma 5 Let H ∈ H0, let f ∈ C0(R
n) be a non-negative function with support con-

tained in B, and let u = Gf , w = GfH. Then:
∫

B

w(x)up−1
H (x) dx ≤

∫

B

w2(x)up−2
H (x) dx, for all p ≥ 2. (4.20)

Moreover, if equality holds in (4.20), then f ≡ fH.

Proof Without loss of generality, we assume that f is not identically zero. We use
(4.13)–(4.15) to estimate

∫

B

w2(x)up−2
H (x) dx −

∫

B

w(x)up−1
H (x) dx

=
∫

B

w(x)up−2
H (x)[w(x) − uH(x)] dx

=
∫

H

(
w(x)up−2

H (x)[w(x) − uH(x)] + w(x)up−2
H (x)[w(x) − uH(x)]

)
dx
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≥
∫

H

(
w(x)up−2

H (x)[w(x) − uH(x)] + w(x)up−2
H (x)[uH(x) − w(x)]

)
dx

=
∫

H

(
w(x)up−2

H (x) − w(x)up−2
H (x)

)
[w(x) − uH(x)] dx

≥
∫

H

w(x)
(

up−2
H (x) − up−2

H (x)
)
[w(x) − uH(x)] dx ≥ 0. (4.21)

Hence (4.20) is true. Moreover, if equality holds in (4.20), then we also have equality
in (4.21), which implies that either w(x)−uH(x) = uH(x)−w(x) for some x ∈ int(H∩B)

or w(x)up−2
H (x) = 0 for all x ∈ int(H ∩ B). In the first case, Lemma 4 yields f ≡ fH . In

the second case we conclude that B ⊂ H, since w and uH are both positive on B. But
then we also have f ≡ fH , since f ≡ 0 on R

n \ H. ��
Proposition 3 Let u ∈ H2

0(B) be a minimizer for (1.2), and let H ∈ H0. Then u = uH.

Proof Without loss of generality, we may assume that u is a positive solution of (1.3).
We set f = up−1. Then u coincides with the restriction of Gf to B. We also put w = GfH .
Then, by Lemma 5 we have

‖�w‖2
2 =

∫

B

wfH dx =
∫

B

wup−1
H dx ≤

∫

B

w2up−2
H dx ≤ ‖w‖2

p‖uH‖p−2
p = ‖w‖2

p‖u‖p−2
p

(4.22)

so that

‖�w‖2
2

‖w‖2
p

≤ ‖u‖p−2
p = ‖u‖p

p

‖u‖2
p

= ‖�u‖2
2

‖u‖2
p

. (4.23)

Since u is a Sobolev minimizer, we conclude that equality holds in (4.23), so that by
going back to (4.22) we find

∫

B

wup−1
H dx =

∫

B

w2up−2
H dx.

Hence up−1 ≡ f ≡ fH ≡ up−1
H by virtue of Lemma 5, which implies that u = uH . ��

Now the proof of Theorem 3 is completed by combining Propositions 2 and 3.

5 The strict inequality between the embedding constants

In this section, we prove the following strict inequality.

Theorem 4 Let 
 ⊂ R
n (n ≥ 2) be a bounded domain with ∂
 ∈ C2, let 2 < p < 2∗

and let

S1
p(
) = min

w∈H2
0 (
)\{0}

‖�w‖2
2

‖w‖2
p

, S2
p(
) = min

w∈H2∩H1
0 (
)\{0}

‖�w‖2
2

‖w‖2
p

. (5.1)

Then, S1
p(
) > S2

p(
).
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The proof relies on the following lemma.

Lemma 6 Let 
 ⊂ R
n (n ≥ 2) be a bounded domain with ∂
 ∈ C2, let 2 < p < 2∗

and let up ∈ H2 ∩ H1
0(
) be a minimizer for S2

p(
). Then, up ∈ C4,α(
) ∩ C1,α(
).

Moreover, up to a change of sign, up > 0 in 
 and ∂up
∂ν

< 0 on ∂
.

Proof Up to a Lagrange multiplier, the minimizer up satisfies
∫




�up�ϕ =
∫




|up|p−2upϕ for all ϕ ∈ H2 ∩ H1
0(
) .

Then, by elliptic regularity (see [20, Lemma B.3]) we infer that up ∈ C4,α(
)∩C1,α(
).
Let u be the solution of the following problem:

{−�u = |�up| in 


u = 0 on ∂
 .

For contradiction, if up is not of one sign then the maximum principle implies u > |up|
in 
. Hence, ‖u‖p > ‖up‖p while ‖�u‖2 = ‖�up‖2. This contradicts the fact that
up minimizes S2

p(
). This shows that up > 0 and also that −�up ≥ 0 in 
. By the

boundary point lemma, we then conclude that ∂up
∂ν

< 0 on ∂
.

We can now complete the proof of Theorem 4. Since H2
0(
) ⊂ H2 ∩ H1

0(
), we
clearly have S1

p(
) ≥ S2
p(
). Assume for contradiction that equality holds and let

up ∈ H2
0(
) be a minimizer for S1

p(
). Then, up is also a minimizer for S2
p(
) which

satisfies ∂up
∂ν

= 0 on ∂
. This contradicts Lemma 6 and proves Theorem 4.

Remark 2 A further strict inequality states that for any bounded open domain 
 ⊂ R
n

and any 2 < p < 2∗ one has S2
p(
∗) ≤ S2

p(
) with equality if and only if 
 = 
∗.
Here 
∗ denotes the symmetrized of 
, the ball having the same measure as 
. This
follows from Talenti’s comparison principle [18].
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