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Abstract

We consider both the stationary and evolution 3D Navier-Stokes equations; we define approx-
imable solutions and we study existence and uniqueness of these solutions.

1 Introduction

We study the problem of uniqueness of the solutions of the Navier-Stokes equations in a smooth
bounded domain € C IR?: we deal with both the homogeneous Dirichlet stationary problem and the
evolution Cauchy-Dirichlet problem. Some of our results apply as well to the 2D case but we will not
concern ourselves with this problem.

We first consider the evolution problem

du—nAu+(u-Viu+Vp=f in Qx(0,T)
Vou=0 in Qx(0,T)

u=0 on 8Qx(0,T)

u(0) = up in Q

where the unknowns are the velocity vector function u and the pressure scalar function p, 7 is the fluid
viscosity and f an external force acting on the fluid. It is known that (1) admits at least a weak global
solution for all forcing term f in a suitable functional space. In the 2D case, it is also known that the
global solution is unique: this follows by a suitable application of the Gagliardo-Nirenberg inequality.
In the 3D case, such inequality is not sufficient to obtain uniqueness: hence, one usually restricts
to functional spaces where existence is not guaranteed, see e.g. Theorem 6.9 p. 84 in [4]. From a
mathematical point of view it looks therefore natural to try to approximate the solutions by means of
functions in such spaces; to this end, we consider the modified Navier-Stokes equations introduced in
(5] which enable to regularize the solution sufficiently to obtain uniqueness: approximable solutions of
(1) are then defined to be these solutions which are the limit (in a suitable sense) of the sequence of



solutions of the modified equations when the modification tends to disappear. We will prove that the
set of approximable solutions is either infinite or it contains a single function.
Next, we consider the stationary equations with non-slip boundary conditions, namely

—nAu+ (u-Vu+Vp=f in Q
V-u=0 in Q (2)
u=20 on 0f);

it is well-know that (2) admits at least a weak solution for all f in a certain functional space V', see
next section; on the other hand, uniqueness of a solution is assured only if the external force f is small
in a suitable sense, see e.g. [6]. A remarkable result by Foias-Temam [1, 2] states that there exists an
open dense subset O C V' such that for all forcing term f € O the set of solutions of (2) is finite (we
refer to Proposition 1 below for the exact statement of their result); the crucial tool in the proof is
the Sard-Smale Theorem. Subsequently, by means of the Leray-Schauder degree theory, Temam (see
Section 10.3 in [7]) proved that for all f € O the number of solutions is odd in number. However, up
to now, uniqueness of the solutions of (2) for general f has not yet been proved.

In this paper we prove that for all f € O there exists at most an approximable solution of (2): the
definition of approximable solution is given in next section. In other words, we prove that for “almost
all” f, any “well behaved” approximation yields a unique solution of (2).

The results we expose here are not yet satisfactory. For the stationary problem (2) we obtain a
uniqueness result in a class of functions (the class of approximable solutions) where existence seems
difficult to prove: standard numerical approximations (see [6]) seem not to fit in our framework. For
the evolution problem (1) we do have an existence result but Definition 2 below seems not powerful
enough to ensure uniqueness of an approximable solution. However, we believe that our results may
be a starting point for further research.

2 Notations and results

Bold capital letters (L2, H!,...) represent functional spaces of vector functions and usual capital letters
(L2, H',...) represent spaces of scalar functions: we set L? := L%(Q),.... and we specify the set only
when it is not . With H™ we represent the Hilbertian Sobolev spaces, H(lJ denotes the H! closure
of the space of smooth functions with compact support in 2: we denote by || - ||, the L norm. We
consider the spaces

G:={fel’ V- f=0, mf=0} V:={feH; V- f=0}

where 7, denotes the normal trace operator; moreover, we consider the dual space V' of V. The space
V is a Hilbert space when endowed with the scalar product (u,v)v = (Vu, Vv)a; we denote by V, the
space V endowed with its weak topology. We also introduce the spaces L2(0,T; V) and L°(0,T; G)
of functions defined in € x (0,7") whose V-norm is square integrable on (0,7") (resp. whose G-norm
is essentially bounded on (0,77)): we denote by || - ||z2¢vy (resp. ||+ [z(q)) their norms. Similarly, for
any couple of spaces B and W we define B(0,7; W): if it is a normed space we denote its norm by
|- o

Finally, throughout this paper we denote by I the interval I = [1,+00).



2.1 The evolution equations
Let D =Dql0,T) := {6 € CX(Q x[0,T)); V-¢=0in Q}; we say that u is a solution of (1) if
T T
| [~ @aoe+nw oy + (@ Vywa)] di = [ (1.0)d+(w.00)e  YoeD, (3
where (-, -) is the duality pairing between V’ and V: even if solutions may be intended in a stronger
sense, namely for a wider class of test functions, we will not concern ourselves with this problem. For

all f € L?(0,T; V') there exists at least a solution u of (3) such that u € L*(0,T; V) N L>®(0,T; G);
moreover, dyu € L*3(0,T;V'), see e.g. [6]. When no confusion arises, instead of (3) we simply write

Ou—nAu+ (u-Viu=f in Wit

In the sequel we denote by Sy the set of solutions of (3): let us now explain what we mean by
approximable solution.

Definition 1 Let f € L?(0,7;V') and uyp € G; we say that A = A(ug, f) = ({ush, {fs})ser is an
approximating set of data if {fs}ser C L?(0,T; V'), {us}se;r C G and

(i) fs — fs in L*(0,T; V') ass —5¢€ 1T, fs — fin L*(0,T; V') as s — 0

(i) us —us in G ass —>5€1, ug — U i Gy as § — 0.

For all s > 1, consider the function o, : IRT — IR™ defined by

n it x<s
os(x) =¢ 23 if z>s+1

U, (x) if s<x<s+1

where ¥ is a C? function such that o5 € C2[0, +00), and () > 0 for all z € (s, s + 1); moreover,
we choose ¥, so that

Vsel limos =05 uniformly on R". (4)
Let ¢ : IR? — IR? be the function defined by ¢s(x) = os(|z|)2; for all s € I consider the problem
O — Aps(u) + (u- Viu = fq in Qx(0,7)
Vou=0 in Qx(0,T)
u=0 on 90 x(0,T)
w(0) = ug in Q:

we say that u is a solution of (Py) if

T T
| [~ wad)e - e, 80) + (- Vw)] dt = [ (f.6)dt+ (.60 WoeD.

Note that for all s, the function o, satisfies the assumptions a) b) ¢1) of Theorem 5 in [5]: therefore,
there exists a unique vs € L2(0,T; V) N L>®(0,T;G) N L5(0,T; L?), solution of (Ps); moreover, in [3]
it is proved that vs is continuous in [0,7] with respect to the weak G topology, so that the initial
condition makes sense.



Definition 2 Given an approzimating set of data A= ({us},{fs})ser, denote by vy the unique solu-
tion of (Ps); we say that u € Sy is approximable if there exists a subsequence {v*}ren C {vs}ser
such that

o —win L2(0,T5V)  oF —*win L%(0,T;G) .

We denote by Uy the set of approzimable solutions of (1).
We prove the following alternative result for approximable solutions:

Theorem 1 Let f € L?(0,T; V'), ug € G and let A be an approzimating set of data; then, Uy # 0.
Moreover, if (1) admits more than one approzimable solution then the set of approximable solutions
U relative to (1) is infinite (at least a continuum,).

Remark. It will be clear from the proof that Theorem 1 continues to hold if instead of f € L*(0,77; V')
we take f = fi + fo with fi € L?(0,7;V') and f» € LY(0,T; G), see p.264 in [6] and Theorem 2.2 in
3. 0

2.2 The stationary equations

We assume that f € V' and we define implicitly the operator A: V — V' by
(Au,¢) = (=nAu+(u-Vju,¢)  VpeV ()

where (-,-) denotes the duality pairing between V' and V; hence, A € C(V,V’). We say that u is a
solution of (2) if
(Au—f.6)=0 VoeV: (6)

in the sequel we denote by Sy the set of solutions of (6): as already mentioned, we have Sy # () for all
fev.

The definition of approximable solution is different from that in the evolution case.

Definition 3 We say that the set {(An, fn) }ner is an approximating scheme for (6) if {Ap}ner C
C(Vw,Véu), {fh}he[ Cc V' and

(i) Apup, — Au in 'V, whenever up — u in Vy,

(ii) fn— f in V.

Definition 4 Given an approzimating scheme {(Ap, fn)}ner, we say that {uptner C V is an ap-
proximating family for (6) if:

(i) for all h € I, uy, is the unique solution of the equation Apup = fj

(i) for all sequence hy, — 400 there exist a subsequence {hy,} and uw € Sy such that up — w in Vy,
(i4) for all h € I, lim,__3 |lup — ug ]2 = 0.

Definition 5 Given an approximating scheme {(Ap, fn) tner, we say that a solution w of (6) is ap-
proximable (with respect to {(An, fn)}ther) if there exist an approzimating family {up}re; and a
sequence hy, — +oo such that up, — w in 'Vy,. We denote by Uy the set of approximable solutions of

(6)-



Clearly, there may exist different choices of the approximating scheme, that is, different choices of the
operators Ay and of the functions f; we will prove the following uniqueness criterion:

Theorem 2 There exists a dense open set O C V' such that for all f € O and for all approximating
scheme {(An, fn) }her there exists at most one approxzimable solution u of (2).

Theorem 2 is related to the following extension of a result by Foias-Temam [1, 2[:

Proposition 1 Let f € V', then Sy is homeomorphic to a compact set of R™ for a suitable m.
Moreover, there exists a dense open set O C V' such that for all f € O the set Sy is finite.

The original proof of Foias-Temam is performed under the assumption that f € G; however, it can
be easily extended to the case f € V’: for sake of completeness we quote the proof in the appendix.

3 Proof of Theorem 1

Let f € L?(0,7;V"), ugp € G and let A = ({us},{fs})scr be an approximating set of data; we first
prove

Lemma 1 For all s,5 € I let vs and vz denote the solutions of (Ps) and (Ps) respectively; then
vs —*vs in L®(0,1;G) and vs —wvs in L*(0,T;V) as s —§ . (7)

Proof. We first prove that [|vs||;ss) remains bounded as s — 5. By standard energy estimates (see
(4.49) in [5]) one gets

Sl + Flonlacey < gluslls + 5ol Yaels ®)
therefore, from (4.51) and Lemma 1 in [5] one gets

V6 >0 ACs(s) >0, vsllssy < Cs Vs €[l,5+6] . (9)
Let ws = vs — vs: by subtracting the the two equations relative to (Ps) and (Ps) we get

Oy — Alp(vs) — 9(v5)] = (v - V), — (05 - V)5 = fo — f + Alipa(vs) — w(vs)]

Next, let G = (—A)~! denote Green’s operator from V' into V: by (3.1)-(3.2) and Lemma 3 in [5],
for all w > 0 there exists C,, > 0 such that if we test the above expression with Gw,(t), integrate over
Q2 we obtain for a.e. t € [0, 7]

1d
=l (®) B+ s ()%

< ColllosOIZ + NosO 2 lws (D15 + wllws (0)IE + [1fs(t) = fsOllv || Guws(#) v+ (10)
Fllos(vs(t)) = ws(vs(W) |2 llws@lla -



Let ®5(t) = [Jvs(t)]|2 + |Jvs(t)]|2; then, by (9), we have &; € L}(0,T) for all s sufficiently close to 3.
Hence, choose w = 7 in (10), multiply by 2exp(—2C, [ ®s(7)d7) and integrate over [0,t] (for some
t € (0,77) to infer

el e ( =26, [ @u(r)ar) = s = sl
<2 [ (1) = SsOllwla )l + lpa(es(r) = patostrlnelies e

by (9), there exists C' > 0 such that

T
exp (2077/ <I>5(T)d7'> <C
0
for all s sufficiently close to s; hence, we obtain
s 01 < € (llus — sl + 205 — Fillzevn lesllizen) -

Therefore, by arbitrariness of t, by taking into account (4) (8) and that ({us},{fs})ser is an approxi-
mating set of data, we deduce

[wslLoe(vry — 0 :

this, together with (8), yields (7). O
We are now ready to give the

Proof of Theorem 1. Let us first prove that Uy # 0: by (8) we infer that there exists a sequence
{v*} C {vs} and a function @ € L*>°(0,T; G) N L?(0,T; V) such that

o —~*@  in L®(0,7;G) and o* —a  in L*(0,T;V);

clearly, u € U,.
Next, let us prove that if there exist u', u? € U4 such that u! # u? then U 4 is at least a continuum. By
(8), there exists K > 0 such that |Jvs||;2¢vy < K for all s € I: therefore, on the L*(V)-ball of radius
K we can introduce a metric § which defines a topology equivalent to the weak topology of L?(V).
Let p := &(ul,u?) (clearly p > 0) and define the function A(s) := §(ul,vs); from (7) we infer that
A € C(I;IRT) and the limit class A of A as s — 400 is connected; moreover, {0, p} C A. Therefore,
for all € (0, p), there exists a sequence {s,} C I diverging to +o0o such that A(s,) — r. By (8), there
exists u, € L>(0,7;G) N L?(0,7; V) such that

Vs, —" Uy in L*=(0,T; G) and Vs

n

. —up  in L*0,T;V), (11)
up to a subsequence: then §(ul,u,) = r and therefore u, # u! and u, # u®. As ({us}, {fs})ses is an
approximating set of data, by (11) and by letting s,, — 400 we obtain that u, solves (1) in Wi}, that
is, u, € Uy. If we repeat the above argument for all » € (0, p) we obtain a continuum of approximable
solutions. a



4 Proof of Theorem 2

Theorem 2 will be proved by means of
Lemma 2 Let f € V'; if Uy has a V isolated point then Uy is a singleton.

Proof. Assume that u # v and that u,v € Uy; the result follows if we prove that u is a 'V cluster point
of Uy: by Proposition 1, the set U} lies in a finite dimensional subspace of V and therefore it suffices
to prove that u is a G cluster point of .

By definition of Uy, there exist an approximating family {up,}ner and two increasing sequences {ay, }
and {b,} diverging to +oc0 and such that u,, — w, up, — v in V,,. Let p = ||lu — v||2 and define the
function o(h) := ||up, — u||2; by (#4) in Definition 4, we have o € C(I,IR") and the limit class A of &
as h — 400 is connected. Therefore, as 0,p € A, if we take r € (0, p), there exists a sequence {hy}
diverging to +oo such that o(h,) — r: then, by () in Definition 4, there exists u, € Sy such that
up, — Uy in Vy,, up to a subsequence; by the compact imbedding V C L? we obtain ||u — u,||s = 7.
Obviously, u, € Uy; if we repeat the above argument for all r € (0, p) and we let r — 0, we obtain a
sequence {u,} C Uy such that |ju — u,|l2 = — 0 and the result is proved. O

Proof of Theorem 2. Tt follows directly from Lemma 2 and the second part of the statement of
Proposition 1. O

5 Appendix: proof of Proposition 1

By taking ¢ = u in (6) and by Schwarz inequality one has

lullv < [1il\d Yu e Sy . (12)

n

We recall that the Stokes operator —PA has a compact selfadjoint inverse (here P denotes the or-
thogonal projector of L? onto G); therefore, there exists an orthonormal basis {e, }%°_; and a positive
diverging sequence {Ap, }o°_; such that —PAey, = Amen: it is also well-known that A, =< m2/3. In
the sequel P, denotes the orthogonal projection onto the space spanned by ey,...,en, (either in V, G
or V') and @, = Id — Pp,.

We claim that if m is large enough then there exists ¢, > 0 such that

Ju—ollv < cullPalu—v)le  Vuve Sy (13)

Indeed, take u,v € Sy and let w = v — v: by subtracting the two relations (6) corresponding to u and
v we obtain

ULVUJV(ﬁ:—A(u-V)u-¢+A(U.V)U.¢ Vo eV

choosing ¢ = Qw and using well-known properties of the trilinear form (u,v,w) — (u - V)v - w we
obtain

MQuully = — [ (Ve Quu= [ w- Vo Quu
= —/(u-V)me-Qmw—/(me-V)v-Qmw—/(Qmw-V)v-Qmw
Q Q Q

< dlullv - [1Pnwllv - |Quwllv + ¢l Pawllv - [vllv - |Qmwlv + cllvllv - |Qmwl -



Taking into account (12), the generalized Poincaré inequality )\}.,{ianmQSHG < [|@mo|lv (which holds
for all ¢ € V), the Gagliardo-Nirenberg inequality (see e.g. Lemma 3.5 p.296 in [6]) and the equivalence
of the norms in finite-dimensional spaces we obtain

—1/4
nl|Qmelfr < el Prtel]z - | Qmevllv + e L Q] (14)

finally, by Young inequality, we infer

n —1/4
M@l < (5 + At ) 1Quaolr + el Pl

Therefore, if m is large enough we get

1Qmw|lr < emll Pl 5

hence, , ) ) ;
lwllr = 1Prwlly + [[Q@mwlly < eml|Prwlz

and (13) is proved.

The first part of Proposition 1 is now easily obtained. Indeed, by (12) and the compact imbedding
V C G we infer that Sy is G compact, and hence it is V compact by (13). Moreover, by (13), if u,v €
Sy satisfy P,u = Ppv then u = v: hence, Sy is contained in a space isomorphic to span{ei, ..., en}.
Therefore, the set S is homeomorphic to a compact set of IR"™.

The second part of Proposition 1 can be obtained by applying a suitable form of the Sard-Smale
Theorem, see e.g. Theorem 10.3 in [7]: it suffices to prove that the operator A defined in (5) is a
proper Fredholm operator of index 0.

Tt is not difficult to verify that the operator A is a C°° mapping from V into V' and that for all u € V
its derivative A’(u) is the linear operator from V into V' implicitly defined by

(A(W], @) = (—nAv+ (u-V)o+ (v Viu,¢) Vv, €V ;

for all w € 'V the linear maps v — (u - V)v and v — (v - V)u are continuous from V into L3/2 and
hence, compact from V into V’: since the Stokes operator is an isomorphism from V onto V', this
proves that A is a Fredholm operator of index 0.

Now let K denote a compact subset of V’: to prove that A is proper, we need to prove that A~ 1(K)
is compact in V. Since K is bounded in V', by (12) we know that there exists C' > 0 such that

lulv <C  Yue ATHK) . (15)
Consider a sequence {uy} C A~1(K); then there exists a sequence {f;} C K such that
(=nAug + (ug - Vug, ¢) = (fr,¢) Vo EV. (16)

Since K is compact, there exists f € K such that fi — fin V', up to a subsequence; moreover, by
(15) and by extracting a further subsequence, we infer that there exists @ € V such that uy — @ in Vy,
and uy — u in L*: we still denote by {u} such subsequence. Consider (16) for two integers k and h,
subtract and take ¢ = ug—uy: then by well-known properties of the trilinear form (u, v, w) — (v-V)v-w
we obtain

Mlue — unlly < 11 fe — fullvellue — unllv + lunllv lue — usll? ;



hence, by (15) we infer that

nllue — unlly < 2C|| fi = fullv: + Clluk — wallj -

Therefore, as {fx} and {ug} are Cauchy sequences in V' and L* respectively, we infer that {uz} is
also a Cauchy sequence in V: hence, uy — @ in V. Since A(7) = f € K, we infer that € A~!(K):
the operator A is proper and the second part of Proposition 1 is proved. O

Remark. In estimate (14) the term )\;nl_ﬁ is involved while in the corresponding proof of Foias-Temam,

the term involved is )\;L1+/12 ; this could mean that the integer m found in Proposition 1 is larger than

that of Theorem 1.2 in [1]: in this case, the set of weak solutions of (2) (corresponding to f € V') is in
fact larger (in the sense that it has “more dimensions”) than the set of strong solutions (corresponding
to f € G).
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