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Abstract. We consider the solutions to Cauchy problems for the parabolic

equation uτ + ∆2u = 0 in R+ ×Rn, with fast decay initial data. We study the

behavior of their moments. This enables us to give a more precise description of
the sign-changing behavior of solutions corresponding to positive initial data.

1. Introduction. The Cauchy problem{
uτ + ∆2u = 0 in R+ × Rn ,
u(0, y) = u0(y) in Rn , (1)

where u0 ∈ L1(Rn), and the behavior of its solutions u = u(τ, y), have been recently
studied under several aspects. For general linear problems we refer to [2, 3, 4, 17, 20],
for the semilinear equations uτ + ∆2u = |u|p−1u and uτ + ∆2u = |u|p we refer
respectively to [13, 15, 18, 19] and [5, 9, 10, 11, 16], whereas for nonlinear problems
with irregular initial data u0 we refer to [6, 7, 8]. These papers show a quite strong
interest about (1) developed in recent years.

It is well-known that the kernels fn of the biharmonic heat operator change sign,
see Section 4.1 where we recall their basic properties. Therefore, one expects the
solution u to (1) to display at least one sign change even if the initial datum is
nonnegative, namely u0 ≥ 0 in Rn. This was explicitly shown in [13, 20] where
a property named eventual local positivity was highlighted. Roughly speaking, for
suitable initial data u0 ≥ 0 the solution u becomes positive on compact subsets of
Rn for sufficiently large time τ although it is strictly negative in some other points.
In other words, “negativity always exists but it goes to infinity in space as time
goes to infinity”.

The purpose of the present paper is to shed some further light on the long-time
behavior of solutions to (1). Most of the classical methods usually exploited for the
second order heat equation do not apply. For instance, any reasonable Lyapunov
functional for (1) becomes very complicated due to the presence of fourth order
derivatives, too many terms appear and the study of their signs is out of reach.
Also standard entropy methods fail, due to the change of sign of the kernels and of
the solution to (1); the usual entropy is

∫
u log u and cannot be considered. The

sign change of the kernels fn also forbids to analyze the behavior of suitable scaled
ratios such as u/fn (the solution u to (1) divided by the kernel fn in (27)) in order to
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obtain Ornstein-Uhlenbeck-type equations. These difficulties force us use to develop
alternative strategies.

We first introduce some energy-type functionals and describe their time evolution.
Theorem 2.1 and Corollary 1 show the link between different energies and their
decreasing properties with respect to τ . This enables us to deduce some striking
properties of the positive and negative parts of the solutions to (1), see Remark 1.

Next, we study the behavior of the moments of the solutions to (1). To this end,
we transform (1) into a Fokker-Planck-type equation, see (3). The first step then
consists in determining the sign of the moments, with respect to general monomials,
of the unique stationary solution, see Theorem 2.2; it turns out that these signs
follow a quite elegant pattern. This result enables us to determine the behavior of
the moments of general solutions to the Fokker-Planck equation, see Theorem 2.3;
in particular, since these moments converge to the moments studied in Theorem 2.2,
we may asymptotically determine their sign. Then we repeat the same study for the
moments with respect to powers of |x|, that is, |x|b for all b > −n. The pattern for
the stationary solution is even more elegant than the one for general monomials, see
Theorem 2.4. We use this result in Theorem 2.5 in order to determine very precise
properties of the corresponding moments of any solution to (1). Finally, with these
results at hand we may find almost optimal thresholds between initial data u0 for
which the solution to (1) is always positive and the data for which it changes sign,
see Corollaries 3 and 4.

This paper is organized as follows. In Section 2.1 we introduce and study some
decreasing energies for solutions to (1). In Section 2.2 we study in full details the
moments of solutions of the corresponding Fokker-Planck equation. Section 3 is de-
voted to the proofs of the main results. Finally, in the Appendix we recall the basic
properties of the biharmonic heat kernels and of the spectrum of the biharmonic
Fokker-Planck operator, and we conclude by suggesting an open problem.

2. Asymptotic behavior of the solution. We first transform (1) into a Fokker-
Planck-type equation. Let

R(τ) := 4
√

4 τ + 1

so that R(τ)3R′(τ) ≡ 1. Also put

u(τ, y) := R(τ)−n v

(
logR(τ),

y

R(τ)

)
. (2)

Then take t = logR(τ) and x = y/R(τ). Some lengthy but straightforward compu-
tations show that v = v(t, x) solves{

vt + L v = 0 in R+ × Rn ,
v(0, x) = u0(x) in Rn , (3)

where

L v := ∆2v −∇ · (x v) . (4)

In this paper, we will also consider the space S of smooth fast decaying functions

S := {w ∈ C∞(Rn) : |x|aDαw(x)→ 0 as |x| → ∞ for all a ≥ 0 , α ∈ Nn} .

In order to describe the behavior of the solutions to (3), one needs first to char-
acterize possible stationary solutions. From, for instance, [11, (1.7) and (1.8)], or
[12], we recall
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Proposition 1. Up to a multiplication by a constant, there exists a unique nontriv-
ial stationary solution to (3) which belongs to S. This solution is radially symmetric
and, if we further assume that

∫
Rn v∞(x) dx = 1, explicitly given by

v∞(x) = 2(n+2)/4 αn |x|1−n/2
∫ ∞

0

e−s
4

sn/2 J(n−2)/2(
√

2 |x| s) ds , (5)

and satisfies

|v∞(x)| ≤ K e−µ |x|
4/3

for all x ∈ Rn , (6)

for some constants K, µ > 0.

For the explicit value of µ in (6) see [22] and, for the case n = 1, see [14,
(5.14)]. Notice that v∞ can be expressed in terms of the kernel fn: v∞(x) =

2n/2 αn fn(
√

2 |x|), for any x ∈ Rn, and (6) is therefore equivalent to

|fn(x)| ≤ K

2
n
2 αn

e−µ ( 1
2 |x|

2)2/3 for all x ∈ Rn . (7)

Although the functions v∞ and fn are strictly related we prefer to maintain the
double notation since, in our setting, they play quite different roles; the former is a
stationary solution to (3), the latter is the biharmonic heat kernel.

2.1. Decreasing energies. Assume that u0 ∈ L1(Rn) and let v be the solution to
(3). To this solution we associate five different energy-type functionals

E0(t) :=

∫
Rn

|v(t, x)|2dx , E1(t) :=

∫
Rn

|∇v(t, x)|2dx , E2(t) :=

∫
Rn

|∆v(t, x)|2dx ,

E3(t) :=

∫
Rn

|∇∆v(t, x)|2dx , E4(t) :=

∫
Rn

|∆2v(t, x)|2dx ,

and we prove

Theorem 2.1. Let u0 ∈ L1(Rn) and let v be the solution to (3). Then, for any
j ∈ {0, 1, 2}, the energies of v satisfy the following ODE’s:

E ′j(t) = − 2 Ej+2(t) + (n+ 2j) Ej(t) .

Undoing the change of variables (2) yields

Corollary 1. Let u0 ∈ L1(Rn) and let u be the solution to (1). Then, for all τ > 0
we have ∫

Rn

u(τ, y) dy =

∫
Rn

u0(y) dy , (8)

d

dτ

∫
Rn

u(τ, y)2 dy = − 2

∫
Rn

|∆u(τ, y)|2 dy , (9)

d

dτ

∫
Rn

|∇u(τ, y)|2 dy = − 2

∫
Rn

|∇∆u(τ, y)|2 dy ,

d

dτ

∫
Rn

|∆u(τ, y)|2 dy = − 2

∫
Rn

|∆2u(τ, y)|2 dy .

The proof of (8) follows by integrating (1) and by applying the divergence theo-
rem. The other statements of Corollary 1 may be obtained either by direct compu-
tations using (1) and integrations by parts or as a straightforward consequence of
Theorem 2.1, whence we omit their proof.
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Remark 1. Denote by u+ = max{u, 0} and u− = −min{u, 0} the positive and
negative parts of a function u, so that u = u+ − u−. As already mentioned, the
solution u to (1) may change sign, see [13, 20]. This happens, for instance, if
u0 ∈ C0

c (Rn), 0 6≡ u0 ≥ 0 in Rn, see [20, Theorem 1]. In such case, (8) states that
the map

τ 7→
∫
Rn

u(τ, y) dy (τ ≥ 0)

is constant and equals a strictly positive number even if some pointwise negativity
appears in u(τ, y). Hence,∫

Rn

u−(τ, y) dy >

∫
Rn

u−(0, y) dy = 0 for all τ > 0 ,

∫
Rn

u+(τ, y) dy >

∫
Rn

u+(0, y) dy =

∫
Rn

u0(y) dy for all τ > 0 ;

here we use redundant notations (u+(0, y) = u+
0 (y) = u0(y) and u−(0, y) = u−0 (y) =

0) in order to emphasize the strict inequalities between the mass of the positive
(respectively, negative) part of the solution u = u(τ, y) and the the mass of the
positive (respectively, negative) part of initial datum u0.

On the other hand, (9) states that

τ 7→
∫
Rn

u(τ, y)2 dy (τ ≥ 0)

decreases and, in particular, that∫
Rn

u+(τ, y)2 dy <

∫
Rn

u0(y)2 dy =

∫
Rn

u+
0 (y)2 dy (τ > 0) .

Summarizing, the L2-norm of the positive part of the solution u is smaller than
the L2-norm of the positive part of the initial datum u0, whereas the L1-norm of
the positive part of the solution u is larger than the L1-norm of the positive part
of the initial datum u0. �

2.2. Behavior of the moments. Here we are interested in the moments of the
function v∞ defined in (5) and to relate them to the moments of solutions v to (3).
The prototype monomial in Rn is given by

Pm(x) =

n∏
i=1

xmi
i for m = (m1, ...,mn) ∈ Nn

and its degree is |m| =
∑
imi. Then we define the Pm-moment of v∞ by

MPm :=

∫
Rn

Pm(x) v∞(x) dx (10)

and we prove

Theorem 2.2. For any m = (m1, ...,mn) ∈ Nn the following facts hold:

1. M∆2Pm
= − |m|MPm ,

2. if |m| 6∈ 4N or if at least one of the mi’s is odd, then MPm
= 0,

3. if |m| ∈ 8N and all the mi’s are even, then MPm
> 0,

4. if |m| ∈ 8N + 4 and all the mi’s are even, then MPm
< 0.
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Let u0 ∈ S and consider the solution v to (3). Let Pm be as above and consider
the (time-dependent) map

MPm,u0
(t) :=

∫
Rn

Pm(x) v(t, x) dx =

∫
Rn

(
n∏
i=1

xmi
i

)
v(t, x) dx .

The following result holds.

Theorem 2.3. Assume that u0 ∈ S is normalized in such a way that∫
Rn

u0(x) dx =

∫
Rn

v∞(x) dx = 1 (11)

and let v denote the solution to (3). For any t ≥ 0, the following facts hold:

1. M ′Pm,u0
(t) = −M∆2Pm,u0

(t)− |m|MPm,u0(t) for all m ∈ Nn,

2. MPm,u0(t) = e−|m| t
∫
Rn Pm(x)u0(x) dx for all |m| ≤ 3,

3. limt→∞MPm,u0
(t) =MPm

for all m ∈ Nn.

By combining Theorems 2.2 and 2.3, we infer

Corollary 2. Assume that u0 ∈ S is normalized in such a way that (11) holds and
let v denote the solution to (3). Then

lim
t→∞

MPm,u0
(t)

 = 0 if |m| 6∈ 4N or if at least one of the mi’s is odd,
> 0 if |m| ∈ 8N and all the mi’s are even,
< 0 if |m| ∈ 8N + 4 and all the mi’s are even.

We have so far considered moments having polynomials of x as weights. In fact,
also different kinds of moments are of interest. We now consider powers of |x| which
are polynomials only for even integer powers. For any b > −n we define

Mb :=

∫
Rn

|x|b v∞(x) dx .

Note that for b > −n the above integral is finite since |x|b v∞(x) ∼ v∞(0) |x|b as
x → 0 and v∞ has exponential decay at infinity according to (6). If Pm(x) = |x|m
for some m ∈ 2N, then Mm coincides with MPm

as defined in (10). We are again
interested in the sign of these moments. By combining several arguments from [13]
we prove

Theorem 2.4. Assume that n ≥ 1 and that b > −n. Then

Mb > 0 for all b ∈ (−n, 2)
⋃( ∞⋃

k=0

(8k + 6, 8k + 10)
)
,

Mb = 0 for all b ∈ 4N + 2 ,

Mb < 0 for all b ∈
∞⋃
k=0

(8k + 2, 8k + 6) .

Theorems 2.2 and 2.4 give further evidence to the sign-changing properties of
the kernels fn (recall that v∞(x) = 2n/2 αn fn(

√
2 |x|)) , and they better describe

how these infinitely many sign changes occur. They also show that the sign of the
moments do not depend on n, see Figure 1; for instance, negativity of Mb occurs
for b ∈ (2, 6) ∪ (10, 14) ∪ ... regardless of the value of n ≥ 1.
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Figure 1. Sign of Mb.

In the particular case where |m| = 2k and Pm(x) = |x|2k we may give a simple
characterization of the moments of a solution to (3). Consider a solution v to (3)
with initial data u0. For all b ≥ 0 we put

Mb,u0(t) :=

∫
Rn

|x|b v(t, x) dx

and we prove

Theorem 2.5. Assume that u0 ∈ S is normalized in such a way that (11) holds
and let v denote the solution to (3). Then for any k ∈ N, k ≥ 2, the above defined
functions satisfy the following ODE

M ′2k,u0
(t)+2kM2k,u0

(t) = − 2k (2k−2) (2k+n−2) (2k+n−4)M2k−4,u0
(t) . (12)

Moreover, for any k ∈ N, we have

lim
t→+∞

M2k,u0
(t) =M2k (13)

and the following explicit representation

M2k,u0
(t) =

k∑
j=0

akj e
−2jt , (14)

where ak0 =M2k and

(i) akk = M2k,u0(0) + 2k (k − 1) (2k + n− 2) (2k + n− 4)

k−2∑
j=0

ak−2
j

k − j
,

(ii) akk−1 = 0 if k ≥ 1 ,

(iii) akj = − 2k (k−1) (2k+n−2) (2k+n−4)
k−j ak−2

j if k ≥ 2 and j = 0, ..., k − 2 .

In (i) we use the convention that
∑k−2
j=0 = 0 if k ≤ 1.

Formula (14) shows, for instance, that

M0,u0(t) ≡
∫
Rn

u0(x) dx , M2,u0(t) = e−2t

∫
Rn

|x|2 u0(x) dx ,
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M4,u0
(t) = − 2n (n+ 2)

∫
Rn

u0(x) dx+

∫
Rn

[
|x|4 + 2n (n+ 2)

]
u0(x) dx e−4t ,

M6,u0(t) = − 6 (n+ 4) (n+ 2)

∫
Rn

|x|2 u0(x) dx e−2t

+

(∫
Rn

|x|6 u0(x) dx+ 6 (n+ 4) (n+ 2)

∫
Rn

|x|2 u0(x) dx

)
e−6t .

Remark 2. Even if b 6∈ 2N (so that |x|b is not a polynomial) we may still define
the map Mb,u0 and, arguing as for (12), for all b ∈ [4,∞) we obtain

M ′b,u0
(t) + bMb,u0(t) = − b (b− 2) (b+ n− 2) (b+ n− 4)Mb−4,u0(t) .

�

Note that Theorems 2.3 and 2.5 also hold in a weaker form if u0 ∈ L1(Rn) and
|x|a u0 ∈ L1(Rn) for some a ≥ 4. In this case, the statements hold true under the
additional restriction that |m| ≤ a. In particular, we have the following

Corollary 3. Assume that (1 + |x|4)u0 ∈ L1(Rn) and that (11) holds. If v denotes
the solution to (3), then

lim
t→+∞

∫
Rn

|x|4 v(t, x) dx =M4 < 0 .

By combining (8) with Corollary 3 and with [13, Proposition A.6], we obtain

Corollary 4. Assume that u0 > 0 a.e. in Rn.
(i) If (1 + |x|4)u0 ∈ L1(Rn), then the solution u to (1) changes sign.
(ii) If n = 1, there exists β0 > 0 such that if β ∈ (0, β0) and u0(x) = |x|−β, then

the solution u to (1) is a.e. positive in R+ × R.

Corollary 4 can be interpreted as follows. From [20, Theorem 1] we know that
solutions u to (1) with compactly supported nonnegative initial data u0 display the
eventual local positivity property, that is, u(τ, y) becomes eventually positive on any
compact subset of Rn but it is always strictly negative somewhere in a neighborhood
of |y| = ∞. This happens because the biharmonic heat kernels exhibit oscillations
and, outside the support of u0, they “push below zero” the initial datum. The same
happens if u0 > 0 but u0 is “very close to zero”, see statement (i). On the other
hand, if u0 > 0 and u0 is “far away from zero” then the kernels do not have enough
negative strength to push the solution below zero, see statement (ii). The trivial
case u0 ≡ 1 (which is a stationary solution to (1)!) well explains this situation.

3. Proofs.

3.1. Proof of Theorem 2.1. Let fn be the biharmonic heat kernels, see (27), and
let αn > 0 be a normalization constant, see (28). Then the solution u to (1) is
explicitly given in terms of a convolution with the initial datum

u(τ, y) = αn τ
−n/4

∫
Rn

u0(y − z) fn
(
|z|
τ1/4

)
dz (15)

= αn

∫
Rn

u0(y − τ1/4z) fn(|z|) dz , (τ, y) ∈ R+ × Rn .

A well-known fact is that u(τ, y) decays to 0 as τ → +∞, see e.g. [13, The-
orem 1.1]. Moreover, by differentiating under integral sign (15) and by applying



3590 FILIPPO GAZZOLA

Lebesgue’s dominated convergence theorem (this can be done in view of (7)), one
obtains

Proposition 2. Let u0 ∈ L1(Rn) and let u be given by (15). Then

lim
|y|→∞

Dαu(τ, y) = 0

for any τ > 0 and any multiindex α, where Dα denotes the corresponding differ-
entiation with respect to the y-variables. Therefore, if v denotes the corresponding
solution to (3), we have

lim
|x|→∞

Dαv(t, x) = 0

for any t > 0 and any multiindex α, where Dα now denotes differentiation with
respect to the x-variables.

Proposition 2 allows integrations by parts with no terms at infinity. If j = 0 we
have

E ′0(t) = 2

∫
Rn

v vt dx = −2

∫
Rn

vL v dx

so that two integrations by parts yield

E ′0(t) = − 2

∫
Rn

|∆v|2 dx+ 2

∫
Rn

v∇ · (x v) dx .

By computing ∇ · (x v) = n v + x · ∇v and with a further integration by parts we
obtain the statement for j = 0.

If j = 1 we have

E ′1(t) = 2

∫
Rn

∇v∇vt dx = − 2

∫
Rn

∆v vt dx = 2

∫
Rn

∆vL v dx .

Since there are no boundary terms, an integration by parts shows that∫
Rn

∆v (x · ∇v) dx =
n− 2

2

∫
Rn

|∇v|2 dx .

Hence, proceeding as above we obtain the statement for j = 1.
If j = 2 we have

E ′2(t) = 2

∫
Rn

∆v∆vt dx = 2

∫
Rn

∆2v vt dx = −2

∫
Rn

∆2vL v dx .

In view of the Rellich-type identity due to Mitidieri [23, (2.6)] we have∫
Rn

∆2v (x · ∇v) dx =
4− n

2

∫
Rn

|∆v|2 dx

and, once again, proceeding as above proves the statement also for j = 2.

3.2. Proof of Theorem 2.2. Recalling that v∞ is a stationary solution to (3),
several integrations by parts, which are allowed by Proposition 2, show that

M∆2Pm
=

∫
Rn

(∆2Pm) v∞ dx =

∫
Rn

Pm ∆2v∞ dx

=

∫
Rn

Pm∇ · (x v∞) dx = − |m|
∫
Rn

Pm v∞ dx = − |m|MPm

which proves Item 1, while it is straightforward to check that

MPm = 0 for all 1 ≤ |m| ≤ 3 . (16)
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The first part of Item 2 follows by combining Item 1 and (16). The second part
of Item 2 follows by recalling that v∞ is even with respect to all the variables xi
and, therefore, if Pm is odd with respect to some xi so is Pm v∞.

We prove Items 3 and 4 at the same time. We know that Item 3 is true if |m| = 0
(see Theorem 2.4 with b = 0 for further details). If |m| = 4 and all the mi’s are even,
then either ∆2Pm = 24 (if Pm(x) = x4

i for some i) or ∆2Pm = 8 (if Pm(x) = x2
i x

2
j

for some i 6= j). In any case, ∆Pm is a positive constant γ > 0 so that Item 1 shows
γ
∫
Rn v∞ dx = − 4MPm

. This shows that MPm
< 0. By repeating the use of Item

1, we see that both Items 3 and 4 hold.

3.3. Proof of Theorem 2.3. Note first that, by Proposition 2, the moments of v
are well defined. We have

M ′Pm,u0
(t) =

∫
Rn

Pm vt dx = −
∫
Rn

Pm L v dx . (17)

Once more, Proposition 2 allows several integrations by parts which show that

−
∫
Rn

Pm ∆2v dx = −
∫
Rn

v∆2Pm dx and

∫
Rn

Pm∇· (x v) dx = − |m|
∫
Rn

Pm v dx .

(18)
This proves Item 1.

If |m| ≤ 3, then ∆2Pm = 0. In view of (17) and (18) this tells us that

M ′Pm,u0
(t) = − |m|MPm,u0

(t)

which proves Item 2 upon integration of the ODE.
Item 3 is proved by induction as follows. We first claim that if 4k < |m| < 4(k+1)

for some k ∈ N then limt→∞MPm,u0
(t) = 0. For k = 0 this is a straightforward

consequence of Item 2. Assume that the above statement has been proved for some
k ∈ N. Then we take 4(k + 1) < |m| < 4(k + 2) and we rewrite Item 1 as

d

dt

(
e|m| tMPm,u0

(t)
)

= − e|m| tM∆2Pm,u0
(t) . (19)

Since ∆2Pm is a polynomial of degree |m|−4 ∈ (4k, 4(k+1)) we know by assumption
that M∆2Pm,u0

(t) = o(1) as t→∞. Hence, integrating (19) gives

e|m| tMPm,u0(t) = MPm,u0(0)−
∫ t

0

e|m|τM∆2Pm,u0
(τ) dτ (20)

and proves the claim also for 4(k + 1) < |m| < 4(k + 2).
Similarly, we prove Item 3 when |m| = 4k for some k ∈ N. When k = 0, Item

2 yields M0,u0
(t) ≡

∫
Rn v∞ dx so that Item 3 follows by (11). When k = 1, Item 3

follows by Item 1 and by taking into account that M∆2Pm,u0
(t) equals a constant

times
∫
Rn v∞ dx. Assume that Item 3 has been proved for some k ∈ N, k ≥ 1.

By Item 1 we still know that (19) holds. Since ∆2Pm is a polynomial of degree
|m| − 4 = 4k we know by assumption that M∆2Pm,u0

(t) =MPm
+ o(1) as t → ∞.

Hence, by (20) we infer that

lim
t→∞

MPm,u0(t) = lim
t→∞

(
MPm,u0(0)e−|m| t − e−|m| t

∫ t

0

e|m|τM∆2Pm,u0
(τ) dτ

)
= − lim

t→∞

M∆2Pm,u0
(t)

|m|
= −M∆2Pm

|m|
=MPm

where we used de l’Hopital’s rule, the assumption, and Item 1 in Theorem 2.2. This
completes the proof of Item 3.
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3.4. Proof of Theorem 2.4. Up to the constant ωn (that is, surface measure of
the unit ball in Rn) the Mb’s coincide with∫ ∞

0

rn+b−1 v∞(r) dr

if we abusively write v∞(x) = v∞(r), r = |x|. In view of [13, Proposition 3.2] we
know that

Mb > 0 for all b ∈ (−n, 0] . (21)

Note that Mb differs from Cn,β in [13] by a positive factor.
For the next steps we need to emphasize the dependence of Mb on n and we

denote it by Mb (n). Then we remark that the recurrence formula (29) in [13,
Lemma 4.2] can be extended to all b > −n. More precisely, an integration by parts
combined with (29) gives∫ ∞

0

ηn+b+1fn+2(η) dη = (n+ b)

∫ ∞
0

ηn+b−1fn(η) dη for all b > −n .

In terms of Mb this proves that

Mb (n+ 2) =
n+ b

2
Mb (n) for all b > −n (22)

and shows that the sign ofMb (n) does not depend on n. On the other hand, several
integration by parts (see (29) and (30) in the Appendix) show that∫ ∞

0

ηn+b−1fn(η) dη = 4 (2−b) (n−2+b)

∫ ∞
0

ηn+b−3fn+2(η) dη for all b > 2−n .

In terms of Mb this reads

Mb (n) = 2 (2− b) (n+ b− 2)Mb−4(n+ 2) for all b > 2− n

which, combined with (22), gives

Mb (n) = (2− b) (n+ b− 2) (n+ b− 4)Mb−4(n) for all b > 4− n . (23)

Theorem 2.4 follows by using repeatedly (21), (22), (23), and by taking into account
that the map (b, n) 7→ Mb (n) is continuous in {(b, n) ∈ R2 : n ≥ 1, b > −n}.

3.5. Proof of Theorem 2.5. First, notice that

M0,u0
(0) =

∫
Rn

u0 dx

and

M ′0,u0
(t) =

∫
Rn

vt dx = −
∫
Rn

L v dx = 0 .

This proves that

M0,u0(t) ≡
∫
Rn

u0(x) dx . (24)

Next, integrations by parts yield

M ′2,u0
(t) =

∫
Rn

|x|2 vt dx = −
∫
Rn

|x|2 L v dx = n

∫
Rn

|x|2 v dx+

∫
Rn

|x|2 (x · ∇v) dx

so that a further integration by parts gives

M ′2,u0
(t) = n

∫
Rn

|x|2 v dx− (n+ 2)

∫
Rn

|x|2 v dx = − 2M2,u0(t) .
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By integrating this first order linear ODE we obtain

M2,u0
(t) = e−2t

∫
Rn

|x|2 u0 dx . (25)

Moreover, we recall that for any smooth radially symmetric function w = w(r),
with r = |x|, we have

∆2w(r) = w′′′′(r) +
2(n− 1)

r
w′′′(r) +

(n− 1)(n− 3)

r2
w′′(r)− (n− 1)(n− 3)

r3
w′(r) .

Therefore, if b ≥ 4, we get

∆2(|x|b) = b (b− 2) (b+ n− 2) (b+ n− 4) |x|b−4 =: γ(b, n) |x|b−4

so that, with an integration by parts,

M ′b,u0
(t) =

∫
Rn

|x|b vt dx =

∫
Rn

|x|b [−∆2v +∇ · (x v)] dx

= − γ(b, n)

∫
Rn

v |x|b−4 dx− b
∫
Rn

|x|b v dx .

Then, by recalling the definition of Mb,u0
and Mb−4,u0

, we obtain

M ′b,u0
(t)+bMb,u0(t) = − b (b−2) (b+n−2) (b+n−4)Mb−4,u0(t) for all b ∈ [4,∞)

which proves (12). The latter equation may be rewritten as

d

dt

(
ebtMb,u0

(t)
)

= − b (b−2) (b+n−2) (b+n−4)Mb−4,u0
(t) ebt for all b ∈ [4,∞) .

(26)
We now assume that b = 2k for some k ∈ N and we prove the representation

formula (14). We proceed by induction on k.
For k = 0 only statement (i) needs to be proved and this follows from the explicit

(constant) form of M0,u0
given in (24). For k = 1, only statements (i) and (ii) have

to be proved and these follow by (24)-(25).
Assume now that (14) has been proved for M2k,u0

, for some k ≥ 0 with the
constants akj as in the statement. Then, since 2k + 4 ≥ 4, we may use (26) with
b = 2k + 4 to obtain

d

dt

(
e(2k+4)tM2k+4,u0

(t)
)

= − (2k+4) (2k+2) (2k+n+2) (2k+n)

k∑
j=0

akj e
(2k+4−2j)t .

By integrating over [0, t] we get

e(2k+4)tM2k+4,u0(t) =

M2k+4,u0
(0)−(2k+4) (2k+2) (2k+n+2) (2k+n)

k∑
j=0

akj
2k + 4− 2j

(e(2k+4−2j)t−1) .
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Therefore,

M2k+4,u0(t) =(
M2k+4,u0

(0) + (2k + 4) (k + 1) (2k + n+ 2) (2k + n)

k∑
j=0

akj
k + 2− j

)
e−(2k+4)t

− (2k + 4) (k + 1) (2k + n+ 2) (2k + n)

k∑
j=0

akj
k + 2− j

e−2jt .

This establishes (14) for M2k+4,u0
. The proof covers all even integers b = 2k.

Finally, since (11) holds, by (14) we know that

lim
t→+∞

Mb,u0
(t) = ak0 .

Moreover, by iterated applications of (iii) for j = 0 we see that ak0 = 0 if k is
even, whereas ak0 equals a constant times

∫
Rn u0 dx if k is odd. One then finds that

ak0 =M2k. Since also v∞ is a (stationary) solution to (3), the same also holds for
v∞. This proves (13).

4. Appendix.

4.1. Basic properties of the biharmonic heat kernels. The kernel of the linear
operator u 7→ uτ + ∆2u in R+ × Rn is given by

g(τ, x) = αn
fn(η)

τn/4
, η =

|x|
τ1/4

,

fn(η) = η1−n
∫ ∞

0

e−s
4

(η s)n/2 J(n−2)/2(η s) ds ,

(27)

where Jν denotes the ν-th Bessel function and αn > 0 is a normalization constant.
More precisely, if ωn denotes the surface measure of the n-dimensional unit ball
(with the convention ω1 = 2), then

α−1
n = ωn

∫ ∞
0

rn−1fn(r) dr =

∫
Rn

fn(|x|) dx . (28)

The biharmonic heat kernels are defined in (27) by means of Bessel functions.
We refer to [1] for the definition and main properties of the Bessel functions and to
[13] for a power series representation of fn defined in (27). Here we just point out
that (fn)n≥1 obeys the following recurrence formula:

f ′n(η) = − η fn+2(η) for all n ≥ 1 . (29)

This follows by direct computation:

d

dη
fn(η) =

d

dη

[∫ ∞
0

e−s
4

sn−1 (η s)(2−n)/2J(n−2)/2(η s) ds

]
{by [1, (4.6.2)]} = −

∫ ∞
0

e−s
4

sn (η s)(2−n)/2Jn/2(η s) ds = − η fn+2(η) .

From Proposition 1, we know that fn has an exponential decay at infinity. In [13]
it was also proved that the functions fn satisfy the following ODE:

f ′′′n (η) +
n− 1

η
f ′′n (η)− n− 1

η2
f ′n (η)− η

4
fn (η) = 0. (30)
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In particular, (30) enables one to show that as η → ∞, the function η 7→ fn(η)
changes sign infinitely many times. We refer again to [13] for the details. Finally, we
also refer to [21] for possible extensions to higher order polyharmonic heat equations.

4.2. The spectrum of the biharmonic Fokker-Planck operator. We recall
here some basic properties of the eigenfunctions of the operator defined by (4). Let
µ > 0 be the number in (6) and, for any a ∈ [0, 2µ), consider the function

ρa(x) = ea |x|
4/3

, x ∈ Rn (31)

so that, in particular, ρa ≡ 1 if a = 0. For any such function ρa consider the space
L2
a(Rn), the weighted space endowed with the scalar product and norm

(u, v)L2
a(Rn) =

∫
Rn

ρa(x)u(x) v(x) dx , ‖u‖2L2
a(Rn) = (u, u)L2

a(Rn) . (32)

Clearly, if a = 0 we have L2
a(Rn) = L2(Rn). Together with the space L2

a(Rn), we
consider the weighted Sobolev space H4

a(Rn) endowed with the scalar product

〈u, v〉H4
a(Rn) =

∫
Rn

ρa(x)
∑
|α|≤4

Dαu(x)Dαv(x) dx .

In view of [11, Proposition 2.1], we know that L is a bounded linear operator from
H4
a(Rn) onto L2

a(Rn). Stationary solutions v to (3) satisfy L v = 0 and belong to
the kernel of L . By Proposition 1, we infer that the kernel of L is a one dimensional
space spanned by v∞. For a complete proof of this fact we refer to [11]. Here, we
just give a heuristic justification of this statement. Stationary solutions v to (3)
satisfy

∇ · (∇∆v − x v) = 0 , x ∈ Rn .
By integrating this equation over the ball Br (centered at the origin and of radius
r > 0) and by applying the divergence theorem we obtain∫

∂Br

(
∂∆v

∂ν
− v (x · ν)

)
dσ = 0 for all r > 0 .

If we assume that v is radially symmetric and consider it as a function of r = |x|,
the latter reads

(∆v)′ − r v = 0 (33)

and therefore

v′′′ +
n− 1

r
v′′ − n− 1

r2
v′ − r v = 0 for all r > 0 . (34)

Hence, any radially symmetric stationary solution to (3) satisfies (34) and the initial
conditions

v(0) = α , v′(0) = 0 , v′′(0) = β

for some values of the parameters α and β; notice that, due to radial symmetry,
v′(0) = 0. Therefore, the space of all radially symmetric stationary solutions to
(3) is a 2-dimensional vector space identified to R2 through the couple of its initial
values (α, β). In order to determine all solutions to (34) we need to find two linearly
independent (i.e. non proportional) solutions.

In view of (30), one of them is v∞(r) = 2n/2 αn fn(
√

2 r) which may be rewritten
as in (5). Consider the solution v to (34) corresponding to (α, β) = (1, 1) so that
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v is initially positive and increasing. If we integrate (33) and we use the initial
condition ∆v(0) = n > 0, we obtain

∆v(r) >

∫ r

0

t v(t) dt > 0

which shows that v is subharmonic and that it cannot have a maximum point.
Hence, r 7→ v(r) is increasing on R+ and it does not vanish at infinity. Therefore,
the 2-dimensional space of even solutions to (34) is spanned by v∞ and v but the
only solution vanishing at infinity is v∞ (and its multiples).

Concerning nontrivial eigenvalues of the operator L defined in (4), we recall [11,
Theorem 2.1].

Proposition 3. The spectrum of L coincides with the set of nonnegative integers,
σ(L ) = N. Each eigenvalue λ ∈ σ(L ) has finite multiplicity and the corresponding
eigenfunctions are given by

Dαv∞ for |α| = λ ∈ N .

The set of eigenfunctions is complete in L2
a(Rn) for any a ∈ [0, µ).

4.3. An open problem. Let L2
a(Rn) be as in (32) and consider the (normalized)

projection operator Pa by

Pa w :=

(∫
Rn

ρa w v∞ dx

)
v∞

‖v∞‖2L2
a(Rn)

for all w ∈ L2
a(Rn) . (35)

Contrary to the second order heat equation, the operator L is not self-adjoint: we
refer to [11, Section 3] for some properties of the adjoint operator L ∗. Therefore,
although from Proposition 3 we know that the least nontrivial eigenvalue of L is 1,
we cannot obtain the standard Poincaré-type inequality

‖u− Pau‖2L2
a(Rn) ≤ (u,Lu)L2

a(Rn) for all u ∈ H4
a(Rn) .

In turn, we do not know whether the following estimate holds:

(u,Lu)L2
a(Rn) =

∫
Rn

ρa(x)u(x)Lu(x) dx ≥ ‖u‖2L2
a(Rn) for all u ∈ [kerL ]⊥ .

These estimates, which have their own interest, would allow to study the conver-
gence rates (in the weighted Lp-norm, 1 ≤ p < ∞) of the solution to (3) towards
its projection Pau onto the kernel, that is, onto the space spanned by v∞.
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of higher-order semilinear parabolic equations in the supercritical range, Adv. Diff. Eq., 9

(2004), 1009–1038.
[12] S. D. Eidelman, Parabolicheskie sistemy, Izdat. “Nauka”, Moscow, (1964).

[13] A. Ferrero, F. Gazzola and H.-Ch. Grunau, Decay and eventual local positivity for biharmonic

parabolic equations, Disc. Cont. Dynam. Syst., 21 (2008), 1129–1157.
[14] V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations:

towards Petrovskii-type criterion by blow-up approach, Nonlin. Diff. Eq. Appl., 5 (2009),
597–655.

[15] V. A. Galaktionov and P. J. Harwin, Non-uniqueness and global similarity solutions for a

higher-order semilinear parabolic equation, Nonlinearity, 18 (2005), 717–746.
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