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ABSTRACT. – We consider the periodic problem for a class of planar
N-body systems in Celestial Mechanics. Our goal is to give a variational
characterization of the Hill’s (retrograde) orbits as minima of the action
functional under some geometrical and topological constraints. The
method developed here also turns out to be useful in the study of the
full problem withN primaries each having at most two satellites. 2000
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RÉSUMÉ. – On considère le problème périodique pour une certaine
classe de systèmes deN-corps en Mécanique Céleste. Notre but est de
donner une caractérisation variationnelle des orbites (rétrogrades) de Hill
comme minima de la fonctionnelle d’action sous certaines contraintes
géométriques et topologiques. La méthode ici développée est également
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utile pour l’étude du problème complet avecN corps primaires ayant
chacun au plus deux satellites. 2000 Éditions scientifiques et médicales
Elsevier SAS

1. INTRODUCTION

This paper concerns the periodic problem for a class of planarN -
body systems in Celestial Mechanics. We mainly deal with a class of
3-body problems, though our method may be applied in some particular
cases of more generalN -body systems. We consider the case of two
major bodies and a satellite and we seek orbits when the whole system
revolves with a frequenceθ , while the third mass rotates around one of
the other bodies with aT -periodic motion. In the restricted case, when
the motion of the satellite takes place close to one of the primaries, this
problem is known as Hill’s problem and a simple argument based on the
inverse function theorem shows the existence of periodic orbits (in the
rotating frame) for small values of the quantityθT , see [12]. Our goal is
to give a variational characterization of the Hill’s (retrograde) orbits as
minima of the action functional under some geometrical and topological
constraints. The method developed here also turns out to be useful in the
study of the (full) problem withN primaries each having at most two
satellites.

The periodic problem for both restricted and fullN -body systems has
such a long story that it is impossible to give an extensive bibliography
here; we refer the reader to the classical texts [12–14]. In the last two
decades, a new method for finding periodic motions has been provided by
the use of variational techniques, see, e.g., the book [3] and the references
therein. The first variational characterization of the periodic solutions
of the 2-body problem goes back to a paper by Gordon [11], where it
is shown that the periodic orbits are local minima of the action under
the topological constraint of non triviality of the rotation index. This
constraint is used to overcome the lack of coercivity of the action integral
in the space of periodic functions. However, from the functional point of
view, the minimization problem (even in a local sense) is degenerate,
that is it possesses a continuum of solutions. This is due to the fact
that every solution to the associated differential equation is periodic,
provided its energy is negative, and the period (and the associated action



G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617–650 619

value) depends only on the energy. In particular all the periodic orbits,
including the degenerate ellipses, where the two bodies collide, share
the same variational characterization; in other words, it is impossible
to distinguish them by looking at their functional levels. On the other
hand, even though they can be extended as global solutions to the
differential equations, the motions of collision type are periodic only in a
mathematical sense.

Starting from the subsequent paper by Gordon [10], different kinds
of assumptions have been considered in order to rule out the collision
solutions, in the case of 2-body andN -body problems. In the case
of Keplerian interaction potentials, a fundamental remark is that the
minimization problem may become non degenerate by imposing further
symmetry constraints in the space of periodic functions. This fact has
been first pointed out in the 2-body case in [9], and then exploited in order
to obtain noncollision periodic orbits in various situations [4,6–8,16,17].
In the planarN -body problem this idea has led to associate the boundary
conditionxi(t + τ)= Rϕxi(t) with the equations system, wherexi(t) is
the position of thei-mass, andRϕ a rotation of the plane of angleϕ and
τ is the period of the mutual distances between the bodies see [4]. In this
setting, it can be shown (see [5]) that the simple minimization argument
in the space of symmetric functions leads to therelative equilibrium
motionsthat are well known periodic solutions to the system [1]. In order
to avoid such a triviality, Bessi and Coti Zelati [4] imposed a further
topological constraint, that is one of the body couples has a non trivial
rotation index in the rotating frame. However, though they ruled out the
simultaneous collisions of the whole system, they were unable to avoid
periodic solutions having partial collisions. The aim of this paper is to
go further in the analysis in [4], and prove, by level estimates, that the
minimum of the action functional under both symmetry and topological
constraints is free of any collision. We first deal with the 3-body problem
in the restricted and full cases: to this end, we exploit the variational
structure of the problem, looking for minimizers of the action integral
among the functions which satisfy the above mentioned constraints. More
precisely, we require the system coordinatesX(t)= (x1(t), x2(t), x3(t))

to satisfyxi(t + T ) = RθT xi(t), whereRθT is a rotation of angleθT
in the plane; in addition we require the motion ofR−θtx3(t) to have
a negative rotation index with respect to the first body, that is, to be
retrograde. Finally, we use similar arguments to study more general
problems with more major bodies each one having at most two retrograde
satellites.
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2. STATEMENT OF THE RESULTS

Throughout this paper we denote byG the universal gravitation
constant, byB1, . . . ,Bn (n = 3 or n = 4) the bodies of the problem we
consider and bym1, . . . ,mn their respective masses; their positions in the
planeR2 are described by then functionsxi = xi(t) (i = 1, . . . , n).

DEFINITION 1. –We say that(x1, . . . , xn) is a noncollision orbit on
the interval[0, T ] if xi(t) 6= xj (t) for all 16 i < j 6 n and all t ∈ [0, T ].

We first deal with a restricted 3-body problem{B1,B2,B3}, which we
briefly describe. Consider for a moment only the system{B1,B2}: if we
assume the center of mass to be fixed in the origin and we set the period
to be 2π/ϑ , then a solution of the following equations of motion

−miẍi =Gm1m2
xi − xj
|xi − xj |3 , xi(0)= xi

(
2π

ϑ

)
, i, j = 1,2, i 6= j,

is given by

x1(t)=−R1(cosϑt,sinϑt), x2(t)=R2(cosϑt,sinϑt), (2.1)

where

R1=m2G
1/3(m1+m2)

−2/3ϑ−2/3,

R2=m1G
1/3(m1+m2)

−2/3ϑ−2/3.

The restricted problem we consider consists in assigningx1(t), x2(t) as
in (2.1), while the motion ofB3 satisfies the equation

−m3ẍ3= V ′(x3), (2.2)

where

V (x3)=− Gm1m3

|x3− x1| −
Gm2m3

|x3− x2| .

Fix T ,ϑ > 0 so thatϑT < 2π . LetRα be the rotation inR2 by an angle
α; we denote byRα the corresponding matrix as well

Rα =
[

cosα −sinα
sinα cosα

]
.
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Note thatx1(t)= Rϑtx1(0) andx2(t)= Rϑtx2(0). We look for solutions
of (2.2) satisfyingx3(T )=RϑT x3(0); to this end we introduce the space

H = {x ∈H 1([0, T ],R2): x(T )=RϑT x(0)}.
Moreover, we requireB3 to orbit aroundB1 without colliding with neither
B1 norB2; more precisely we consider the noncollision set

Λ0= {x ∈H : x(t) 6= xi(t) (i = 1,2) for all t ∈ [0, T ]}
and

Λ1= {x ∈Λ0: ind(x − x1) 6= 0
}
,

where ind(y) denotes the winding number ofy in the interval[0, T ].
Consider the following Lagrangian functional

L(x)=
T∫

0

m3

2
|ẋ|2− V (x), (2.3)

whose critical points correspond to solutions of (2.2). Then, we have

THEOREM 1. – There exists a continuum of periodic and quasi-
periodic noncollision solutions of(2.2). More precisely, there existsν ∈
(0,2π) (depending only on the ratiom2/m1) such that ifϑT 6 ν then
problem(2.2) admits a solutionx3 ∈Λ1; moreover,x3 minimizesL over
Λ1.

We prove Theorem 1 in Section 3. Of course, a major problem
concerning the statement of Theorem 1 is to estimateν: in order to show
that our results are not perturbative we take the masses ofB1, B2 andB3

to be respectively the masses of the Earth, the Sun and the Moon. In this
casem2/m1≈ (3.3)105: moreover, the real (direct) motion of this 3-body
system has the correspondingϑT ≈ 0.46; hence, it is of some interest
to show that our method avoids collisions (for the retrograde motion)
whenν = 0.46. In fact, our next result states that even larger values are
allowed:

THEOREM 2. – Assume thatm2/m1 = (3.3)105; then, if ϑT 6 0.8
problem(2.2) admits a solutionx3 ∈Λ1; moreover,x3 minimizesL over
Λ1.
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This result is proved in Section 6 where we also give the pictures of
some numerical experiments: such results lead us to conjecture that the
upper bound forν could be even larger.

Next we consider a full planar 3-body problem{B1,B2,B3}; their
motion is described by the equations

−miẍi = Vi(x), i = 1,2,3, (2.4)

where the potential is given by

V (x)=− ∑
16i<j63

Gmimj

|xj − xi |

andVi(x)= ∂V (x)/∂xi . Consider the Hilbert space

H = {x = (x1, x2, x3), xi ∈H 1([0, T ],R2): xi(T )=RϑT xi(0},
the noncollision set

Λ0= {x ∈H : xi(t) 6= xj (t) (16 i < j 6 3) for all t ∈ [0, T ]}
and

Λ1= {x ∈Λ0: ind(x3− x1) 6= 0
}
.

By adding the three equations in (2.4) we get
∑
i miẍi(t)= 0, therefore,

without loss of generality we may seek solutionsx = (x1, x2, x3) ∈ H
of (2.4) which satisfy the constraint

∑
i mixi(t) ≡ 0; in particular, this

implies that the “interesting” degrees of freedom of the system are 4. The
Lagrangian of this 3-body problem is

Φ(x)=
T∫

0

3∑
i=1

mi

2
|ẋi |2− V (x). (2.5)

Also in this case we obtain infinitely many noncollision periodic or
quasi-periodic solutions of (2.4): in Section 4 we prove

THEOREM 3. – If m3 is sufficiently small, then there exists a contin-
uum of periodic and quasi-periodic noncollision solutions of(2.4). More
precisely, there exist two constantsν ∈ (0,2π) andM > 0 depending
only onm1,m2 such that ifϑT 6 ν andm3 6 M , then problem(2.4)
admits a solutionx ∈Λ1; moreover,x minimizesΦ overΛ1.
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This result enables us to study the planar 4-body problem{B1,B2,B3,

B4} whereB3 andB4 are two satellites ofB1. Their motion is described
by the equations

−miẍi = Vi(x), i = 1,2,3,4, (2.6)

where the potential is given by

V (x)=− ∑
16i<j64

Gmimj

|xj − xi| .

Define the Hilbert space

H = {x = (x1, x2, x3, x4), xi ∈H 1([0, T ],R2): xi(T )=RϑT xi(0)},
the noncollision set

Λ0= {x ∈H : xi(t) 6= xj (t) (16 i < j 6 4) for all t ∈ [0, T ]},
and

Λ1= {x ∈Λ0: ind(xi − x1) 6= 0, i = 3,4
}
.

The corresponding Lagrangian is

Φ(x)=
T∫

0

4∑
i=1

mi

2
|ẋi |2− V (x). (2.7)

Then, in Section 5 we will prove

THEOREM 4. – If m3 andm4 are sufficiently small, then there exists a
continuum of periodic and quasi-periodic noncollision solutions of(2.6).
More precisely, there exist two constantsν ∈ (0,2π) and M > 0
depending only onm1,m2 such that ifϑT 6 ν andm3,m4 6M , then
problem(2.6) admits a solutionx ∈ Λ1; moreover,x minimizesΦ over
Λ1.

Remark1. – The proofs of our results may be naturally modified in
order to obtain similar statements forN -body problems{B1, . . . ,BN}
with k major bodies (k < N ), each one having at most two satellites.

Remark2. – Although we seek solutions inΛ1 (a set having nontrivial
index for some couples of bodies), in fact by construction all the solutions
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we find have the index equal to−1, therefore they represent a clockwise
motion, while the two major bodies are assumed to rotate anticlockwise.

3. THE RESTRICTED PROBLEM

In this section we prove Theorem 1.
First assume thatϑT < 2π . We switch to a rotating coordinate frame

(0, e1, e2) so that the bodiesB1 andB2, whose motions in the original
coordinate frame are described by (2.1), are at rest. More precisely,
the position ofB1 is −R1e1 and the position ofB2 is R2e1. If we set
q(t)=R−ϑtx3(t) and if

J =
(

0 −1
1 0

)

denotes the standard symplectic matrix, then we getẋ3(t) = Ṙϑtq(t) +
Rϑt q̇(t) and|ẋ3(t)|2= |q̇(t)+ϑJq(t)|2; the conditionx3(T )=RϑT x3(0)
becomesq(T )= q(0). Next we rescale the periodT and we translate the
system in order to haveB1 at the origin by settingy(t/T )= q(t)+R1e1,
so that we get the standard Lagrangian functional of the restricted 3-body
problem:

I (y)= 1

T

1∫
0

m3

2

∣∣ẏ + T ϑJ (y −R1e1)
∣∣2− T 2V (y),

where

V (y)=−Gm1m3

|y| −
Gm2m3

|y − (R1+R2)e1| .

Up to the addition of a constant, we may redefine the LagrangianI as
follows:

I (y)= 1

T

1∫
0

m3

2
|ẏ + T ϑJy|2−m3ϑ

2T 2R1(y, e1)− T 2V (y);

we remark that the corresponding Euler–Lagrange equations are un-
changed. We setx(t) = (T 2Gm1)

−1/3y(t), we introduce the adimen-
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sional parametersρ =m2/m1 andν = ϑT and we define

Φ(x)=m−1
3 T −1/3(Gm1)

−2/3I (x)− ρν2/3

(ρ + 1)1/3
,

so that we get

Φ(x)=
1∫

0

1

2
|ẋ + T ϑJx|2+ 1

|x|

+ T 2/3G1/3m2m
−2/3
1

|(T 2Gm1)1/3x − (m1+m2)1/3G1/3ϑ−2/3e1|

− ϑ2T 4/3

(Gm1)1/3

m2G
1/3

(m1+m2)2/3ϑ2/3
(x, e1)− ρν2/3

(ρ + 1)1/3

=
1∫

0

1

2
|ẋ + T ϑJx|2+ 1

|x| +
m2/m1

|x − (m2/m1+ 1)1/3(ϑT )−2/3e1|

− ϑ4/3T 4/3m2

m
1/3
1 (m1+m2)2/3

(x, e1)− ρν2/3

(ρ + 1)1/3

=
1∫

0

1

2
|ẋ + νJx|2+ 1

|x| +
ρ

|x − (ρ + 1)1/3ν−2/3e1|

− ρν4/3

(ρ + 1)2/3
(x, e1)− ρν2/3

(ρ + 1)1/3
.

For all ξ ∈R2 define the functions

g(ξ) := ρ

|ξ − (ρ + 1)1/3ν−2/3e1|
and

f (ξ) := g(ξ)− ρν2/3

(ρ + 1)1/3
− ρν4/3

(ρ + 1)2/3
(ξ, e1),

so that

Φ(x)=
1∫

0

1

2
|ẋ + νJx|2+ 1

|x| + f (x).

Note that
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∇g(ξ)=−ρ ξ − (ρ + 1)1/3ν−2/3e1

|ξ − (ρ + 1)1/3ν−2/3e1|3 ,

∇2g(ξ)[ζ, ζ ] =− ρ|ζ |2
|ξ − (ρ + 1)1/3ν−2/3e1|3

+ 3ρ(ξ − (ρ + 1)1/3ν−2/3e1, ζ )
2

|ξ − (ρ + 1)1/3ν−2/3e1|5 ,

and, by expanding in McLaurin polynomial, there existss ∈ (0,1) (s =
s(ξ)) such that

g(ξ)= ρν2/3

(ρ + 1)1/3
+ ρν4/3

(ρ + 1)2/3
(ξ, e1)− ρ|ξ |2

2|sξ − (ρ + 1)1/3ν−2/3e1|3

+ 3ρ(sξ − (ρ + 1)1/3ν−2/3e1, ξ )
2

2|sξ − (ρ + 1)1/3ν−2/3e1|5 ;
therefore, we also have for somes = s(ξ) ∈ (0,1)

f (ξ)=− ρ|ξ |2
2|sξ − (ρ + 1)1/3ν−2/3e1|3

+ 3ρ(sξ − (ρ + 1)1/3ν−2/3e1, ξ )
2

2|sξ − (ρ + 1)1/3ν−2/3e1|5 . (3.1)

The Lagrangian functionalL defined in (2.3) is therefore transformed
intoΦ while the original spaceH is transformed in the Hilbert spaceH 1

1
of 1-periodic functions inH 1. Consider the noncollision open subset

Λ0={x ∈H 1
1 : x(t) 6= 0 andx(t) 6= (ρ + 1)1/3ν−2/3e1 for all t ∈ [0,1]}

and

Λ1= {x ∈Λ0: ind(x)=−1
}
. (3.2)

Theorem 1 is proved if we show that the problem

inf
x∈Λ1

Φ(x)

admits a solutionx ∈Λ1 and no solutions in∂Λ1.

LEMMA 1. – Let {xn} ⊂ Λ1 be a minimizing sequence forΦ; then
there existsx ∈Λ1 such thatxn ⇀ x, up to a subsequence, andΦ(x)=
infx∈Λ1Φ(x).

Proof. –In the followingc represents a generic positive constant which
may vary within the same formula. Letx0 = R(sin2πt,cos 2πt) with
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R = (2π)−2/3; thenx0 achieves the minimum of the functional

Ψ (x)=
1∫

0

|ẋ|2
2
+ 1

|x|

under the constraint ind(x) = −1; x0 is not a minimum ofΦ, therefore
for large values ofn we haveΦ(xn)6Φ(x0) and

1∫
0

1

2

∣∣ẋn + νJxn∣∣2− c(xn, e1
)
6Φ(x0)+ ρν2/3

(ρ + 1)1/3
= c.

Note that ifν 6 ν then

inf‖ẋ‖2=1

1∫
0

|ẋ + νJx|2=
(

1− ν

2π

)2

>
(

1− ν

2π

)2

; (3.3)

so the last inequality yields

c
∥∥ẋn∥∥2

2− c
∥∥ẋn∥∥26 c

and finally ‖ẋn‖2 6 c. By the topological requirements and Poincaré
inequality we infer‖xn‖∞ 6 c‖ẋn‖2 6 c, therefore{xn} is bounded in
H and, up to a subsequence, it admits a weak limitx ∈ H , which is a
minimum ofΦ by the weak lower semicontinuity of the functionalΦ.
Finally, x ∈Λ1 by uniform convergence of{xn}. 2

To complete the proof of Theorem 1 we exclude the casex ∈ ∂Λ1 in
the statement of the previous lemma; first of all it is possible to obtain
a contradiction to a collision betweenB3 andB2, because they are not
linked by a topological constraint. Indeed, if there existsτ ∈ [0,1] such
thatx(τ)= (ρ + 1)1/3ν−2/3e1, we can modify the trajectory ofx = x(t)
in a neighborhood ofτ in order to lower both the kinetic part and the
potential part ofΦ and to avoid a collision. Since the proof is standard,
we omit it.

LEMMA 2. – Let x be as in Lemma1; thenx(t) 6= (ρ + 1)1/3ν−2/3e1

for all t ∈ [0,1].
The proof thatB3 does not collide withB1 is more subtle and requires

some estimates; we exclude collisions for sufficiently smallν:
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LEMMA 3. – Letx denote an orbit obtained in Lemma1. There exists
ν ∈ (0,2π) such that ifν 6 ν thenx(t) 6= 0 for all t ∈ [0,1] and

inf
Λ1
Φ < inf

∂Λ1
Φ;

in particular, x ∈Λ1.

Proof. –In this proof we denote byKi (i = 1, . . . ,4) positive constants
depending (eventually) onρ. By contradiction, assume thatx ∈ ∂Λ1,
wherex is determined by the statement of Lemma 1; without loss of
generality, we may assume thatx(0)= 0 and hence

‖x‖26 1

π
‖ẋ‖2, ‖x‖∞ 6 1

2
‖ẋ‖2. (3.4)

Consider again the functionx0=R(sin2πt,cos 2πt)withR = (2π)−2/3;
if ν is sufficiently small, then we have|sx0(t) − (ρ + 1)1/3ν−2/3e1| >
1
2(ρ + 1)1/3ν−2/3 for all t ∈ [0,1] ands ∈ (0,1), hence, (3.1) yields

f (x0)6
ρR2

2|sx0− (ρ + 1)1/3ν−2/3e1|3 6K1ν
2, ∀t ∈ [0,1],

and

Φ(x0)6
(2π − ν)2
2(2π)4/3

+ (2π)2/3+K1ν
2<

3

2
(2π)2/3−K2ν+K3ν

2. (3.5)

Sincex minimizesΦ, by (3.3) (3.4) and (3.5) we get

1

2

(
1− ν

2π

)2

‖ẋ‖22−
ρν4/3

π(ρ + 1)2/3
‖ẋ‖2− ρν2/3

(ρ + 1)1/3

6Φ(x)6Φ(x0) <
3

2
(2π)2/3−K2ν +K3ν

2;

therefore, we obtain (independently ofν 6 ν 6 π ) ‖ẋ‖26K4: in turn, if
ν is sufficiently small, by (3.4) this yields

‖x‖∞ 6 1

2

(ρ + 1)1/3

ν2/3
. (3.6)
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On the other hand, by (3.1)

Φ(x)>
1∫

0

1

2
|ẋ + νJx|2+ 1

|x| −
ρ|x|2

2|sx − (ρ + 1)1/3ν−2/3e1|3

which, together with (3.6), gives

Φ(x)>
1∫

0

1

2
|ẋ + νJx|2+ 1

|x| − 4ν2|x|2; (3.7)

finally, note that

inf
x∈H1

0

1∫
0

1

2
|ẋ + νJx|2+ 1

|x| − 4ν2|x|2

= inf
x∈H1

0

1∫
0

1

2
|ẋ|2+ 1

|x| − 4ν2|x|2. (3.8)

Therefore, since we assume thatx ∈H 1
0 minimizesΦ, by (3.4), (3.5),

(3.7) and (3.8)

3

2
(2π)2/3−K2ν +K3ν

2

>Φ(x0)>Φ(x)> inf
x∈H1

0

1∫
0

1

2
|ẋ|2+ 1

|x| − 4ν2|x|2

> inf
y∈H1

0

1∫
0

1

2

(
1− 8ν2

π2

)
|ẏ|2+ 1

|y|

=
(

1− 8ν2

π2

)1/3

inf
z∈H1

0

1∫
0

1

2
|ż|2+ 1

|z| =
(

1− 8ν2

π2

)1/33

2
(2π)2/3

which is impossible ifν > 0 is small enough: hence, for suchν, we get a
contradiction and the lemma is proved.2

Theorem 1 is proved: ifθT 6 ν we obtain a solution of (2.2); such
solution is periodic ifθT /π ∈ Q, while it is quasi-periodic ifθT /π ∈
R \Q.
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4. THE FULL 3-BODY PROBLEM

In this section we prove Theorem 3.
To this end, we show that the Lagrangian functionalΦ defined in (2.5)

admits a global minimum in the (open) set

Λ1= {x ∈Λ0: ind(x3− x1)=−1
}
,

whereΛ0 is the noncollision open set

Λ0= {x ∈H : xi(t) 6= xj (t) for all t ∈ [0, T ] andi 6= j}.
We first prove

LEMMA 4. –Let{xn} ⊂Λ1 be a minimizing sequence forΦ; then{xn}
is bounded inH .

Proof. –SinceΦ(x) > ∑i

∫ T
0

mi
2 |ẋi|2 for all x ∈ Λ0, then ‖ẋn‖2 is

bounded. Sincexi(T ) = RϑT xi(0), then|xi(t + T )− xi(t)|2 = |(RϑT −
R0)xi(t)|2 = c|xi(t)|2. But xi(t + T ) − xi(t) = ∫ t+Tt ẋi (s)ds, hence
|xi(t)|2 6 c−1‖ẋni ‖21 6 T c−1‖ẋni ‖22 for all t , so ‖xn‖∞ is bounded and
finally ‖xn‖ is bounded. 2

We use again a rotating coordinate system by settingQi(t)=R−ϑtxi(t)
for all x = (x1, x2, x3) ∈ H so that ẋi (t) = ṘϑtQi(t) + RϑtQ̇i(t) and
|ẋi(t)|2 = |Q̇i(t) + ϑJQi(t)|2. Next we rescale the period by setting
y(t/T )=Q(t). Up to a multiplication byT , the Lagrangian becomes

I (y)=
1∫

0

3∑
i=1

mi

2
|ẏi + T ϑJyi |2− T 2V (y);

clearly, the constraint
∑
i mixi(t) ≡ 0 transforms into

∑
i miyi(t) ≡ 0.

We introduce a new Hilbert space of periodic functions (which we still
denote byH ), defined by

H =
{
y = (y1, y2, y3) ∈H 1([0,1],R6): y(1)= y(0), 3∑

i=1

miyi(t)≡ 0

}
,

the corresponding noncollision open set

Λ0= {y ∈H : yi(t) 6= yj (t) for all t ∈ [0,1] andi 6= j}
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and its subset

Λ1= {y ∈Λ0: ind(y3− y1)=−1
}
.

Therefore, the original problem of minimizingΦ is reduced to the
following minimization problem:

inf
y∈Λ1

I (y). (4.1)

We prove that the infimum in (4.1) is achieved:

LEMMA 5. –There existsy ∈Λ1 such thatI (y)= infy∈Λ1 I (y).

Proof. –Let {yn} ⊂ Λ1 be a minimizing sequence forI ; then, the
corresponding sequence{xn} defined by settingxni (t) = Rϑtyni (t/T ) is
minimizing forΦ: by Lemma 4, it is bounded and so is{yn}. Therefore,
up to a subsequence,{yn} admits a weak limity ∈ H , which is a
minimum of I by the lower semicontinuity of the functionalI ; finally,
y ∈Λ1 by uniform convergence of the sequence{yn}. 2

As in Section 3, one can easily exclude collisions betweenB2 andB3:
we have to exclude the other possible collisions.

Let I0 be the LagrangianI corresponding tom3 = 0: asI0 does not
depend on the third componenty3 of y, we may identify it with its
restriction to the subspaceH0 corresponding toy3= 0, namely

H0=
{
y = (y1, y2) ∈H 1([0,1],R4): y(1)= y(0), 2∑

i=1

miyi(t)≡ 0

}

and we study the minimization (2-body) problem

inf
x∈Ω0

I0(x), (4.2)

where Ω0 is the corresponding noncollision open set. Consider the
functionf :R4→R defined by

f (ξ1, ξ2)=
2∑
i=1

mi

2
ϑ2|ξi|2+ m1m2

|ξ1− ξ2| (ξi ∈R2);

one can easily check thatf has a unique strict global minimum, up to a
SO(2)-symmetry: more precisely, there existsΣ ⊂R4 (which is aSO(2)



632 G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617–650

orbit), such thatf attains its global minima onΣ . One such minimum is

ϑ−2/3
(
− m2

(m1+m2)2/3
, 0,

m1

(m1+m2)2/3
, 0
)

and the corresponding Hessian matrix off has rank 3 with 3 strictly pos-
itive eigenvalues (we denote byC > 0 the smallest of these eigenvalues);
the 0 eigenvalue corresponds to the direction tangent toΣ . Therefore, if
we denote byξΣ = (ξΣ1 , ξΣ2 ) the projection onΣ of anyξ = (ξ1, ξ2) ∈R4

sufficiently close toΣ we have

2∑
i=1

mi

2
ϑ2|ξi|2+ m1m2

|ξ1− ξ2|

>
2∑
i=1

mi

2
ϑ2∣∣ξΣi ∣∣2+ m1m2

|ξΣ1 − ξΣ2 |
+ C

2

2∑
i=1

∣∣ξi − ξΣi ∣∣2; (4.3)

in particular, any (stationary) point inΣ is also a minimum for the
functionalI0.

Fix ϑ > 0: we prove that ifm3 and T are small enough andy =
(y1, y2, y3) is the minimum obtained in Lemma 5, then(y1, y2) is close
toΣ in theH norm topology. In particular, this shows thatB1 andB2 do
not collide.

LEMMA 6. – There exist two constantsT ,M > 0 depending only on
θ,m1,m2 and a constantc > 0 such that for allT 6 T , all m3 6 M
and ally = (y1, y2, y3) ∈H achieving the minimum in(4.1) (as given by
Lemma5) we have

2∑
i=1

(‖ẏi‖22+ T 2∥∥yi − yΣi ∥∥2
2

)
6 cT 4/3m3,

whereyΣi = yΣi (t) is the(pointwise) projection ofyi(t) ontoΣ .

Proof. –Take any (yE, yS) ∈ Σ and consider the functionY ∈ H
defined by 

Y1(t)≡ yE,
Y2(t)≡ yS,
Y3(t)= yE + T 2/3(sin 2πt,cos 2πt),

so that

V23(yE,Y3)=−m2m3

T 2/3
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and Ẏ3(t) = 2πT 2/3(cos 2πt,−sin 2πt). Then the kinetic part ofY3 is
given by

|Ẏ3+ T ϑJY3|2= T 4/3∣∣2π(cos 2πt,−sin2πt
)

+ T 1/3ϑJ (yE + T 2/3(sin2πt,cos 2πt)
)∣∣2.

If T is small enough, thenY ∈ Λ1, and by taking into account that
infΛ1 I 6 I (Y ) we obtain

inf
Λ1
I0(y)6 inf

Λ1
I 6 inf

Λ1
I0+ c1T

4/3m3+ c2T
2m3. (4.4)

Let {mn3} be a vanishing sequence, letIn be the functional correspond-
ing tomn3 and letyn = yn(mn3, T ) ∈Λn

1 be the minimum ofIn obtained in
Lemma 5. Ifyni (i = 1,2,3) denote the components ofyn, then by (4.4)
we infer that(yn1, y

n
2) is a minimizing sequence forI0, hence it converges

weakly inH and uniformly to some(yE, yS) ∈Σ , up to a subsequence.
In particular, this proves that for any givenε > 0 there existsmε3> 0 such
that ifm36mε3, then∣∣y1(t)− yE

∣∣6 ε and
∣∣y2(t)− yS

∣∣6 ε for all t ∈ [0,1]. (4.5)

For all y ∈ H 1(S1,R2) satisfying
∫ 1

0 y = 0 we have‖y‖∞ 6 ‖ẏ‖1 6
γ ‖ẏ‖2 (the first is Wirtinger inequality and the second is Hölder’s). Then

∣∣∣∣∣
1∫

0

(J ẏ, y)

∣∣∣∣∣=
∣∣∣∣∣

1∫
0

(
J ẏ, y −

1∫
0

y

)∣∣∣∣∣6 ‖ẏ‖22. (4.6)

Now let y = (yE, yS), fix y ∈ H 1(S1,R4) and let ỹ = y − y; since∫ 1
0 (J ẏ, y)= 0, then

1∫
0

|ẏi+T ϑJyi |2=
1∫

0

(|ẏi |2+T 2ϑ2|yi+ ỹi|2−2T ϑ(J ẏi, ỹi )
)
, i = 1,2.

Recall thatf (y)= f (yΣ(t)) for all t ∈ [0,1], using (4.3), (4.5) and (4.6)
we get:

I0(y)− I0(y)=
1∫

0

2∑
i=1

mi

2

(|ẏi |2+ T 2ϑ2|yi|2− 2T ϑ(J ẏi, ỹi )
)
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+ T
2m1m2

|y1− y2| −
1∫

0

2∑
i=1

mi

2
T 2ϑ2∣∣yΣi ∣∣2+ T 2m1m2

|yΣ1 − yΣ2 |

>
1∫

0

2∑
i=1

mi

2

(|ẏi |2− 2T ϑ(J ẏi, ỹi )
)+ C

2
T 2∣∣yi − yΣi ∣∣2

>
2∑
i=1

mi

4
‖ẏi‖22+

C

2
T 2∥∥yi − yΣi ∥∥2

2;

the last inequality follows by Wirtinger inequality and (4.6) since, forT

small enough, we have

1∫
0

2∑
i=1

miT ϑ(ẏi , J ỹi)6
2∑
i=1

mi

4
‖ẏi‖22.

Finally, from (4.4) we get infΛ1 I − infΛ1 I0 6 c1T
4/3m3 + c2T

2m3 and
therefore

2∑
i=1

mi

4
‖ẏi‖22+

C

2
T 2∥∥yi − yΣi ∥∥2

26 c1T
4/3m3+ c2T

2m3,

which proves the estimate.2
Finally, to prove that the minimum obtained in Lemma 5 is a

noncollision minimum, we show thatB1 andB3 do not collide:

LEMMA 7. – If T andm3 are sufficiently small, then

inf
y∈Λ1

I (y) < inf
y∈∂Λ1

I (y);

in particular, there existsy ∈Λ1 such thatI (y)= infy∈Λ1 I (y).

Proof. –Fix T > 0, let IT be the corresponding functional and let
yT ∈ Λ1 be the minimum ofIT over Λ1 obtained in Lemma 5: we
claim thatyT /∈ ∂Λ1 for T andm3 sufficiently small. By contradiction,
let y ∈ ∂Λ1 be a collision minimum, that is,I (y) = infΛ1 I , where we
have setI = IT . By Lemma 6 we know that(y1, y2) is close in the norm
topology ofH 1([0,1],R4) to some point inΣ ; in particular,y1(t) 6= y2(t)

for all t ∈ [0,1]. Moreover, if we set

V (q)=− m1

|q − y1| −
m2

|q − y2|,
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theny3 minimizes the restricted functional

Ψ (q)=
1∫

0

1

2
|q̇ + T ϑJq|2− T 2V (q)

on the setΩ of functions q ∈ H 1([0,1],R2) satisfying q(0) = q(1),
q(t) 6= yi(t) for all t ∈ [0,1] andi = 1,2 and ind(q − y1)=−1.

We sete(t) = T −2/3y1(t), q(x) = T 2/3(x + e) andΦ(x) = T −4/3Ψ

(q(x)); then, we infer thaty0(t) = T −2/3(y3(t) − y1(t)) minimizes the
functional

Φ(x)=
1∫

0

[
1

2
|ẋ|2+ m1

|x| + (ẋ, ė)+ T ϑ(ẋ, J x)+ 2T ϑ(ė, J x)

+ T
2ϑ2

2
|x|2+ T 2ϑ2(e, x)+ T 2/3 m2

|T 2/3(x + e)− y2|
]
+ c(e),

where

c(e)=
1∫

0

|ė|2
2
+ T ϑ(ė, J e)+ T

2ϑ2

2
|e|2.

Next we define

Φ(x)=Φ(x)− c(e)−
1∫

0

m2T
2/3

|y2| ,

so thaty0 also minimizes the functional

Φ(x)=
1∫

0

[
1

2
|ẋ|2+ m1

|x| + (ẋ, ė)+ T ϑ(ẋ, J x)+ 2T ϑ(ė, J x)

+ T
2ϑ2

2
|x|2+ T 2ϑ2(e, x)+ T 4/3m2G(x)

]
,

whereG(x) is the smooth function given by

G(x)= T −2/3
(

1

|T 2/3(x + e)− y2| −
1

|y2|
)
;
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moreover, sincey2(t) 6= 0 for all t , by the asymptotic expansion

1

|εu− v| =
1

|v|
(

1+ ε (u, v)|v| + o(ε)
)

(which holds for allu, v ∈ R2 \ {0} asε→ 0) we have asT → 0

G(x)=
(
x + e, y2

|y2|3
)
+ o(1).

LetΞ = {t ∈ [0,1]: y0(t)= 0}. It is well known [2] thatΞ has measure
zero and thaty0(t) satisfies the Euler equation corresponding toΦ for all
t /∈Ξ , namely

ÿ0=−2T ϑJ ẏ0− T 2ϑ2y0+ T 2ϑ2e− 2T ϑJ ė− ë−m1
y0

|y0|3
+ (T 4/3m2

)∇G(y0)

and if we compute the scalar product of this equation byJy0 we obtain

d

dt
(ẏ0, Jy0)= (ÿ0, Jy0)= (−2T ϑJ ẏ0+ T 2ϑ2e− 2T ϑJ ė− ë, Jy0

)
+ T 4/3m2

(∇G(y0), Jy0
);

sincey0 ∈ ∂Λ1 we may assume that 0 is a collision time, i.e.(ẏ0, Jy0)(0)
= 0: hence, by integrating the previous equation on the interval[0, t] with
0< t 6 1, we get

(ẏ0, Jy0)(t)=−2T ϑ

t∫
0

(ẏ0, y0)+ T 2ϑ2

t∫
0

(e, Jy0)− 2T ϑ

t∫
0

(ė, y0)

+
t∫

0

(ė, J ẏ0)+ T 4/3m2

t∫
0

(∇G(y0), Jy0
)
. (4.7)

Now we estimate the integrals in (4.7): since,y0 = y0(T ) is bounded in
H 1 asT → 0, we have∣∣∣∣∣2T ϑ

t∫
0

(ẏ0, y0)

∣∣∣∣∣6 2T ϑ‖ẏ0‖2‖y0‖26 2λT (4.8)

for a.e.t ∈ [0,1]. Choose a constantµ> 0 and let

m36µT 8/3; (4.9)
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since e(t) = T −2/3y1(t), by Lemma 6 we have‖ė‖2 6 µT 4/3 and
therefore

T 2ϑ2

t∫
0

(e, Jy0)− 2T ϑ

t∫
0

(ė, y0)+
t∫

0

(ė, J ẏ0)= o(T ) (4.10)

for a.e.t ∈ [0,1]. Hence, by (4.7), (4.8) and (4.10) we obtain for smallT∥∥(ẏ0, Jy0)
∥∥∞ 6 λT .

Consider the function

X(t)=R(sin2πt,cos 2πt), whereR = 3
√
m1/(4π2),

which minimizes the functional

Î (x)=
1∫

0

|ẋ|2
2
+ m1

|x|

under the constraint ind(x) = −1; we have(Ẋ, JX) ≡ −2πR2 and
therefore

Φ(X)−Φ(y0)

= Î (X)− Î (y0)+ T ϑ
1∫

0

[
(Ẋ, JX)− (ẏ0, Jy0)

]+ o(T ) < 0

for small T . This contradicts the assumption thaty0 minimizesΦ and
proves the lemma.2

To complete the proof of Theorem 3, note that a noncollision crit-
ical point x = (x1, x2, x3) of Φ satisfies (2.4); then, it also satis-
fies(

ẋi (T ),p(T )
)= (ẋi (0),p(0))= (RϑT ẋi(0),p(T )), i = 1,2,3,

for all p ∈ H 1([0, T ],R2); hence,ẋi (T ) = RϑT ẋi(0). This proves that
the motion x is periodic if θT /π ∈ Q while it is quasi-periodic if
θT /π ∈R \Q.



638 G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617–650

5. THE 4-BODY PROBLEM

In this section we prove Theorem 4.
We may assume thatm46m3. As in the previous section, by rotating

and rescaling, the Lagrangian becomes

I (y)=
1∫

0

4∑
i=1

mi

2
|ẏi + T ϑJyi |2− T 2V (y),

where

V (y)=− ∑
16i<j64

Gmimj

|yj − yi | ;

we consider the Hilbert spaceH defined by

H =
{
y = (y1, y2, y3, y4) ∈H 1([0,1],R8): y(1)= y(0),

4∑
i=1

miyi(t)≡ 0

}
,

the corresponding noncollision open setΛ0 and its subsetΛ1 = {y ∈
Λ0: ind(yi − y1)=−1, i = 3,4}. By arguing as in Lemmas 4 and 5 one
can prove that the Lagrangian achieves a minimum onΛ1:

LEMMA 8. – There existsy ∈Λ1 such thatI (y)= infy∈Λ1 I (y).

We can exclude the collisions betweenB2 andB3 and the collisions
betweenB2 andB4.

Let I0 be the functional corresponding to the casem3=m4= 0, letH0

andΣ be as in the previous section and consider again the problem (4.2);
then we obtain

LEMMA 9. – There exist two constantsT ,M > 0 depending only on
θ,m1,m2 and a constantc > 0 such that for allT 6 T , all m46m36M
and ally = (y1, y2, y3, y4) ∈H achieving the minimum in(4.1)(as given
by Lemma8) the following holds

2∑
i=1

(‖ẏi‖22+ T 2∥∥yi − yΣi ∥∥2
2

)
6 cT 4/3m3,

whereyΣi = yΣi (t) is the(pointwise) projection ofyi(t) ontoΣ .
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Proof. –Take any (yE, yS) ∈ Σ and consider the functionY ∈ H
defined by 

Y1(t)≡ yE,
Y2(t)≡ yS,
Y3(t)= yE + T 2/3(sin 2πt,cos 2πt),
Y4(t)= yE − T 2/3(sin 2πt,cos 2πt),

so that (4.4) holds (recall thatm4 6 m3). The proof may now be
completed as in Lemma 6.2

In particular, Lemma 9 excludes collisions betweenB1 andB2.
Now we return to the original problem: in order to prove Theorem 4 it

suffices to show that the functional

Φ(x)=
T∫

0

4∑
i=1

mi

2
|ẋi |2+

∑
16i<j64

Gmimj

|xj − xi |

satisfies

inf
Λ1
Φ < inf

∂Λ1
Φ;

indeed, by Lemma 8, this would imply thatΦ achieves a minimum over
Λ1. HereΦ is defined on the space

H = {x = (x1, x2, x3, x4), xi ∈H 1([0, T ],R2) : xi(T )=RϑT xi(0)}
andΛ1 is given by

Λ1= {x ∈Λ0, ind(xi − x1)=−1, i = 3,4
}
,

whereΛ0= {x ∈H, xi(t) 6= xj (t) ∀t ∈ [0, T ] ∀i 6= j}.
From now on we denote byx = (x1, x2, x3, x4) the minimum ofΦ

overΛ1 corresponding to the orbity obtained in Lemma 8; we exclude
the collisions of the two satellites withB1.

LEMMA 10. – If T , m3 (andm4) are sufficiently small, thenx3(t) 6=
x1(t) andx4(t) 6= x1(t) for all t ∈ [0, T ].

Proof. –Consider the functional

F(x)=
T∫

0

|ẋ|2
2
+ Gm1

|x − x1|
+ Gm2

|x − x2|
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defined on the spaceK1 = {x ∈ H 1([0, T ],R2)} and the corresponding
noncollision set

Ω1= {x ∈K1, x(t) 6= x1(t) ∀t ∈ [0, T ], ind(x − x1)=−1
}
.

Consider also the functionals

Φ(x3, x4)=
T∫

0

(
4∑
i=3

mi

2
|ẋi |2− V (x)

)
,

where

V (x)=− Gm1m3

|x3− x1|
− Gm1m4

|x4− x1|
− Gm2m3

|x3− x2|
− Gm2m4

|x4− x2|
− Gm3m4

|x3− x4|
and

Ψ (x3, x4)=
4∑
i=3

miF(xi)=Φ(x3, x4)−
T∫

0

Gm3m4

|x4− x3|
defined on the spaceK2 = {x = (x3, x4), xi ∈ H 1([0, T ],R2)}; finally,
consider the noncollision set

Ω2= {x = (x3, x4) ∈K2, x3, x4 ∈Ω1, x3(t) 6= x4(t) ∀t ∈ [0, T ]}.
Since x minimizesΦ over Λ1, the couple(x3, x4) minimizes the

functionalΦ overΩ2.
TakeT > 0 sufficiently small andm3 6 µT 8/3 as in (4.9); then, by

Lemma 7, there existsCT > 0 (independent ofm3 andm4) such that

inf
x∈∂Ω1

F(x)− inf
x∈Ω1

F(x)>CT ,

the two infima being in fact two minima: letX be one minimum ofF
overΩ1. By definition ofΨ we also have

inf
∂Ω2

Ψ > inf
Ω2
Ψ +CTm4 (5.1)

and the minimum ofΨ overΩ2 is achieved by(X(t),X(t + s)) for any
s ∈ [0, T ]. Now takeX3(t)=X(t) and takeX4(t)=X(t + T /2) so that
X4 is also a noncollision minimum ofF . SinceX minimizesF , then a



G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617–650 641

simple argument shows thatX3(t) 6= X4(t) for all t and we can define
C0= ∫ T0 G

|X3−X4| . Assume by contradiction that(x3, x4) ∈ ∂Ω2; then, by
(5.1), we have

Φ(x3, x4)=Ψ (x3, x4)+
T∫

0

Gm3m4

|x4− x3|
> inf

∂Ω2
Ψ +

T∫
0

Gm3m4

|x4− x3|

>Φ(X3,X4)−
T∫

0

Gm3m4

|X4−X3| +
T∫

0

Gm3m4

|x4− x3|
+CTm4

>Φ(X3,X4)−C0m3m4+CTm4

and thereforeΦ(x3, x4) > Φ(X3,X4) for sufficiently smallm3 (andm4):
this contradicts the assumption that(x3, x4) minimizesΦ overΩ2 and
proves the lemma.2

Finally, we exclude the case where the two satellites collide with each
other:

LEMMA 11. – x3(t) 6= x4(t) for all t ∈ [0, T ].
Proof. –We make the following change of variables: letX=

m3x3+m4x4

m3+m4
,

r = x4− x3,

and we denote by(X, r) the couple corresponding to(x3, x4). We focus
our attention onx3 andx4 and we consider the restricted Lagrangian

Ψ (X, r)=
T∫

0

m3+m4

2
|Ẋ|2+ m3m4

2(m3+m4)
|ṙ|2+ Gm3m4

|r| − VR(X, r),

where

VR(X, r)=− Gm1m3

|x3− x1|
− Gm1m4

|x4− x1|
− Gm2m3

|x3− x2|
− Gm2m4

|x4− x2|
.

Obviously,

Φ(x1, x2, x3, x4)=Ψ (X, r)+
T∫

0

m1

2
|ẋ1|2+

m2

2
|ẋ2|2+

Gm1m2

|x2− x1|
.
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By contradiction, assume that in the motion described byx = x(t) the
satellitesB3 andB4 collide with each other, but not withB1, at t = 0, that
is r(0)= 0 andX(0) 6= x1(0). Let ε > 0 satisfy

ε <
1

2
min

{∣∣X(0)− x1(0)
∣∣, ∣∣x3(0)− x2(0)

∣∣, ∣∣x4(0)− x2(0)
∣∣}

and let tε < 0< tε be such that|r(tε)| = |r(tε)| = ε and |r(t)| < ε if
t ∈ (tε, tε); if ε is sufficiently small (sayε < ε), then r(t) 6= 0 for all
t ∈ (tε, tε) \ {0}. We will get a contradiction by showing that there exists
ε ∈ (0, ε) andr̂ : [tε, tε]→R2 \ {0} such that the function

R(t)=
{
r(t) if t /∈ [tε, tε],
r̂(t) if t ∈ [tε, tε],

satisfiesR ∈H 1([0, T ],R2) andΨ (X, r) > Ψ (X,R).
We may assume thatr(tε) = (ε,0) and r(tε) = εeiα for someα ∈

(−π,π ]; let p = ε3/2eiα/2. Let

`= |r(tε)− p|
ε

= |r(t
ε)− p|
ε

;

since|α|/26 π/2, we have

`2= |r(tε)|
2+ |p|2− 2(r(tε),p)

ε2
= ε

2+ ε3− 2(r(tε),p)

ε2
6 1+ ε.

(5.2)
Let S1 andS2 be respectively the segments connectingr(tε) and r(tε)
with p and letr̂(t) be such that

r̂(t) ∈ S1 and
∣∣r̂(t)− p∣∣= `∣∣r(t)∣∣ ∀t ∈ [tε,0],

r̂(t) ∈ S2 and
∣∣r̂(t)− p∣∣= `∣∣r(t)∣∣ ∀t ∈ [0, tε].

Since the motion of̂r is straight, for allt ∈ [tε,0] we get

∣∣r̂(t)− p∣∣ · ∣∣∣∣ d

dt
r̂(t)

∣∣∣∣= ∣∣∣∣(r̂(t)− p, d

dt

(
r̂(t)− p))∣∣∣∣

=
∣∣∣∣12 d

dt

∣∣r̂(t)− p∣∣2∣∣∣∣= `2

2

∣∣∣∣ d

dt

∣∣r(t)∣∣2∣∣∣∣
6 `2∣∣r(t)∣∣ · ∣∣∣∣ d

dt
r(t)

∣∣∣∣,
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and by (5.2)

∣∣∣∣ d

dt
r̂(t)

∣∣∣∣26 `2
∣∣∣∣ d

dt
r(t)

∣∣∣∣26 (1+ ε)∣∣∣∣ d

dt
r(t)

∣∣∣∣2; (5.3)

similarly, we obtain the same inequality whent ∈ [0, tε]. Next, note that

VR
(
X(t), r̂(t)

)− VR(X(t), r(t))>−cε for all t ∈ [tε, tε];

this, together with (5.3) yields

t ε∫
tε

m3m4

2(m3+m4)

(∣∣∣∣drdt
∣∣∣∣2− ∣∣∣∣dr̂dt

∣∣∣∣2)
+ VR(X(t), r̂(t))− VR(X(t), r(t))>−cε. (5.4)

To estimate 1
|r| − 1

|r̂ | , we argue as in [17]: by conservation of the total
energyE we obtain for allt ∈ [tε, tε]
c
∣∣ṙ(t)∣∣26 m1

2

∣∣ẋ1(t)
∣∣2+ m2

2

∣∣ẋ2(t)
∣∣2+ m3

2

∣∣ẋ3(t)
∣∣2+ m4

2

∣∣ẋ4(t)
∣∣2

=E + Gm1m2

|x2(t)− x1(t)|
+ Gm1m3

|x3(t)− x1(t)|
+ Gm1m4

|x4(t)− x1(t)|
+ Gm2m3

|x3(t)− x2(t)|
+ Gm2m4

|x4(t)− x2(t)|
+ Gm3m4

|r(t)| 6
c

|r(t)| ,

the latter inequality being consequence of the fact that there existsK > 0
such that for allε ∈ (0, ε) we have

inf
t∈(tε,t ε)

min
{∣∣xj (t)− xi(t)∣∣, 16 i < j 6 4, (i, j) 6= (3,4)}>K.

Therefore, if we letρ(t)= |r(t)|, we have

ρρ̇ = 1

2

d

dt
ρ2= (r(t), ṙ(t))6 ∣∣r(t)∣∣ · ∣∣ṙ(t)∣∣6 ρ c√

ρ
;

this proves that

ρ(t)6 ct2/3 ∀t ∈ [tε, tε]. (5.5)

Let tε < s1 < 0 < s2 < tε satisfy |r(si)| = ε3/2/2 and |r(t)| < ε3/2/2
for all t ∈ (s1, s2); by (5.5) we obtain|si | > cε9/4. Moreover, since
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|r̂(t)|> |r(t)| for all t ∈ (tε, tε) we infer that

s1∫
tε

1

|r| >
s1∫
tε

1

|r̂| and

t ε∫
s2

1

|r| >
tε∫
s2

1

|r̂| ;

on the other hand,|r̂(t)| > ε3/2 > 2|r(t)| for all t ∈ (s1, s2) so that, by
(5.5), we obtain

Gm3m4

t ε∫
tε

1

|r| −
1

|r̂| >Gm3m4

s2∫
s1

1

|r| −
1

|r̂| > c
cε9/4∫
−cε9/4

1

2|r|

> c
cε9/4∫
−cε9/4

1

t2/3
> cε3/4.

This, together with (5.4), implies thatΨ (X, r)−Ψ (X,R)> cε3/4−cε >
0 if ε is small. 2

The proof of Theorem 4 may now be completed as in the previous
section.

6. NUMERICAL RESULTS

In this section we prove Theorem 2 and we give some numerical
results illustrating the orbits determined in Theorem 1. Since all the
solutions we obtained are minima, it is possible to numerically compute
them by a rather simple procedure. The technique is standard: one
chooses a finite dimensional vector spaceHf which approximates the
Hilbert spaceH , introduces a functionalΦf :Hf → R approximating
Φ and looks for minima ofΦf by choosing an arbitrary starting
point x0 ∈ Hf and defining a sequence{xn} by settingxn+1 = xn −
hn∇Φf (xn), where∇Φf :Hf →Hf is the gradient ofΦ and represents
the maximum slope direction of the functionalΦf , while hn is computed
at each step in order to minimize the functionh 7→ Φ(xn+1(h)). If the
approximated functional maintains the properties ofΦ, then the sequence
{xn} converges to a minimum point of the functionalΦf .

We only treat the restricted problem (although there are no obstructions
to the treatment of the complete problem). As an approximate spaceHf
we chose the set of closedm-gonals and we letm vary between 100 and
300, depending on the values of the parameters. A functionx ∈ Hf is



G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617–650 645

uniquely characterized by the coordinates of the vertices, therefore it can
be represented by a point inR2m. Givenx ∈Hf by xi ∈R2 we denote the
coordinates of theith vertex. The (full) functional we consider is

Φ(x)=
1∫

0

1

2
|ẋ + νJx|2+ 1

|x| +
ρ

|x − (ρ + 1)1/3ν−2/3e1|

− ρν4/3

(ρ + 1)2/3
(x, e1),

and its representation inHf is given by

Φf (x)=
m∑
i=1

1

2

∣∣∣∣xi+1− xi
h

+ νJxi
∣∣∣∣2+ 1

|xi| +
ρ

|xi − (ρ + 1)1/3ν−2/3e1|

− ρν4/3

(ρ + 1)2/3
(xi, e1),

whereh= 1/m. We also have

∂Φf (x)

∂xi
=−xi+1− 2xi + xi−1

h2
− xi

|xi |3 − 2νJ
xi+1− xi

h
+ ν2xi

− ρ xi − (ρ + 1)1/3ν−2/3e1

|xi − (ρ + 1)1/3ν−2/3e1|3 −
ρν4/3

(ρ + 1)2/3
e1.

Clearly, also in the numerical approximation we have to cope with the
presence of the singularity in the potential; furthermore is it not very clear
how to implement the topological constraint. In order to overcome these
problems we introduced a naive method, i.e. we checked that at every
step no vertices ofxn were too close to the singularities. More precisely
we checked that the minimum of the distances of the vertices from the
singularity was larger than the maximum of the length of the sides of the
m-gonal. In fact this condition was satisfied at all times during all our
computations.

The following pictures represent the results we obtained for various
values of the parametersν andρ. As a starting pointx0 we chose the
orbit corresponding to the solution for the caseν = 0, that is the circular
orbit of radiusR = (2π)−2/3. Although analytically we could exclude
collisions in the caseρ = (3.3)105 only for values ofν smaller than 0.8,
numerically it clearly appears that the minima of the functional is very
close to a circular orbit even for values ofν up to 3. For larger values
the orbit becomes more similar to an ellipse, but still it does not come
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Fig. 1.

close to a collision orbit. In order to show some different behavior, we
also show a picture (Fig. 1) in the caseρ = 1 andν = 5.

Proof of Theorem 2. –Let ρ = (3.3)105, ν 6 0.8 and letx denote
a corresponding orbit found in Lemma 1. We argue as in the proof of
Lemma 3 making finer estimates. By contradiction, assume thatx ∈ ∂Λ1
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and consider again the function

x0= (2π)−2/3(sin 2πt,cos 2πt).

By arguing corresponding to (3.5) we find that (ifν 6 0.8)

Φ(x0) <
3

2
(2π)2/3− (0.541)ν + (0.175)ν2 <

3

2
(2π)2/3. (6.1)

Sincex minimizesΦ, by (3.3) and (6.1) we get

1

2

(
1− ν

2π

)2

‖ẋ‖22−
ρν4/3

π(ρ + 1)2/3
‖ẋ‖2− ρν2/3

(ρ + 1)1/3
6 3

2
(2π)2/3; (6.2)

by (3.4) this proves that

‖ẋ‖2< 130, ‖x‖∞ < 65< (0.811)
(ρ + 1)1/3

ν2/3
. (6.3)

Now we claim that for allt ∈ [0,1] we have

h(x(t)) := ρ

|x(t)− (ρ + 1)1/3ν−2/3e1| −
ρν4/3

(ρ + 1)2/3
(
x(t), e1

)
> −(0.035)

ρν2/3

(ρ + 1)1/3
. (6.4)

If (x(t), e1)6 0, (6.4) follows readily. If(x(t), e1) > 0, then by (6.3) we
get

∣∣x(t)− (ρ + 1)1/3ν−2/3e1
∣∣2< ‖x‖2∞ + (ρ + 1)2/3

ν4/3
< (1.658)

(ρ + 1)2/3

ν4/3
;

then (6.4) follows by estimating(x(t), e1) with ‖x‖∞ and by (6.3).
Sinceν 6 0.8, by (6.4) we may replace (6.2) with

(0.3807)‖ẋ‖22− (1.035)
ρν2/3

(ρ + 1)1/3
6 3

2
(2π)2/3, (6.5)

which, by (3.4), proves that

‖ẋ‖2< 106, ‖x‖∞ < 53< (0.661)
(ρ + 1)1/3

ν2/3
; (6.6)
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this allows to prove that

h
(
x(t)

)
> (0.173)

ρν2/3

(ρ + 1)1/3
∀t ∈ [0,1]. (6.7)

Indeed, if(x(t), e1)6 0, we have

h
(
x(t)

)
> ρ

‖x‖∞ + (ρ + 1)1/3ν−2/3
> (0.6)

ρν2/3

(ρ + 1)1/3
.

If (x(t), e1) > 0, then by arguing as for (6.4) and by taking into account
(6.6) we get (6.7).

By (6.7) the inequality (6.5) becomes

(0.3807)‖ẋ‖22− (0.827)
ρν2/3

(ρ + 1)1/3
6 3

2
(2π)2/3, (6.8)

which, by (3.4), proves that

‖ẋ‖2< 94.8, ‖x‖∞ < 47.4< (0.592)
(ρ + 1)1/3

ν2/3
.

Finally, repeating once more the whole procedure, we geth(x(t)) >

(0.267)ρν2/3(ρ + 1)−1/3 which yields

‖ẋ‖2< 89.1, ‖x‖∞ < 44.55< (0.556)
(ρ + 1)1/3

ν2/3
.

Hence,|sx(t)− (ρ + 1)1/3ν−2/3e1|> (0.444)(ρ + 1)1/3ν−2/3 and

1∫
0

ρ|x|2
2|sx − (ρ + 1)1/3ν−2/3e1|3 <

ν2‖ẋ‖22
2(0.444)3π2

6 (0.3705)‖ẋ‖22.

Therefore, by (3.1) and (6.1) we obtain

3

2
(2π)2/3>Φ(x)> (0.3807)‖ẋ‖22−

1∫
0

ρ|x|2
2|sx − (ρ + 1)1/3ν−2/3e1|3

> (0.0102)‖ẋ‖22;
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this proves that

‖ẋ‖2< 22.4, ‖x‖∞ < 11.2< (0.14)
(ρ + 1)1/3

ν2/3
.

Repeating this procedure we get

1∫
0

ρ|x|2
2|sx − (ρ + 1)1/3ν−2/3e1|3 <

ν2‖ẋ‖22
2(0.86)3π2

6 (0.051)‖ẋ‖22.

Therefore, by (3.1), (6.1) and Jensen’s inequality we obtain

3

2
(2π)2/3> (0.3297)‖ẋ‖22+

π

‖ẋ‖2 ,

which proves that

‖ẋ‖2< 3.6, ‖x‖∞ < 1.8< (0.023)
(ρ + 1)1/3

ν2/3

and

1∫
0

ρ|x|2
2|sx − (ρ + 1)1/3ν−2/3e1|3 <

ν2‖x‖22
2(0.977)3

6 (0.537)ν2‖x‖22.

Therefore, by arguing as in the proof of Lemma 3 we get

3

2
(2π)2/3− (0.541)ν + (0.175)ν2

>Φ(x0)>Φ(x)>
1∫

0

1

2
|ẋ + νJx|2+ 1

|x| − (0.537)ν2|x|2

>
(

1− (1.074)ν2

π2

)1/3

inf
z∈H1

0

1∫
0

1

2
|ż|2+ 1

|z|

=
(

1− (1.074)ν2

π2

)1/33

2
(2π)2/3.

Sinceν 6 0.8 we have(1− (1.074)ν2

π2 )1/3> 1− (0.038)ν2 and therefore the
last sequence of inequalities yields(0.37)ν > 0.541 which contradicts
ν 6 0.8 and proves the statement.2
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