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Abstract

We prove that critical growth problems for polyharmonic operators admit nontrivial solutions
for a wide class of lower order perturbations of the critical term. The results highlight the
phenomenon of bifurcation of the critical dimensions discovered by Pucci-Serrin [21]; moreover,
we show that another bifurcation seems to appear for “nonresonant” dimensions.

1 Introduction

In a recent paper [11] an orthogonalizing technique has been developed for the study of critical
growth problems in semilinear elliptic equations of second order; such technique is based on varia-
tional methods: to assure that the considered minimax levels are at suitable energy values, certain
approximating functions having disjoint support with the Sobolev concentrating functions are con-
structed. We call Sobolev concentrating functions some truncations of the positive radial entire
functions which achieve the best constant in Sobolev inequalities, see [24]; in the celebrated paper
by Brezis-Nirenberg [5] such functions have been found responsible for the lack of compactness of
the problem, see also [7].

In this paper we show that this orthogonalizing technique also applies to higher order semilinear

elliptic equations: we consider the problem

~A)Eu=g(z,u) + [u/f 2 inQ
(=4) g(@, u) + |ul @
Dfy=0 ondQ k=0,.,K-1

where K € IN, Q C IR" (n > 2K +1) is an open bounded domain with smooth boundary, K, = rﬁ#
is the critical Sobolev exponent (the largest p for which the imbedding Hyx = HE(Q) C LP()
is continuous) and g(-,s) has subcritical growth at infinity (i.e. limp_oo ﬁ%’f}l = 0); with our
notation 1, = 2* = % Problem (1.1) has been studied by many authors even in the case K > 1,

see e.g. [4, 9, 12, 13, 19, 21]. We endow the Hilbert space Hx with the scalar product

/ (AMy)(AMy) if K =2M
(u,v) = ¢ 7%

/ (VAMu)(VAMy)  if K = 2M + 1
Q



and we denote by || - ||x the corresponding norm; | - |, denotes the LP(Q2)-norm, p € [1,00]. Let
Yg = {)\5{ }ien denote the spectrum of (—A)¥ relative to the homogeneous Dirichlet problem in
(2; it is well-known that ¥ C IR" and that )\JK — 400 as j — oo: in the sequel we will omit the
index K on A;. Define the functional J : Hx — IR by

Tw) = gl — [ Glaude -l

where G(z,s) = [; g(z,t)dt; if g is continuous then J € C1(Hg,R) and the critical points of J
correspond to solutions of equation (1.1). Since the imbedding Hy C L¥+(€) is not compact the
functional J does not satisfy the PS condition: in [5] it is shown that the corresponding functional
only satisfies the PS condition at certain energy levels. The failure of the PS condition is not only
technical; by using a generalized Pohozaev identity, Pucci-Serrin [20] proved non-existence results:

in particular they show that if A < 0 and €2 is star-shaped then the problem

(=A)Eu = u+ulf2u  inQ
Dfy=0 ondQ k=0,..,K-1

only admits the trivial solution u = 0.

Under minimal assumptions on the lower order term g we will prove that (1.1) admits nontrivial
solutions: the proofs are obtained by slight modifications of those in [2, 7, 11]; however, our results
highlight some basic facts.

First, they bring further evidence to the “strange” behaviour of the critical dimensions. One
of the basic problems concerning (1.2) is to determine the smallest constant A* > 0 for which the
relation A € (A*, A1) implies the existence of a radial positive solution of (1.2) when  is the unit ball
of IR"™. Pucci-Serrin [21] call critical dimensions the dimensions for which A* > 0 and conjecture,
for a given K > 1, that the critical dimensions are n = 2K + 1,...,4K — 1: this conjecture was
already proved for K =1 (see [5]), next it has been proved for K = 2 (see [9, 21]), subsequently for
K = 3,4 (see [12]) and finally it is “almost” proved for all K > 1 (see [13]). We will prove that if
K > 1 and n > 4K then (1.2) admits a nontrivial solution for all A € (0, A1) independently of the
geometry of ; we recall that, as noticed by Grunau [13], one cannot expect the existence of positive
solutions of (1.2) in general domains: the domain € needs to have a positive Green function. We
also deal with a more general subcritical term g(x,u): it turns out that the critical dimensions are
exactly the dimensions for which an additional assumption on the lower order term ¢ is needed in
the nonresonant case for (1.1), see (2.4) below; in other words, for these dimensions, we cannot
prove that the bifurcation branch of nontrivial solutions of (1.2) arising from an eigenvalue \;iq
can be extended to all A € (A;, Aj41).

Second, they show that a bifurcation of dimensions also seems to appear in the limiting dimension
corresponding to n = 4 when K = 1. In a remarkable paper [6], it has been proved that if K =1

and n > 4 then (1.2) admits nontrivial solutions for all A\ > 0; however, as was pointed out to



us by H. Brezis, the arguments of [6] do not apply in the case n = 4 and A € X;: therefore, we
can say that n = 4 is a limiting nonresonant dimension for (1.2) when K = 1, see also [11] where
a different approach is used. In the general case K > 1 we encounter the same difficulty when
n € [4K, (2 +2v/2)K), see Corollary 2.2 below; using the above terminology, for these nonresonant
dimensions we prove that the bifurcation branch of nontrivial solutions of (1.2) arising from \;j4q
can be extended to all A € (Aj,\j+1) but we do not know if it reaches A = X;. Theorem 2.6
below states that in higher dimensions, that is n > (2++/2) K, the bifurcation branch “crosses” Aj.
Although the different behaviour of certain dimensions seems to be strictly related with the tools
involved in our proofs, we believe that some hidden reason might exist: to formulate a conjecture
we also extend the result of [7] to the case K > 2.

Finally, our results show that the orthogonalizing method introduced in [11] may be used to solve

more general semilinear elliptic problems at critical growth having a linking variational structure

2G(z,s

-7 < 00); we believe that with minor changes the same arguments

(in this case A\ <liminfs_

apply to elliptic problems with variable coefficients such as the Yamabe [25] generalized problem

_ Z DZ(CLZJ(I')DJU) = g(m,u) 4 ‘u‘4/(n—2)u -

ij=1
2 Results and remarks
We assume that g is subcritical in the following sense:

g: QxR — R is a Carathéodory function such that

—2n_ nt2K (2.1)
Ve >0 3Za. € LK | |g(z,s)| < a-(z) +e|s|"2K VseIR, forae ze€;
moreover, if G(z,s) := [y g(x,t)dt , the perturbation g(z,u) may change sign, provided that
G(z,s) >0 forae. z€Q, VselR. (2.2)

In fact, assumption (2.2) can be weakened in “high” dimensions so that also the primitive G is
allowed to change sign, see [11]: here, we will not go deeply into this analysis.

We first consider the case where the functional J has a mountain-pass geometrical structure [1]:
some non-existence results for (1.1) can be found in [13, 21] while for existence results concerning

(1.2) in the case K = 2 we refer to [9]. We will assume that there exist § > 0 and ¢ > 0 such that
(A1 —0)s? fora.e. 2€Q, V|s| <6. (2.3)
In the cases n = 2K 4+ 1, ...,4K — 1 we need a growth condition at infinity, that is,

Qg C 2, Qp open, nonempty, such that
Gz, s) (2.4)

Sllinoo AR/ 2K) — 400 uniformly w.r.t. € Qg ;



if in Qg the term G is a pure power, that is G(x,s) = s?, then the above assumption requires for
g(s) a growth strictly greater than s(65—")/("=2K). this is precisely condition (A1) in [19] for the
case K = 2. Compare also this result with the non-existence result of Theorem 4 in [21].

For all the other dimensions (namely, n > 4K) we will assume that

Qo C Q, Qg open, nonempty, b >a >0, du >0 such that

G(z,s) > p forae ze€Qy, Vs €la,b] .
With the above assumptions we will prove the following

Theorem 2.1 Forn > 4K +1 assume (2.1)-(2.8) (2.5), forn = AK also assume that p in (2.5) is
large enough, forn =2K+1,...,4K —1 assume (2.1)-(2.4); then (1.1) admits a nontrivial solution.

Besides being the “boundary” between the critical and what we call nonresonant dimensions,
the dimension 4K is very particular as it involves logarithms in the standard estimates relative to
the Sobolev concentrating functions, see (3.16) below: in the above statement it is required that
the constant p is large enough and this assumption is necessary as shown by Theorem 2.3 in [5];
note also that by reasoning as in [2] one could instead require that there exist a,p > 0 such that

G(z,s) > ps? for all s € [0,a] and for a.e. & € Q.

From Theorem 2.1 we immediately deduce the following
Corollary 2.1 Ifn > 4K then (1.2) admits a nontrivial solution for all A € (0, A1).

For the (conjectured) critical dimensions n = 2K +1,...,4K —1 we can only prove the existence of
a nontrivial solution for values of A “near” to Aj: let Sk denote the best constant of the imbedding
Hy C LE(Q) (see [24]) and define the number

AL = Sp|Q 2K/ (2.6)
we will prove

Theorem 2.2 Letn = 2K +1,....,4K — 1; then for all A € (\ — AL, \1) (1.2) admits a nontrivial

solution.

In particular, Theorem 2.2 establishes the existence of a constant \* = \*(n, K, Q) € [0, \; — A%]
such that (1.2) admits a nontrivial solution whenever A € (A\*, A\1). The constant A appears in the
statement of Theorem 1.5 in [9]; when Q = B (unit ball of IR™), the same constant A has been
determined in [13] and a lower bound for \*(2K + 1, K, B) is given in Theorem 2 in [21].



Next we consider a more general case of non-resonance near the origin, i.e. the case where J has

a linking structure [22]: we assume that there exist j > 1, § > 0 and ¢ > 0 such that

%()\j +0)s* < G(x,8) < =(N\jy1 — 0)s fora.e. z€Q, V|s| <6

Do | —

N (2.7)

G(z,s) >

1
()\j+(7)32—f|8 forae. 2€Q, Vs#0.

|

Then, we will prove

Theorem 2.3 Forn > 4K assume (2.1) (2.2) (2.7), forn =2K +1,...,4K —1 assume also (2.4);

then (1.1) admits a nontrivial solution.

In the case of resonance near the origin we assume that there exist 6,0 > 0 and p € (0,1/K,)
such that
Ly 2
5)\3‘8 < G(z,s) <

Do | —

(Njs1 — 0)s? forae. z€Q, Vs <6
1

- (2.8)

G(z,s) > %)\jsz—(——,uﬂs forae. 2€Q, VseR;

*

moreover, we require that

Qg C €2, Qo open, nonempty, such that

SEI—&I}OO W = 400 unlformly w.r.t. x € QO .

We will prove the following

Theorem 2.4 Letn > 2K +1 and assume (2.1), (2.2), (2.8), (2.9); then (1.1) admits a nontrivial

solution.

To study the phenomenon of “bifurcation of the dimensions” we restrict our attention to the
simpler problem (1.2): let [] denote the entire part function and let nx := [(2 + 2v2)K]; if
G(z,s) = 4)s? condition (2.9) is satisfied for n > nx + 1, therefore, from Theorems 2.1, 2.3 and

2.4 we obtain

Corollary 2.2 If n > ngx + 1 then equation (1.2) admits a nontrivial solution YA > 0.
Ifn =4K,...,nk then equation (1.2) admits a nontrivial solution YA > 0 such that A € k.

By using an idea of [7], for all dimensions we estimate the left neighborhood of X\;1; to which
the bifurcation branch of nontrivial solutions of (1.2) extends, and we generalize the statement of
Theorem 2.2:

Theorem 2.5 Let n > 2K + 1, A% as in (2.6) and let M;y1 be the multiplicity of Nji1; if A €
(N1 — A Nj1) then (1.2) admits at least M1 (pairs of) nontrivial solutions.



Finally, we prove that if n > ng + 1 then the bifurcation branch starting from the eigenvalue

Aj+1 € Xk, 7 > 1, can be extended up to a left neighborhood of A;:

Theorem 2.6 Let n > ng + 1; then, VA; € X, there exists 65 > 0 such that if X € (A\j — 65, Aj)
equation (1.2) admits at least M;+1 (pairs of ) nontrivial solutions (here M; denotes the multiplicity

Of )\])

Some remarks are now in order. In spite of the above results, we believe that the bifurcation
branch always crosses A; (5 > 1) even if in some cases this may happen at high energy levels:
this fact is suggested (when K = 1) by the results in domains having some symmetries [8, 10];
variational methods as used in [5, 6, 7, 11] may not work because the PS condition does not hold
for high energies, see Lemma 3.1 below. Theorem 2.5 states, in particular, that if Aj;1 —A; < A%
then (1.2) admits a solution for A = \;; however, if A\; 11 —A; > A% and if n < nk then (1.2), with
A = )Aj, may not have solutions at energy below the compactness threshold: we conjecture that
there exist some j for which the bifurcation branches of nontrivial solutions of (1.2) behave as in
Figure 1 below. Let

Ta(w) = gl — Sl -
then I, denotes the infimum of the nontrivial critical levels of J)

K*
|U|K*

I :=inf{J\(u); uw#0, Jy(u) =0} :

as J4(u)[u] = 0 implies Jy(u) = Llul* , we know that Iy > 0. In other words, I is a measure
of the distance (the L® -norm) between the origin and the “nearest” nontrivial critical point of
Jy: such distance tends to 0 at resonance, i.e. lirr1>ﬁ>\j_+l Iy =0, ¥j € IN. In Figure 1 the branch
(I) corresponds to the (conjectured) critical dimensions (n = 2K + 1,...,4K — 1), the branch
(IT) corresponds to the (conjectured) limiting dimensions (n = 4K,...,ng) and the branch (I1I)

corresponds to higher dimensions (n > ng + 1).

Figure 1



Struwe ([23], Chapter III, Remark following Theorem 2.6) states that the result in [7] implies that
for A — oo (and n > 3) the number of solutions of equation (1.2) (when K = 1) tends to infinity,
arguing that by Weyl’s formula the number of eigenvalues in (A, A + A{) tends to infinity. As was
pointed out by B. Ruf, this is not the case: consider the cube C' := (0,7)3, which has Dirichlet
eigenvalues of the form \; = k% + k3 + k% (k1, k2, ks € IN), i.e. minj(Aj+1 — A;) = 1. A numerical
calculation gives A{ = Sy /7% = 3(4n) %3 ~ 0.555: hence, if A € (\j, \j+1 —AY) the theorem in [7]
yields no solution at all and the situation of Figure 1 may occur for infinitely many eigenvalues A;.
On the other hand, it is well-known [15, 16, 17, 18] that small perturbations of the domain may
or may not preserve multiple eigenvalues: in domains having only simple eigenvalues the remark
of Struwe may apply; the existence, the finiteness or the infiniteness of the number of eigenvalues
for which the behaviour of Figure 1 holds are then strictly related to the geometry of the domain

) and this number seems to be unstable with respect to perturbations of the domain.

3 Proof of the results

Let e; be an L? normalized eigenvector relative to \; € Yy, let H™ := span{e; i < j}, let
H*:=(H )t and let P; : H — H~ denote the orthogonal projection. Let g be as in (2.4) and
(2.9) (we may assume that 0 € Qo C €2); for m € IN large enough (so that B/, C €), define

where Q is the polynomial of degree 2K — 1 for which ¢, € CE=Y(Q) (for instance, Qa(m|z|) =
—2m3|z|3 + 9m?|z|? — 12m|z| + 5). Clearly, |D*(nloo < em” for k = 0,...,K: then, if we let

el := (me; we have ef" — e; in Hg (as m — oo) and, by reasoning as in [11], there exists ¢; > 0

such that for large enough m we have

2 2K—n
max U < )\ +cm 31
(e H; fUQ 1} H HK — 7 7 ( )

where H,,, := span{el"; i < j}; moreover, for large enough m we also have
PjH,=H~- and H,®H"=H. (3.2)
Note that if (2.1), (2.2) and either (2.7) or (2.8) hold then

Ja,p >0 such that J(u) >« Vu€ OB, NHT . (3.3)

Next, we introduce the family of functions
. >(n—2K)/2

UK (2) = n <m (e>0) . (3.4)

7



K. _ Sn/QK

which solve the problem (—A)Xu = |u Pal K

for all € > 0, see [14, 24]; in fact,

X (n—2K)/AK
cn=c(n,K)= { H (n— 21)}

i=1-K

K+=2y in R™ and which satisfy ||[UX||% = |UX

but we omit the index K. Take a positive cut-off function n € C2°(B; /m) such that n = 1 in By o,
n <1in By, and |DFn|o < emP for k =0, ..., K; consider the sequence of Sobolev concentrating
functions uX (z) := n(x)UX (z): by reasoning as in [13] (see also [5, 11, 23]) we obtain

&
(e = 0) = (k|3 < SR +een 2K, Juk|f > /2K — cen)

(m — 00, & = em = o(Z)) = (Iufl% < S} + clem)=2K, |uls|i: > Si/*K — c(em)”)

(3.5)

where uf = uf . For alle >0, m € N and v € H,, DIR™{u'} there exist r > 0 and w € H,, such
that v = w + ruff and

supp(ul’) Nsupp(w) =0 : (3.6)

hence, J(v) = J(w) + J(ru) with J(w) < max, . ;- J(u) =t wy — 0 (as m — oo); furthermore,
by (2.1) and (3.5) we get

K

e

Jrul) < r?|ulf % = ([l + o(1) < S0 =) 4 o(r’r) as 7 — 00

which becomes negative if r = R > p (p as in (3.3)) and R is large enough. By (3.6) we can choose
R so large that if Q5, := [(Br N H,,) ® [0, R[{uX}] then maxycag: J(v) < wm — 0 as m — oo;
note that

Vm,e >0 Q;, C Bag . (3.7)

By (3.2), 0B,NH™ and 9Q%, link and by standard minimax methods [22] we obtain a PS sequence,
i.e. asequence {um,} C Hy such that J(uy,,) — c (for a certain ¢ € R) and J'(u,,) — 0in H K. We
do not concern ourselves here with the relative compactness of PS sequences: with our assumptions
on the lower order term g we cannot prove that the critical levels of J are positive and we cannot

find a “range of compactness” as in [5]. However, by reasoning as in [11] one can prove

Lemma 3.1 Assume (2.1) and let {un,} C Hg be a PS sequence for J; then there exists u € Hy
such that uy, — w up to a subsequence and J'(u) = 0. Moreover, if J(uy,) — ¢ with ¢ € (0, %S?(/ﬂ()
then w £ 0 and v is a nontrivial solution of (1.1); finally, if %g(az, s)—G(x,s) + %|s K >0 for all

s € IR and for a.e. x € Q then such a sequence is precompact.

Hence, Theorems 2.3 and 2.4 follow if the above linking arguments yield a PS sequence for J at
a level strictly lower than %S?(/QK. Let I':= {h € C(Q5,, H); h(u) =u, Yu € 0Q5,}: we obtain a
PS sequence for J at level

= inf h(w)) ;
¢ = Inf max J(h(u)) ;



as the identity Id € T', Theorems 2.3 and 2.4 follow if we prove that for ¢ small enough, there

results
ueQs, (u) < n ( )

Proof of Theorem 2.3. Assume (2.1)-(2.7) if n > 4K and (2.1)-(24) if n =2K +1,...,4K — 1 and
take m large enough so that (o as in (2.7), ¢; as in (3.1))

o> cmETm (3.9)

We claim that (3.8) holds; if not, as the set {u € Q%,; J(u) > 0} is compact, for all € > 0 there

exist w. € H,,, and t. > 0 such that, for v, == w. + t&-uf, we have

1 1 .o K ek
Sllvclle = [ Glave) = ofenlfls = =S/ (3.10)

* n

By (3.7), the sequences {t.} C R™ and {w.} C H,, are bounded: up to subsequences we have
te — 1o > 0. By (2.7), (3.1) and (3.9) we get

J(w.) <0 (3.11)

and since G has subcritical growth at infinity, we have lim._¢ [, G(z, t-uf) = 0; therefore, by (3.5)

and (3.6) we obtain

K 2 (15 to°
J(ve) < J(teus') <5y o

; K) +o(1) . (3.12)

Moreover, £- K vx >0, 2 #1andif ty # 1 then (3.12) contradicts (3.10); hence, if (3.10)

)
holds
Iin% te =1. (3.13)

By using (3.5), as ¢ — 0, we obtain

1 K 1 — 2K
ltcul¥ I = gttt 1S < TSR+ 5 (8 - 1= PR - 1)) S e
n n
since max;>o{x? — 1 — %(wlf* —1)} =0, as e — 0 we have
Lo, k2 1 K. < n/2K 9K
gllteus i — z-[teue Sk + e (3.14)

If n=2K+1,...,4K — 1, for € small enough we have B: C By3,, C o, then by (2.2) and (3.4)

we get
(n—2K)/2
K < )
/QG(ZU,tEUE ) > /BE G (.’I;',Cntg {52 + ’x‘Q}(n—QK)/2> ’

by (2.4) there exist 5 > 0 and an increasing function ¢ = ¢(s) with 1i1_;_n ©(s) = +o00 such that
S— 100

Vs>5 Gz, s) > o(s)sH/(n=2K) for a.e. z € Qg . (3.15)



Next, note that if € is small enough we have (recall that (3.13) holds)

o(n—2K)/2

, VrxebB:;
hence, by (3.15),

/ G, o) > Cn/ (K 2)a 2K 5 (2K m)/2yn2K
0 B.

Consider now the case n > 4K: if ¢ is small enough, as in [11] one finds ¢; > 0 such that
G(z, toul) > c[UK(2)]? if || € (c14/€,1/2m); therefore,

1/2m gWK=m)/2 ity > AK 41
/ G(x, tul) > czs”*QK/ rAET g > cen 2K (3.16)
@ Ve | loge] if n =4K .
Therefore, for all n > 2K + 1 there exists a function 7 = 7(g) such that lin% 7(e) = +00 and such
£—
that for e small enough we have
/ Gl b)) > 7(e) - 2K (3.17)
Q
hence, by (3.6), (3.11) and (3.14), if we take e small enough we get
1 1 K K n
J(ve) < Fllteul | - / Gla, teulf) = = ltulf | < =S 4 e —r(e)) < — 5"
Q *

which contradicts (3.10), and (3.8) follows. O

Proof of Theorem 2.4. Assume (2.1), (2.2), (2.8), (2.9); here, we need to take into account the

dependence on m: we let m — oo and we choose

gm — mf(’n+2K)/2K (318)

so that &, = o(1/m) and (3.5) applies. We claim that (3.8) holds; by contradiction assume that
for all m large enough there exists vy, € Qp, (here @, = QZ, and we denote ufX , wy,, vy, instead of
u we, v.) such that

1 1 .« K 2k
Slvallk = [ Glao,vm) = sloalfls = =83 (3.19)

n

Let vy, = wp, + tpul: if (3.19) holds, then by (3.7) the sequences {t,,} and {wy,} satisfy again
tm > ¢ >0 and lwml|lx <c. (3.20)

By (2.9) there exists an increasing function 7 such that lim,_, . 7(2) = +oo satisfying G(x,s) >
7(s) - S/ (P —AK?) for g e 2 € Qg and for all s > 0; therefore, by (3.18) and (3.20)

- Jnm2u)/2 B (24K cln-210/2
P - m n—1
/QG‘(w7 tmum) > C/O <((—;72n n T2)(n—2K)/2> T <C (67277, 4 r2)(n—2K)/2> -r dr

C(é_q(gK—n)/Q)SKn/(nQ—ALKQ) . T(Cé_q(fbK—n)/Q) . 6%

> emm2K-—n)/2K gzﬁ(m)

v

10



with ¢(m) — oo as m — oco. Hence, by (3.5), (3.20) and by replacing (3.18) in (3.14) we obtain
T(tnuk) < g2 _ ynCE-m/2K 4y (3.21)
n

To estimate J(wy,) note that by (2.8) and (3.1) we get (for large m)

1 by

T < gl — Sl — ol < D m?K =
since (3.20) holds and since max,>o{ic;m?K" . 22 — ¢ 220/ (n=2K)} = cn(2K=—n)/2K [if my s large
enough we have
J(wm) < Cmn(QKfn)/QK ] (322)
By (3.6), (3.21) and (3.22) we finally obtain
K K
T(m) = I (tmtim) + J(wm) < —SEH = emMCFETIPI (gm) —1) < =S (3.23)

for m sufficiently large: this contradicts (3.19) and completes the proof of Theorem 2.4. O

Proof of Theorem 2.5. Let V := span{e;; ¢ < j+ 1} and H' := span{e;; i > j+1}; then
dimV — codimH™ = M, ;. Reasoning as in Lemma 2.4 in [7] and by the assumption on A we
obtain

I(w) < 30 = NP full, - lulfss < TS vuev

moreover, (3.3) holds. The result follows by applying Theorem 2.4 in [3]. O

Proof of Theorem 2.6. Let j € IN and choose €, as in (3.18): as g(x, s) = A;s satisfies (2.1), (2.2),
(2.8), (2.9), by (3.23) we infer that there exists a function §(m) with limy, ., 6(m) = 0 and m € IN
such that

Aj
2

) >0 and - max (Glulfe — Fulf - Tl ) < S < 8(m) iz

therefore, there exists 7 > m such that sup,,>s 6(m) = 6(/) =: 8 > 0. As the set B := {u €
Qwp; J(u) > 0} is compact, v := sup,ep ||z < co. Take 6; = 5/7, let A € (\; —6;, \;) and consider

the functional

n— 2K‘ K.

—|u .
2n K

If we set HT :=span{e;; ¢ > j} then (3.3) holds; furthermore,

1 A
T() = lullk = Sl -

K njok
J J(u) + 8y < =S/
Iax J(u) < max J(u) + 8y < -5

since dim(H,,, ® R{uX}) — codimH* = M, + 1, to conclude it suffices to apply Theorem 2.4 in [3]
with b = £57/2K o
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Proof of Theorem 2.1. By standard minimax arguments [1] we can prove that the functional J
admits a PS sequence of mountain-pass type; next, we need to prove that the PS sequence for J is

below the level %S?(/QK: to this end we prove that

K
K D n/2K
max J(tu) < - Sy (3.24)

for e small enough. If not, there exists t. > 0 such that J(t.uX) > %SEL{/ ! for all &: we can prove
again that (3.13) and (3.14) hold. If n = 2K +1,...,4K — 1 then (3.15) holds and we get again
(3.17): this implies (3.24) as in the proof of Theorem 2.3. If n > 4K, by reasoning as in [2] we get

/ Gz, toul) > cue™'? .
Q

If n > 4K 41 then § < 2n — 4K, we obtain again (3.17) and we can conclude as above. If n = 4K
we need to choose  large enough so that O(e*) < cue?X where O(e*£) comes from (3.14); then,
we obtain (3.24) for small e. O

Proof of Theorem 2.2. This can be obtained as for Theorem 2.5 with V' being the line V' = {te; :
t € R}; see also [2]. O
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