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HARDY INEQUALITIES WITH OPTIMAL CONSTANTS
AND REMAINDER TERMS

FILIPPO GAZZOLA, HANS-CHRISTOPH GRUNAU, AND ENZO MITIDIERI

Abstract. We show that the classical Hardy inequalities with optimal con-

stants in the Sobolev spaces W 1,p
0 and in higher-order Sobolev spaces on a

bounded domain Ω ⊂ Rn can be refined by adding remainder terms which
involve Lp norms. In the higher-order case further Lp norms with lower-order
singular weights arise. The case 1 < p < 2 being more involved requires a

different technique and is developed only in the space W 1,p
0 .

1. Introduction

Let n > 2 and let Ω ⊂ Rn be a bounded domain. A well-known Hardy inequal-
ity (see [H], [HLP]), which can be considered one of the really classical Sobolev
embedding inequalities, reads as:

(1)
∫

Ω

|∇u|2 dx ≥ (n− 2)2

4

∫
Ω

u2

|x|2 dx for all u ∈ W 1,2
0 (Ω).

Although it is not explicitly assumed that 0 ∈ Ω, here and in what follows we shall
always have this particularly interesting case in mind. Related Lp-versions of (1)
are also well known, and the simplest can be stated as follows:

(2)
∫

Ω

|∇u|p dx ≥
(
n− p
p

)p ∫
Ω

|u|p
|x|p dx for all u ∈W 1,p

0 (Ω).

Here, we are assuming that n > p ≥ 1. A first higher-order generalization of (1)
was proved by Rellich in [R]:

(3)
∫

Ω

(∆u)2
dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4 dx for all u ∈ W 2,2
0 (Ω),

where n > 4. Recently some extensions of (3) appeared in [DH], [Mi]. These results
allow us to estimate integral terms of the form

∫
Ω |x|

−σ (∆u)2
dx and consequently

to prove Hardy inequalities in higher-order Sobolev spaces W k,2
0 (Ω), where n > 2k.

If k = 2m is even, we have

(4)
∫

Ω

(∆mu)2
dx ≥

(
2m∏
`=1

(n+ 4m− 4`)2

4

)∫
Ω

u2

|x|4m dx,
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while if k = 2m+ 1 is odd,

(5)
∫

Ω

|∇∆mu|2 dx ≥
(

2m+1∏
`=1

(n+ 4m+ 2− 4`)2

4

)∫
Ω

u2

|x|4m+2
dx.

In the Lp-setting further types of Rellich inequalities were also proved in [DH,
p. 520], [Mi]. A simple example in this direction is given by

(6)
∫

Ω

|∆u|p dx ≥
(

(n− 2p)(p− 1)n
p2

)p ∫
Ω

|u|p
|x|2p dx for all u ∈W 2,p

0 (Ω),

where n > 2p. We point out that all the constants appearing in (3), (4), (5) and
(6) are sharp. For a more extensive survey, bibliography and historical remarks we
refer again to [DH].

Refined versions of Hardy inequalities seem to have first appeared in [Ma, Section
2.1.6, Corollary 3]. This kind of inequalities was applied by Brezis and Vazquez
[BV] to the Gelfand problem

(7) −∆u = λ exp(u), u ≥ 0, u ∈W 1,2
0 (Ω),

where λ is a positive parameter and n > 2. It is well known that there exists
λ∗ > 0 such that for 0 ≤ λ ≤ λ∗ equation (7) is solvable, while for λ > λ∗ it has no
solutions. Further, for λ = 2(n− 2) and Ω = B the unit ball, problem (7) has the
following explicit singular solution:

using = −2 log |x| ∈ W 1,2
0 (B).

The linearization of equation (7) around using leads to the “Hardy-type” operator

Llinϕ = −∆ϕ− 2(n− 2)
|x|2 ϕ.

This operator is studied in [BV] for proving, among other results, in which di-
mensions the singular solution is also extremal in the sense that it corresponds to
λ = λ∗. This is shown to be precisely the case if Llin is positive semidefinite. In
order to decide whether the latter holds true, Brezis and Vazquez used the following
Hardy inequality with optimal constant and a remainder term:
(8)∫

Ω

|∇u|2 dx ≥ (n− 2)2

4

∫
Ω

u2

|x|2 dx+ Λ2

(
en
|Ω|

)2/n ∫
Ω

u2 dx for all u ∈ W 1,2
0 (Ω).

Here n ≥ 2. Λ2 denotes the first eigenvalue of the Laplace operator in the two-
dimensional unit disk and en, |Ω| denote respectively the n-dimensional Lebesgue
measure of the unit ball B ⊂ Rn and of the domain Ω. Inequality (8) can be
proved by means of a “reduction of the dimension” argument. This technique was
implicitly used also in [Ma, Section 2.1.6]. For further applications and variants of
(8) we refer to [VZ].

Remainder terms appear also in other Sobolev inequalities and in the context of
nonlinear eigenvalue problems; see e.g. [BL], [GG].

The goal of this paper is to prove the existence of remainder terms for all Hardy-
type inequalities (2), (3), (4), (5) and (6) mentioned above.

We feel that remainder terms in the Rellich inequality (3) may find an interpre-
tation for the biharmonic analogue of the Gelfand problem;

(9) ∆2u = λ exp(u), u ≥ 0, u ∈W 2,2
0 (Ω).
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In [AGGM], we started the investigation of (9) when Ω is a ball, since in this
case comparison principles for the biharmonic operator under Dirichlet boundary
conditions are available. This problem is rather involved, and up to now, we did not
succeed in making the connection between (9) and the improved Hardy inequalities
explicit.

In Section 2 we shall study W 1,p
0 -Hardy type inequalities corresponding to the p-

Laplace operator ∆p. Carefully exploiting the convexity properties of the function
ξ 7→ ξp, we show that an extra Lp-norm may be added to the right hand side of
(2). Up to purely p-dependent factors, the constant in front of this remainder term
behaves like n(p−2) as n→∞, and it vanishes when p↘ 1.

Although the problem of finding optimal constants for the remainder terms in
the inequalities is very interesting, our choice is not to develop this kind of study in
this paper. However, we believe that the asymptotic behaviour of such constants
as n→∞ is precisely as stated above.

Closely related questions were studied simultaneously and independently by
Adimurthi, Chaudhuri and Ramaswamy [ACR].

In Sections 3 and 4 we show that remainder terms of the form∫
Ω

u2 dx , . . . ,

∫
Ω

u2

|x|2k−2
dx

can be added to the right hand sides of (4) and (5). In Section 3 we shall consider
functions satisfying Navier boundary conditions, that is 0 = u = ∆u = · · · on ∂Ω,
while in Section 4 we deal with functions satisfying Dirichlet boundary conditions
0 = u = ∇u = ∆u = · · · on ∂Ω. In Section 3 we also present a refinement of the
Rellich inequality (6) in the Lp-setting for p ≥ 2. For 1 < p < 2 we expect a similar
phenomenon as in W 1,p

0 , concerning the behaviour of the constants appearing in
the remainder terms. See Theorem 2 and the subsequent remark for more details
on this point.

Since the class of functions considered in Section 3 is larger than the class con-
sidered in Section 4, the constants in front of the remainder terms are smaller than
those in Section 4. Moreover, the constants which appear in the latter seem to be
more natural when the order k of the Sobolev space becomes large. Next we ob-
serve that the proofs of the results in Section 3 are easily reduced to the “spherically
symmetric case”, while it appears that this reduction when dealing with functions
satisfying Dirichlet boundary conditions is more involved. This is due to the fact
that the symmetrization argument used in Section 3 fails, and the iterative proce-
dures we use, seem to produce only relatively small constants. For this reason it
may be also of interest in its own to study how the result in W k,2

0 (B) for radial
functions can be extended to nonsymmetric functions.

2. An Lp-remainder term for the Hardy inequality in W 1,p
0 (Ω)

In this section we shall prove that a remainder term can be added to the right
hand side of (2). In what follows we shall always suppose that 1 < p < n.

We set
X := {v ∈ C1([0, 1]) : v′(0) = v(1) = 0} \ {0},

and define the constants

λp = inf
X

∫ 1

0 r
p−1|v′(r)|p dr∫ 1

0
rp−1|v(r)|p dr

, Λp = inf
X

∫ 1

0 r|v(r)|p−2 (v′(r))2
dr∫ 1

0
rp−1|v(r)|p dr
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and

Γ = Γ(n, p) = max

{
λp, (p− 1)

(
n− p
p

)p−2

Λp

}
.

Remark. For all p > 1 we have λp > 0, and if p = 2, then Γ = Λ2 = λ2. Moreover,
if p ∈ N then λp is the first eigenvalue of −∆p in the unit ball contained in Rp.
In addition, a simple integration by parts argument and an application of Hölder’s
inequality show that λp,Λp ≥ 1 . Therefore, Γ ≥ cp np−2 as n→∞.

Theorem 1. Let Ω ⊂ Rn be a bounded domain and p ∈ (1, n). Let en = |B1(0)|
and let |Ω| be the n-dimensional Lebesgue measure of the unit ball and of the domain
Ω respectively.

(a) If p ≥ 2, then for every u ∈W 1,p
0 (Ω) we have

(10)
∫

Ω

|∇u|p dx ≥
(
n− p
p

)p ∫
Ω

|u|p
|x|p dx+ Γ ·

(
en
|Ω|

)p/n ∫
Ω

|u|p dx.

(b) If 1 < p < 2, then there exists a constant C = C(n, p) > 0 such that for
every u ∈W 1,p

0 (Ω) the following inequality holds:

(11)
∫

Ω

|∇u|p dx ≥
(
n− p
p

)p ∫
Ω

|u|p
|x|p dx+ C ·

(
en
|Ω|

)p/n ∫
Ω

|u|p dx.

Remarks. (i) The explicit form of the constant C(n, p) appearing in (11) is
given in (19) below. We point out that the asymptotic behaviour of this
constant as n → ∞ is given, up to an n-independent factor, by np−2.
Although we do not claim that the constants Γ(n, p) and C(n, p) are sharp,
we believe that they reflect the precise asymptotic behaviour for n→∞.

(ii) Following the generalizations in [BV] and [VZ] we expect that also the p-th
power of any W 1,q-norm with q < p or of the Lr-norm of u with r < np

n−p
may serve as a remainder term in (10) and (11). In this case the constants
appearing in front of these remainder terms will be not so simple looking
even for p ≥ 2. After the present paper was submitted for publication,
some results in this direction were obtained in [ACR], [BFT]. For improved
Hardy inequalities involving a whole series of remainder terms see [FT].

(iii) If p = 1 and Ω = B1(0) the Hardy constant

n− 1 = inf
u∈W 1,1

0 (B1(0))\{0}

∫
|∇u| dx∫ |u|
|x| dx

is achieved by any positive smooth and radially decreasing function u with
u||x|=1 = 0. This means that for p = 1 no remainder term may be added to
the corresponding Hardy inequality and shows that necessarily C(n, p)↘ 0
as p↘ 1.

(iv) For related inequalities with weights being the inverse of the distance func-
tion δ, i.e. δ(x) = d(x, ∂Ω), where Ω is a bounded domain contained in
Rn, we refer to [BM], [BMS], [MS]. A unified approach to this kind of
inequalities has been given recently in [BFT], where the distance function
from any k-codimensional manifold, 1 ≤ k ≤ n, is considered.
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To prove Theorem 1 we need the following elementary inequalities, which give
a quantitative estimate from below for the convexity behaviour of power-like func-
tions. Similar inequalities in a more general context but with smaller constants
were obtained in [L] and several subsequent papers.

Lemma 1. Let p ≥ 1 and ξ, η be real numbers such that ξ ≥ 0 and ξ−η ≥ 0. Then

(ξ − η)p + p ξp−1η − ξp ≥


max

{
(p− 1)η2ξp−2, |η|p

}
, if p ≥ 2,

1
2
p(p− 1)

η2

(ξ + |η|)2−p , if 1 ≤ p ≤ 2.

The proof can be obtained as an application of Taylor’s formula. The interested
reader may refer to the appendix of this paper for further details.

Proof of Theorem 1. Using Schwarz symmetrization and a rescaling argument, we
may assume that Ω is the unit ball B = B1(0), and that u ∈ W 1,p

0 (Ω) is nonnega-
tive, radially symmetric and nonincreasing. We recall that symmetrization leaves
Lq-norms of functions invariant, it increases Lp-norms with the singular weight
|x|−p (see e.g. [AL, Theorem 2.2]), and decreases Lp-norms of the gradient (see
[AL, Theorem 2.7]). By density, we may further assume that u is as smooth as
needed.

So, in what follows we may write u(r), u′(r) = d
dru(r). Clearly, we have

|∇u(x)| = |u′(r)| with r = |x|. Our goal is to find a lower bound for

I :=
∫ 1

0

rn−1|u′(r)|p dr −
(
n− p
p

)p ∫ 1

0

rn−p−1u(r)p dr.

Similarly as in [BV] a suitable transformation “reduces” the dimension and also
uncovers a remainder term. We set

(12) v(r) := r(n/p)−1 u(r), u(r) = r1−(n/p) v(r),

so that

u′(r) = −n− p
p

r−n/p v(r) + r1−(n/p) v′(r).

Since u is radially nonincreasing, for r ∈ (0, 1] we have

(13)
n− p
p
· v(r)
r
≥ v′(r),

and I becomes

I =
∫ 1

0

rp−1

(
n− p
p
· v(r)
r
− v′(r)

)p
dr −

(
n− p
p

)p ∫ 1

0

v(r)p

r
dr.

Since (13) holds, we can apply Lemma 1 with the choice

ξ =
n− p
p
· v(r)
r

and η = v′(r).
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We first consider p ≥ 2. Using the boundary condition v(0) = v(1) = 0, we obtain

I ≥ −p
(
n− p
p

)p−1 ∫ 1

0

v(r)p−1 · v′(r) dr

+ max

{
(p− 1)

(
n− p
p

)p−2 ∫ 1

0

rv(r)p−2(v′(r))2 dr,

∫ 1

0

rp−1|v′(r)|p dr
}

≥ max

{
(p− 1)

(
n− p
p

)p−2

Λp, λp

}∫ 1

0

rp−1v(r)p dr

= Γ
∫ 1

0

rn−1u(r)p dr

and (10) follows.
The case 1 < p < 2 requires greater effort. By Lemma 1 and

∫ 1

0
vp−1 · v′ dr = 0,

it follows that

(14) I ≥ 1
2
p(p− 1)

∫ 1

0

rp−1|v′(r)|2(
n−p
p ·

v(r)
r + |v′(r)|

)2−p dr.

In order to estimate the right hand side of (14) from below we introduce a further
regularizing factor rε. Here for the moment we just require that ε > 0. We will see
below that a good choice for the value of ε is given by ε = 2− p. As a consequence
we will miss λp as a coefficient for the remainder term. Application of Hölder’s
inequality yields

(∫ 1

0

rε+p−1|v′(r)|p dr
)2/p

(15)

=

∫ 1

0

rp(p−1)/2|v′(r)|p(
n−p
p ·

v(r)
r + |v′(r)|

)(2−p)p/2

×
(
rε+(p−1)(2−p)/2

(
n− p
p
· v(r)
r

+ |v′(r)|
)(2−p)p/2

)
dr

) 2
p

≤

∫ 1

0

rp−1|v′(r)|2(
n−p
p ·

v(r)
r + |v′(r)|

)2−p dr


×
(∫ 1

0

r2ε/(2−p)rp−1

(
n− p
p
· v(r)
r

+ |v′(r)|
)p

dr

) 2−p
p

.
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Proceeding further in estimating the second integral of (15) by means of a Hardy
inequality in “dimension (p+ ε)”, we find∫ 1

0

r2ε/(2−p)rp−1

(
n− p
p
· v(r)
r

+ |v′(r)|
)p

dr

≤ 2p−1

(
n− p
p

)p ∫ 1

0

rε+p−1

(
v(r)
r

)p
dr + 2p−1

∫ 1

0

rε+p−1|v′(r)|p dr

≤ 2p−1

((
n− p
ε

)p
+ 1
)∫ 1

0

rε+p−1|v′(r)|p dr.

Here we have used the inequality (a+ b)p ≤ 2p−1(ap + bp) (∀a, b ≥ 0) and the fact
that r2ε/(2−p) < rε for all r ∈ (0, 1). Combining the above estimate with (15),
inserting the result into (14), and choosing

(16) ε := 2− p,
we arrive at

(17) I ≥ 1
2
p(p− 1)2(p−1)(p−2)/p

((
n− p
2− p

)p
+ 1
)(p−2)/p ∫ 1

0

r|v′(r)|p dr.

On the other hand, by the two-dimensional embedding W 1,p
0 ⊂ L2p/(2−p) ⊂ Lp(3−p),

we may define the constant

(18) C0(p) := inf
X

∫ 1

0
r|v′(r)|p dr(∫ 1

0 r|v(r)|p(3−p) dr
)1/(3−p) ,

and thus we obtain∫ 1

0

rn−1u(r)p dr =
∫ 1

0

rp−1v(r)p dr =
∫ 1

0

r−(p−2)2/(3−p)
(
r1/(3−p)v(r)p

)
dr

≤
(∫ 1

0

rp−2 dr

)(2−p)/(3−p)(∫ 1

0

rv(r)p(3−p) dr
)1/(3−p)

≤
(

1
p− 1

)(2−p)/(3−p)
C0(p)−1

∫ 1

0

r|v′(r)|p dr.

Inserting this estimate into (17), we finally deduce∫
B

|∇u|p dx ≥
(
n− p
p

)p ∫
B

|u|p
|x|p dx + C(n, p)

∫
B

|u|p dx,

with
(19)

C(n, p) =
1
2
p (p− 1)1+(2−p)/(3−p) 2(p−1)(p−2)/p

((
n− p
2− p

)p
+ 1
)(p−2)/p

C0(p).

The proof of (11) is now complete. �

Remark. Applying the a priori estimates for the p-Laplace operator of [To] and [E]
to the Euler-Lagrange equations corresponding to (18) it follows that C0(p)→ Λ2

as p ↗ 2. Then, by (19), we deduce C(n, p) → Λ2 = Γ(n, 2) as p ↗ 2. Moreover,
C0(p) is uniformly bounded from below for p ∈ (1, 2]. Indeed, a rough estimate of
C0(p) is given by C0(p) ≥ (2π)−1/8 ≈ 0.8.
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3. Weakly singular Lp-remainder terms in Rellich-type inequalities

in higher-order Sobolev spaces W k,p
(p ≥ 2)

under Navier boundary conditions

In this section by modifying the “reduction of the dimension” technique used in
[BV], we shall prove higher-order Rellich-type inequalities in W k,p with remainder
terms for functions satisfying Navier boundary conditions.

Let p ≥ 2. Let v = v(r) be a smooth radially symmetric function and denote by
∆ϑ the operator defined by

∆ϑv := v′′ +
ϑ− 1
r

v′, where ϑ = ϑ(n, p) = 4 +
n(p− 2)

p
.

Throughout this section we shall set

X = {v ∈ C2([0, 1]) : v′(0) = v(1) = 0, v 6≡ 0}
and

γ = inf
X

∫ 1

0 r|v′(r)|2 dr∫ 1

0
rv(r)2 dr

, Γ = max
{

(p− 1)p−1(n− 2p)p−2np−2

p2(p−2)
Λϑ , λϑ

}
,

λϑ = inf
X

∫ 1

0 r
2p−1|∆ϑv(r)|p dr∫ 1

0
r2p−1|v(r)|p dr

, Λϑ = inf
X

∫ 1

0 r
3|v(r)|p−2(∆ϑv(r))2 dr∫ 1

0
r2p−1|v(r)|p dr

.

These notations should not be confused with those of Section 2.

Remarks. The value of γ does not depend neither on p nor on n. Indeed, γ is
nothing else than the first eigenvalue of −∆ under homogeneous Dirichlet boundary
conditions in the unit disk B ⊂ R2; γ = j2

0 ≈ 2.42. Here jν denotes the first positive
zero of the Bessel function Jν . If p = 2, then Λϑ = λϑ and the first eigenvalue of
the biharmonic operator under Navier boundary conditions in the unit ball in R4 is
given by Λϑ = λϑ = j4

1 ≈ 3.84 ≈ 215. With the help of a tedious calculation, which
is outlined in Lemma 4 in the appendix, we find positive lower bounds for Λϑ and
λϑ also in the case p > 2. These bounds imply that if p > 2, then Γ ≥ cpn2p−2 for
all n.

In the space W 2,p ∩W 1,p
0 we have the following statement.

Theorem 2. Let p ≥ 2 and let Ω ⊂ Rn (n ≥ 2p) be a bounded domain. Denote by
|Ω| its n-dimensional Lebesgue measure and let en = |B|, where B = B1(0) is the
unit ball.

Then, for any u ∈ W 2,p ∩W 1,p
0 (Ω) we have∫

Ω

|∆u|p dx ≥
(

(n− 2p)(p− 1)n
p2

)p ∫
Ω

|u|p
|x|2p dx

+
4(p− 1)p(n− 2p)p−1np−1

p2p−1
γ

(
en
|Ω|

)2/n ∫
Ω

|u|p
|x|2p−2

dx(20)

+Γ
(
en
|Ω|

)2p/n ∫
Ω

|u|p dx.

Proof.
Step 1. By scaling it suffices to consider |Ω| = en. First we show that we

may restrict ourselves to Ω = B and radial superharmonic functions u. For this
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purpose we assume that (20) has already been shown in this setting. Now let Ω be
an arbitrary bounded domain with |Ω| = en and let u ∈W 2,p ∩W 1,p

0 (Ω).
Define f = −∆u and let w ∈W 2,p ∩W 1,p

0 (B) be the radial strong solution of{
−∆w = f∗ in B,

w = 0 on ∂B,

where f∗ ≥ 0 denotes the Schwarz symmetrization of f . By [Ta, Theorem 1] we
know that w ≥ u∗ ≥ 0. Hence∫

Ω

|∆u|p dx =
∫

Ω

|f |p dx =
∫
B

(f∗)p dx =
∫
B

|∆w|p dx,∫
B

|w|p
|x|α dx ≥

∫
B

|u∗|p

|x|α dx ≥
∫

Ω

|u|p
|x|α dx, α ∈ {0, 2p− 2, 2p}.

For the last inequality we refer again to [AL, Theorem 2.2]. Assuming that (20)
holds in the radial superharmonic setting, the same follows for any domain Ω and
any u ∈W 2,p ∩W 1,p

0 (Ω).

Step 2. Assume now that Ω = B and that u is superharmonic and radially
symmetric: u = u(r), r = |x|. Let us also recall that in the W 2,p setting, the best
Hardy constant is given by Cpp (see [DH, Theorem 12], [Mi, Theorem 3.1]), where

Cp =
(n− 2p)(p− 1)n

p2
.

Similarly as in (12), we introduce the transformation

v(r) := r(n/p)−2u(r), u(r) = r2−(n/p)v(r),

so that

−∆u(r) = r−n/p
(
−r2∆ϑv(r) + Cpv(r)

)
≥ 0.

This allows us to apply Lemma 1 with the choice ξ = Cpv and η = r2∆ϑv. Indeed,
we have

Ip :=
∫ 1

0

rn−1 (−∆u)p dr − Cpp
∫ 1

0

rn−2p−1|u|p dr

=
∫ 1

0

r−1
[(
Cpv − r2∆ϑv

)p − (Cpv)p
]
dr

≥ −pCp−1
p

∫ 1

0

rvp−1v′′ dr

+ max
{

(p− 1)Cp−2
p

∫ 1

0

r3(v(r))p−2(∆ϑv)2 dr ,

∫ 1

0

r2p−1|∆ϑv|p dr
}
,

where we have used the boundary condition u(1) = v(1) = 0. Integrating by parts
and using the identity vp−2|v′|2 = 4

p2 |(vp/2)′|2 gives

−
∫ 1

0

rvp−1v′′ dr = (p− 1)
∫ 1

0

rvp−2|v′|2 dr =
4(p− 1)
p2

∫ 1

0

r|(vp/2)′|2 dr.
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Therefore, recalling the definition of γ, λϑ and Λϑ, we infer

Ip ≥ 4(p− 1)
p

Cp−1
p γ

∫ 1

0

r|v|p dr + max
{

(p− 1)Cp−2
p Λϑ , λϑ

} ∫ 1

0

r2p−1|v|p dr

=
4(p− 1)

p
Cp−1
p γ

∫ 1

0

rn−1 |u|p
r2p−2

dr + Γ
∫ 1

0

rn−1|u|p dr

thereby completing the proof of Theorem 2. �

Remark. For the case 1 < p < 2, the preceding proof shows the existence of a
remainder term

∫
Ω
|u|p
|x|2p−2 with a factor which depends on n like (n− 2p)(p−1). We

are confident that, even in this case, methods similar to those used in the proof of
Theorem 1 can be employed to prove that an additional term of the type

∫
Ω
|u|p

may be added to the right hand side of (6).

In order to avoid tedious calculations, from now on we deal only with the Hilbert
space case p = 2. The case p > 2 is expected to be similar. To make the statements
that follow more precise, we introduce some further notations. Set

X = {v ∈ C1([0, 1]) : v′(0) = v(1) = 0, v 6≡ 0}

and for n ∈ N let

Λ(n) = inf
X

∫ 1

0
rn−1|v′(r)|2 dr∫ 1

0 r
n−1v(r)2 dr

.

Again, this notation should not be confused with the previous ones.

Proposition 1. Let B ⊂ Rn be the unit ball. The first eigenvalue λ0 of the
following Navier boundary value problem:{

∆2u = λu in B,
u = ∆u = 0 on ∂B,

satisfies

Λ(n)2 = λ0 = inf
u∈W 2,2∩W 1,2

0 (B)\{0}

∫
B

(∆u)2 dx∫
B
u2 dx

.

Proof. The first equality is due to the fact that the biharmonic operator u 7→ ∆2u
under the Navier boundary conditions u = ∆u = 0 on ∂B is actually the square
of the Laplacian under Dirichlet boundary conditions. For the second equality, see
e.g. [V, Lemma B3]. �

A direct consequence of Theorem 2 is the following corollary.

Corollary 1. Let Ω ⊂ Rn, n ≥ 4, be a bounded domain. Denote by |Ω| its n-
dimensional Lebesgue measure and let en = |B|, where B = B1(0) is the unit ball.

Then, for any u ∈ W 2,2 ∩W 1,2
0 (Ω) we have∫

Ω

(∆u)2
dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4 dx

+
n(n− 4)

2
Λ(2)

(
en
|Ω|

)2/n ∫
Ω

u2

|x|2 dx+ Λ(4)2

(
en
|Ω|

)4/n ∫
Ω

u2 dx.
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Combining this result with the Hardy inequality (8) of Brezis-Vazquez, for third
order Sobolev spaces we have

Theorem 3. Let Ω ⊂ Rn, n ≥ 6, be a bounded domain. Then for any u ∈
W 3,2 ∩W 1,2

0 (Ω) with ∆u = 0 on ∂Ω, i.e. ∆u ∈ W 1,2
0 (Ω), we have:∫

Ω

|∇∆u|2 dx ≥ (n+ 2)2(n− 2)2(n− 6)2

64

∫
Ω

u2

|x|6 dx

+
1
16
(
3(n− 2)4 + 8(n− 2)2 + 16

)
Λ(2)

(
en
|Ω|

)2/n ∫
Ω

u2

|x|4 dx

+
(

(n− 2)2

4
Λ(4)2 +

n(n− 4)
2

Λ(2)2

)(
en
|Ω|

)4/n ∫
Ω

u2

|x|2 dx

+ Λ(2) Λ(4)2

(
en
|Ω|

)6/n ∫
Ω

u2 dx.

Proof. First, by combining the argument from the proof of Theorem 2 and [AL,
Theorem 2.7], we reduce the assertion to the case Ω = B in the radial setting.

An application of the Brezis-Vazquez inequality (8) reduces the order of terms
by one. Indeed, we have∫ 1

0

rn−1 |∇∆u|2 dr ≥ (n− 2)2

4

∫ 1

0

rn−3 (∆u)2 dr + Λ(2)
∫ 1

0

rn−1 (∆u)2 dr.

The second term of this inequality can be estimated with the help of Corollary 1,
while the singular term ∫ 1

0

rn−3 (∆u)2
dr

can be handled by introducing the transformation

v(r) := r(n/2)−3 u(r), u(r) = r3−(n/2) v(r).

We obtain∫ 1

0

rn−3 (∆u)2
dr − (n+ 2)2(n− 6)2

16

∫ 1

0

rn−7 u2 dr

=
∫ 1

0

r3

(
∆4v +

2
r
v′
)2

dr − (n+ 2)(n− 6)
2

∫ 1

0

r

(
v′′ +

5
r
v′
)
v dr

=
∫ 1

0

r3 (∆4v)2 dr + 4
∫ 1

0

r2 (∆4v) v′ dr

+4
∫ 1

0

r (v′)2
dr +

(n+ 2)(n− 6)
2

∫ 1

0

r (−∆2v) v dr

=
∫ 1

0

r3 (∆4v)2
dr + 2

[
r2v′(r)2

]1
0

+
1
2
(
(n− 2)2 + 8

) ∫ 1

0

r (−∆2v) v dr

≥ Λ(4)2

∫ 1

0

r3v2 dr +
1
2
(
(n− 2)2 + 8

)
Λ(2)

∫ 1

0

rv2 dr

= Λ(4)2

∫ 1

0

rn−3u2 dr +
1
2
(
(n− 2)2 + 8

)
Λ(2)

∫ 1

0

rn−5u2 dr.

Note that only the boundary condition u(1) = v(1) = 0 was used. Collecting terms
completes the proof. �
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In order to iterate further we quote from [DH, Theorem 12], [Mi, Theorem 3.3]
the following

Lemma 2. Let Ω ⊂ Rn be a sufficiently smooth bounded domain and σ < n − 4.
Then for every u ∈ C2(Ω̄) with u|∂Ω = 0 we have∫

Ω

(∆u)2

|x|σ dx ≥ (n− 4− σ)2(n+ σ)2

16

∫
Ω

u2

|x|σ+4
dx.

We emphasize that for the validity of the above inequality it is enough to assume
that u|∂Ω = 0.

With the help of this result it is not difficult to prove the existence of remainder
terms in Hardy inequalities of arbitrary order. Indeed, we have

Corollary 2. Let Ω ⊂ Rn be a sufficiently smooth bounded domain and let k ∈ N,
2k ≤ n. Then there exist constants c1, . . . , ck, depending only on k, n and |Ω|, such
that for every u ∈ W k,2(Ω) with ∆ju|∂Ω = 0 for j ∈ N0 and 2j < k we have:

(a) if k is even, k = 2m, m ∈ N:∫
Ω

(∆mu)2
dx ≥ 1

42m

 2m∏
j=1

(n+ 4(m− j))2

∫
Ω

u2

|x|4m dx+
2m∑
`=1

c`

∫
Ω

u2

|x|4m−2`
dx;

(b) if k is odd, k = 2m+ 1, m ∈ N0:∫
Ω

|∇∆mu|2 dx ≥ 1
42m+1

2m+1∏
j=1

(n+ 4m+ 2− 4j)2

∫
Ω

u2

|x|4m+2
dx

+
2m+1∑
`=1

c`

∫
Ω

u2

|x|4m+2−2`
dx.

The existence of some constants c1, . . . , ck as above is easily shown. Of particular
interest would be their respective optimal values. In this regard, we point out that
already the proof of Theorem 3 indicates that iterative methods used to prove
this kind of inequalities for functions satisfying the Navier boundary conditions
0 = u = ∆u = · · · on ∂Ω, yield constants which apparently cannot be easily
obtained in a closed form.

One may hope that things will improve under the more restrictive Dirichlet
boundary conditions, i.e. u ∈ W k,2

0 (Ω). This will be discussed in the following
section.

4. Weakly singular L2
-remainder terms in Rellich-type inequalities

in higher-order Sobolev spaces under Dirichlet

boundary conditions

Our first goal in this section will be to adapt Corollary 1 in the case p = 2, for
functions satisfying Dirichlet boundary conditions, i.e. for functions belonging to
the space W 2,2

0 (Ω) instead of W 2,2 ∩W 1,2
0 (Ω). At least when Ω is a ball or “close”

to a ball, the estimation constants will be considerably larger. On the other hand,
the symmetrization argument used in the proof of Theorem 2 fails: the function
w used in that proof does not belong to the space W 2,2

0 (B) considered here. We
overcome this difficulty by a relatively involved argument based on the positivity
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properties of Green’s functions, which seems to work only in the Hilbert space case
p = 2 and if Ω is replaced with the circumscribed ball.

Since the technical difficulties for obtaining explicit “large” constants in the
inequalities that follow increase quickly with the order k of the space W k,2

0 (Ω), we
study the improved Hardy inequality only in W 2,2

0 (Ω). For the general case we
formulate a conjecture on which behaviour of the remainder terms we expect when
the order of spaces becomes arbitrarily large.

In this section the eigenvalues of biharmonic and more general polyharmonic
operators will play an important role.

Let B ⊂ Rn denote the unit ball and let

Λ
(

(−∆)k , n
)

=


inf

Wk,2
0 (B)\{0}

∫
B (∆mu)2

dx∫
B
u2 dx

, k = 2m, m ∈ N;

inf
Wk,2

0 (B)\{0}

∫
B |∇∆mu|2 dx∫

B
u2 dx

, k = 2m+ 1, m ∈ N0.

The notation Λ(n) of Section 3 is a special case of the notation introduced here;
indeed we have Λ(n) = Λ ((−∆) , n).

Remark. Taking Proposition 1 into account we immediately see that Λ((−∆)2, n) ≥
Λ(−∆, n)2. With the help of qualitative properties of first eigenfunctions (in par-
ticular under Navier boundary conditions), it can be shown that also the strict
inequality holds. Moreover, the ratio of these eigenvalues is rather large; by elemen-
tary calculations one finds e.g. Λ((−∆)2, 1) = 31.285243 . . . while Λ ((−∆) , 1)2 =
π4/16 = 6.088068 . . .. For n = 4, the case which is needed below, a rough es-
timate according to [PS, p. 57] gives Λ((−∆)2, 4) ≥ j2

1 j
2
2 = 387.23 . . . while

Λ ((−∆) , 4)2 = j4
1 = 215.56 . . ..

Theorem 4. Let n ≥ 4 and let Ω ⊂ Rn be such that Ω ⊂ BR(0). Then for every
u ∈ W 2,2

0 (Ω) we have∫
Ω

(∆u)2
dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4 dx

+
n(n− 4)

2
Λ (−∆, 2)R−2

∫
Ω

u2

|x|2 dx

+ Λ
(
(−∆)2, 4

)
R−4

∫
Ω

u2 dx.

(21)

Proof. By trivial extension, we have W 2,2
0 (Ω) ↪→ W 2,2

0 (BR(0)). Further, a scaling
argument shows that we may assume R = 1 (BR = B).

If in addition, u is radially symmetric, we proceed as in Step 2 of the proof
of Theorem 2 with p = 2. In its last conclusion we may instead exploit that u
satisfies homogeneous Dirichlet boundary conditions and replace Λϑ|ϑ=4 = Λ(4)2 =
Λ (−∆, 4)2 with Λ

(
(−∆)2

, 4
)

, thereby proving (21) for radial u.

It remains to extend (21) to arbitrary functions u ∈ W 2,2
0 (B). To this end,

consider for ` ∈ N the sequence of relaxed minimum problems:

µ` := inf
W 2,2

0 (B)\{0}

F`(v)∫
B v

2 dx
,
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where

F`(v) =
∫
B

(∆v)2
dx− n2(n− 4)2

16

(
1− 1

`

)∫
B

v2

|x|4 dx

− n(n− 4)
2

Λ (−∆, 2)
(

1− 1
`

)∫
B

v2

|x|2 dx.

Since we may already use Corollary 1, we have F`(v) ≥ 1
`

∫
B

(∆v)2 dx for every
v ∈ W 2,2

0 (B). This means that for every minimizing sequence vk ∈ W 2,2
0 (B) with∫

B v
2
k dx = 1 and limk→∞ F`(vk) = µ`, the sequence

(
‖uk‖W 2,2

0 (B)

)
k∈N

is bounded.

After selecting a subsequence we may assume that uk ⇀ u ∈ W 2,2
0 (B) and uk → u

strongly in L2(B). The bilinear form

Φ`(v, w) :=
∫
B

∆v ·∆w dx− n2(n− 4)2

16

(
1− 1

`

)∫
B

v · w
|x|4 dx

− n(n− 4)
2

Λ (−∆, 2)
(

1− 1
`

)∫
B

v · w
|x|2 dx

associated with F`(v) defines a scalar product on W 2,2
0 (B), which, by

1
`

∫
B

(∆v)2
dx ≤ Φ`(v, v) ≤

∫
B

(∆v)2
dx = ‖v‖W 2,2

0 (B),

defines an equivalent norm. If we consider, just for the following argument, W 2,2
0 (B)

with Φ`( . , . ) as scalar product, then, the lower semicontinuity of the corresponding
norm in the weak topology gives

µ` = lim inf
k→∞

F`(vk) ≥ F`(v).

Further, we have

1 = lim
k→∞

∫
B

v2
k dx =

∫
B

v2 dx.

Hence F`(v) = µ`, and v ∈ W 2,2
0 (B) is an optimal (nontrivial) function for µ`.

Consequently, v is a weak solution of the Euler-Lagrange equation

(22)


∆2v =

(
1− 1

`

)
n2(n− 4)2

16
v

|x|4
+
(
1− 1

`

) n(n−4)
2 Λ(−∆, 2) v

|x|2 + µ`v in B,

v = ∇v = 0 on ∂B.

Next we show that v is of fixed sign. Assume by contradiction that there exist
subsets B+, B− ⊂ B, both of positive measure, such that v > 0 on B+ and v < 0
on B−. We may now apply a decomposition method explained in detail in [GG,
Section 3]; see also [Mo]. Let

K =
{
u ∈W 2,2

0 (B) : u ≥ 0
}

be the closed convex cone of nonnegative functions and

K∗ =
{
u∗ ∈ W 2,2

0 (B) : (u∗, u) ≤ 0 for all u ∈ K
}

the dual cone. Here (u∗, u) =
∫
B

(∆u∗) (∆u) dx is the standard scalar product in
W 2,2

0 (B) and K∗ is the cone of all weak subsolutions of the biharmonic equation



HARDY INEQUALITIES 2163

in B under Dirichlet boundary conditions. By a comparison result of Boggio [Bo,
p. 126] the elements of K∗ are nonpositive. The strict positivity of the biharmonic
Green function in B even shows that u∗ ∈ K∗ \ {0} ⇒ u∗ < 0; cf. [AGGM, Lemma
1]. According to [Mo], we decompose

v = v1 + v2, v1 ∈ K, v2 ∈ K∗, v1 ⊥ v2.

Since 0 6≡ v1 ≥ 0, v2 < 0, replacing v = v1 + v2 with v1 − v2 ≥ 0 yields

F`(v1 + v2) > F`(v1 − v2),
∫
B

(v1 + v2)2
dx <

∫
B

(v1 − v2)2
dx,

contradicting the minimality of F`(v)/
∫
B
v2 dx.

Hence we may assume that 0 6≡ v ≥ 0. Considering polar coordinates x = rξ,
r ∈ [0, 1], |ξ| = 1 and integrating the Euler-Lagrange equation (22) over {|ξ| = 1}
shows that

w(r) :=
1
n en

∫
|ξ|=1

v(r ξ) dω(ξ) ∈W 2,2
0 (B)

is a radial weak solution of (22). By virtue of 0 6≡ v ≥ 0, we also have 0 6≡ w ≥ 0.
Since we may already use the Hardy inequality (21) for the radial function w, we
conclude that

µ` =
F`(w)∫
B
w2 dx

>

∫
B (∆w)2

dx− n2(n−4)2

16

∫
B

w2

|x|4 dx−
n(n−4)

2 Λ (−∆, 2)
∫
B

w2

|x|2 dx∫
B
w2 dx

≥ Λ
(
(−∆)2, 4

)
.

To sum up, we have shown that for any ` ∈ N and for every u ∈W 2,2
0 (B) we have∫

B

(∆u)2
dx ≥

(
1− 1

`

)
n2(n− 4)2

16

∫
B

u2

|x|4 dx

+
(

1− 1
`

)
n(n− 4)

2
Λ (−∆, 2)

∫
B

u2

|x|2 dx

+ Λ
(
(−∆)2, 4

) ∫
B

u2 dx.

Sending `→∞ in the above inequality, the claim follows. �

We conclude this section with some remarks concerning general higher-order
Sobolev spaces.

We recall that W k,2
0 (Ω) is equipped with the norm

‖u‖2
Wk,2

0 (Ω)
=


∫

Ω

(∆mu)2
dx, if k = 2m, m ∈ N;∫

Ω

|∇∆mu|2 dx, if k = 2m+ 1, m ∈ N0.
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We expect the following result:

Conjecture 1. Let Ω ⊂ Rn be such that Ω ⊂ BR(0). Let k ∈ N , n ≥ 2k. Then
for all u ∈W k,2

0 (Ω) we have:

‖u‖2
Wk,2

0 (Ω)
≥

k∑
j=0

1
4j

(
k

j

){ j∏
`=1

((n+ 2k − 4`)(n− 2k − 4 + 4`))

}

·Λ
(
(−∆)k−j , 2k − 2j

)
R2j−2k

∫
Ω

u2

|x|2j dx(23)

with the convention that Λ((−∆)0, 0) = 1.

In the radial setting, the terms

Λ
(
(−∆)k−j , 2k − 2j

) ∫
B

u2

|x|2j dx

originate from

nen

∫ 1

0

r2k−2j−1
(

∆(k−j)/2
2k−2j v

)2

dr,

if k − j is even, and from

nen

∫ 1

0

r2k−2j−1

((
∆(k−j−1)/2

2k−2j v
)′)2

dr,

if k − j is odd. Here ∆2k−2j is the radial Laplacian in dimension 2k − 2j. The
radial functions u and v are related by means of the transformation

v(r) = r(n/2)−ku(r), u(r) = rk−(n/2)v(r).

In Conjecture 1 as well as in the proof of Theorem 4 we simply used eigenvalue
estimates for these terms. One may also wish to use Hardy-like inequalities in order
to have largest possible constants in front of the most singular remainder terms.
Since we are assuming that we are dealing with functions satisfying homogeneous
Dirichlet boundary conditions, we can apply the following lemma.

Lemma 3. (a) Let k ≥ 2, j ≥ 1, v ∈ C2([0, 1]) with v′(1) = 0. Then:∫ 1

0

rk (∆jv)2
dr ≥ (k + 1− 2j)2

4

∫ 1

0

rk−2 (v′)2
dr.

(b) Let k ≥ 2, v ∈ C1([0, 1]) with v(1) = 0. Then:∫ 1

0

rk (v′)2
dr ≥ (k − 1)2

4

∫ 1

0

rk−2v2 dr.

To illustrate how the application of this elementary and well-known lemma shifts
less singular remainder terms to more singular ones, we modify the proof of Theo-
rem 4 and obtain:

Corollary 3. Let n ≥ 4 and let Ω ⊂ Rn be such that Ω ⊂ BR(0). Then for every
u ∈ W 2,2

0 (Ω) we have∫
Ω

(∆u)2
dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4 dx

+
1
2

(n(n− 4) + 8) Λ (−∆, 2)R−2

∫
Ω

u2

|x|2 dx.
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Appendix A. Proofs of some technical inequalities

First we present a proof of Lemma 1 from Section 2.

Proof of Lemma 1. By means of integration by parts or Taylor’s formula we find

(24) (ξ − η)p + p ξp−1η − ξp = p(p− 1)η2

∫ 1

0

(1− t) (ξ − t η)p−2 dt.

Assume that p ≥ 2. Since ξ − η ≥ 0, we have ξ − t η ≥ (1− t)ξ and the right hand
side in (24) becomes

p(p−1)η2

∫ 1

0

(1−t) (ξ−t η)p−2 dt ≥ p(p−1)η2ξp−2

∫ 1

0

(1−t)p−1 dt = (p−1)η2ξp−2.

To get the second estimate from below in the case p ≥ 2, we first consider nonpos-
itive η ≤ 0. Then ξ − t η ≥ t |η| and the right hand side in (24) becomes

p(p− 1)η2

∫ 1

0

(1− t) (ξ − t η)p−2 dt ≥ p(p− 1)|η|p
∫ 1

0

(1− t) tp−2 dt = |η|p.

For η ≥ 0 we get ξ − t η ≥ (1− t) |η| and thus

p(p− 1)η2

∫ 1

0

(1− t) (ξ− t η)p−2 dt ≥ p(p− 1)|η|p
∫ 1

0

(1− t)p−1 = (p− 1) |η|p ≥ |η|p.

Now let 1 ≤ p < 2. This implies (ξ − t η)p−2 ≥ (ξ + |η|)p−2, and consequently

p(p− 1)η2

∫ 1

0

(1− t) (ξ − t η)p−2 dt ≥ p(p− 1)η2

(ξ + |η|)2−p

∫ 1

0

(1− t) dt

=
p(p− 1)

2
η2

(ξ + |η|)2−p .

(25)

This completes the proof. �

We now refer to the estimate on Γ and Λϑ mentioned in the first remark of
Section 3. Clearly we have Λϑ ≥ 0. We shall show that even Λϑ > 0 and Λϑ →∞
as n→∞ whenever p > 2.

Lemma 4. Let X = {v ∈ C2([0, 1]) : v′(0) = v(1) = 0, v 6≡ 0}. Assume that p > 2;
then we have

Λϑ
def
= inf

X

∫ 1

0 r
3|v(r)|p−2(∆ϑv(r))2 dr∫ 1

0
r2p−1|v(r)|p dr

≥ 4
n2(p− 2)2

p2
> 0,

λϑ
def
= inf

X

∫ 1

0 r
2p−1|∆ϑv(r)|p dr∫ 1

0
r2p−1|v(r)|p dr

≥ 2p
np(p− 2)p

pp
> 0.

Proof. Let v ∈ X . A first integration by parts shows that

(26)
∫ 1

0

r2p−1|v(r)|p dr = −1
2

∫ 1

0

r2p|v(r)|p−2v(r)v′(r) dr.

By means of the Cauchy-Schwarz inequality we obtain

(27)
∫ 1

0

r2p−1|v(r)|p dr ≤ 1
4

∫ 1

0

r2p+1|v(r)|p−2(v′(r))2 dr.
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Recalling that from Section 3 we have ϑ = 4+ n(p−2)
p , a further integration by parts

gives

(n(p− 2)− 2p(p− 1))
∫ 1

0

r2p|v(r)|p−2v(r)v′(r) dr

= p(p− 1)
∫ 1

0

r2p+1|v(r)|p−2(v′(r))2 dr + p

∫ 1

0

r2p+1|v(r)|p−2v(r)∆ϑv(r) dr.

(28)

Combining (27), (28) and (26) yields

4
∫ 1

0

r2p−1|v(r)|p dr ≤
∫ 1

0

r2p+1|v(r)|p−2|v′(r)|2 dr

=
n(p− 2)− 2p(p− 1)

p(p− 1)

∫ 1

0

r2p|v(r)|p−2v(r)v′(r) dr

− 1
p− 1

∫ 1

0

r2p+1|v(r)|p−2v(r)∆ϑv(r) dr

= −2
(
n(p− 2)
p(p− 1)

− 2
)∫ 1

0

r2p−1|v(r)|p dr

− 1
p− 1

∫ 1

0

r2p+1|v(r)|p−2v(r)∆ϑv(r) dr,

from which we infer at once that (recall r ≤ 1)

2
n(p− 2)

p

∫ 1

0

r2p−1|v(r)|p dr ≤ −
∫ 1

0

r2p+1|v(r)|p−2v(r)∆ϑv(r) dr

≤
∫ 1

0

(
rp−1/2|v(r)|p/2

)(
r3/2|v(r)|(p−2)/2|∆ϑv(r)|

)
rp dr

≤
(∫ 1

0

r2p−1|v(r)|p dr
)1/2(∫ 1

0

r3|v(r)|p−2(∆ϑv(r))2 dr

)1/2

,

and the first claim follows. In order to obtain the second statement, we only need
to modify this last estimate as follows:

2
n(p− 2)

p

∫ 1

0

r2p−1|v(r)|p dr ≤ −
∫ 1

0

r2p+1|v(r)|p−2v(r)∆ϑv(r) dr

≤
∫ 1

0

(
r(2p−1)(p−1)/p|v(r)|p−1

)(
r(2p−1)/p|∆ϑv(r)|

)
r2 dr

≤
(∫ 1

0

r2p−1|v(r)|p dr
)(p−1)/p(∫ 1

0

r2p−1|∆ϑv(r)|p dr
)1/p

.

This completes the proof of Lemma 5. �
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